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Abstract
In this paper, a class of new Magnus-type methods is proposed for non-commutative
Itô stochastic differential equations (SDEs) with semi-linear drift term and semi-
linear diffusion terms, based on Magnus expansion for non-commutative linear
SDEs. We construct a Magnus-type Euler method, a Magnus-type Milstein method
and a Magnus-type Derivative-free method, and give the mean-square convergence
analysis of these methods. Numerical tests are carried out to present the efficiency of
the proposed methods compared with the corresponding underlying methods and the
specific performance of the simulation Itô integral algorithms is investigated.
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1 Introduction

It is now generally accepted that stochastic differential equations (SDEs) can describe
some problems more accurately than deterministic differential equations. For exam-
ple, input data may be uncertain or systems may be subject to internal or external
random fluctuations. It is often difficult to obtain explicit expressions of exact solu-
tions for SDEs and so numerical methods become an important tool to provide good
approximations.

In this paper, our main focus is the numerical approximations of the semilinear Itô
SDEs

dy = (A0y + g0(y))dt +
m∑

i=1

(Aiy + gi(y)) dWi(t), y(0) = y0 ∈ R
d, (1)

where Wj(t), j = 1, . . . , m, are independent Wiener processes on a complete prob-
ability space (Ω,F,P) with a filtration {Ft }t>0 satisfying the usual conditions. Here
gj : R

d → R
d , j = 1, . . . , m, are nonlinear functions of y and Aj ∈ R

d×d ,
j = 0, . . . , m, are constant matrices. The random initial value satisfies E ‖y0‖2 < ∞
and E is the expectation.

Numerical integrators for (1) in the sense of Itô and Stratonovich are thoroughly
studied in [1] based on the stochastic Runge–Kutta Lawson methods under the
following commutative conditions

[Al, Ak] = AlAk − AkAl = 0 for all l, k = 0, 1, . . . , m, (2)

where [A, B] = AB − BA is called the Lie-product or matrix commutator of A

and B. Under this commutative condition, Euler and Milstein versions of exponen-
tial methods are investigated in [2], and the strong convergence analysis of these
two methods is given. Their numerical results show that these exponential meth-
ods are more effective than the corresponding underlying methods. Under similar
commutative conditions, Yang, Burrage and Ding [3] investigate (1) in the sense of
Stratonovich and construct structure-preserving stochastic exponential Runge–Kutta
methods to the case of time independent matrix A0 = A(t), Ak = 0, k = 1, . . . , m.
There is also some interesting work on the exact solution and the corresponding
numerical solution under the commutative condition where A0 is a constant matrix
and Ak = 0, k = 1, . . . , m. For example, an exponential Euler method is con-
structed for the stiff problem and it is applied to solve an ion channel model in [4].
A class of weak second-order exponential Runge–Kutta methods is investigated for
non-commutative SDEs in [5].

It is worth noting that when the commutative condition is not established, even the
solution of the linear system cannot be expressed explicitly. We know that Magnus
gave the deterministic Magnus expansion [6] in 1954, which expresses the solution
as an exponential infinite matrix series. This topic has been further studied in [7–
9]. In recent years, the Magnus-type expansion for SDEs has attracted an increasing
number of researchers. The Magnus expansion for linear autonomous Stratonovich
SDEs was derived by Burrage and Burrage [10]. They compare the truncated Mag-
nus expansion with stochastic Runge–Kutta methods with the same convergence
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order and concluded that the Magnus expansion enjoys a considerably smaller error
coefficient. The authors of [11] consider the Magnus expansion for the linear and
nonlinear Stratonovich SDEs and the convergence analysis is given based on binary
rooted trees. In [12] a new explicit Magnus expansion is applied to solve a class of
Stratonovich SDEs and the authors show that the Magnus expansion can preserve the
positivity of the solution. A new version of Magnus expansion for linear Itô SDEs
is derived in [13] and the authors have analyzed the convergence of the Magnus
expansion and applied it to solve semi-discrete stochastic partial differential equa-
tions (SPDEs). In [14], for SPDEs driven by multiplicative noise, the authors first
use the finite element method to discretize space, and then construct a Magnus-type
method in the time direction.

We have to say that when the commutative condition is not established, the corre-
sponding theoretical results on exponential numerical methods for the corresponding
semi-linear problem are sparse. This is the motivation for us to consider a new class
of Magnus-type integrators for the semi-linear problem (1).

The structure of this paper is organized as follows. In Section 2, we will give a brief
review of the use of the Magnus formula in both linear non-autonomous ordinary
differential equations (ODEs) and linear SDEs. In Section 3, we will derive a new
class of Magnus-type integrators for the semi-linear problem (1) by the application of
the Magnus expansion for linear non-commutative SDEs. In Section 4, we will give
the results of the mean-square convergence analysis of the Magnus-type methods
proposed in Section 3. In Section 5, we will compare three algorithms for simulating
iterated Itô integrals and some details of numerical implementation will be presented
on low-dimensional SDEs and a high-dimensional SDE obtained from a discretized
SPDE, which illustrate the efficacy of Magnus-type methods.

2 Magnus formula

In this section we will briefly review the Magnus formula in both a linear determin-
istic setting and a linear stochastic setting.

2.1 Magnus formula for linear non-autonomous ODEs

Consider the non-autonomous linear initial value problem

Y ′(t) = A(t)Y (t), t ≥ 0, Y (0) = Y0 ∈ R
d×d. (3)

This problem is investigated in [6] where the d × d matrix A(t) is non-
commutative. The solution is given in the form

Y (t) = exp (Ω (0, t)) Y0, (4)

where Ω (0, t) is the combination of integrals and nested Lie brackets of A, i.e.,

Ω(0, t) = ∫ t

0 A (s1) ds1 + 1
2

∫ t

0

[
A (s1) ,

∫ s1
0 A (s2) ds2

]
ds1

+ 1
4

∫ t

0

[
A (s1) ,

∫ s1
0

[
A (s2) ,

∫ s2
0 A (s3) ds3

]
ds2
]

ds1 + · · · .
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For this problem, the Magnus expansion has received some attention in the past few
decades, see [15].

2.2 Magnus formula for linear SDEs

We consider autonomous linear SDE given by

dY (t) =
m∑

j=0

AjY (t)dWj(t), Y (0) = I ∈ R
d×d, (5)

where W0(t) = t . The d × d matrices Aj are constant and I is the identity d × d-
matrix. When the commutative condition (2) is satisfied, the exact solution of (5) can
be expressed explicitly by

Y (t) = exp

((
A0 − γ ∗

m∑

i=1

A2
i

)
t +

m∑

i=1

AiWi(t)

)
,

where γ ∗ = 1
2 . When the commutative condition is not established, the solution of

(5) cannot be expressed explicitly. The solution to (5) is given in the form Y (t) =
exp(Ω(0, t))I by Kamm and his coauthors [13] in the Itô setting. Here we apply the
relationship between Itô and Stratonovich integrals [17] to obtain the expansion of
the Itô case through Ω(0, t) given by Burrage and Burrage [10] in the Stratonovich
setting,

Ω(0, t) =
m∑

j=0
Âj

∫ t

0 dWj

+ 1
2

m∑
i=0

m∑
j=i+1

[
Âi , Âj

] (∫ t

0

∫ s

0 dWj dWi − ∫ t

0

∫ s

0 dWidWj

)

+
m∑

i=0

m∑
k=0

m∑
j=k+1

[
Âi ,
[
Âj , Âk

]] {
1
3

((∫ t

0

∫ s

0

∫ s1
0 dWkdWj dWi

+ γ ∗I(j=i 	=0)

∫ t

0

∫ s

0 dWkdW0

)
−
(∫ t

0

∫ s

0

∫ s1
0 dWj dWkdWi

+ γ ∗I(k=i 	=0)

∫ t

0

∫ s

0 dWj dW0

))

+ 1
12

∫ t

0 dWi

(∫ t

0

∫ s

0 dWj dWk − ∫ t

0

∫ s

0 dWkdWj

)}
+ · · · ,

(6)

where Â0 = A0 − γ ∗∑m
j=1 A2

j and Âj = Aj , j ≥ 1. In the rest of this paper, we
denote the iterated Itô integral as

Iij (tn, tn + h) =
∫ tn+h

tn

∫ s

tn

dWi(s1)dWj(s), i, j ≥ 1. (7)

The relationship between Itô and Stratonovich integrals [17] is

Jα =Iα, l(α) = 0 or 1,

Jα =Iα + 1

2
I{j1=j2 	=0}I0, l(α) = 2,

Jα =Iα + 1

2

(
I{j1=j2 	=0}I(0,j3) + I{j2=j3 	=0}I(j1,0)

)
, l(α) = 3,
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where l(α) is the length of the index α and IA is the indicator function, i.e., IA = 1
if A is true, otherwise IA = 0. The expansion (6) can also be obtained through the
expansion rules in [13] and the convergence of the Magnus expansion for (5) is given
by the following lemma.

Lemma 1 [13] Let A0, A1, . . . , Am be constant matrices. For T > 0 let Y =
(Y (t))t∈[0,T ] be the solution to (5) in the Itô case. There exists a strictly positive
stopping time τ ≤ T such that:

(i) Y (t) has a real logarithm Ω(0, t) ∈ R
d×d up to time τ , i.e.,

Y (t) = eΩ(0,t), 0 ≤ t < τ ;
(ii) the following representation holds P-almost surely:

Ω(0, t) =
∞∑

n=0

Ω [n](0, t), 0 ≤ t < τ,

where Ω [n](0, t) is the nth term in the stochastic Magnus expansion (6);
(iii) there exists a positive constant C, only dependent on ‖A0‖ , . . . , ‖Am‖ , T and

d, such that
P(τ ≤ t) ≤ Ct, t ∈ [0, T ].

3 A class of newMagnus-typemethods for semi-linear SDEs

We shall now derive Magnus-type methods of mean-square order 1/2 and 1.0 for
semi-linear SDEs (1). Throughout this paper, consider a partition t0 = 0 < t1 <

· · · < tN = T of the interval [0, T ] with constant step size h = tj − tj−1, j =
1, · · · , N , and let yn be the approximation of exact solution. To make sure of the
existence of the unique solution of (1), we first give the following important result.

Theorem 1 [16] There exists a constant L > 0 such that the global Lipschitz
condition holds: for y, z ∈ R

d ,

|g0(y) − g0(z)| +
m∑

i=1

|gi(y) − gi(z)| ≤ L|y − z|.

Then there exists a unique solution y(t) to (1).

Here we only require the Lipschitz condition as the linear growth condition

|g0(y)|2 +
m∑

i=1

|gi(y)|2 ≤ L
(

1 + |y|2
)

for y ∈ R
d ,

is automatically satisfied from the Lipschitz condition in the autonomous case, see
[18].

For the semi-linear Itô SDEs (1), we assume that the exact solution has the form

y(t) = Y (t)ỹ(t), (8)
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where Y (t) is the solution of the linear equation (5), and ỹ(t) is to be determined.
Using the Itô chain rule to y(t), we have

dy = (dY )ỹ + Ydỹ + dYdỹ =
m∑

j=0

AjY ỹdWj + Ydỹ + dYdỹ. (9)

Comparing this with (1) shows that (8) is a solution of (1) if and only if

Ydỹ = g0(y)dt − dYdỹ +
m∑

j=1

gj (y)dWj .

So, dỹ has the form

dỹ = exp(−Ω(0, t))(g0(y)dt − dYdỹ) +
m∑

j=1

exp(−Ω(0, t))gj (y)dWj .

Since

dYdỹ =
m∑

j=1

Ajgj (y)dt,

then we get

y(t) = exp(Ω(0, t))(y(0) +
∫ t

0
exp(−Ω(0, s))g̃0(y(s))ds

+
m∑

j=1

∫ t

0
exp(−Ω(0, s))gj (y(s))dWj(s)),

(10)

where g̃0 = g0 −∑m
j=1 Ajgj .

It needs to be said that this transformation is also applicable to the case where
the Aj(t) depend on time t , that is, the non-autonomous case, but this paper focuses
on the case of (1). Numerical methods will be derived by using this form. Different
approximations to the integrals in the above equation will yield different numerical
schemes, and we will consider Magnus-type Euler (ME) and Magnus-type Milstein
(MM) methods.

3.1 Magnus-type Euler method

If the integrals in (10) are approximated as follows

exp(Ω(tn, tn+1))

∫ tn+1

tn

exp(−Ω(tn, s))gj (y)dWj(s)

≈ exp(Ω [1](tn, tn+1))gj (yn)ΔWjn, j = 1, . . . , m,
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where Ω [1](tn, tn+1) = ∑m
j=0 Âj

∫ tn+1
tn

dWj, ΔWjn = Wj(tn+1) − Wj(tn), j ≥ 1,
ΔW0n = tn+1 − tn, the following ME method is obtained,

yn+1 = exp(Ω [1](tn, tn+1))

⎛

⎝yn + g̃0(yn)h +
m∑

j=1

gj (yn)ΔWjn

⎞

⎠ . (11)

In particular, when gj = 0, j ≥ 1, and if

exp(Ω [2](tn, tn+1)) =
m∑

j=0

Âj

∫ tn+1

tn

dWj + 1

2

m∑

i=1

m∑

j=i+1

[
Âi , Âj

] (
Iji − Iij

)

is selected instead of exp(Ω [1](tn, tn+1)), the resulting numerical scheme is mean-
square 1 order convergent, which is actually a special case of the MM methods that
we will give below. Next, we choose a higher order approximation for the diffusion
terms, and then we obtain the MM method.

3.2 Magnus-typeMilstein method

Note that Ŷ (t) = exp (−Ω (tn, t)) is the solution of the following linear Itô SDE,

dŶ (t) =
⎛

⎝−A0 +
m∑

j=1

A2
j

⎞

⎠ Ŷ (t)dt −
m∑

j=1

Aj Ŷ (t)dWj(t), Ŷ (tn) = I . (12)

Applying the Itô–Taylor theorem to the stochastic integral

∫ tn+1

tn

exp(−Ω(0, s))gj (y)dWj(s)

=
∫ tn+1

tn

(
gj (yn) +

∫ s

tn

(
(dŶ )gj (y) + Ŷdgj (y) + dŶdgj (y)

))
dWj(s)

=
∫ tn+1

tn

(
gj (yn) +

∫ s

tn

(
(−A0 +

m∑

l=1

A2
l )Ŷ gj (y)dt −

m∑

l=1

AlŶ gj (y)dWl(s1)

+Ŷ g′
j (y)

(
(A0y + g0(y))dt +

m∑

l=1

(Aiy + gi(y))dWl(s1)

)

+1

2
Ŷ

m∑

l=1

g′′
j (Aly + gl(y), Aly + gl(y))dt + dŶdgj (y)

))
dWj(s)

=
∫ tn+1

tn

(
gj (yn)+

∫ s

tn

(
m∑

l=1

(−Algj (yn)+g′
j (yn)(Alyn+gl(yn))

)
dWl(s1)

)
dWj(s)

+ h.o.t .
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Then we obtain the MM scheme

yn+1 = exp(Ω [2](tn, tn+1))

⎛

⎝yn + g̃0(yn)h +
m∑

j=1

gj (yn)ΔWjn

+
m∑

j,l=1

Hj,l (yn) Ilj

⎞

⎠ ,

(13)

where
Hj l(yn) = g′

j (yn) (Alyn + gl(yn)) − Algj (yn).

As a particular example, we apply the MM method to solve the damped nonlinear
Kubo oscillator (21) in Section 5 with m = 2, ω0 = ω1 = ω2 = 1, β0 = −1,
β1 = −1/2, β2 = 0 and α = 0. It is

yn+1 = exp(Ω [2](tn, tn+1))

⎛

⎝yn + g̃0(yn)h +
2∑

j=1

gj (yn)ΔWjn +
2∑

j,l=1

Hj,l (yn) Ilj

⎞

⎠ ,

where

g̃0(yn) = g0(yn) −
(

0 −1
1 −1/2

)
g1(yn) −

(
0 −1
1 0

)
g2(yn),

H11(yn) = g′
1(yn)

((
0 −1
1 −1/2

)
yn + g1(yn)

)
−
(

0 −1
1 −1/2

)
g1(yn),

H12(yn) = g′
1(yn)

((
0 −1
1 0

)
yn + g2(yn)

)
−
(

0 −1
1 0

)
g1(yn),

H21(yn) = g′
2(yn)

((
0 −1
1 −1

)
yn + g1(yn)

)
−
(

0 −1
1 −1

)
g2(yn),

H22(yn) = g′
2(yn)

((
0 −1
1 0

)
yn + g2(yn)

)
−
(

0 −1
1 0

)
g2(yn).

As seen above, the disadvantage of the MM method is that a large number of
derivatives and matrix operations need to be calculated for each step as the num-
ber of the nonlinear noise terms increases, which greatly reduces the efficiency of
the method. From this point, it is natural to think of a Magnus-type Derivative-free
(MDF) method, that is, use finite differences instead of these derivatives.

3.3 Magnus-type Derivative-free method

The MDF method can be derived from the MM method by replacing these derivatives
with finite differences,

g′
j (yn)(Alyn + gl(yn)) ≈ gj (Yl) − gj (yn)√

h
,

where
Yl = yn + hg0(yn) + √

h(Alyn + gl(yn)), l = 1, 2, . . . , m.
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We obtain the MDF method

yn+1 = exp(Ω [2](tn, tn+1))

⎛

⎝yn + g̃0(yn)h +
m∑

j=1

gj (yn)ΔWjn

+
m∑

j,l=1

Ĥj l

Ilj√
h

⎞

⎠ ,

(14)

where Ĥj l = gj (Yl) − gj (yn) + (exp(−Al

√
h) − I )gj (yn).

4 Convergence analysis

In this section we will give the mean-square convergence results for both the ME
method and the MM method. From [19], we review the following fundamental
convergence theorem of one-step numerical methods.

Lemma 2 Suppose that the one-step approximation yt+h has order of accuracy p1
for the mathematical expectation of the deviation and order of accuracy p2 for the
mean-square deviation; more precisely, for arbitrary t0 ≤ t ≤ T −h, y(t) = y ∈ R

d

the following inequalities hold:

|E(y(t + h) − yt+h)| ≤ K

√
1 + |y|2hp1 ,

(E|(y(t + h) − yt+h)|2)1/2 ≤ K

√
1 + |y|2hp2 ,

with p2 ≥ 1/2, p1 ≥ p2 + 1/2, i.e., the approximation is consistent in the mean
order p1 and in the mean-square order p2. Then for any N and k = 0, 1, ..., N the
following inequality holds:

[
E |y (tk) − yk|2

]1/2 ≤ K
(

1 + E |y0|2
)1/2

hp2−1/2,

i.e., the method is convergent of order p2 − 1/2 in the sense of mean-square.

The following theorems show the convergence results of the Magnus-type method.
We suppose that the coefficients of (1) satisfy the linear growth condition and the
global Lipschitz condition. We also assume uniformly bounded derivatives up to
order 2 for the MM method and MDF method. Let y(tn + h) be the exact evalu-
ation of (1) at tn+1 starting from y(tn) = yn. We will estimate the p1, p2 for the
Magnus-type method satisfying

|E (y (tn + h) − yn+1)| = O
(
hp1
)
,

(
E |y (tn + h) − yn+1|2

) 1
2 = O

(
hp2
)

.
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Theorem 2 Let yn be an approximation to the solution of (1) using the ME method.
Then for any N and k = 0, 1, ..., N the following inequality holds:

[
E |y (tk) − yk|2

]1/2 ≤ K
(

1 + E |y0|2
)1/2

h1/2,

i.e., the ME method is convergent of order 1/2 in the sense of mean-square.

Proof For the ME method, it can be readily shown that

y (tn + h) − yn+1 = P1 + P2 + P3,

where

P1 =
(

exp(Ω(tn, tn+1)) − exp(Ω [1](tn, tn+1))
)

yn,

P2 = exp(Ω(tn, tn+1))

∫ tn+1

tn

exp(−Ω(tn, s))g̃0(y(s))ds

− exp(Ω [1](tn, tn+1))

∫ tn+1

tn

g̃0(y(tn))ds,

P3 = exp(Ω(tn, tn+1))

m∑

j=1

∫ tn+1

tn

exp(−Ω(tn, s))gj (y(s))dWj(s)

− exp(Ω [1](tn, tn+1))

m∑

j=1

∫ tn+1

tn

gj (y(tn))dWj(s).

For term P1, since exp(Ω(tn, tn+1))yn is the solution of (5), we can easily find

|E(P1)| = O
(
h2
)

, (E|P1|2)1/2 = O (h) . (15)

For P2, adding and subtracting exp(Ω(tn, tn+1))
∫ tn+1
tn

g̃0(yn)ds give

P2 = exp(Ω(tn, tn+1))

∫ tn+1

tn

(exp(−Ω(tn, s))g̃0(y(s)) − g̃0(yn)) ds

+
(

exp(Ω(tn, tn+1)) − exp(Ω [1](tn, tn+1))
) ∫ tn+1

tn

g̃0(y(tn))ds

= P21 + P22.
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Utilizing (1) and (12),

exp (−Ω (tn, s)) g̃0(y(s))

=g̃0 (yn) +
∫ s

tn

⎛

⎝−A0 +
m∑

j=1

A2
j

⎞

⎠Y (s1) g̃0 (y (s1)) ds1

−
∫ s

tn

m∑

j=1

AjY (s1) g̃0 (y (s1)) dWj (s1) +
∫ s

tn

Y (s1) dg̃0(y (s1))

+
∫ s

tn

m∑

j=1

AjY (s1)
(
Ajy (s1) + gj (y (s1))

)
ds1,

we can easily find

|E(P21)| = O
(
h2
)

, (E|P21|2)1/2 = O
(
h3/2

)
,

|E(P22)| = O
(
h3
)

, (E|P22|2)1/2 = O
(
h2
)

.
(16)

For P3, adding and subtracting exp(Ω(tn, tn+1))
∫ tn+1
tn

gj (yn)dWj(s) gives

P3 = exp(Ω(tn, tn+1))

m∑

j=1

∫ tn+1

tn

(
exp(−Ω(tn, s))gj (y(s)) − gj (yn)

)
dWj(s)

+
(

exp(Ω(tn, tn+1)) − exp(Ω [1](tn, tn+1))
) m∑

j=1

∫ tn+1

tn

gj (y(tn))dWj(s).

Similar to term P2, we can get

|E(P3)| = O
(
h2
)

, (E|P3|2)1/2 = O (h) . (17)

With (15), (16) and (17), we have p1 = 2, p2 = 1. From Lemma 2, we know that
the ME method is of mean-square order 0.5.

For the MM methods, we can obtain the following convergence results.

Theorem 3 Let yn be an approximation to the solution of (1) using the MMmethod.
Then for any N and k = 0, 1, ..., N the following inequality holds:

[
E |y (tk) − yk|2

]1/2 ≤ K
(

1 + E |y0|2
)1/2

h,

i.e., the MM method is convergent of order 1 in the sense of mean-square.

Proof For the MM method, through direct calculation, we find

y (tn + h) − yn+1 = P1 + P2 + P3,
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where

P1 =
(

exp(Ω(tn, tn+1)) − exp(Ω [2](tn, tn+1))
)

yn,

P2 = exp(Ω(tn, tn+1))

∫ tn+1

tn

exp(−Ω(tn, s))g̃0(y(s))ds

− exp(Ω [2](tn, tn+1))

∫ tn+1

tn

g̃0(y(tn))ds,

P3 = exp(Ω(tn, tn+1))

m∑

j=1

∫ tn+1

tn

exp(−Ω(tn, s))gj (y(s))dWj(s)

− exp(Ω [2](tn, tn+1))

m∑

j=1

(∫ tn+1

tn

gj (y(tn))dWj(s)

+
m∑

l=1

Hj,l (yn)

∫ tn+1

tn

∫ s

tn

dWl(s1)dWj (s)

)
.

For term P1, since exp(Ω(tn, tn+1))yn is the solution of (5), we can easily see
through an Itô-Taylor expansion

|E(P1)| = O
(
h2
)

, (E|P1|2)1/2 = O
(
h3/2

)
. (18)

For P2, adding and subtracting exp(Ω(tn, tn+1))
∫ tn+1
tn

g̃0(yn)ds, we have

P2 = exp(Ω(tn, tn+1))

∫ tn+1

tn

(exp(−Ω(tn, s))g̃0(y(s)) − g̃0(yn)) ds

+
(

exp(Ω(tn, tn+1)) − exp(Ω [2](tn, tn+1))
) ∫ tn+1

tn

g̃0(y(tn))ds

=P21 + P22,

and

|E(P21)| = O
(
h2
)

, (E|P21|2)1/2 = O
(
h3/2

)
,

|E(P22)| = O
(
h3
)

, (E|P22|2)1/2 = O
(
h5/2

)
.

(19)

For term P3, since

exp(Ω(tn, tn+1))

∫ tn+1

tn

exp(−Ω(tn, s))gj (y(s))dWj (s)

= exp(Ω(tn, tn+1))

(∫ tn+1

tn

gj (yn)dWj (s) +
∫ tn+1

tn

∫ s

tn

(
g′

j (yn) (Alyn + gl(yn))

−Algj (yn)
)
dWl(s1)dWj (s) + R1j

)
,

where

|E(R1j )| = O
(
h2
)

, (E|R1j |2)1/2 = O
(
h3/2

)
,
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we have

P3 =
(

exp(Ω(tn, tn+1)) − exp(Ω [2](tn, tn+1))
) m∑

j=1

(∫ tn+1

tn

gj (y(tn))dWj(s)

+
m∑

l=1

Hj,l (yn)

∫ tn+1

tn

∫ s

tn

dWl(s1)dWj (s)

)
+

m∑

j=1

exp(Ω(tn, tn+1))R1j ,

which gives

|E(P3)| = O
(
h2
)

, (E|P3|2)1/2 = O
(
h3/2

)
. (20)

From (18), (19) and (20), p1 = 2, p2 = 3/2. Hence by Lemma 2, we see that the
MM method is of mean-square order 1.

The following theorem describes the convergence of the MDF method. The proof
is analogous to that of Theorem 3 and we omit it.

Theorem 4 Let yn be an approximation to the solution of (1) using the MDFmethod.
Then for any N and k = 0, 1, ..., N the following inequality holds:

[
E |y (tk) − yk|2

]1/2 ≤ K
(

1 + E |y0|2
)1/2

h.

Thus the MDF method is convergent of order 1 in the sense of mean-square.

5 Implementation and numerical tests

Using the Milstein or MM method to generate numerical approximations, the iter-
ated integrals (7) are included in the numerical scheme. For i = j , there is such
a relationship Iii (tn, tn + h) = 1

2 ((ΔWin)
2 − h). For i 	= j , this issue has been

fully described in [20, 21] and [22] by Kuznetsov and Wiktorsson from a different
perspective, respectively. Both of them expand the iterated integrals (7) into infinite
series, and then truncate the infinite series to approximate the iterated integrals. A
brief overview is given in the Appendix.

To compare the convergence rate of the truncated series, for different step sizes
and m = 2, we respectively give the minimum truncated terms indices qw, qt , qp

of the Wiktorsson’s algorithm, Kuznetsov’s algorithm with the orthonormal system
of trigonometric functions and Legendre polynomials in Table 1. We can see that
Wiktorsson’s algorithm requires smaller truncated indices to achieve the mean square
error O

(
h3
)
, especially for a smaller step size h, which also means that Wiktorsson’s

algorithm needs to simulate fewer random variables.
In order to show the specific performance of the three algorithms, for the inte-

gral I21, choosing h = 2−6, the mean (E(I21) = 0) and standard deviation
((E(I21)

2)1/2 = h/
√

2 ≈ 0.01105) are calculated in Table 2 with 2000 samples.
Their mean and standard deviation are almost in the same range. At the same time,
the numerical tests in the next will also show that using Kuznetsov and Wiktorsson
algorithms in practical implementation can give almost the same simulation results
for different step size.
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Table 1 The minimum qw, qt , qp that needs to be selected for different time steps

h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12 2−13

qw 1 2 2 3 4 5 7 10 14 19 27

qt 2 3 5 10 20 39 78 156 312 623 1246

qp 2 3 5 9 17 33 65 129 257 513 1025

For the rest of this section, the performances of the introduced Magnus-type meth-
ods are presented and then compared with classical stochastic methods, namely the
Euler–Maruyama method and the Milstein method. For convenience, let M (W)
denote the mean-square order 1.0 Milstein method, where the iterated Itô integrals
are simulated by Wiktorsson’s algorithm. Let M (Kt ) and M (Kp) denote the mean-
square order 1.0 Milstein method, where the iterated Itô integrals are simulated by
Kuznetsov’s algorithm with the orthonormal system of trigonometric functions and
Legendre polynomials, respectively. This shorthand notation also applies to the MM
method and the MDF method.

To present the performance of Wiktorsson’s and Kuznetsov’s algorithms for the
iterated Itô integrals, we will compare the number of random variables required
by Wiktorsson’s and Kuznetsov’s algorithms in each iteration as a measure of
computational effort. The exponential function needs to be calculated during the
implementation of the numerical algorithm, which is not the subject of this article, so
we compare the time required by Wiktorsson’s and Kuznetsov’s algorithms to gener-
ate random variables as a measure of the efficiency. In all numerical simulations, we
choose the minimum truncation number.

5.1 Damped nonlinear Kubo oscillator

As a first numerical test, we consider the damped nonlinear Kubo oscillator

dy(t) =
m∑

j=0

[
ωj

(
0 −1
1 βj

)
y(t) +

(
0 −gj (y(t))

gj (y(t)) 0

)
y(t)

]
dWj(t) (21)

Table 2 Iterated Itô integral I21 with truncating the first 3, 5, 7, 11 terms of the infinite series, respectively

q = 3 q = 5 q = 7 q = 11

mean stdev mean stdev mean stdev mean stdev

Wiktorsson −0.0003 0.01113 0.0002 0.01096 −0.0003 0.01108 0.0001 0.01113

Kt −0.0001 0.01059 −0.0002 0.01040 0.0002 0.01092 0.0001 0.01138

Kp −0.0001 0.01056 −0.0002 0.01069 0.0002 0.01068 0.0001 0.01091
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with gj : R2 → R, where t ∈ [0, T ] and ωj , βj ∈ R. This problem is investigated
in [24] with βj = 0. We also let m = 2 and

g0(y(t)) = 1

5
(y1 + y2)

5 , g1(y(t)) = 0, g2(y(t)) = 1

3
(y1 + y2)

3 .

Since we do not know the exact solution of (21), the reference solution is produced
by the Milstein method with a small step h = 2−19. Set the parameters ω0 = 2, ω1 =
0.5, ω2 = 0.2, β0 = −0.5, β1 = −0.2, β2 = −0.1 and initial value y0 = (1, 1).
The mean-square convergence order of ME method, MM method and MDF method
is presented in Fig. 1. Here, the mean-square error

||ERROR||L2 =

√√√√√√

2000∑

j=1

|yN − y(T )|2

2000

Fig. 1 a The convergence rate of the ME method, MM method and MDF method for solving (21) with
g0(y(t)) = 1

5 (y1 + y2)
5, g1(y(t)) = 0 and g2(y(t)) = 1

3 (y1 + y2)
3. b Kuznetsov’s algorithms with the

orthonormal system of trigonometric functions. c Kuznetsov’s algorithms with the orthonormal system of
Legendre polynomials. d Wiktorsson’s algorithm
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Fig. 2 Comparison of Wiktorsson’s and Kuznetsov’s algorithm in average computing time and number of
random variables at each step for (21) with a set of increasing time steps h = 2i , i = −11, . . . , − 2. a
Average computing time. b Number of random variables at each step

is calculated at the time T = 1 for a set of increasing time steps h = 2i , i =
−11, . . . , −2. As some of the lines are on the top of each other, we use separate fig-
ures to show the performance of Wiktorsson’s and Kuznetsov’s algorithms in Fig. 1.
From Fig. 1a, we can see that the Magnus-type methods enjoy considerably smaller
error coefficient compared to the Euler–Maruyama method and the Milstein method
and the performance of the three simulations of the iterated Itô integral is similar.
It can be seen from Fig. 2a that when the step size is large (i.e., the error is large),
Wiktorsson’s and Kuznetsov’s algorithms perform similarly in terms of calculation
time. As the step size becomes smaller (i.e., the error becomes smaller), Wiktors-
son’s algorithm performs better, as it can be seen in (b) that the number of random
variables that need to be simulated at each step of Wiktorsson’s algorithm is less.
In addition, Kuznetsov’s algorithm with polynomial functions is slightly better than
Kuznetsov’s algorithm with trigonometric functions in terms of calculation time and
the number of random variables that need to be simulated at each step. The increment
for different steps is given by

Ii,j,tn,tn+ph =
∫ tn+ph

tn

∫ s

tn

dWi(s1)dWj(s)

≈I
q
i,j,tn,tn+ph

=
p−1∑

k=0

[
I

q

i,j,tn+kh,tn+(k+1)h + ΔWj,n+kIk≥1

k−1∑

l=0

ΔWi,n+l

]
.

5.2 SDE with linear non-commutative noise

We consider the following SDE [2] in R
4, with

dy = (rA0y + F(y))dt + G(y)dW(t), (22)
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where r = 4, F(y) = (F1, F2, F3, F4), Fj = yj

1+|yj | , j = 1, 2, 3, 4, and

initial value y(0) = y0. dW(t) = (dW1(t), dW2(t), dW3(t), dW4(t)). Here A0 takes
the form

A0 =

⎛

⎜⎜⎝

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

⎞

⎟⎟⎠ ,

which usually comes from a discrete Laplacian operator. Consider the following non-
commutative noise

G(y) =

⎛

⎜⎜⎝

βy1 0 0 0
0 βy2 − αy1 0 0
0 0 βy3 − αy2 0
0 0 0 βy4 − αy3

⎞

⎟⎟⎠ .

Then, we have

A1 =

⎛

⎜⎜⎝

β 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , A2 =

⎛

⎜⎜⎝

0 0 0 0
−α β 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , A3 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 −α β 0
0 0 0 0

⎞

⎟⎟⎠ , A4 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 −α β

⎞

⎟⎟⎠ .

Simulations with α = 0.5, β = 1 and y0 = (1, 1, 1, 1) are carried out until
the time T = 1 with a set of increasing time steps h = 2i , i = −11, . . . , −
3. The mean-square convergence order of the ME method and the MM method
is presented in Fig. 3. In each case 2000 samples are generated as before. Here,
the reference solution is produced by the Milstein method with the step h = 2−16.
Figure 3 compares the cases for r = 4, α = 0.8, β = 1 in (a) and compares the cases
for r = 4, α = 2, β = 0.1 in (b). We see that the case r = 4, α = 0.8, β = 1
enjoys a smaller error than the mildly stiff case r = 4, α = 2, β = 0.1. Figure 4a
shows that Wiktorsson’s and Kuznetsov’s algorithms perform similarly in terms of
calculation time. This is because the truncation index of Wiktorsson’s algorithm is
related to m, so when m and the step size are both large, Kuznetsov’s algorithm is

Fig. 3 The convergence rate of the ME method and the MM method for solving (22) with m = 4 in a
r = 4, α = 0.8, β = 1 and in b r = 4, α = 2, β = 0.1
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Fig. 4 Comparison of the algorithms in computing time and number of random variables at each step with
a set of increasing time steps h = 2i , i = −11, . . . , − 3. Here r = 4, α = 0.8 and β = 1. a Average
computing time. b Number of random variables at each step

a sensible choice. In addition, Kuznetsov’s algorithm with polynomial functions is
also slightly better than Kuznetsov’s algorithm with trigonometric functions in terms
of calculation time and the number of random variables that need to be simulated at
each step for m = 4. As the step size decreases, Wiktorsson’s algorithm has obvious
advantages in the number of random variables at each step.

5.3 Stochastic Manakov equation

In order to confirm the performance of the methods for high-dimensional SDEs, we
consider the stochastic Manakov system

idu +
(
∂2
xu + |u|2u

)
dt + i

√
γ

3∑

k=1

σk∂xu ◦ dWk = 0,

u(0, x) = (cos(π/8) sin(π/8)) sech(x), x ∈ [−a, a]
u(t, −a) =u(t, a) = 0, t ∈ [0, T ],

(23)

where u = u(t, x) = (u1, u2) ∈ C
2 with t � 0 and x ∈ R. The symbol ◦ means that

the stochastic integrals are established in the sense of Stratonovich and γ � 0 is the
noise intensity. Here |u|2u = (|u1|2 + |u2|2

)
u is the nonlinear term, and σ1, σ2 and

σ3 are the Pauli matrices taking the form

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

The stochastic Manakov system (23) is usually used to describe pulse propagation
in randomly birefringent optical fibers. The existence and uniqueness of the solution
have been obtained in [25]. The equivalent Itô form is

du(t) =
(

Cγ

∂2u(t)

∂x2
+ i|u|2u

)
dt − √

γ

3∑

k=1

σk

∂u(t)

∂x
dWk(t), (24)
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where Cγ = i + 3γ
2 . Applying the central finite-difference scheme to discretize the

space interval by N + 2 uniform points

∂xut (xi) ≈ ut,i+1 − ut,i−1

2Δx
or

ut,i − ut,i−1

Δx
, ∂xxut (xi) ≈ ut,i+1 − 2ut,i + ut,i−1

Δx2
,

we get the non-commutative SDE

dy(t) =(Cγ A0y(t) + f (y(t)))dt − √
γ

3∑

k=1

σkAky(t)dWk(t), (25)

with

y(0) =
[
cos(

π

8
)sech(x1) · · · cos(

π

8
)sech(xN) sin(

π

8
)sech(x1) · · · sin(

π

8
)sech(xN)

]
,

where
y(t) def= [u (t, x1) u (t, x2) · · · u (t, xN)] ,

f (y) def= i
[
y1|y1|2 y2|y2|2 · · · yN |yN |2

]
,

and the matrices A0, A1, A2 and A3 are defined by

A0 def= N2

⎡

⎢⎢⎢⎢⎢⎣

−2 1 0
1 −2 1

. . .
. . .

. . .
1 −2 1

0 1 −2

⎤

⎥⎥⎥⎥⎥⎦
, Ak def= N

⎡

⎢⎢⎢⎢⎢⎣

1 0 0
−1 1 0

. . .
. . .

. . .
−1 1 0

0 −1 1

⎤

⎥⎥⎥⎥⎥⎦
, k = 1, 2, 3.

First, we set a = 20, h = 0.001 and Δx = 2/5 to simulate (23) with the MM
method on the time interval [0,3]. The evolution of |u1|2 and |u2|2 is given in Fig. 5.

Fig. 5 Space-time evolution of the intensity of the first component (left) and the second component (right)
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Fig. 6 The convergence rate of the ME and the MM method with a = 50 and Δx = 2/5, T = 1/2 and a
set of increasing time steps h = 2i , i = −13, . . . , − 7

We can see that the results of the MM method show the energy exchange due to
stochastic noise and nonlinearity. These results are similar to the structure-preserving
method in [26].

Then, simulations with a = 50 and Δx = 2/5 are carried out until the time
T = 1/2 with a set of increasing time steps h = 2i , i = −13, . . . , − 7.
The mean-square convergence order of the ME method and the MM method is
presented in Fig. 6. In each case 500 samples are generated. Here, the reference
solution is produced by the Milstein method with the step h = 2−16. In Fig. 7,
(a) shows that Wiktorsson’s and Kuznetsov’s algorithms perform similarly in terms
of calculation time. Wiktorsson’s algorithms is better than Kuznetsov’s algorithms
in terms of calculation time and the number of random variables that need to be

Fig. 7 Comparison of the algorithms in computing time and number of random variables at each step with
a set of increasing time steps h = 2i , i = −13, . . . , − 7. Here a = 50, Δx = 2/5 and T = 1/2. a
Average computing time. b Number of random variables at each step
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simulated in each step. This is because as the step size decreases, the number of
noise terms m has less impact on the truncation index of Wiktorsson’s algorithm. In
addition, as the step size decreases, the difference between Kuznetsov’s algorithm
with polynomial functions and Kuznetsov’s algorithm with trigonometric functions is
not significant.

Remark 1 Here we use the built-in expmdemo2 function in Matlab to calcu-
late exp(Ω [1](tn, tn+1)) and exp(Ω [2](tn, tn+1)) using a Taylor series. For such
high-dimensional problems, each path requires considerable computational time.
Although the calculation of exponential function is not the subject of this article,
the application of efficient techniques (such as Krylov subspace methods) will have
a significant impact on the Magnus-type methods to address very high-dimensional
semilinear SDEs.

Remark 2 In the high-dimensional problem (25), we choose mildly stiff matrices
A0 as opposed to the nonlinear term. When the stiffness is very strong, our meth-
ods require a small step size. For this type of stiff high-dimensional complex-valued
SDEs, the combination of the SROCK methods [27, 28] and the Magnus method will
be an interesting work that we will consider in future work.

Remark 3 With the specific performance in the above three test examples, we see
that for the simulation of iterated Itô integrals, when the step size is large and the
number of noise terms is large, Kuznetsov’s algorithm with polynomial functions is
superior, and when the step size is smaller, Wiktorsson’s algorithm is better.

6 Conclusion

We have derived Magnus-type methods, based on Magnus expansion for non-
commutative linear SDEs, for noncommutative Itô stochastic differential equations
with semi-linear drift term and semi-linear diffusion terms. By truncating the Magnus
series, the ME method, the MM method and the MDF method have been con-
structed. We have investigated the mean-square convergence of these methods and
shown the same mean-square convergent order as the corresponding method, that is,
the ME method is order 0.5, and the MM and MDF method is order 1.0. Then, we
have compared two types of algorithms for simulating iterated Itô integrals. Numeri-
cal tests have been carried out to present the efficiency of the proposed methods for
low-dimensional SDEs and a high-dimensional SDE from discretized SPDE.

Finally, we should make the following remarks. We can apply our methods to non-
autonomous semi-linear SDEs, where we only need to truncate the non-autonomous
Magnus expansion. However, the linear stability analysis of numerical methods for
high-dimensional stochastic differential equations with non-commutative noises is
quite complicated, especially for complex coefficient matrices. The mean-square sta-
bility analysis of Magnus-type methods for such problems is a motivation for future
work. In addition, weak convergence Magnus methods will be a good choice to avoid
simulating iterated stochastic integrals.
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Appendix

A.1 The expansion of iterated Itô stochastic integrals based on the generalized
multiple Fourier series

Let
{
φj (x)

}∞
j=0 be an orthonormal basis of the space L2

([
tn, tn+1

])
. If the trigono-

metric series

φj (s) = 1√
h

⎧
⎨

⎩

1, j = 0,√
2 sin 2πr(s−tn)

h
, j = 2r − 1,√

2 cos 2πr(s−tn)
h

, j = 2r,

where r = 1, 2, . . . , are selected as an orthonormal basis, for the iterated Itô integral
(7), using the expansion theorem in [20], the following representations are obtained,

Iij (tn, tn + h) =1

2
h

[
ζ

(j)
0 ζ

(i)
0 + 1

π

∞∑

r=1

1

r

{
ζ

(j)
2r ζ

(i)
2r−1 − ζ

(j)
2r−1ζ

(i)
2r

+ √
2
(
ζ

(j)
2r−1ζ

(i)
0 − ζ

(j)
0 ζ

(i)
2r−1

)}]
, i 	= j,

(A.1)

where ζ
(i)
0 def= Wi(h)/

√
h and ζ

(i)
j def=

∫ T

t
φj (s)dWi(s), i = 1, . . . , m. The expansion

(A.1) coincides with Kloeden, Platen and Wright’s (1992) algorithm [23] based on
Kahunen–Loève expansion and it converges to the iterated Itô integral (7) in the
mean-square sense.

If orthonormal Legendre polynomials are selected as an orthonormal basis,

{
φj (s)

}∞
j=0 , φj (s) =

√
2j + 1

h
Pj

((
s − h

2

)
2

h

)

the expansion is

Iij (tn, tn + h) = h

2

[
ζ

(i)
0 ζ

(j)
0 +

∞∑

r=1

1√
4r2 − 1

{
ζ

(i)
r−1ζ

(j)
r − ζ (i)

r ζ
(j)
r−1

}]
. (A.2)

As the expansions (A.1) and (A.2) are infinite series, we need to truncate them for
practical simulation. During the implementation of the Milstein and MM methods,
the mean-square error of the approximated iterated integrals should not be larger than
h3, which is to ensure mean-square convergence of 1.

Truncating the infinite series (A.1) and (A.2) to q terms, we have I
q
ij . From the

truncated mean-square error in [21], we obtain the mean-square error for truncating
(A.1)

E

{(
Iij (tn, tn + h) − I

q
ij (tn, tn + h)

)2
}

≤ 3h2

2π2q
.

Here we need 3h2/(2π2q) ≤ h3, so we should choose

qt ≥
⌈

3

2π2h

⌉
.
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Truncating the expansion (A.1) to q, we get the mean-square error

E

{(
Iij (tn, tn + h) − I

q
ij (tn, tn + h)

)2
}

≤ −h2

8
ln

∣∣∣∣1 − 2

2q + 1

∣∣∣∣ .

Here we need the mean-square error less than h3, so we should choose

qp ≥
⌈(

2

1 − e−8h
− 1

)
/2

⌉
.

Since qp ≈ 1/(8h), the truncated indices of A.1 and (A.2) both are O(1/h), and
it can be calculated that the convergence speed of (A.1) is about qt/qp ≈ 1.22 times
that of (A.2). This means that the approximation based on the multiple Legendre
Fourier series is slightly more efficient than that based on the multiple trigonometric
Fourier series.

A.2Wiktorsson’s algorithm

If I(h) and A(h) are matrices with elements Iij (tn, tn + h), Aii = 0 and

Aij (h) = h

2π

∞∑

r=1

1

r

{
ζ

(j)

2r ζ
(i)
2r−1 − ζ

(j)

2r−1ζ
(i)
2r + √

2
(
ζ

(j)

2r−1ζ
(i)
0 − ζ

(j)

0 ζ
(i)
2r−1

)}
, i 	= j

respectively, the approximation based on the multiple trigonometric Fourier series
can be written in matrix form

I(h) = ΔW(h)ΔW(h) − hIm

2
+ A(h),

A(h) = h

2π

∞∑

k=1

1

k

{
Xk

(
Yk +√2/hΔW(h)

) −
(
Yk +√2/hΔW(h)

)
X

k

}
,

(A.3)
where ΔW(h) ∼ N (0, hIm) ,Xk ∼ N (0m, Im) and Yk ∼ N (0m, Im) , k =
1, 2, . . . , q are all independent. As the Lévy stochastic area has the relationship
Iij − Iji = 2Aij , we only need to simulate Iij for i < j or i > j in the simulation.

Wiktorsson’s algorithm is based on approximation of the tail-sum distribution of
(A.3)

εq = h

2π

∞∑

k=q+1

1

k

{
Xk

(
Yk +√2/hΔW(h)

) −
(
Yk +√2/hΔW(h)

)
X

k

}
,

which improves the rate of convergence. Let vec
(
I(h)T

)
be column vectors of (A.3),

and the following is the procedure of Wiktorsson’s algorithm [22]:

1. First simulate ΔW(h) ∼ N
(

0m,
√

hIm

)
.

2. Simulate the truncated first q terms

Ã(q)(h) = h

2π

q∑

k=1

1

k
Km

(
Pm − Im2

)
{(

Yk +
√

2

h
ΔW(h)

)
⊗ Xk

}
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where Xk ∼ N (0m, Im) and Yk ∼ N (0m, Im)

3. Then simulate Gq ∼ N (0M, IM) and add the approximation of tail-sum
distribution:

Ã(q)′(h) = Ã(q)(h) + h

2π
a

1/2
q

√
�∞Gq

where aq =∑∞
k=q+1 1/k2

4. Finally obtain the approximation vec
(
I(h)T

)(q)′
of vec

(
I(h)T

)

vec
(
I(h)T

)(q)′ = ΔW(h) ⊗ ΔW(h) − vec
(
hIm2

)

2
+ (Im2 − Pm

)
KT

mÃ(q)′(h)

Here Pm is the m2 × m2 permutation matrix and for the specific expression of
matrices Pm please refer to [22].

The mean-square error of Wiktorsson’s algorithm [22] is

max
i,j

E

{(
Iij (h) − I

(q)′
ij (h)

)2
}

≤ 5h2

24π2q2
m2(m − 1).

Here we also need the mean-square error less than h3, so we should choose truncated
indices as

qw ≥
⎡

⎢⎢⎢⎢

√
5m2(m − 1)/

(
24π2

)

√
h

⎤

⎥⎥⎥⎥
,

and the truncated indices qw is O(1/
√

h) that is much better than O(1/h).
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