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Abstract
We construct new polynomial interpolation schemes of Taylor and Hermite types in
R

n. The interpolation conditions are real parts and imaginary parts of certain differ-
ential operators. We also give formulas for the interpolation polynomials which are
of Newton form and can be computed by an algorithm.

Keywords Interpolation polynomial · Hermite interpolation ·
Taylor type polynomial · Newton formulas
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1 Introduction

Let Pd(Rn) be the vector space of all polynomials of degree at most d in R
n.

It is well-known that the dimension of Pd(Rn) equals

(
n + d

n

)
. The Lagrange

interpolation problem associated to A asks whether there is a unique polynomial p
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in Pd(Rn) which matches preassigned data on A, where A consists of

(
n + d

n

)

distinct points in R
n. Let B = {p1, . . . , pN } be a basis for Pd(Rn) with N =(

n + d

n

)
. Then, the Vandermonde determinant defined by

VDM(B; A) = det[pj (ak)]1≤j,k≤N

is a polynomial of interpolation points. Hence, it is non-zero for almost all choices of

interpolation points. In other words, a subset A ⊂ R
n of

(
n + d

n

)
distinct points is

regular for almost all choices of A. On the other hand, it is difficult to check whether

a given set of

(
n + d

n

)
points is regular as soon as n ≥ 2. Explicit interpolation

schemes are available in literatures. Chung and Yao [5] gave a quasi-constructive
description of locations of nodes in R

n for which Lagrange interpolation is regular.
Here, the interpolation points are suitably distributed on hyperplanes and form a so-
called nature lattice. Another type of regular sets was discovered by Bos [2], where
the interpolation points are taken from algebraic varieties in Rn.

We consider the problem of Hermite interpolation by polynomials in R
n. More

precisely, the problem is to find a polynomial which matches, on a set of distinct
points in Rn, the values of a function and its partial derivatives. We deal with the case
where the number of interpolation conditions is equal to the dimension of Pd(Rn).
If the interpolation problem has a unique solution, then we say that the interpolation
scheme is regular.

Roughly speaking, Hermite interpolation of type total degree defined below is the
most natural generalization of univariate Hermite interpolation.

Problem 1 (Lorentz [8, 9]) Let m be a positive integer. Let d, d1, . . . , dm be natural
numbers such that (

n + d

n

)
=

(
n + d1

n

)
+ · · · +

(
n + dm

n

)
.

Let {b1, . . . ,bm} be a set of distinct points in R
n. Find conditions for which the

interpolation problem

∂ |α|f
∂xα

(bj ) = cj,α, 1 ≤ j ≤ m, |α| ≤ dj

has a unique solution for given values cj,α .

Many regular (resp., almost regular, singular) interpolation schemes of type total
degree can be found in literature. For instance, it was shown in [8] that the only mul-
tivariate interpolation of type total degree regular for all choice of nodes is Taylor
interpolation. Also in [8], it was proved that the Hermite interpolation is singu-
lar if the number of nodes satisfies 2 ≤ m ≤ n + 1 with n ≥ 2 except for the
case of Lagrange interpolation. Some interesting results focusing on almost regular
interpolation schemes were given in [16].
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Another general type of Hermite interpolation was defined in [16], which replaces
derivatives in the coordinate directions by directional derivatives. More precisely,
interpolation conditions at the point a ∈ R

n are given by chains of directional
derivatives of consecutive order

f �→ f (a), f �→ Dy1f (a), . . . , f �→ Dy1 · · · Dyk
f (a), y1, . . . , yk ∈ R

n \ {0}.
In [16], the authors introduced the notations of trees and the blockwise structure to

defined general Hermite interpolation problems. Using the Bézier representation of
polynomials in barycentric coordinates, they proved necessary and sufficient condi-
tions for almost regular interpolation problems. Moreover, they established the New-
ton formula and the remainder formula for the Hermite interpolation polynomials.
For details, we refer the reader to [16].

Some explicit multivariate Hermite interpolation schemes in Rn were constructed.
In [1], the authors gave bivariate regular schemes, where the nodes are equidistant
points on concentric circles and the derivatives are the normal derivatives at these
points. In [3], Bos and Calvi constructed new regular interpolation schemes of Her-
mite type in C

n and R
n. Here, the interpolation points are distributed on algebraic

hypersurfaces and the discrete differential conditions come from certain least spaces
of finite-dimensional spaces of analytic functions. For a recent account of the theory
of Hermite interpolation, we refer the readers to [4, 9].

We now state another general problem. Associated with a polynomial Q(x) =∑
α cαxα , cα ∈ R in Rn, we define a differential operator P(D) by

Q(D)f =
∑
α

cα

∂ |α|f
∂xα

.

In the case when Q(x) = c, we set Q(D)f = cf .

Problem 2 Let A = {a1, . . . , am} be m distinct points in R
n. Let n1, . . . , nm and

d be positive integers such that n1 + n2 + · · · + nm =
(

n + d

n

)
. Find differential

operators Pjk(D) for j = 1, . . . , m and k = 0, . . . , nj −1 for which the interpolation
problem

Pjk(D)P (aj ) = fjk, 1 ≤ j ≤ m, 0 ≤ k ≤ nj − 1, (1)

has a unique solution P ∈ Pd(Rn) for any given preassigned data {fjk}.

When m =
(

n + d

n

)
and all the differential operators are point-evaluation

functionals, Problem 2 becomes a Lagrange interpolation problem.
Some special cases of Problem 2 were recently studied by the first author of

this paper. In [11], we gave a solution of the problem. The differential operators

are the real parts and imaginary parts of the complex derivatives
(

∂
∂x1

− i ∂
∂x2

)k

,

k ≥ 0. In [12], we considered an analogous problem on the space of bivariate sym-
metric polynomials. It was showed that the differential operators can be taken as(
−β ∂

∂x1
+ α ∂

∂x2

)k

with α, β ∈ R and k ≥ 0. We showed in [13] a way to mix two
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types of differential operators mentioned above to get solutions of Problem 2. Our
method relies on factorization results for polynomials and the construction of certain
Taylor type polynomials. Moreover, we give a Newton formula for the interpolation
polynomial and use it to prove that the Hermite interpolation polynomial is the limit
of the Lagrange interpolation polynomials.

The aim of this paper is to generalize Hermite interpolation in [11]. The regular
Hermite schemes are constructed as follows. We first give a criterion such that a
polynomial in Pd(Rn) is divisible by the polynomial qa(x) := |(xm − am) + c(xj −
aj )|2 with a = (a1, . . . , an), j �= m and c ∈ C\R. The criterion contains differential
operators of the forms

f �−→
⎛
⎝ n∏

k=1,k �=j,m

∂αk

∂x
αk

k

⎞
⎠

(
∂

∂xj

− c
∂

∂xm

)αj

f (a). (2)

We use these differential operators to construct a Taylor type polynomial at a. The
formula and properties of the new Taylor polynomial are similar to that of ordinary
Taylor polynomial. Next, we use the above-mentioned divisibility criterion to get a
factorization result which leads to the regularity of Hermite interpolation. The for-
mula for the Hermite interpolation polynomial is of a Newton form and is written in
terms of Taylor type polynomials. This enables us to create an algorithm to compute
the interpolation polynomial. We also give some examples to illustrate our results.
It is worth pointing out that if we take n = 2 and c = i, we recover the theory of
Hermite interpolation in [11].

Finally, we note that an analogous problem is studied on the unit sphere S inR3. In
recent works, we constructed some regular Hermite schemes on S. For more details,
we refer the readers to [13–15].

Notations and conventions We use bold symbols x, a, etc. to denote points in R
n.

We always assume that n ≥ 2, 1 ≤ j, m ≤ nwithm �= j . The constant c is a non-real
number. The multi-index in Nn−1 is denoted by α′ = (α1, . . . , αm−1, αm+1, . . . , αn)

in which the m-entry does not appear. Throughout this paper, f and g are real-valued
functions. All polynomials are of real coefficients except for polynomials of two
types Πα′ and Bβ ′ . By a suitably defined function f , we mean that the function f is
sufficiently differentiable.

2 Taylor type polynomials

2.1 A divisibility criterion

Let a = (a1, . . . , an) ∈ R
n and c ∈ C \ R. Let 1 ≤ j, m ≤ n and j �= m. We define

the following polynomial

qa(x) = |(xm − am) + c(xj − aj )|2.
Easy computations gives

qa(x) = (xm − am)2 + 2Re(c)(xm − am)(xj − aj ) + |c|2(xj − aj )
2.
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Note that qa depends not only on a but also on j, m and c. We adopt this setting for
simplicity of notations. Clearly qa is an irreducible polynomial of degree 2 in Rn and

V (qa) := {x ∈ R
n : qa(x) = 0} = {x ∈ R

n : xm = am, xj = aj }, (3)

which is a flat of dimension n − 2 in Rn.

Theorem 1 Let a = (a1, . . . , an) ∈ R
n and qa(x) = |(xm − am) + c(xj − aj )|2

with m �= j and c ∈ C \ R. Let P be a polynomial of degree at most d in R
n of real

coefficients. Then P is a multiple of qa if and only if⎛
⎝ n∏

k=1,k �=j,m

∂αk

∂x
αk

k

⎞
⎠ (

∂

∂xj

− c
∂

∂xm

)αj

P (a) = 0, |α′| =
n∑

k=1,k �=m

αk ≤ d, (4)

Proof Without loss of generality we assume that j = n − 1 and m = n. We write
P(x) = ∑d

k=0 Ck(x′)xk
n with Ck ∈ Pd−k(R

n−1) and x′ = (x1, . . . , xn−1). We can
regard qa and P as polynomials in Cn, that is x ∈ C

n. Since

qa(x) = ((xn − an) + c(xn−1 − an−1)) ((xn − an) + c(xn−1 − an−1)) ,

we see that qa divides P if and only if both (xn − an) + c(xn−1 − an−1) and (xn −
an) + c(xn−1 − an−1) divide P . By [10, Lemma 2.5], the condition reduces to

P
(
x′, an − c(xn−1 − an−1)

) ≡ 0 (5)

and
P

(
x′, an − c(xn−1 − an−1)

) ≡ 0. (6)

Note that (5) and (6) hold for every x ∈ C
n if and only if they are true for every

x ∈ R
n. Hence we can return to work with polynomials in R

n. We have

P
(
x′, an − c(xn−1 − an−1)

) =
d∑

k=0

Ck(x′) (an − c(xn−1 − an−1))
k

=
d∑

k=0

Ck(x′) (an − Re(c)(xn−1 − an−1) − iIm(c)(xn−1 − an−1))
k

=
d∑

k=0

Ck(x′)Qk(x′) + iCk(x′)Rk(x′),

where

Qk(x′) =
k∑

l=0, l even

(−1)
j
2

(
k
l

)
(an − Re(c)(xn−1 − an−1))

k−l (Im(c)(xn−1 − an−1))
l

and

Rk(x′) = −
k∑

l=0, l odd

(−1)
l−1
2

(
k
l

)
(an − Re(c)(xn−1 − an−1))

k−l (Im(c)(xn−1 − an−1))
l .
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Note that both CkQk and CkRk belong to Pd(Rn−1). In other words, the real part
and the imaginary part of P

(
x′, an − c(xn−1 − an−1)

)
are polynomials of degree at

most d in Rn−1.
We consider the canonical basis for Pd(Rn−1)

B =
{

n−1∏
k=1

x
αk

k : α′ = (α1, . . . , αn−1), |α′| ≤ d

}
(7)

Observe that relation (5) holds if and only if

Q(D)P
(
x′, an − c(xn−1 − an−1)

)∣∣
x′=a′ = 0, Q ∈ B. (8)

By the chain rule, it is easily seen that

∂

∂xn−1
P

(
x′, an − c(xn−1 − an−1)

)∣∣∣∣
x′=a′

=
(

∂

∂xn−1
− c

∂

∂xn

)
P(a)

and

∂

∂xk

P
(
x′, an − c(xn−1 − an−1)

)∣∣∣∣
x′=a′

= ∂P

∂xk

(a), 1 ≤ k ≤ n − 2.

More generally, relation (8) can be rewritten as(
n−2∏
k=1

∂αk

∂x
αk

k

)(
∂

∂xn−1
− c

∂

∂xn

)αn−1

P(a) = 0, |α′| = α1 + · · · + αn−1 ≤ d, (9)

Using similar arguments applying to relation (6), we get(
n−2∏
k=1

∂αk

∂x
αk

k

)(
∂

∂xn−1
− c

∂

∂xn

)αn−1

P(a) = 0, |α′| = α1+· · ·+αn−1 ≤ d, (10)

Note that P is a polynomial of real coefficients, two relations (9) and (10) are
equivalent, and the proof is complete.

We define

Πα′(x) = (xj − cxm)αj

n∏
k=1,k �=j,m

x
αk

k , α′ = (α1, . . . , αm−1, αm+1, . . . , αn).

Then,

Πα′(D) =
⎛
⎝ n∏

k=1,k �=j,m

∂αk

∂x
αk

k

⎞
⎠ (

∂

∂xj

− c
∂

∂xm

)αj

.

Theorem 1 can be restated as: the polynomial P ∈ Pd(Rn) is divisible by qa(x) =
|(xm − am) + c(xj − aj )|2 if and only if it satisfies the following relations

Πα′(D)P (a) = 0, |α′| =
n∑

k=1,k �=m

αk ≤ d. (11)
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In the case where αj �= 0, the differential operator Πα′(D) can be decomposed
into non-zero real and imaginary parts. More precisely Πα′(D) = Re (Πα′(D)) +
iIm (Πα′(D)) where

Re (Πα′ (D)) =
⎛
⎝ n∏

k=1,k �=j,m

∂αk

∂x
αk

k

⎞
⎠

αj∑
l=0,l even

(−1)
l
2

(
αj

l

) (
∂

∂xj

− Re(c)
∂

∂xm

)αj −l (
Im(c)

∂

∂xm

)l

and

Im (Πα′ (D)) = −
⎛
⎝ n∏

k=1,k �=j,m

∂αk

∂x
αk

k

⎞
⎠

αj∑
l=0,l odd

(−1)
l−1
2

(
αj

l

)(
∂

∂xj

− Re(c)
∂

∂xm

)αj −l (
Im(c)

∂

∂xm

)l

.

The above remark enables us to compute the number of interpolation conditions
in the real setting in (11).

Lemma 1 Let a = (a1, . . . , an) ∈ R
n and c ∈ C \ R. Let 1 ≤ j, m ≤ n and j �= m.

Then the set of functionals

f �−→ Πα′(D)f (a), |α′| ≤ d, αj = 0

and

f �−→ Re (Πα′(D)) f (a), f �−→ Im (Πα′(D)) f (a), |α′| ≤ d, αj �= 0

consist of

(
n + d − 1

n − 1

)
+

(
n + d − 2

n − 1

)
elements.

To prove Lemma 1, we need the following simple result. The proof are left to the
reader.

Lemma 2 For any 1 ≤ k ≤ n, we have(
n
k

)
=

(
n − 1

k

)
+

(
n − 1
k − 1

)
,

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 2
k − 1

)
+ · · · +

(
k − 1
k − 1

)
.

Proof (Proof of Lemma 1) For simplicity, we assume that j = n − 1 and m = n. If

αn−1 = 0, then α1 + · · · + αn−2 ≤ d, and hence, we get

(
n + d − 2

n − 2

)
differential

operators of the forms

f �−→
n−2∏
k=1

∂αk

∂x
αk

k

f (a), α1 + · · · + αn−2 ≤ d.

Otherwise, if 0 < k = αn−1 ≤ d, then α1 + · · · + αn−2 ≤ d − k. In this case,

we have

(
d − k + n − 2

n − 2

)
choices of (α1, . . . , αn−2) and two choices correspond-

ing to the real part and the imaginary part of
(

∂
∂xn−1

− c ∂
∂xn

)αn−1
. Hence, we get
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2

(
d − k + n − 2

n − 2

)
differential operators. The number of functionals coincide with

the number of differential operators which are equal to

(
n + d − 2

n − 2

)
+ 2

d∑
k=1

(
d − k + n − 2

n − 2

)
=

d∑
k=0

(
d − k + n − 2

n − 2

)
+

d∑
k=1

(
d − k + n − 2

n − 2

)

=
(

n + d − 1
n − 1

)
+

(
n + d − 2

n − 1

)
,

where we use Lemma 2 in the second relation. The proof is complete.

2.2 Construction of Taylor type operators

We give a dual basis for the differential operators and use it to construct a Taylor type
operator.

Lemma 3 Let a = (a1, . . . , an) ∈ R
n and c ∈ C \ R. For 1 ≤ j, m ≤ n and j �= m,

β ′ = (β1, . . . , βm−1, βm+1, . . . , βn) ∈ N
n−1 we set

Bβ ′ (x)= |c|2βj

(|c|2 − c2)βj
∏n

k=1,k �=m βk !

⎛
⎝ n∏

k=1,k �=j,m

(xk − ak)
βk

⎞
⎠ (

(xj − aj ) + c

|c|2 (xm − am)

)βj

.

(12)

Then,

Πα′(D)Bβ ′(a) =
{
0 if α′ �= β ′
1 if α′ = β ′.

Proof By definition, we have

Πα′ (D)Bβ ′ (a) = |c|2βj

(|c|2 − c2)βj βj !
(

∂

∂xj

− c
∂

∂xm

)αj
(

(xj − aj ) + c

|c|2 (xm − am)

)βj

∣∣∣∣∣
x=a

×
n∏

k=1,k �=j,m

1

βk !
∂αk

∂x
αk

k

(xk − ak)
βk

∣∣∣∣∣∣
x=a

.

It is easily to check that

(
∂

∂xj

− c
∂

∂xm

)αj
(

(xj − aj ) + c

|c|2 (xm − am)

)βj

∣∣∣∣∣
x=a

=
{

αj !
(
1 − c2

|c|2
)αj

if αj = βj

0 if αj �= βj

and, for 1 ≤ k ≤ n, k �= j, m,

∂αk

∂x
αk

k

(xk − ak)
βk

∣∣∣∣
x=a

=
{

αk! if αk = βk

0 if αk �= βk .

The result follows directly from the above computations.
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Proposition 1 Let a = (a1, . . . , an) ∈ R
n and c ∈ C \ R. Let 1 ≤ j, m ≤ n and

j �= m. For a suitably defined function f , we set

Td
a,qa(f )(x) = f (a) +

d∑
|α′|=1,αj =0

Πα′(D)(f )(a)Bα′(x)

+
d∑

|α′|=1,αj >0

(
Πα′(D)(f )(a)Bα′(x) + Πα′(D)(f )(a)Bα′(x)

)
,

(13)

where

Πα′(x) := (xj − cxm)αj

n∏
k=1,k �=j,m

x
αk

k

and

Bα′ (x) = |c|2αj

(|c|2 − c2)αj
∏n

k=1,k �=m αk !

⎛
⎝ n∏

k=1,k �=j,m

(xk − ak)
αk

⎞
⎠ (

(xj − aj ) + c

|c|2 (xm − am)

)αj

.

Then, Td
a,qa(f ) belongs to Pd(Rn) and

Πα′(D)
(
Td
a,qa(f )

)
(a) = Πα′(D)(f )(a), |α′| ≤ d . (14)

The polynomial Td
a,qa(f ) is called a Taylor type polynomial of f at a correspond-

ing to qa.

Proof Firstly, observe that Πα′(D)(f )(a) ∈ R and Bα′ ∈ Pd(Rn) when αj = 0. By
definition, Πα′(D)(f )(a) and Bα′(x) are the complex conjugates of Πα′(D)(f )(a)
andBα′(x) respectively. In addition,Bα′ is a polynomial of degree |α′| ≤ d. It follows
that Td

a,qa(f ) is a polynomial of degree at most d with real coefficients. It remains to
check the relation (14). From the formula, we consider three cases.

If α′ = 0, then Td
a,qa(f )(a) = f (a), because Bβ ′(a) = 0 for every |β ′| > 0.

Next, we assume that |α′| > 0 and αj = 0. Then, for any β ′ with |β ′| > 0 and
βj > 0, we have α′ �= β ′. It follows from Lemma 3 that Πα′(D)

(
Bβ ′

)
(a) = 0 for

such β ′. Moreover

Πα′(D)
(
Bβ ′

)
(a) = Πα′(D)

(
Bβ ′

)
(a) = 0.

On the other hand, if |β ′| > 0 and βj = 0 then, using Lemma 3 again, we obtain

Πα′(D)
(
Bβ ′

)
(a) =

{
0 if α′ �= β ′
1 if α′ = β ′.

Hence, relation (14) holds in this case.
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Finally, we treat the case where |α′| > 0 and αj > 0. It is easily seen that
(

∂

∂xj

− c
∂

∂xm

)αj
(

(xj − aj ) + c

|c|2 (xm − am)

)βj

∣∣∣∣∣
x=a

= 0.

It follows that
Πα′(D)

(
Bβ ′

)
(a) = 0.

Furthermore, we can use Lemma 3 to get

Πα′(D)
(
Bβ ′

)
(a) =

{
0 if α′ �= β ′
1 if α′ = β ′.

Combining the last two relations, we obtain the desired equation. The proof is
complete.

Corollary 1 For a suitably defined function f , Td
a,qa(f ) = 0 if and only if

Πα′(D)(f )(a) = 0, ∀|α′| ≤ d.

Proof One direction is trivial. We assume that Πα′(D)(f )(a) = 0 for every |α′| ≤
d. Then, its conjugate Πα′(D)(f )(a) also vanishes. Hence, the conclusion follows
directly from (13).

Remark 1 The definition of the Taylor type polynomials gives a recurrent relation
which is useful in computations,

Td
a,qa(f )(x) = Td−1

a,qa (f )(x) +
∑

|α′|=d,αj =0

Πα′(D)(f )(a)Bα′(x)

+
∑

|α′|=d,αj >0

(
Πα′(D)(f )(a)Bα′(x) + Πα′(D)(f )(a)Bα′(x)

)
.

(15)

2.3 Some properties of Taylor type operators

In this subsection, we show that the Taylor type polynomial has some expected prop-
erties. In particular, the Taylor type polynomial of any multiple of qa is identically
zero.

Lemma 4 The set of polynomials

F = spanC
{
Πα′ : |α′| ≤ d

}
is D-invariance. In other words,

DβΠα′ ∈ F , ∀β = (β1, . . . , βn) ∈ N
n.

Proof It suffices to check that

∂

∂xk

Πα′ ∈ spanC
{
Πα′ : |α′| ≤ d

}
, 1 ≤ k ≤ n. (16)
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Relation (16) is trivial when α′ = 0. Hence, we can assume that |α′| > 0. Direct
computations gives

∂

∂xm

Πα′(x) = −cαj (xj − cxm)αj −1
n∏

k=1,k �=j,m

x
αk

k ,

∂

∂xj

Πα′(x) = αj (xj − cxm)αj −1
n∏

k=1,k �=j,m

x
αk

k .

and
∂

∂xk

Πα′(x) = αk(xj − cxm)αj

n∏
l=1,l �=j,m

x
αl−δkl

l , k �= j, m,

where δkl is the Kronecker symbol. It follows from the above formulas for ∂
∂xk

Πα′
that relation (16) holds in any cases. This finishes the proof of the lemma.

Corollary 2 For any β ∈ N
n and |α′| ≤ d, we have(

DβΠα′
)
(D)

(
Td
a,qa(f )

)
(a) = (

DβΠα′
)
(D)(f )(a). (17)

Proof By Lemma 4, DβΠα′ belongs to F . Hence,
(
DβΠα′

)
(D) is a linear combi-

nation of the operators Πγ ′(D), |γ ′| ≤ d. The desired relation now follows directly
from (14).

The result below asserts that the Taylor type operators obey the weak Leibniz rule.

Lemma 5 For suitably defined functions f and g, we have

Td
a,qa(fg) = Td

a,qa

(
fTd

a,qa(g)
)
.

In particular, Td
a,qa(g) = Td

a,qa

(
Td
a,qa(g)

)
.

Proof It is sufficient to show that

(fg)(a) = (fTd
a,qa(g))(a), (18)

Πα′(D)(fg)(a) = Πα′(D)(fTd
a,qa(g))(a), 0 < |α′| ≤ d, αj = 0 (19)

and, for αj > 0,

Πα′ (D)(fg)(a) = Πα′ (D)(fTd
a,qa (g))(a), Πα′ (D)(fg)(a) = Πα′ (D)(fTd

a,qa (g))(a). (20)

Since Td
a,qa(g)(a) = g(a), relation (18) is trivial. For 0 < |α′| ≤ d, we can use the

Leibniz-Hörmander formula (see, e.g., [7, p. 177] or [6, p. 243]) to get

Πα′(D)(fTd
a,qa(g))(a) =

∑
|β|≤degΠα′

(
DβΠα′(D)

)
(Td

a,qa(g))(a)
1

β!D
βf (a). (21)
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Now, it follows from Corollary 2 that(
DβΠα′(D)

)
(Td

a,qa(g))(a) = (
DβΠα′(D)

)
(g)(a), |β| ≤ degΠα′ . (22)

Consequently,

Πα′ (D)(fTd
a,qa (g))(a) =

∑
|β|≤degΠα′

(
DβΠα′ (D)

)
(g)(a)

1

β!D
βf (a) = Πα′ (D)(fg)(a), (23)

where, in the second relation, we use the Leibniz-Hörmander formula again. This
proves (19) and the first relation in (20). The second relation in (20) follows directly
from the first one since

Πα′ (D)(fg)(a) = Πα′ (D)(fg)(a), Πα′ (D)(fTd
a,qa (g))(a) = Πα′ (D)(fTd

a,qa (g))(a).

The proof is complete.

Corollary 3 If Πα′(D)(f )(a) = 0 for any |α′| ≤ d , then Πα′(D)(fg)(a) = 0 for
any |α′| ≤ d .

Proof By Corollary 1, we have Td
a,qa(f ) = 0. Hence, using Lemma 5, we can write

Td
a,qa(fg) = Td

a,qa

(
gTd

a,qa(f )
)

= Td
a,qa(g · 0) = 0.

Corollary 1 now gives the desired relations.

Lemma 6 If Q is a multiple of qa, then Td
a,qa(Q) = 0.

Proof Without loss of generality we assume that j = n − 1 and m = n. We first
prove that Td

a,qa(qa) = 0. We see that

qa(x) = |(xn − an) + c(xn−1 − an−1)|2 = ha(x)ha(x).

Here, ha(x) = (xn−an)+c(xn−1−an−1) and ha(x) = (xn−an)+c(xn−1−an−1).
Evidently, Πα′(D)(qa)(a) = 0 when α′ = 0 or |α′| ≥ 3. Direct computations show
that

D1(qa)(a) = 0 (24)

and
D1D2(qa)(a) = 0 (25)

for every

D1,D2 ∈
{

∂

∂xn−1
− c

∂

∂xn

,
∂

∂xk

: 1 ≤ k ≤ n − 2

}
. (26)

Indeed, relation (24) follows directly from the fact that ∂
∂xk

qa(a) = 0 for every
1 ≤ k ≤ n. Moreover, we see that(

∂

∂xn−1
− c

∂

∂xn

)
(ha) = 0,

(
∂

∂xn−1
− c

∂

∂xn

)
(ha) = c − c
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and

∂

∂xk

(ha) = ∂

∂xk

(ha) = 0, 1 ≤ k ≤ n − 2.

It follows that

D1D2(qa)(a) = D1D2(haha)(a)

= D1
(
haD2ha + haD2ha

)
(a)

= (
D1haD2ha + D1haD2ha

)
(a)

= 0.

Consequently, Πα′(D)(qa)(a) = 0 for every α′. Now, by the definition in
Proposition 1 we get Td

a,qa(qa) = 0.
Next, we write Q = qaQ1. Then, Lemma 5 enables us to write

Td
a,qa(Q) = Td

a,qa(qaQ1) = Td
a,qa

(
Q1T

d
a,qa(qa)

)
= Td

a,qa(Q1 · 0) = 0.

The proof is complete.

3 Hermite interpolation inR
n

3.1 Hermite interpolation schemes

In the main theorem below, we show that interpolation conditions corresponding
to Taylor type polynomials can be collected to obtain regular Hermite interpolation
schemes in Rn.

Theorem 2 Let d ≥ 2 be a positive integer andm = [d/2]+1. Let sk = d−2k+2 for
k = 1, . . . , m. Let 1 ≤ jk, mk ≤ n with jk �= mk and c[k] ∈ C \ R for k = 1, . . . , m.
Let A = {a1, . . . , am} be m distinct points in R

n such that qak
(aj ) �= 0 for j > k,

where

qak
(x) = |

(
xmk

− a[k]
mk

)
+ c[k] (xjk

− a
[k]
jk

)
|2, ak =

(
a

[k]
1 , . . . , a[k]

n

)
.

For each 1 ≤ k ≤ m, let

Π
[k]
(α[k])′(x) = (xjk

− c[k]xmk
)
α

[k]
jk

n∏
l=1,l �=jk,mk

x
α

[k]
l

l

where
(
α[k])′ =

(
α

[k]
1 , . . . , α

[k]
mk−1, α

[k]
mk+1, . . . , α

[k]
n

)
. Then, for any function f is of

classCsk in neighborhoods of the ak’s, there exists a unique polynomial P ∈ Pd(Rn)

such that

Π
[k]
(α[k])′(D)(P )(ak) = Π

[k]
(α[k])′(D)(f )(ak), 1 ≤ k ≤ m, |(α[k])′| ≤ sk, (27)
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Moreover, P = ∑m
k=1 Pk , where P1(x) = Ts1

a1,qa1
(f )(x),

Pk(x) =
k−1∏
j=1

qaj
(x)Tsk

ak,qak

(
f − P1 − · · · − Pk−1∏k−1

j=1 qaj

)
(x), 2 ≤ k ≤ m.

Proof For each 1 ≤ k ≤ m, Lemma 1 shows that the number of interpolation
conditions in (27) is(

n + sk − 1
n − 1

)
+

(
n + sk − 2

n − 1

)
=

(
n + sk

n

)
−

(
n + sk − 2

n

)
,

where we use Lemma 2 in the above binomial relation. It follows that the number of
interpolation conditions in the Hermite scheme is equal to

m∑
k=1

[(
n + sk

n

)
−

(
n + sk − 2

n

)]
=

m∑
k=1

[(
n + d − 2k + 2

n

)
−

(
n + d − 2k

n

)]
=

(
n + d

n

)
,

which matches the dimension of Pd(Rn). Hence, to prove the regularity of the
Hermite scheme, it is sufficient to check that if H ∈ Pd(Rn) and

Π
[k]
(α[k])′(D)H(ak) = 0, 1 ≤ k ≤ m, |(α[k])′| ≤ sk, (28)

then H = 0. Since s1 = d, relation (28) along with Theorem 1 asserts that H divides
qa1 . Hence, we can write H = qa1H1 with degH1 ≤ d − 2 = s2. Using Corollary 3
for f = H and g = 1

qa1
, we get from (28) the following relations

Π
[k]
(α[k])′(D)(H1)(ak) = 0, 2 ≤ k ≤ m, |(α[k])′| ≤ sk . (29)

By similar arguments, we have H1 = qa2H2 with degH2 ≤ d − 4. We continue in
this fashion to obtain

H(x) =
m∏

k=1

qak
(x)Hm+1(x), Hm+1 ∈ P(Rn).

It follows from the last relation that H = 0. Conversely, suppose that H �= 0.
Then, the degree of the polynomial on the right hand side is at least 2m > d. This
contradicts to the fact that degH ≤ d, and the proof the first part of the theorem is
complete.

It remains to prove the formula for the interpolation polynomial. We first check
that the polynomial P = ∑m

k=1Pk belongs to Pd(Rn). By definition we have P1 ∈
Ps1(R

n) = Pd(Rn). For 2 ≤ k ≤ m, since Tsk
ak,qak

(g) ∈ Psk (R
n), we get degPk ≤

2(k − 1) + sk = d. It follows that degP ≤ d. By Corollary 1, it is sufficient to show
that

Tsk
ak,qak

(P )(x) = Tsk
ak,qak

(f )(x), 1 ≤ k ≤ m. (30)

To prove relation (30) we first treat the case k = 1. In this case, we see that qa1
divides Pk for any k ≥ 2. Hence, Lemma 6 gives Ts1

a1,qa1
(Pk) = 0 for 2 ≤ k ≤ m.

This enables us to write

Ts1
a1,qa1

(P ) = Ts1
a1,qa1

(P1) = Ts1
a1,qa1

(f ),
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where we use Lemma 5 in the second relation. Next, we assume that 2 ≤ k ≤ m.
Using the fact that Pj contains the factor qak

for k + 1 ≤ j ≤ m and Lemma 6 we
get Tsk

ak,qak
(Pj ) = 0 for k + 1 ≤ j ≤ m. Therefore

Tsk
ak,qak

(P ) =
k∑

j=1

Tsk
ak,qak

(Pj ) = Tsk
ak,qak

(Pk) +
k−1∑
j=1

Tsk
ak,qak

(Pj ). (31)

From Lemma 5, we have

Tsk
ak,qak

(Pk) = Tsk
ak,qak

⎛
⎝k−1∏

j=1

qak
Tsk
ak,qak

(
f − P1 − · · · − Pk−1∏k−1

j=1 qaj

)⎞
⎠

= Tsk
ak,qak

⎛
⎝k−1∏

j=1

qak

f − P1 − · · · − Pk−1∏k−1
j=1 qaj

⎞
⎠

= Tsk
ak,qak

(f − P1 − · · · − Pk−1)

= Tsk
ak,qak

(f ) −
k−1∑
j=1

Tsk
ak,qak

(
Pj

)
.

Combining the last relation with (31) we finally obtain Tsk
ak,qak

(P ) = Tsk
ak,qak

(f ),
which proves the claim. The proof is complete.

Corollary 4 The interpolation polynomial P ∈ Pd(Rn) in Theorem 2 is determined
by the following relation

Tsk
ak,qak

(P )(x) = Tsk
ak,qak

(f )(x), 1 ≤ k ≤ m. (32)

Remark 2 The condition qak
(aj ) �= 0 for j > k is used in the proof of Theorem 2.

From (3), we see that it is equivalent to(
a[k]
mk

, a
[k]
jk

)
�=

(
a

[j ]
mk

, a
[j ]
jk

)
, j > k.

In other words, the mk-coordinate and the jk-coordinate of ak and aj are not
simultaneously identical for any j > k.

Definition 1 The interpolation polynomial P ∈ Pd(Rn) in Theorem 2 is called a
Hermite type interpolation polynomial of f at A. We write

P = H[{(a1, qa1, s1), . . . , (am, qam, sm)}; f ].

From the Newton type formula in Theorem 2, we obtain an algorithm to compute
the polynomial H[{(a1, qa1 , s1), . . . , (am, qam, sm)}; f ].
Step 1. Compute P1 = Ts1

a1,qa1
(f ) by using (13);

Step 2. Compute Pk = ∏k−1
j=1 qaj

Tsk
ak,qak

(
f −P1−···−Pk−1∏k−1

j=1 qaj

)
for k = 2, . . . , m

respectively by using (13);
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Step 3. Compute the sumH[{(a1, qa1 , s1), . . . , (am, qam, sm)}; f ] = P1+· · ·+Pm.

Remark 3 We have known that some kinds of Hermite interpolants are the limits of
Lagrange interpolants when interpolation points coalesce (see, e.g., [11–14]). One
may ask whether there are regular Lagrange interpolation schemes such that the
corresponding Lagrange interpolation polynomials of sufficiently smooth functions
converge to the Hermite interpolation polynomial constructed in Theorem 2.

3.2 Some examples

In this subsection, we compute the set differential operators of degree 2. We also give
explicit formulas for Hermite interpolation polynomials of degree 2 and degree 3 in
R
3.

Example 1 This example gives interpolation conditions for Hermite interpolation of
degree 2 at two points in R

n. Let d = 2. Then m = 2, s1 = 2 and s2 = 0. Let

ak =
(
a

[k]
1 , . . . , a

[k]
n

)
for k = 1, 2. Set c[k] = uk + ivk with vk �= 0, k = 1, 2. Take

1 ≤ jk, mk ≤ n such that jk �= mk for k = 1, 2. Set

qak
(x) = |

(
xmk

− a[k]
mk

)
+ c[k](xjk

− a
[k]
jk

)|2, k = 1, 2.

We have{
Π

[1]
(α[1])′ : |(α[1])′| ≤ 2

}
= {1}

⋃{
xl, xj1 − u1xm1 − iv1xm1 : l �= j1, m1

}
⋃{

(xj1 − u1xm1)
2 − v21x

2
m1

− 2iv1(xj1 − u1xm1)xm1

}
⋃ {(

xj1 − u1xm1 − iv1xm1

)
xl : l �= j1,m1

}⋃
{x�xl : 1 ≤ � ≤ l ≤ n, �, l �= j1, m1} .

Since s2 = 0, we get {
Π

[2]
(α[2])′ : |(α[2])′| ≤ 0

}
= {1} .

The interpolation conditions in (27) corresponding the following differential
operators

f �→ f (a1), f �→ f (a2), f �→ ∂f

∂xl

(a1), 1 ≤ l ≤ n, l �= j1, m1,

f �→
(

∂

∂xj1

− u1
∂

∂xm1

− iv1
∂

∂xm1

)
f (a1),

f �→
((

∂

∂xj1

− u1
∂

∂xm1

)2

− v21
∂2

∂x2
m1

− 2iv1

(
∂

∂xj1

− u1
∂

∂xm1

)
∂

∂xm1

)
f (a1),

f �→
(

∂

∂xj1

− u1
∂

∂xm1

− iv1
∂

∂xm1

)
∂

∂xl

f (a1), 1 ≤ l ≤ n, l �= j1, m1,

f �→ ∂2

∂x�∂xl

f (a1), 1 ≤ � ≤ l ≤ n, �, l �= j1, m1.
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Easy computations show that the above relations are equivalent to

(
n + 2
2

)

interpolation conditions in the real settings:

f �→ f (a1), f �→ f (a2), f �→ ∂f

∂xl

(a1), 1 ≤ l ≤ n,

f �→
((

∂

∂xj1

− u1
∂

∂xm1

)2

− v21
∂2

∂x2
m1

)
f (a1),

f �→
(

∂

∂xj1

− u1
∂

∂xm1

)
∂

∂xm1

f (a1),

f �→ ∂2

∂xj1∂xl

f (a1), f �→ ∂2

∂xm1∂xl

f (a1), 1 ≤ l ≤ n, l �= j1, m1,

f �→ ∂2

∂x�∂xl

f (a1), 1 ≤ � ≤ l ≤ n, �, l �= j1, m1.

Example 2 We construct a formula for the Hermite interpolation polynomial of
degree 2 at two points in R

3. Let n = 3 and d = 2. Then, m = 2, s1 = 2 and s2 = 0.
Let a1 = (0, 0, 0) and a2 = (0, 1, 0). We choose c[1] = 2i and c[2] = 3i. Take
j1 = 1, m1 = j2 = 2, m2 = 3. Then,

qa1(x) = 4x2
1 + x2

2 , qa2(x) = 9(x2 − 1)2 + x2
3 .

The polynomial P = H[{(a1, qa1, 2), (a2, qa2 , 0)}](f ) belonging to P2(R
3)

interpolates f at the following 10 conditions

g �→ g(a1), g �→ g(a2), g �→ ∂g

∂xl

(a1), 1 ≤ l ≤ 3, (33)

g �→
(

∂2

∂x2
1

− 4
∂2

∂x2
2

)
g(a1), g �→ ∂2

∂x2
3

g(a1), (34)

g �→ ∂2

∂x�∂xl

g(a1), 1 ≤ � < l ≤ 3. (35)

By definition of Taylor type polynomial in (13), we have

T2
a1,qa1

(f )(x) = f (a1) +
∑

1≤α3≤2

Π(0,α3)(D)(f )(a1)B(0,α3)(x)

+
∑

0≤α3≤1

(
Π(1,α3)(D)(f )(a1)B(1,α3)(x) + Π(1,α3)(D)(f )(a1)B(1,α3)(x)

)

+ (
Π(2,0)(D)(f )(a1)B(2,0)(x) + Π(2,0)(D)(f )(a1)B(2,0)(x)

)
,

where
Π(α1,α3)(x) = (x1 − 2ix2)

α1x
α3
3 ,

and

B(α1,α3)(x) = 1

2α1α1!α3!
(

x1 + i

2
x2

)α1

x
α3
3 .
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Hence,

Π(0,α3)(D)(f )(a1)B(0,α3)(x) = 1

α3!
∂α3f (a1)

∂x
α3
3

x
α3
3 , α3 = 1, 2,

Π(1,α3)(D)(f )(a1)B(1,α3)(x) + Π(1,α3)(D)(f )(a1)B(1,α3)(x)

=
{

∂f (a1)
∂x1

x1 + ∂f (a1)
∂x2

x2 if α3 = 0
∂2f (a1)
∂x1∂x3

x1x3 + ∂2f (a1)
∂x2∂x3

x2x3 if α3 = 1

and

Π(2,0)(D)(f )(a1)B(2,0)(x) + Π(2,0)(D)(f )(a1)B(2,0)(x)

= 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

) (
4x2

1 − x2
2

)
+ ∂2f (a1)

∂x1∂x2
x1x2.

Combining the above computations we obtain

P1(x) = T2
a1,qa1

(f )(x) = f (a1) +
3∑

l=1

∂f (a1)
∂xl

xl +
∑

1≤�<l≤3

∂2f (a1)
∂x�∂xl

x�xl

+1

2

∂2f (a1)

∂x2
3

x2
3 + 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)
(4x2

1 − x2
2 ).

On the other hand,

T0
a2,qa2

(
f − P1

qa1

)
(x) = f (a2) − P1(a2)

qa1 (a2)

= f (a2) − f (a1) − ∂f (a1)
∂x2

+ 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)
.

It follows that

P(x) = T2
a1,qa1

(f )(x) + qa1(x)T
0
a2,qa2

(
f − P1

qa1

)
(x)

= f (a1) +
3∑

l=1

∂f (a1)
∂xl

xl +
∑

1≤�<l≤3

∂2f (a1)
∂x�∂xl

x�xl

+1

2

∂2f (0)

∂x2
3

x2
3 + 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)(
4x2

1 − x2
2

)

+
(
4x2

1+x2
2

) (
f (a2) − f (a1) − ∂f (a1)

∂x2
+ 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

))
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= f (a1) +
3∑

l=1

∂f (a1)
∂xl

xl +
∑

1≤�<l≤3

∂2f (a1)
∂x�∂xl

x�xl + 1

2

∂2f (a1)

∂x2
3

x2
3

+
(
4f (a2) − 4f (a1) − 4

∂f (a1)
∂x2

+ 1

2

∂2f (a1)

∂x2
1

− 2
∂2f (a1)

∂x2
2

)
x2
1

+
(

f (a2) − f (a1) − ∂f (a1)
∂x2

)
x2
2 .

Example 3 We give a formula for the Hermite interpolation polynomial of degree 3
at two points in R

3. Let n = 3 and d = 3. We have m = 2, s1 = 3 and s2 = 1.
Let a1 = (0, 0, 0) and a2 = (0, 1, 0). We choose c[1] = 2i and c[2] = 3i. Take
j1 = 1, m1 = j2 = 2, m2 = 3. Then

qa1(x) = 4x2
1 + x2

2 , qa2(x) = 9(x2 − 1)2 + x2
3 .

The polynomial P = H[{(a1, qa1, 2), (a2, qa2 , 1)}](f ) belonging to P3(R
3)

satisfies the following conditions in the complex setting

(
∂

∂x1
− 2i

∂

∂x2

)α1 ∂α3

∂x
α3
3

P(a1) =
(

∂

∂x1
− 2i

∂

∂x2

)α1 ∂α3

∂x
α3
3

f (a1), α1 + α3 ≤ 3,

and

(
∂

∂x2
− 3i

∂

∂x3

)β2 ∂β1

∂x
β1
1

P(a2) =
(

∂

∂x2
− 3i

∂

∂x3

)β2 ∂β1

∂x
β1
1

f (a2), β1 + β2 ≤ 1.

They are equivalent to 20 conditions which consist of 10 conditions in (33)–(35)
along with the following functionals

g �→ ∂g

∂xl

(a2), 1 ≤ l ≤ 3, g �→ ∂3

∂x3
3

g(a1), g �→ ∂3

∂xl∂x2
3

g(a1), 1≤ l ≤ 2

g �→
(

∂2

∂x2
1

− 4
∂2

∂x2
2

)
∂

∂x3
g(a1), g �→ ∂3

∂x1∂x2∂x3
g(a1),

g �→
(

∂3

∂x3
1

− 12
∂3

∂x1∂x2
2

)
g(a1), g �→

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
g(a1).

Theorem 2 gives the formula for the interpolation polynomial

H[{(a1, qa1, 3), (a2, qa2 , 1)}](x) = T3
a1,qa1

(f )(x) + qa1(x)T
1
a2,qa2

(g)(x). (36)
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We need to compute T3
a1,qa1

(f ) and T1
a2,qa2

(g). From (15), we can write

T3
a1,qa1

(f )(x) = T2
a1,qa1

(f )(x) + Π(0,3)(D)(f )(a1)B(0,3)(x)

+ (
Π(1,2)(D)(f )(a1)B(1,2)(x) + Π(1,2)(D)(f )(a1)B(1,2)(x)

)
+ (

Π(2,1)(D)(f )(a1)B(2,1)(x) + Π(2,1)(D)(f )(a1)B(2,1)(x)
)

+ (
Π(3,0)(D)(f )(a1)B(3,0)(x) + Π(3,0)(D)(f )(a1)B(3,0)(x)

)
=: T2

a1,qa1
(f )(x) + 	0 + 	1 + 	1 + 	3,

where 	l denotes the (l + 1)-th term at the right hand side for 0 ≤ l ≤ 3,

Π(α1,α3)(x) = (x1 − 2ix2)
α1x

α3
3 ,

and

Bα1,α3(x) = 1

2α1α1!α3! (x1 + i

2
x2)

α1x
α3
3 .

Direct computations give

	0 = 1

6

∂3

∂x3
3

f (a1)x3
3 , 	1 = 1

2

(
∂3

∂x1∂x2
3

f (a1)x1x2
3 + ∂3

∂x2∂x2
3

f (a1)x2x2
3

)
,

	2 = 1

4

(
∂2

∂x2
1

− 4
∂2

∂x2
2

)
∂

∂x3
f (a1)

(
x2
1 − x2

2

4

)
x3 + ∂3P

∂x1∂x2∂x3
f (a1)x1x2x3,

	3= 1

24

[(
∂3

∂x3
1

−12
∂3

∂x1∂x2
2

)
f (a1)

(
x3
1−

3x1x2
2

4

)
+

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1)

(
3x2

1x2 − x3
2

4

)]
.

It follows that

T3
a1,qa1

(f )(x) = f (a1) +
3∑

l=1

∂f (a1)
∂xl

xl +
∑

1≤�<l≤3

∂2f (a1)
∂x�∂xl

x�xl + 1

2

∂2f (a1)

∂x2
3

x2
3

+ 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)
(4x2

1 − x2
2 ) + 1

6

∂3

∂x3
3

f (a1)x3
3

+1

2

∂3

∂x1∂x2
3

f (a1)x1x2
3 + 1

2

∂3

∂x2∂x2
3

f (a1)x2x2
3

+1

4

(
∂2

∂x2
1

− 4
∂2

∂x2
2

)
∂

∂x3
f (a1)

(
x2
1 − x2

2

4

)
x3 + ∂3

∂x1∂x2∂x3
f (a1)x1x2x3

+ 1

24

(
∂3

∂x3
1

− 12
∂3

∂x1∂x2
2

)
f (a1)

(
x3
1 − 3x1x2

2

4

)

+ 1

24

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1)

(
3x2

1x2 − x3
2

4

)
.

Next, we calculate

T1
a2,qa2

(g)(x) = g(a2) +
3∑

l=1

∂

∂xl

g(a2)xl, g =
f − T3

a1,qa1
(f )

qa1
.
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From the formula for T3
a1,qa1

(f ), we see that

T3
a1,qa1

(f )(a2)=f (a1) + ∂f (a1)
∂x2

− 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)
− 1

96

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1),

∂

∂x1
T3
a1,qa1

(f )(a2) = ∂f (a1)
∂x1

+ ∂2f (a1)
∂x1∂x2

− 1

32

(
∂3

∂x3
1

− 12
∂3

∂x1∂x2
2

)
f (a1),

∂

∂x2
T3
a1,qa1

(f )(a2) = ∂f (a1)
∂x2

− 1

8

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)
− 1

32

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1),

∂

∂x3
T3
a1,qa1

(f )(a2) = ∂f (a1)
∂x3

+ ∂2f (a1)
∂x2∂x3

− 1

16

(
∂2

∂x2
1

− 4
∂2

∂x2
2

)
∂

∂x3
f (a1).

Direct computations give

qa1(a2) = 1,
∂

∂x2
qa1(a2) = 2,

∂

∂xl

qa1(a2) = 0, l = 1, 3.

Hence,

T1
a2,qa2

(g)(x) = f (a2) − f (a1) − ∂f (a1)
∂x2

+ 1

16

(
∂2f (a1)

∂x2
1

− 4
∂2f (a1)

∂x2
2

)

+ 1

96

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1)

+
(

∂f (a2)
∂x1

− ∂f (a1)
∂x1

− ∂2f (a1)
∂x1∂x2

+ 1

32

(
∂3

∂x3
1

− 12
∂3

∂x1∂x2
2

)
f (a1)

)
x1

+
(
2f (a1) − 2f (a2) + ∂f (a2)

∂x2
+ ∂f (a1)

∂x2
+ 1

32

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1)

− 1

48

(
3

∂3

∂x2
1∂x2

− 4
∂3

∂x3
2

)
f (a1)

)
x2

+
(

∂f (a2)
∂x3

− ∂f (a1)
∂x3

− ∂2f (a1)
∂x2∂x3

+ 1

16

(
∂2

∂x2
1

− 4
∂2

∂x2
2

)
∂

∂x3
f (a1)

)
x3.

The above computations along with (36) lead to a formula for H[{(a1, qa1 , 3),
(a2, qa2 , 1)}]. The precise formula is left to the readers.

Remark 4 The interpolation conditions in the previous two examples and the corre-
sponding Hermite interpolation polynomials do not depend on the choices of j2 and
m2.
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7. Hörmander, L.: On the theory of general partial differential operators. Acta Math. 94, 161–248 (1955)
8. Lorentz, R.A.: Multivariate Birkhoff Interpolation, Lecture Notes inMathematics, vol. 1516. Springer,

Berlin (1992)
9. Lorentz, R.A.: Multivariate Hermite interpolation by algebraic polynomials: a survey. J. Comput.

Appl. Math. 122, 167–201 (2000)
10. Milnor, J.: Singular Points for Complex Hypersurfaces. Ann. of Math. Stud. 61. Princeton University

Press, Princeton (1968)
11. Phung, V.M.: On bivariate Hermite interpolation and the limit of certain bivariate Lagrange projectors.

Ann. Polon. Math. 115, 1–21 (2015)
12. Phung, V.M.: Hermite interpolation with symmetric polynomials. Numer. Algorithms 76, 709–725

(2017)
13. Phung, V.M.: Polynomial in R

2 and on the unit sphere in R
3. Acta. Math. Hungar. 153, 289–317

(2017)
14. Phung, V.M.: Hermite interpolation on the unit sphere and limits of Lagrange projectors. IMA J.

Numer. Anal. https://doi.org/10.1093/imanum/draa026 (2020)
15. Phung, V.M., Nguyen, V.K.: Polynomial interpolation on the unit sphere and some properties of its

integral means. Filomat. 33, 4697–4715 (2019)
16. Sauer, T., Xu, Y.: On multivariate hermite interpolation. Adv. Comput. Math. 4, 207–259 (1995)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

166 Numerical Algorithms (2022) 89:145–166

https://doi.org/10.1093/imanum/draa026

	Taylor type and Hermite type interpolants in Rn
	Abstract
	Introduction
	Notations and conventions

	Taylor type polynomials
	A divisibility criterion
	Construction of Taylor type operators
	Some properties of Taylor type operators

	Hermite interpolation in Rn
	Hermite interpolation schemes
	Some examples

	References




