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Abstract

We construct new polynomial interpolation schemes of Taylor and Hermite types in
R". The interpolation conditions are real parts and imaginary parts of certain differ-
ential operators. We also give formulas for the interpolation polynomials which are
of Newton form and can be computed by an algorithm.
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1 Introduction

Let Z;(R") be the vector space of all polynomials of degree at most d in R”".

It is well-known that the dimension of £2;(R") equals (” :d> The Lagrange

interpolation problem associated to A asks whether there is a unique polynomial p
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in Z;(R") which matches preassigned data on A, where A consists of " :d
distinct points in R”. Let Z = {p1,..., py} be a basis for Z;(R") with N =

<n : d ) Then, the Vandermonde determinant defined by

VDM(#; A) = det[pj(ai)]i<jk<n

is a polynomial of interpolation points. Hence, it is non-zero for almost all choices of
interpolation points. In other words, a subset A C R" of : > distinct points is

regular for almost all choices of A. On the other hand, it is difficult to check whether
. n+d .. . .
a given set of " points is regular as soon as n > 2. Explicit interpolation

schemes are available in literatures. Chung and Yao [5] gave a quasi-constructive
description of locations of nodes in R” for which Lagrange interpolation is regular.
Here, the interpolation points are suitably distributed on hyperplanes and form a so-
called nature lattice. Another type of regular sets was discovered by Bos [2], where
the interpolation points are taken from algebraic varieties in R”.

We consider the problem of Hermite interpolation by polynomials in R". More
precisely, the problem is to find a polynomial which matches, on a set of distinct
points in R”, the values of a function and its partial derivatives. We deal with the case
where the number of interpolation conditions is equal to the dimension of Z2;(R").
If the interpolation problem has a unique solution, then we say that the interpolation
scheme is regular.

Roughly speaking, Hermite interpolation of type total degree defined below is the
most natural generalization of univariate Hermite interpolation.

Problem 1 (Lorentz [8, 9]) Let m be a positive integer. Let d, dy, ..., d,, be natural
numbers such that
<n+d> _ <n+d1)+n_+<n+dm>.
n n n
Let {by, ..., b,,} be a set of distinct points in R". Find conditions for which the
interpolation problem
alol f

) & (bj) =Cj,a» I<j=<m, |af= dj

has a unique solution for given values c; 4.

Many regular (resp., almost regular, singular) interpolation schemes of type total
degree can be found in literature. For instance, it was shown in [8] that the only mul-
tivariate interpolation of type total degree regular for all choice of nodes is Taylor
interpolation. Also in [8], it was proved that the Hermite interpolation is singu-
lar if the number of nodes satisfies 2 < m < n 4+ 1 with n > 2 except for the
case of Lagrange interpolation. Some interesting results focusing on almost regular
interpolation schemes were given in [16].
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Another general type of Hermite interpolation was defined in [16], which replaces
derivatives in the coordinate directions by directional derivatives. More precisely,
interpolation conditions at the point a € R”" are given by chains of directional
derivatives of consecutive order

[ f@., [ Dyf@.,....f— Dy - Dyf@, yi....yx € R"\{0}.

In [16], the authors introduced the notations of trees and the blockwise structure to
defined general Hermite interpolation problems. Using the Bézier representation of
polynomials in barycentric coordinates, they proved necessary and sufficient condi-
tions for almost regular interpolation problems. Moreover, they established the New-
ton formula and the remainder formula for the Hermite interpolation polynomials.
For details, we refer the reader to [16].

Some explicit multivariate Hermite interpolation schemes in R” were constructed.
In [1], the authors gave bivariate regular schemes, where the nodes are equidistant
points on concentric circles and the derivatives are the normal derivatives at these
points. In [3], Bos and Calvi constructed new regular interpolation schemes of Her-
mite type in C" and R”. Here, the interpolation points are distributed on algebraic
hypersurfaces and the discrete differential conditions come from certain least spaces
of finite-dimensional spaces of analytic functions. For a recent account of the theory
of Hermite interpolation, we refer the readers to [4, 9].

We now state another general problem. Associated with a polynomial Q(x) =
D o CaX”, co € RinR", we define a differential operator P (D) by

alel ¢
OD)f = anT

In the case when Q(x) = ¢, we set Q(D) f = cf.

Problem 2 Let A = {ay,...,a,} be m distinct points in R". Let ny, ..., n, and
d be positive integers such that ny +ny + -+ 4+ ny, = " :; d ) Find differential
operators Pjy(D)for j =1,...,mandk =0, ..., n; —1 for which the interpolation
problem

PijiMDP@j)=fjx, 1<j<m, 0<k=<n;-—1, )

has a unique solution P € Z4(R") for any given preassigned data { f;}.

When m = and all the differential operators are point-evaluation

n+d
n
functionals, Problem 2 becomes a Lagrange interpolation problem.
Some special cases of Problem 2 were recently studied by the first author of

this paper. In [11], we gave a solution of the problem. The differential operators

k
are the real parts and imaginary parts of the complex derivatives (3371 - 18%2) ,
k > 0. In [12], we considered an analogous problem on the space of bivariate sym-
metric polynomials. It was showed that the differential operators can be taken as

k
(—ﬂ% + a%) with o, 8 € R and k > 0. We showed in [13] a way to mix two
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types of differential operators mentioned above to get solutions of Problem 2. Our
method relies on factorization results for polynomials and the construction of certain
Taylor type polynomials. Moreover, we give a Newton formula for the interpolation
polynomial and use it to prove that the Hermite interpolation polynomial is the limit
of the Lagrange interpolation polynomials.

The aim of this paper is to generalize Hermite interpolation in [11]. The regular
Hermite schemes are constructed as follows. We first give a criterion such that a
polynomial in &24(R") is divisible by the polynomial g, (x) := |(xp — am) + c(x; —

aj)|2 witha = (ay,...,a,), j # mand ¢ € C\R. The criterion contains differential
operators of the forms
n o
0%k 0 0 J
[ [1 % (8_ - C8_> f(@). 2
k=1k#j,m * %k *J Xm

We use these differential operators to construct a Taylor type polynomial at a. The
formula and properties of the new Taylor polynomial are similar to that of ordinary
Taylor polynomial. Next, we use the above-mentioned divisibility criterion to get a
factorization result which leads to the regularity of Hermite interpolation. The for-
mula for the Hermite interpolation polynomial is of a Newton form and is written in
terms of Taylor type polynomials. This enables us to create an algorithm to compute
the interpolation polynomial. We also give some examples to illustrate our results.
It is worth pointing out that if we take n = 2 and ¢ = i, we recover the theory of
Hermite interpolation in [11].

Finally, we note that an analogous problem is studied on the unit sphere S in R3. In
recent works, we constructed some regular Hermite schemes on S. For more details,
we refer the readers to [13-15].

Notations and conventions We use bold symbols x, a, etc. to denote points in R”.
We always assume thatn > 2,1 < j, m < n withm # j. The constant c is a non-real
number. The multi-index in N*~! is denoted by a = (@1, ..., Qn—1, %ty -, 0y)
in which the m-entry does not appear. Throughout this paper, f and g are real-valued
functions. All polynomials are of real coefficients except for polynomials of two
types I1, and Bg . By a suitably defined function f, we mean that the function f is
sufficiently differentiable.

2 Taylor type polynomials

2.1 Adivisibility criterion

Leta=(aj,...,ay) e R"andc € C\R.Let1 < j,m < n and j # m. We define
the following polynomial
Ga(X) = | (o — am) + c(xj —apI*.
Easy computations gives

qa(X) = (X — am)* + 2Re(C) (X — am) (x; — aj) + |c[*(x; — a;)*.
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Note that g5 depends not only on a but also on j, m and c. We adopt this setting for
simplicity of notations. Clearly g, is an irreducible polynomial of degree 2 in R” and

V(ga) ={xeR":qa(x) =0} = {x e R" : Xy = am, Xj =aj}, 3)

which is a flat of dimension n — 2 in R”".

Theorem 1 Leta = (ai,...,a,) € R" and qa(X) = [(x — apm) + c(x; — aj)|2
withm # j and c € C\ R. Let P be a polynomial of degree at most d in R" of real
coefficients. Then P is a multiple of q, if and only if

n oj n
Bak 8 3 J ’
[ 5 ) (o o) P@=0 wi= ¥ msa @

Ix
k=lk#jm "k k=1,k#m

Proof Without loss of generality we assume that j = n — 1 and m = n. We write
P(x) = Y4 Ch(X)xk with Cp € 24 (R" ") and X' = (x1, ..., %,_1). We can
regard g, and P as polynomials in C”, that is x € C". Since

ga(X) = ((xn — an) + c(Xp—1 — an—1)) ((xn — an) +c(xXn—1 — an-1)),

we see that g, divides P if and only if both (x, — a,) + c¢(xp,—1 — a,—1) and (x,, —
an) + ¢c(x,—1 — ay—1) divide P. By [10, Lemma 2.5], the condition reduces to

P (X,an — c(xn—1 —an-1)) =0 5)
and
P (X, ap — ¢(xp—1 — an—1)) = 0. (6)

Note that (5) and (6) hold for every x € C" if and only if they are true for every
x € R". Hence we can return to work with polynomials in R”. We have

d
P (X, @y —cCtn1 —an1) = Y Ce(X) (@ — c(xy1 — ap_1)*
k=0
d
= Y CeX) (@y — Re(e) (in—1 = 1) — iTm(c) (p—1 — @p—1))*
k=0

d
= Z Cr(x) Ok (x) + i Cr(x') R (X)),
k=0

where
k ik
o)=Y (=12 ( } ) (an = Re(@) (on—1 — an—1))* " (Am(e) (a1 — an-1))'
1=0, [ even
and

k
Rex)=— > (-D'7 (’l‘ ) (an = Re(@) (on—1 = an—1))* " () (-1 — an—1))' -

1=0, 1 odd
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Note that both Cy Oy and C Ry belong to £, (R"—1). In other words, the real part
and the imaginary part of P (X', a, — c(x,—1 — a,—1)) are polynomials of degree at
most d in R*~ 1.

We consider the canonical basis for Z2;(R"~1)

n—1
93:{l_[x}i"‘:a/=<a1,...,an_1),|a’|sd} @
k=1
Observe that relation (5) holds if and only if
QMD)P (X, ay — cxn-1 —an-1))|y_, =0, Q€ B ®)
By the chain rule, it is easily seen that
9 P (x/ ( )) 9 9 P(a)
sap — c(Xp—1 — ap— = —c
0Xp_1 " n-l n-l —a’ 0Xp_1 0xy,
and
d , opP
—P (X, ap — c(xp—1 — an—1)) =—~(), 1<k<n-2
axk x'=a’ 8)Ck

More generally, relation (8) can be rewritten as

n—2 oy
9% 0 9\
(1‘[ )( —c ) P@=0, lo|=ai+ +a1=d O

i ng" 0Xn_1 Xy

Using similar arguments applying to relation (6), we get

" e o 8\ /
[l (ax - ) P@=0, |o=aj+ - Fa,i <d, (10)
k=1 k n— n

Note that P is a polynomial of real coefficients, two relations (9) and (10) are

equivalent, and the proof is complete. O
We define
n
Iy (x) = (xj —cxpm)® l_[ x]:lka o = (@1, -y U1, g1, -+ -, Op)
k=1,k#j,m
Then,
n .
0%k 0 a \%
M, (D) = 1_[ —a (— —c—) :
k=1 Kt 0x;, 0x; 00X,

Theorem 1 can be restated as: the polynomial P € &2;(R") is divisible by ga(X) =
[Gtm — am) +c(xj —a j)|2 if and only if it satisfies the following relations

n
Ny@)P@) =0, lo|= ) o=d (1)
k=1,k#m
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In the case where a; # 0, the differential operator I1, (D) can be decomposed
into non-zero real and imaginary parts. More precisely I1,/(D) = Re (1 (D)) +
iIm (11, (D)) where

n 9%k aj (o 9 9 oj—l 9 1
Re (/T (D)) = I o > =D ( ; )(@—Re(c) axm> (Im(c)axm>

k=1k#jm Kk 1=0,1 even

and

oj - # Olj i_ 9 a/-71< i)l
> =1z < j )( i Re(c)axm) me) )

1=0,1 odd

n 9%
Im(na/aa)):—( [1 ax)

k=1k#jm ~k

The above remark enables us to compute the number of interpolation conditions
in the real setting in (11).

Lemmal Leta= (aj,...,a,) e R"andc e C\R. Let 1 < j,m <nand j # m.
Then the set of functionals

fr— Oy f@, lo|<d a;=0
and

fr—Re(ly(D)) f(a), fr—ImUIy(D)) f@, |&[=d «a;#0

consistof(n:fI : ) + (’12512) elements.

To prove Lemma 1, we need the following simple result. The proof are left to the
reader.

Lemma 2 Forany 1 <k < n, we have
n n—1 n—1 n n—1 n—2 k—1
(1)=C3)+ (o) ()=Gm) (Gt e - (G50):

Proof (Proof of Lemma 1) For simplicity, we assume that j = n — 1 and m = n. If

n : d— 2) differential

ap—1 =0, then oy + - -+ + a2 < d, and hence, we get ( _5

operators of the forms

n—2 9%
f=J]=—=f@. a+ - +a2=<d
_ 9%
k=1
Otherwise, if 0 < k = a1 < d,then oy + --- + ay_» < d — k. In this case,
we have (d N ’]j i_ ; N 2) choices of (ay, ..., a,—2) and two choices correspond-
oy —

ing to the real part and the imaginary part of (% — c%) 1. Hence, we get
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2 d- ’]; i_ Z -2 differential operators. The number of functionals coincide with

the number of differential operators which are equal to

d

<n:ﬁ52)+2§(c[—ﬁi—;—2>zz<d kn=2 )+Zl(d k+n—2)

k=0
_(n+d-1 n+d-2
() ()
where we use Lemma 2 in the second relation. The proof is complete. O

2.2 Construction of Taylor type operators

We give a dual basis for the differential operators and use it to construct a Taylor type
operator.

Lemma3 Leta= (aj,...,ay) € R"andc e C\R. For1 < j,m <nand j # m,
B =By s Buts Butls s Bn) € NI we set

lc|2Pi n P Bj
Bﬁ/(X):(ICIZ — AP TTi< kot B! ( l_[ (i ™ <(x/ —apt e |2( am)) '

k=1 k#j.m
(12)
Then,
_Joif o #p
Ha,(D)Bﬂ/(a) - { 1 lf‘ a/ — /8/-
Proof By definition, we have
M, (D)B || d 3\ bi
8 = G i (o ~5) (0 o) |

n

1 9%
< J] == x—a™

=tieiom P O3 x=a
It is easily to check that
®j > Bj ? . = .
(i, i) ! <(xifa/')+%(xm*am)> ! — a/‘(l—w> if [2%] _ﬁj
ox;  Comn) \T T e |0 i o B
and, for 1 <k <n,k # j,m,
%k O[k! if o) = ﬂk
—a e —apP| = { :
«,
oxet N R
The result follows directly from the above computations. O
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Proposition 1 Leta = (ay,...,a,) € R"andc € C\R. Let 1 < j,m < n and
Jj # m. For a suitably defined function f, we set

d
T (H® = f@+ Y. HyD)(f)@)ByX)

le'|=1,a;=0

d
+ Y (MwD)(f) @By (x) + Ty (D)(f)(@) By (%)) .

lo/|=1,a;>0
(13)

where
n

_ o w
Mo (x) = (xj —cx)®  [] x*
k=1,k#j,m

and

le

— || - , ( c )
Boc’ = — Sk i —aj)+ m — dm .
® (lc|> =% [Ti=1 ezm k! ( H e ) e * e

k=1,kj,m

Then, Tg’ g2 () belongs to PR and

1,0 (T4,,()) @ = MeO)(NH@, || < d. (14)

The polynomial Tg’ g2 (f) 1s called a Taylor type polynomial of f at a correspond-
ing to ga.

Proof Firstly, observe that IT,,(D)(f)(a) € R and B,s € &;(R") when «; = 0. By
definition, I1,/(D)(f)(a) and B,/ (x) are the complex conjugates of I1,(D)(f)(a)
and B (X) respectively. In addition, B, is a polynomial of degree |&’| < d. It follows
that Tg’ ¢.(f) is a polynomial of degree at most d with real coefficients. It remains to
check the relation (14). From the formula, we consider three cases.

If o’ = 0, then Tg’qa(f)(a) = f(a), because Bg/(a) = 0 for every |B’| > 0.

Next, we assume that |o’/| > 0 and «; = 0. Then, for any g’ with |8’| > 0 and
Bj > 0, we have ' # p’. It follows from Lemma 3 that I, (D) (B/g/) (a) = O for
such B’. Moreover

M, (D) (Bg) (a) = (D) (By) (a) = 0.

On the other hand, if |8’| > 0 and 8; = 0 then, using Lemma 3 again, we obtain

11,/ (D) (By) (a) = { S

Hence, relation (14) holds in this case.
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Finally, we treat the case where |o’| > 0 and «r; > 0. It is easily seen that

9 9 \Y T Bj
(E - Cm) ((xj —aj)+ W(xm - am))

It follows that

=0.

X=a

I, (D) (Bg) (a) = 0.
Furthermore, we can use Lemma 3 to get

11,/ (D) (By) (a) = { S

Combining the last two relations, we obtain the desired equation. The proof is
complete. U
Corollary 1 For a suitably defined function f, Tgy aa f) =0ifand only if

My (D)(f)(@) =0, V|| <d.
Proof One direction is trivial. We assume that IT,/(D)(f)(a) = 0 for every |&'| <

d. Then, its conjugate T, (D)( f)(a) also vanishes. Hence, the conclusion follows
directly from (13). O]

Remark 1 The definition of the Taylor type polynomials gives a recurrent relation
which is useful in computations,

T¢ W (N =Te N AH®+ Y Hy(D)(f)(@)Ba (x)

le’|=d,a;j=0

+ Z (Mo (D)(f) (@) By (%) + Mo (D) (f)(2) Bo (X)) -

! —, .
le’|=d,a;>0

(15)
2.3 Some properties of Taylor type operators

In this subsection, we show that the Taylor type polynomial has some expected prop-
erties. In particular, the Taylor type polynomial of any multiple of g, is identically
zZero.
Lemma 4 The set of polynomials

F = spang {[My : || < d}
is D-invariance. In other words,

DMy e #, VB=(Bi,...,Ps) € N".
Proof 1Tt suffices to check that

0
2 [l € spang {My 1’| <d}, 1<k=n. (16)
Xk
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Relation (16) is trivial when o’ = 0. Hence, we can assume that |a’| > 0. Direct
computations gives
a n
i—1
gﬂa/(x) = —caj(xj —cxpy)® l_[ xpk,
m k=1,k£j,m
a n
1 o
ST (%) =0 (x; — X)) ]_[ Xk
J k=1,ksj,m

and
n

0 _
— Iy (X) = o (xj — cxp)™ l_[ x)! W k£ jom,
X )
I=1L1#j,m
where Jy; is the Kronecker symbol. It follows from the above formulas for %Har
that relation (16) holds in any cases. This finishes the proof of the lemma.

Corollary 2 Forany B € N" and |&'| < d, we have

(D 11y) (D) (Ta, (N)) @ = (D M) DY(F) @). a7)

Proof By Lemma 4, D? [T,/ belongs to .#. Hence, (D?I1,/) (D) is a linear combi-
nation of the operators I7,/(D), ly’| < d. The desired relation now follows directly
from (14). O

The result below asserts that the Taylor type operators obey the weak Leibniz rule.

Lemma 5 For suitably defined functions f and g, we have
Td 0 (f9) = Tag, (/T ()
In particular, Tg,qa (&) = iqa <Tg,qa (g)) .

Proof 1t is sufficient to show that

(fo)@ = (fTq . (2) (@), (18)

M, (D)(fg)(@) = My(D)(fTy . ()@, O<lo|<d, a;=0 (19)

a,qda

and, for o > 0,
Iy (D)(fg)(a) = My (D)(fTZ,(,a (@)@, HyD)(fg)a) = ﬁa/(D)(ng,qa (g)(). (20)

Since Tqua (g)(a) = g(a), relation (18) is trivial. For 0 < |a’| < d, we can use the
Leibniz-Hormander formula (see, e.g., [7, p. 177] or [6, p. 243]) to get
1

IB'Dﬂf(a). (21)

MyD)(fTy, @N@= Y (DI (D)) (T4, (2)(@)

|Bl=<deg I,/
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Now, it follows from Corollary 2 that
(D 1,/(D)) (T2, (9))(a) = (DP T (D)) (g)(a), |B| < deg Iy (22)

a,qa

Consequently,

1
My O)(fTe (D@ =Y (D, (D)) (g)(a)EDﬂf(a) =y D)(fe)(a), (23)

|Bl=deg I,/

where, in the second relation, we use the Leibniz-Hormander formula again. This
proves (19) and the first relation in (20). The second relation in (20) follows directly
from the first one since

My (D)(fg)(@) = Ty D)(fe)@), MuD)(fTy, (8))(@) =My D)(fTL , (2))(@).

The proof is complete. O

Corollary 3 If IT,,(D)(f)(a) = O for any |&’| < d, then [T, (D)(fg)(a) = 0 for
any |a'| <d.

Proof By Corollary 1, we have Tg, a (f) = 0. Hence, using Lemma 5, we can write

T (0 = T4, (8T8, (D) =T (s 0 =0.

Corollary 1 now gives the desired relations. O
Lemma 6 If Q is a multiple of qa, then T4, (Q) = 0.

Proof Without loss of generality we assume that j = n — 1 and m = n. We first
prove that Tgf’ 7 (qa) = 0. We see that

Ga(X) =[xy — an) + c(Xn—1 — ap—1)* = ha(X)ha(X).

Here, ha(x) = (x, —an)+c(x,—1 —a,—1) and Ea(x) = (xp—ap)+c(Xp—1—an—1).
Evidently, IT,/(D)(ga)(a) = 0 when o’ = 0 or |&’| > 3. Direct computations show
that

Di(ga)(@) =0 (24)
and
DiD2(ga)(a) =0 (25)
for every
0
Dy,D —c—,— :1<k<n-2;. 26
b2 € {8xn1 Caxn Xy " } (26)

Indeed, relation (24) follows directly from the fact that a%kqa(a) = 0 for every
1 < k < n. Moreover, we see that

0 0 0 0 —
- ha) =0, —c— )V (h)) =cC—
<8xn1 caxn>( a) <8xn1 caxn)( a) =C—c
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and

d 0 —
—(ha) = —(ha) =0, 1=<k=<n-2.
0Xx 0Xy

It follows that
DiD»(¢a)(a) = DiDa(haha)(a)
=Dy (EaD2ha + haDZha) (a)

= (DihaD2ha + D1haD2ha) (a)
= 0.

Consequently, T, (D)(ga)(a) = O for every «’. Now, by the definition in
Proposition 1 we get Tg’ 7 (qa) = 0.
Next, we write Q = ¢, Q1. Then, Lemma 5 enables us to write

Td (0 = T4, @a0) =T4,, (Q1Td,, (@) =T, (01 -0) =0.

The proof is complete. O

3 Hermite interpolation in R”
3.1 Hermite interpolation schemes

In the main theorem below, we show that interpolation conditions corresponding
to Taylor type polynomials can be collected to obtain regular Hermite interpolation
schemes in R".

Theorem 2 Letd > 2 be a positive integer andm = [d/2]+1. Let s = d—2k+2 for
k=1,...,m. Let 1 < jx,my < nwith jx #my andc® e C\Rfork=1,...,m
Let A = {ay, ..., ay,} be m distinct points in R" such that qa, (a;) # 0 for j > k,
where

k
Ga, (X) = | (xmk — afﬂ) + il (xjk — a%) |2, a; = (a% J, e, a,[lk]) .

Foreach 1 <k <m, let

[k] R A o'
H(a[k])/(x) = (-xjk —C xmk) Ik l_[ X
[=1,1%# jk,my
where (a”‘])/ = (a{k] . ,[,I;: ],a,[ﬁH, .. [k]> Then, for any function f is of

class C* in neighborhoods of the ay’s, there exists a unique polynomial P € &Z2;(R")
such that

My, )P @) = Ty D)@, 1=k=m, @) =5 @)
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Moreover, P = }'_| Py, where Pi(x) = Ty ga, ()X,

— P

f—P = _
Pe(x) = | | g2, 0T ., — (x), 2<k<m.
oo (=)

Proof For each 1 < k < m, Lemma 1 shows that the number of interpolation
conditions in (27) is

n—+sy—1 n—+sy—2 n—+ sy n—+sy—2
+ = - )
n—1 n—1 n n

where we use Lemma 2 in the above binomial relation. It follows that the number of
interpolation conditions in the Hermite scheme is equal to

2[5 Cr =Rl ) () - (0),

which matches the dimension of &7;(R"). Hence, to prove the regularity of the
Hermite scheme, it is sufficient to check that if H € £2;(R") and

My DH@) =0, 1<k=m, @) <s, (28)

then H = 0. Since s; = d, relation (28) along with Theorem 1 asserts that H divides
¢a, - Hence, we can write H = g, Hy with deg Hy < d — 2 = 5. Using Corollary 3
for f = H and g = —, we get from (28) the following relations

Mk ),(D><H1)(ak>—o 2<k=m @] <s. (29)

By similar arguments, we have H; = ga, H> with deg Hy < d —4. We continue in
this fashion to obtain

m
HX) = [ ga O Hn11(®).  Hyy1 € ZRY.
k=1

It follows from the last relation that H = 0. Conversely, suppose that H # 0.
Then, the degree of the polynomial on the right hand side is at least 2m > d. This
contradicts to the fact that deg H < d, and the proof the first part of the theorem is
complete.

It remains to prove the formula for the interpolation polynomial. We first check
that the polynomial P = )}, Px belongs to #;(R"). By definition we have P; €
P, R") = Z4(R"). For 2 < k < m, since T;];c»q:ak (8) € Y, (R"), we getdeg Py <
2(k — 1) + sx = d. It follows that deg P < d. By Corollary 1, it is sufficient to show
that

Ta go, (P)YX) =T5 ()X, 1<k=<m. (30)

ag,qay ag.qay

To prove relation (30) we first treat the case k = 1. In this case, we see that gj,
divides Py for any k > 2. Hence, Lemma 6 gives Tal day (Py)y =0for2 <k < m.
This enables us to write

T3 ga (P) =T, 4o (P =T4 (),

a1,9a; a1,qa, a1,9a;
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where we use Lemma 5 in the second relation. Next, we assume that 2 < k < m.
Using the fact that P; contains the factor g, for k + 1 < j < m and Lemma 6 we
get T;,;ﬂak (Pj) =0fork+1 < j < m. Therefore

k—1

T3k g (P) = ZTakqa ) =Tk gy (PO + D Tk g (P (BD)
j=1

From Lemma 5, we have

f—=P— =P
T;i 9ay, (P) = Tak Gay 1_[ qak ak qay, ( k—1
1_[./':1 Qa/-

f—=Pr— = P
)
= Tay g, l_[qak k=1

l_[j 1 Qa,
= Tg’lqa (f—Pl == P1)
= Ti‘i qay, ZTak ‘Iak P
Combining the last relation with (31) we finally obtain Tak Gay (P) = ak Gay ),
which proves the claim. The proof is complete. ]

Corollary 4 The interpolation polynomial P € &;(R") in Theorem 2 is determined
by the following relation

To go, (P)®) =T\ (H(X), 1=<k=m. (32)

Ak ,Gay A, qay,

Remark 2 The condition ga, (a;) # 0 for j > k is used in the proof of Theorem 2.
From (3), we see that it is equivalent to

k] k] 1] :
(,[nk],ajk);é<amk,a]k), Jj >k

In other words, the my-coordinate and the ji-coordinate of a; and a; are not
simultaneously identical for any j > k.

Definition 1 The interpolation polynomial P € Z2;(R") in Theorem 2 is called a
Hermite type interpolation polynomial of f at A. We write
P - H[{(ala CIa| ’ Sl)? L] (an’h Qama sm)}; f]
From the Newton type formula in Theorem 2, we obtain an algorithm to compute
the polynomial H[{(a1, ga,, S1), ..., (@m, ga,, Sm)}; f1.
Step 1. Compute Py = Ty 4, (f) by using (13);
Step 2. Compute Py = ]_[']‘ ! qa; Tay.qa, (M) for k = 2,...,m

j=19a;

respectively by using (13);
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Step 3. Compute the sum H[{(a1, ga,, $1) - . -, (@m, Ga,,» Sm)}; f1= P14+ -+ Pp.

Remark 3 We have known that some kinds of Hermite interpolants are the limits of
Lagrange interpolants when interpolation points coalesce (see, e.g., [11-14]). One
may ask whether there are regular Lagrange interpolation schemes such that the
corresponding Lagrange interpolation polynomials of sufficiently smooth functions
converge to the Hermite interpolation polynomial constructed in Theorem 2.

3.2 Some examples

In this subsection, we compute the set differential operators of degree 2. We also give
explicit formulas for Hermite interpolation polynomials of degree 2 and degree 3 in
R3.

Example 1 This example gives interpolation conditions for Hermite interpolation of
degree 2 at two points in R". Let d = 2. Thenm = 2, s; = 2 and s = 0. Let

a, = (a{k], ...,a,[lk]> fork = 1,2. Set ¢ = uy + ivgy with vy #0,k=1,2. Take
1 < jk, mg < n such that ji # my fork =1, 2. Set

k
Gac®) = | (com — alld) + M — P, k=12

We have
1 . .
{U([a%u), ey < 2} = (W} {xr. ) — wadm, — ividx, 215 j1omy}

2 2.2 .
U {(le = UXp, )" — VX, — 2iv1 (X — ulxml)xml}
UG = wrxm, —ivix, )0 jromi P fxeexr s 1 <€ <0 <n 60 # jiomy)
Since s, = 0, we get

{2, 1@y <o) = .

The interpolation conditions in (27) corresponding the following differential
operators

0
f=f@), [ fa), [ 8_){1(2”)’ 1<Il=<n, l#j,m,
0 0 ) 0
[ <3le _ulaxml —iv axm,>f(al)’

F 9 3\ , 02 . d 9 ) ran
— — —u —vj—— —2ivy| — —u ap),
ax;, 9 Xm, Pax2, 1 axj, 9%y ) 3%, :

] d ) ] B .
f —u —iv —f@), 1=1<n, 1l#j,m,
a)‘7m|

axj, ]8xm, ax;
2
/e f@), l<e<l<n, £,1%# j,m.
0x¢0Xx]
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. . . n+2
Easy computations show that the above relations are equivalent to ( ; )

interpolation conditions in the real settings:

0
fro fan., [ f@). o a—j;mo, l<i<n,

9 3 \? 32
f ( — uy ) — v} f),
axj, Xm, Yox2,

ad d 0
f= (m —u 8xm1> . f @),

2 2
f= f@y, f— f@p), 1=<l=<n,I1l#j,m,
0xj,0x; 0Xpm, 0x]
2
fl—) f(al), lf@flfn,ﬁ,l;éjl,ml.
0xg0x;

Example 2 We construct a formula for the Hermite interpolation polynomial of
degree 2 at two points in R3.Letn =3 andd = 2. Then, m = 2, s1 =2and s, =0.
Let a; = (0,0,0) and a, = (0, 1, 0). We choose c!!l = 2i and ¢! = 3i. Take
j] = laml = j2 = 2,m2 = 3.Then,

Gay(X) =4x] + 33, ga,(x) =9(xa — D>+ x3.

The polynomial P = H[{(a1, qa,,2), (a2, gay, 0)}1(f) belonging to 2,(R?)
interpolates f at the following 10 conditions

9
g g@), g g@), gHa—fl@n), 1<1<3, (33)
92 92 92
= | — —4— | gan), > —=g(ar), 34
8 o2 92 gy, g 8xgg( 1) (34)
82
g ga), 1=<L<Il<3. (35)
0x¢0Xx]

By definition of Taylor type polynomial in (13), we have

Targ (N® = f@)+ D Ho.a)D)(f)@1)B0.ay) (®)

1<a3<2

+ Z (1,03 DY) @1 B(1,a3)X) + T (1,65 D) () @1 B 1,03) (X))

0<a3<l

+ (M 2,0 D) (@) B, (X) + T 2,0D)(f)@)B 20 (x),

where
I (g,05)(X) = (x1 — Zixz)"‘lx;‘{
and

I i\
Bl () = 2% 0y las! H 2?) e

@ Springer



162 Numerical Algorithms (2022) 89:145-166

Hence,

1 9% f(ar)
T1(0,05) D) () @1) B(0,03) (X) = — ———57—x X3, a3 =1,2,
ozl dxy

(1,65 (D) (£)(@1) B(1.a3) (%) + T (1,05 D) (f)(@1) B(1,05) (X)

{ 3)(;56311) _|_3f(21) x2 if a3=0
=) #f@) » f(an) ; —
dx18x13 x1x3 + 8x26x]3 xx3 if a3 =1

and

2.0)(D)(f)(@1)B2,0)(X) + T 2,0y (D) (f)(a1) B(2,0)(X)
3 f@)  02f(an) 2 2 82f(a1)
16 ( —4 (4)(l —X ) +

8x Bx% 2 a)613)62

Combining the above computations we obtain

8f(al) o+ Z 9% f(ar)

Pix) =Tg 4 (f)(X)—f(a1)+Z PPt e]
1<t<i<3 OFCOX
192f@) , 1 (d*f@)  08°f(a) 5
5 8x§ x3+E 8x12 —4 8x§ (i = x3)-

On the other hand,

0 (f—P1>(X) _ f(ay) = Pi(a)

200\ gy a, (22)

fa) — f(ay) % T o2 ox2

_af(a1)+1<32f(a1) aZf(ao)

It follows that

— P
PX) = Tq 4 (H® +qa, 0Ty, (f p 1) (x)

3 2
0 0
= f(ap) + E fa(;;l)m + E f(al)xww
=1

1<t<I<3

2 2 2
12/(0) 5, 1 (a f@y _ 0 f(a1)> (43— 22)

2 8x32 3 16 axf 8)6% *2
2,2 _ 9f(an) O fa) 3> f(an)
+ (4x1+x2> (f(az) f(ap) 5 S I ( axf 4 8x%
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3 2 2
B 0 10
_ f(al)‘l‘z ];(;])xl_l_ Z f(al)xpc 4= f(al) 3
=1

0x¢0X 2
1<t<i<3 MM 9x3

+ (4f(az) —4f(a) —4

9x2 2 8x12 8x22 !

af(al)> 2
x

o @) | 19’/ @) _282f(a1)>xz

2 .

+<f(az) fla) —

Example 3 We give a formula for the Hermite interpolation polynomial of degree 3
at two points in R3.Letn =3andd = 3. Wehave m = 2,s; = 3 and s, = 1.
Leta; = (0,0,0) and a = (0, 1, 0). We choose 1 = 2; and ¢ = 3i. Take
j1=1,my = jo» =2,my = 3. Then

Gay(X) =4x7 + X2, gay(X) = 9(x2 — 1)? + x3.

The polynomial P = HI{(ai, ga,.2), (2, ga,- D}I(f) belonging to Z5(R)
satisfies the following conditions in the complex setting

0 0 o1 8'13 a ] oy o3
i Com Play) = (-— —2i5— a +a3 <3,
(3x1 13X2> 8x‘3”3 (@) <8x1 laX2> 9x <3xz f@y), ar+toa3=

and

9 9 \P g 9 9 \P2 gbi
<— - 3i—) —5-Pap) = <— - 3i—> — [(@), pi+p =1
dx?! axy'

9x7 0x3 x] 0x2 9x3

They are equivalent to 20 conditions which consist of 10 conditions in (33)—(35)
along with the following functionals

9 3 3
g @), 1<1<3, g ——=8@), g 58(@y), 1=1=2
dx; ax; x70x3
— ” 4 i 9 (ay) — o (ay)
& 8x12 8)6% 3x3g 18 8x18x28x3g 1

3 3° 33 33
| —-12— aj), — (3 —4— a
& 8x13 8x13x§ s@n. ¢ axfaxz Bxg §(@1).
Theorem 2 gives the formula for the interpolation polynomial

H[{(a1, ga,» 3). (@2, gay, D}I(X) =T ga, (S X) + Ga, ()T, ga, (&) X). (36
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We need to compute T3 (f) and T} (g). From (15), we can write

a1,9a; a2,qa;
T, ga, (X)) = T, ga, S + 10,3 (D)(f)(@1) Bo,3) (x)
+ (1,2 D) (f)(@1)B,2)(x) + T (1,2 (D) (f)(a1) B(1,2)(x))
+ (M2, D) (@) Be,1)(x) + T 2,1y (D) (f)(a1) B2, 1) (X))
+ (17(3 0 (D)(f)(@1)B,0)(X) + T 3,0)(D)(f)(a1) B3,0) (X))
= T, ga, () + o + Xy + X1 + s,
where ¥; denotes the (I 4+ 1)-th term at the right hand side for 0 <[ < 3,
Mg, ;) (X) = (x] — 2ix2)*x3°
and

i
'(xl + Exz)“lx‘;“.

1
Baran O = g ta!

Direct computations give

2
. 32 A 82 f( ) x3 N 3P @)
=-|—-4— a —-= ———f(a ,
2 4 3x12 3x2 ! xl 4 s 0x10x20x3 XX

1| (d 9 3x1x3 2,9 X3
Ti=— | [ —-12 a 2)+(3 — ) fa@ap (3% -2]].
3=31 |:(3xf PP )f( 1)( 7 8x128x2 3 3 f(ar) X2 =

It follows that

) Lo fapsd, =1 o fa@) 2+—33 f@xaxd
= — X3, = X1X X2 X s
Ty Y a2 T T a2 N

af(ao at Y 32 f(ay) 19%f(ar) ,

T, (f)(X)—f(a1)+Z R R

1<t<I<3
Tla (32;;(?1) —4325;;‘)> 422 — x2) + 3f(al)xz
+;ax?;x§f(a1)x1x32 + ;aszx%f(al)xzx:%
1 <8322 —4;;) a%f(al) (xf - )f) x3+ ﬁ;amﬂal)xwm

1 {8 33 3xpx3
+— | —=-12—— 2
24 <3x13 9x10x3 )f( ')( 4
Py s (32 - 2
—|3— —-4— a xX1x2 — = | .
2 Bxlzaxz 8x§’ : 2Ty

Next, we calculate
f = Targa ()

Tay g0, (O = g(@2) + Z —g(azm, g= -
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From the formula for T3 (f), we see that

a1,9a;
afa) 1 (f@)  *f(@) 1 N 93
—4 - —(3—— -4— ,

Ta.. ga, N @)=F (1) + P ]6< ox2 o2 ) 96< oxioxs oxd f@n)
3 4 _df@) | *fa@) 1 (9 83
Ty Taray (@) = =57+ 2 _32<8x]3_120x16 [,
I 4 afa) 1 (3f@) *f@)) |1 93 N
—T; = - = —4 —— |3 —4— N
o a1,4a, () (22) o2 8( ox2 0x2 2 \Voden,  tod f(ar)

d
T3 ga, (N)(@2) =

2 £ 2 2
- of@)  2f@) 1 (a a ) 9 .
X3

oxs | omdx 16 \ax? 9

Direct computations give

0 d
ga; (@) =1, —qa (az) =2, a—mqa1 () =0, [=1,3.

0x2
Hence,

az Gay @) = f(a) — fa) - dx2 16 8x12 3x%

of (a) +1<82f<al> _432f(a1)>

+ : 3 > 83 f(a)
— a
96 8x128xz 8 ;’ '

2 3 3
+(8f(az) _Af@) f(a1)+312<8_12 0 2)f<a1)>x1

dx1 dx1 dx10x2 ax} 9x10x3

3 3 1 GR 33
(Zf(al) —2f (a) + f(a” TGS (3 - 43> faan)
X2 32 0x;

dxz 3x?dxn
(s 33 a* Fan
- — — a
48 8x128xz sz !

. 2 2 2
. (3f(az) _af@n  Pfa@) 1 (3 _43> 8f(a1)>x
16 ax3

dx3 dx3 3x20x3 axz ax3

The above computations along with (36) lead to a formula for H[{(a;, ga,, 3),
(a2, qa,, 1)}]. The precise formula is left to the readers.

Remark 4 The interpolation conditions in the previous two examples and the corre-
sponding Hermite interpolation polynomials do not depend on the choices of j, and
ma.
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