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Abstract
This work is to analyze a Legendre collocation approximation for third-kind Volterra
integro-differential equations. The rigorous error analysis in the L∞ and L2

ω0,0 -norms
is provided for the proposed method. In fact when converting the original equation to
an equivalent second kind one, the integral operator of the obtained equation contains
two singularities and may become non-compact under certain conditions. In addition,
in order to avoid the low-order accuracy caused by the singularity of the solution
at the initial point, we adopted the idea of smooth transformation at the beginning
to convert the original equation into a new equation with a more regular solution.
Finally, the validity and applicability of the method are verified by several numerical
experiments.
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1 Introduction

This work is concerned with numerical results for third-kind Volterra integro-
differential equations (VIDEs) of the form

tβy′(t) = a1(t)y(t) + g1(t) + (Ωαy)(t), t ∈ I := [0, T ], (1)

with the initial condition
y(0) = 0,

where β > 0,

(Ωαy)(t) =
∫ t

0
(t − s)−αK(t, s)y(s)ds,

α ∈ [0, 1), a1(t) = tβa(t), g1(t) = tβg(t), with a(t), g(t) ∈ C(I). The kernel
function K(t, s) is continuous on the domain D = {(t, s) : 0 ≤ s ≤ t ≤ T }.
Moreover, as in reference [5, 6], throughout this article for α + β ≥ 1, the kernel
function K has the form

K(t, s) = sα+β−1H(t, s),

where H(t, s) ∈ C(D).
The third-kind VIDE (1) is equivalent to a linear cordial VIDE (CVIDE)

y′(t) = a(t)y(t) + g(t) + Ωα,βy(t), t ∈ I := [0, T ], (2)

associated with the cordial Volterra integral operator

Ωα,βy(t) =
∫ t

0
t−β(t − s)−αK(t, s)y(s)ds. (3)

Remark 1 It has been pointed out in [5, 25] that the operator Ωα,β is compact from
C(I) into itself for α + β ∈ (0, 1) or α + β ≥ 1 with H(0, 0) = 0, and the operator
Ωα,β is non-compact for α + β ≥ 1 with H(0, 0) �= 0.

Remark 2 The following VIDE which appears in [12]

y′(t) = a(t)y(t) + g(t) +
∫ t

0

sβ−1

tβ
H(t, s)y(s)ds (4)

is a particular case of (1) with α = 0.

In 1910, Volterra integral equations (VIEs) of the third kind were first studied
by Evans [11]. In 2015, Allaei, Yang, and Brunner [4] first discussed the exis-
tence, uniqueness, and regularity of solutions to a class of VIEs of the third kind. In
2017, Allaei, Yang, and Brunner [5] presented a spline collocation method on mod-
ified graded meshes which safeguards both the solvability and the optimal orders of
convergence. In 2019, Shayanfard et al. [17] explained and analyzed a multistep col-
location method. Song, Yang, and Brunner [22] studied the collocation method for a
class of nonlinear Volterra integral equations of the third kind. In 2020, Cai [6] pro-
posed a spectral Legendre-Galerkin method. By decomposing the original operator
into three operators, he also proved that the proposed method guarantees the unique
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solvability of the approximate equation and the quasi-optimal order of global con-
vergence of the Galerkin solution. Moreover, the collocation method for (3) has been
presented by Shayanfard et al. [18], but in which the relevant integral operator is
compact.

In [10], a numerical collocation method is developed for solving non-linear VIDEs
of the neutral type. On account of more natural non-local approximations in addition
to high accuracy in the case of smooth solutions, spectral collocation methods for
VIEs and VIDEs of the second kind have been studied by Tang et al. [1–3, 24]. In the
last few years, spectral collocation methods have been applied to fractional differen-
tial equations and weakly singular Volterra integral equation of the second kind [7–9,
13, 23]. However, it is known that the solutions of fractional differential equations or
weakly singular Volterra integral equation of the second kind are singular even for
well-behaved inputs, so they have a limited regularity in the usual Sobolev space. In
order to solve this problem, the idea of smoothing the solution by introducing a suit-
able change of variables has been considered for different types of equations [14, 16,
20, 21].

As far as we know, up to now the numerical method for (1) with α > 0 has
not been studied. In this paper, Legendre collocation method, an easy-to-use variant
of the spectral methods for the numerical solution of a class of third-kind Volterra
integro-differential equations (1), is proposed. A rigorous convergence analysis of
the proposed method is given and rates of convergence are established in the L∞ and
L2

ω0,0 -norms. An important aspect of this method is that the convergence order of
spectral approximations is only limited by the regularity of the underlying function.
Finally, the numerical experiment results show that our numerical method is not only
applicable to equations with non-compact integrals, but also can obtain high-order
spectral accuracy for non-smooth solutions.

With these premises, the rest of this paper is organized as follows. In Section 2,
the Legendre collocation method is used to approximate the solution of (1). In
Section 3, we introduce some useful lemmas to establish the convergence results.
In Section 4, the theoretical convergence analysis is established. In the last section,
numerical examples are given to support our theoretical results and to demonstrate
the significant gain in accuracy.

2 Numerical scheme

In this section, we propose a Legendre collocation method for the third-kind Volterra
integro-differential equations (1). For a given positive integer N , let PN denote the
space of all polynomials of degree not exceeding N . For α > −1 and β > −1,

L2
ωα,β (−1, 1) = {u | u is measurable and ‖u‖ωα,β < ∞}

is the weighted Hilbert space equipped with the following inner product and norm

(u, v)ωα,β =
∫ 1

−1
u(x)v(x)ωα,β(x)dx, ‖u‖ωα,β = (u, u)

1
2
ωα,β , (5)
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where ωα,β(x) = (1 − x)α(1 + x)β denotes a standard Jacobi weight function on
(−1, 1). For any non-negative integer m, define

Hm
ωα,β (−1, 1) = {v | ∂k

x v ∈ L2
ωα,β (−1, 1), 0 ≤ k ≤ m},

with the norm

|v|
H

m;N
ωα,β

= (

m∑
k=min(m,N+1)

‖∂k
x v‖2

ωα,β )
1
2 ,

let Bm
ωα,β be the non-uniformly weighted Sobolev space given by

Bm
ωα,β (−1, 1) = {v | ∂k

x v ∈ L2
ωα+k,β+k (−1, 1), 0 ≤ k ≤ m}.

We also introduce the discrete inner product as

(u, v)N,ωα,β =
N∑

k=0

u(xk)v(xk)ωk . (6)

where {xk, ωk}Nk=0 is the set of quadrature nodes and weights relative to the Jacobi
weight ωα,β(x).

In order to improve the regularity of analytic solutions of the original (2), firstly,
we make the change of variables

t = T

2ρ
(1 + x)ρ, s = T

2ρ
(1 + τ)ρ, 1 ≤ ρ ∈ N, (7)

under which the problem (2) is transformed into the following integro-differential
equation

u′(x) = b(x)u(x) + f (x) + ∫ x

−1 λα,β,ρ(x, τ )Jα,β,ρ(x, τ )u(τ)dτ, (8)

in which

u(x) = y( T
2ρ (1 + x)ρ), f (x) = ρT

2ρ (1 + x)ρ−1g( T
2ρ (1 + x)ρ),

b(x) = ρT
2ρ (1 + x)ρ−1a( T

2ρ (1 + x)ρ),

λα,β,ρ(x, τ ) =
⎧⎨
⎩

ρ2T
2ρ

((1+x)ρ−(1+τ)ρ)−α

(1+x)βρ−ρ+1 (1 + τ)ρ(α+β)−1, α + β ≥ 1,
ρ2T
2ρ ( T

2ρ )1−α−β ((1+x)ρ−(1+τ)ρ)−α

(1+x)βρ−ρ+1 (1 + τ)ρ−1, α + β < 1,

Jα,β,ρ(x, τ ) =
{

H( T
2ρ (1 + x)ρ, T

2ρ (1 + τ)ρ), α + β ≥ 1,

K( T
2ρ (1 + x)ρ, T

2ρ (1 + τ)ρ), α + β < 1,
(9)

and the solution of the new equation does not involve any singularities in its
derivatives up to a certain order.

By integrating both sides of (8), we further obtain the equivalent integral equations

u(x) = ∫ x

−1 f (τ)dτ + ∫ x

−1 b(τ)u(τ)dτ + ∫ x

−1 z(τ )dτ,

z(x) = ∫ x

−1 λα,β,ρ(x, τ )Jα,β,ρ(x, τ )u(τ)dτ .
(10)

To compute the integral term in (10) accurately, we make a simple linear transforma-
tion

τ = τ(x, ϑ) = 1 + x

2
ϑ + x − 1

2
, ϑ ∈ [−1, 1],
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then (10) becomes

u(x) = f̂ (x) + 1+x
2

∫ 1
−1[b(τ(x, ϑ))u(τ(x, ϑ)) + z(τ (x, ϑ))]dϑ,

z(x) = ∫ 1
−1 χα,β,ρ(ϑ)ψα,β,ρ(x, ϑ)u(τ(x, ϑ))dϑ,

(11)

where

f̂ (x) = ∫ x

−1 f (τ)dτ,

χα,β,ρ(ϑ) =
{
(1 − ϑ)−α(1 + ϑ)ρ(α+β)−	ρ(α+β)
, α + β ≥ 1,
(1 − ϑ)−α, α + β < 1,

ς(x, ϑ) =
{

H( T
2ρ (1 + x)ρ, T

22ρ
(1 + x)ρ(1 + ϑ)ρ), α + β ≥ 1,

K( T
2ρ (1 + x)ρ, T

22ρ
(1 + x)ρ(1 + ϑ)ρ), α + β < 1,

φα,β,ρ(ϑ) =
{

ρ2T

2(β+1)ρ (
∑ρ−1

i=0 2i (1 + ϑ)ρ−i−1)−α(1 + ϑ)	ρ(α+β)
−1, α + β ≥ 1,
ρ2T

2(β+1)ρ ( T
2ρ )1−α−β(

∑ρ−1
i=0 2i (1 + ϑ)ρ−i−1)−α(1 + ϑ)ρ−1, α + β < 1,

ψα,β,ρ(x, ϑ) =
{
(1 + x)ρ−1φα,β,ρ(ϑ)ς(x, ϑ), α + β ≥ 1,
(1 + x)ρ−1( 1+x

2 )(1−α−β)ρφα,β,ρ(ϑ)ς(x, ϑ), α + β < 1.
(12)

We denote by {ϑ1,k, ω1,k}Nk=0, {ϑ2,k, ω2,k}Nk=0 the set of quadrature nodes and
weights relative to the Jacobi weights ω0,0 and χα,β,ρ , respectively, thus the integral
terms in above equation can be approximated by

∫ 1

−1
[b(τ(x, ϑ))u(τ(x, ϑ)) + z(τ (x, ϑ))]dϑ ≈

N∑
k=0

[b(τ(x, ϑ1,k))u(τ (x, ϑ1,k))

+z(τ (x, ϑk))]ω1,k,∫ 1

−1
χα,β,ρ(ϑ)ψα,β,ρ(x, ϑ)u(τ(x, ϑ))dϑ ≈

N∑
k=0

ψα,β,ρ(x, ϑ2,k)u(τ (x, ϑ2,k))ω2,k .

Now, we turn to considering the Legendre collocation method for solving (11).
We denote the collocation points by {xj }Nj=0 which are the set of (N + 1) Legendre-

Gauss-Lobatto points corresponding to the weight function ω0,0 in interval [−1, 1].
And consider the Lagrange interpolation operator IN

x : C[−1, 1] ⇀ PN defined by

IN
x u(x) =

N∑
j=0

Fj (x)u(xj ), (13)

where {Fj (x)}Nj=0 are the Lagrange basis functions corresponding to the non-uniform

mesh {xj }Nj=0.
Discretize (11) at xi ,

u(xi) = f̂ (xi) + 1 + xi

2

∫ 1

−1
[b(τ(xi, ϑ))u(τ(xi, ϑ)) + z(τ (xi, ϑ))]dϑ, (14)

we use ui to indicate the approximate values for u(xi), 0 ≤ j ≤ N . The Legen-
dre collocation method to (11) is to seek approximate solution in the form uN(x) =∑N

i=0 uiFi (x) ∈ PN such that ui, i = 0, · · · , N satisfy the following discrete
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collocation conditions:

ui = f̂ (xi) + 1+xi

2

N∑
k=0

ω1,k[b(τ(xi, ϑ1,k))
N∑

l=0
ulFl(τ (xi, ϑ1,k))

+
N∑

p=0
ω2,pψα,β,ρ(τ (xi, ϑ1,k), ϑ2,p)

N∑
l=0

ulFl(τ (τ (xi, ϑ1,k), ϑ2,p))].
(15)

Using notations

U = (u0, u1, · · · , uN)T , F = (f̂ (x0), f̂ (x1), · · · , f̂ (xN))T ,

ai,l = 1+xi

2

N∑
k=0

ω1,kb(τ (xi, ϑ1,k))Fl(τ (xi, ϑ1,k)),

bi,l =
N∑

k=0
ω1,k

N∑
p=0

ω2,pψα,β,ρ(τ (xi, ϑ1,k), ϑ2,p)Fl(τ (τ (xi, ϑ1,k), ϑ2,p))],
A = [ai,l + bi,l]Ni,l=0,

we obtain the matrix form

U = F + AU . (16)

Having determined the approximation uN(x) for problem (8), we can determine
the approximation

yN(t) = uN(2( t
T

)
1
ρ − 1) =

N∑
j=0

ujFj (2( t
T

)
1
ρ − 1) (17)

for the solution of the problem (1).

3 Preliminaries

In this section, we will make some necessary preparations. Throughout this paper, C
denotes a positive constant that is independent of N and may have different values in
different occurrences.

In order to describe the regularity of the solution u to (1), we require to introduce a
few notations. For givenm ∈ N and ν ∈ R, ν < 1, byCm,ν(0, T ]we denote the set of
continuous functions f : [0, T ] → R which are m times continuously differentiable
in (0, T ], such that for all t ∈ (0, T ] and i = 1, 2, · · · , m the following estimates
hold:

|f (i)(t)| ≤ c

⎧⎪⎨
⎪⎩
1 if i < 1 − ν,

1 + | log t | if i = 1 − ν,

t1−i−ν if i > 1 − ν.

By C
r,κ (−1, 1) denote the space of functions whose rth derivatives are Hölder

continuous with exponent κ , endowed with the usual norm

‖v‖r,κ = max
0≤k≤r

max
−1≤x≤1

| ∂k
x v(x) | +sup

x �=y

| ∂r
xv(x) − ∂r

xv(y) |
| x − y |κ .

Numerical Algorithms (2021) 88:1571–15931576



Lemma 1 [19] For any function v ∈ Bm
ω−1,−1(−1, 1), we have

‖∂r
x(v − IN

x v)‖ωr,r ≤ CNr−m‖∂m
x v‖ωm,m, (18)

and

‖v − IN
x v‖∞ ≤ CN

1
2−m‖∂m

x v‖ωm−1,m−1 . (19)

Lemma 2 [19] Let {Fj (x)}Nj=0 be the Lagrange basis polynomials associated with
the Jacobi-Gauss-Lobatto interpolations with the parameter pair {−μ, 0}. Then for
− 1

2 ≤ μ < 3
2 , we have

ΛN := max
x∈[−1,1]

N∑
j=0

|Fj (x)| ∼ lnN,

and for every bounded function v(x), there exists a constant C independent of v such
that

‖IN
x v‖ωα,β = ‖

N∑
j=0

v(xj )Fj (x)‖ωα,β ≤ C‖v‖∞.

Lemma 3 [19] If v ∈ Bm
ω−1,−1(−1, 1) for some m ≥ 1, then for the Jacobi-Gauss

integration, we have

|(v, φ)ωα,β − (v, φ)N,ωα,β | ≤ CN−m‖∂m
x v‖ωm−1,m−1‖φ‖ωα,β , f or ∀φ ∈ PN,

We now need a result on the regularity of the kernel ψα,β,ρ(xi, ϑ) defined by (12).

Lemma 4 Let ψα,β,ρ(x, ϑ), χα,β,ρ be defined by (12) , If K(·, s), H(·, s) ∈
C

m,1− m+1
ρ (0, T ] , and ρ ∈ N, then we have that

∂m

∂ϑm
ψα,β,ρ(x, ϑ) ∈ L2

χα,β,ρ
(−1, 1).

Thus, there exists K∗ > 0 , such that

K∗ = max
−1≤x≤1

| ψα,β,ρ(x, ϑ) |
H

m;N
χα,β,ρ (−1,1) . (20)

Proof If K(·, s), H(·, s) ∈ C
m,1− m+1

ρ (0, T ], it then follows from Lemma 4.1 of [15]
that ς(·, ϑ) ∈ Cm,−m(−1, 1]. Due to ρ, 	ρ(α + β)
 ∈ N , it is very easy to verify
that φα,β,ρ(ϑ) ∈ Cm[−1, 1]. Then, it is straightforward to prove that the functions
∂m

∂ϑm ψα,β,ρ(x, ϑ) ∈ C[−1, 1], so the lemma is proved.

Lemma 5 If L > 0 and v(x) is a non-negative, locally integrable function defined
on [−1, 1] satisfying

u(x) ≤ v(x) + L

∫ x

−1
(1 + ρT

2ρ
((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1)u(τ)dτ,
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then there exists a constant C such that

u(x) ≤ v(x) + C

∫ x

−1
(1 + ρT

2ρ
((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1)v(τ )dτ .

Proof By direct calculation, we obtain

∫ x

−1(1 + ρT
2ρ ((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1)dτ

= ∫ x

−1 dτ + ∫ x

−1
ρT
2ρ ((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1dτ

= (x + 1) + T
2ρ

Γ (2−α)Γ (α)
Γ (2) (x + 1)ρ,

applying the generalization of Gronwall’s lemma, we get

u(x) ≤ v(x) + C
∫ x

−1(1 + ρT
2ρ ((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1)v(τ )dτ .

Lemma 6 [19] Let r be a non-negative integer and κ ∈ (0, 1). Then, there exists a
constant C such that, for any function v(x) ∈ C

r,κ (−1, 1), there exists a polynomial
function �Nv ∈ PN satisfying

‖v − �Nv‖∞ ≤ CN−r−κ ‖ v ‖r,κ .

Below, we prove a result for the integral operator in (8), which will play a crucial
role in the convergence analysis in the next section.

Lemma 7 If α ∈ [0, 1), 1 ≤ ρ ∈ N, q ≥ 0 and (1−α)ρ+q−γ > 0, then there exists
a constant C depending on ‖l(x, ·)‖0,κ , such that for any function v(x) ∈ C(−1, 1)
and any x1, x2 ∈ [−1, 1] with x1 < x2,

|Mv(x1) − Mv(x2)|
|x1 − x2|κ ≤ C ‖ v ‖∞,

which implies

‖Mv‖0,κ ≤ C ‖ v ‖∞,

where

Mv(x) =
∫ x

−1

((1 + x)ρ − (1 + τ)ρ)−α

(1 + x)γ
(1 + τ)ρ−1+q l(x, τ )v(τ )dτ,

and κ = min{(1 − α)ρ + q − γ, 1 − α, 1 − α + q−γ
ρ

}.
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Proof From the triangle inequality, we obtain

|Mv(x1) − Mv(x2)|
≤ | ∫ x1

−1(1 + τ)ρ−1+q [ ((1+x1)
ρ−(1+τ)ρ)−α

(1+x1)
γ l(x1, τ )

− ((1+x2)
ρ−(1+τ)ρ)−α

(1+x2)
γ l(x2, τ )]v(τ)dτ |

+ | ∫ x2
x1

(1 + τ)ρ−1+q ((1+x2)
ρ−(1+τ)ρ)−α

(1+x2)
γ l(x2, τ )v(τ )dτ |

≤ | ∫ x1
−1(1 + τ)ρ−1+q [ ((1+x1)

ρ−(1+τ)ρ)−α

(1+x1)
γ − ((1+x2)

ρ−(1+τ)ρ)−α

(1+x2)
γ ]l(x1, τ )v(τ ) dτ |

+ ∫ x1
−1(1 + τ)ρ−1+q ((1+x2)

ρ−(1+τ)ρ)−α

(1+x2)
γ |l(x1, τ ) − l(x2, τ )||v(τ)|dτ

+ ∫ x2
x1

(1 + τ)ρ−1+q ((1+x2)
ρ−(1+τ)ρ)−α

(1+x2)
γ |l(x2, τ )||v(τ)|dτ

=: D1 + D2 + D3.

One verifies that

D1 ≤ ‖ v ‖∞‖ l(x1, τ ) ‖∞ | ∫ x1
−1(1 + τ)ρ−1+q [ ((1+x1)

ρ−(1+τ)ρ)−α

(1+x1)
γ

− ((1+x2)
ρ−(1+τ)ρ)−α

(1+x2)
γ ]dτ |.

By the triangle inequality, we further obtain

| ∫ x1
−1(1 + τ)ρ−1+q [ ((1+x1)

ρ−(1+τ)ρ)−α

(1+x1)
γ − ((1+x2)

ρ−(1+τ)ρ)−α

(1+x2)
γ ]dτ |

≤ | ∫ x1
−1(1 + τ)ρ−1+q ((1+x1)

ρ−(1+τ)ρ)−α

(1+x1)
γ dτ −∫ x2

−1(1+τ)ρ−1+q ((1+x2)
ρ−(1+τ)ρ)−α

(1+x2)
γ dτ |

+| ∫ x2
x1

(1 + τ)ρ−1+q ((1+x2)
ρ−(1+τ)ρ)−α

(1+x2)
γ dτ |

= Γ (1−α)Γ (1+ q
ρ
)

Γ (2−α+ q
ρ
)

|((1 + x1)
(1−α)ρ+q−γ − (1 + x2)

(1−α)ρ+q−γ |
+| ∫ x2

x1
((1 + x2)

ρ − (1 + τ)ρ)−α(1 + x2)
q−γ (1 + τ)ρ−1dτ |.

If 0 < (1 − α)ρ + q − γ < 1, we have

|(1 + x1)
(1−α)ρ+q−γ − (1 + x2)

(1−α)ρ+q−γ |
= ((1 − α)ρ + q − γ )

∫ x2
x1

(τ + 1)(1−α)ρ+q−γ−1dτ

≤ ((1 − α)ρ + q − γ )
∫ x2
x1

(τ − x1)
(1−α)ρ+q−γ−1dτ

= |x1 − x2|(1−α)ρ+q−γ ≤ C|x1 − x2|κ ,

if (1 − α)ρ + q − γ ≥ 1, it is clear that

|(1 + x1)
(1−α)ρ+q−γ − (1 + x2)

(1−α)ρ+q−γ | ≤ C|x1 − x2| ≤ C|x1 − x2|κ .
If q < γ , a direct calculation shows that

| ∫ x2
x1

((1 + x2)
ρ − (1 + τ)ρ)−α(1 + x2)

q−γ (1 + τ)ρ−1dτ |
≤ | ∫ x2

x1
((1 + x2)

ρ − (1 + τ)ρ)
q−γ

ρ
−α

(1 + τ)ρ−1dτ |
= ((1+x2)

ρ−(1+x1)
ρ)

q−γ
ρ −α+1

ρ(
q−γ

ρ
−α+1)

≤ C|x1 − x2|κ .
If q ≥ γ , similarly, we can get

| ∫ x2
x1

((1 + x2)
ρ − (1 + τ)ρ)−α(1 + x2)

q−γ (1 + τ)ρ−1dτ |
≤ | ∫ x2

x1
((1 + x2)

ρ − (1 + τ)ρ)−α(1 + τ)ρ−1dτ |
≤ ((1+x2)

ρ−(1+x1)
ρ)1−α

ρ(1−α)
≤ C|x1 − x2|κ .
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Hence
D1 ≤ C ‖ v ‖∞ |x1 − x2|κ .

and

D3 ≤ C ‖ v ‖∞ ‖l(x2, τ )‖∞
∫ x2
x1

((1 + x2)
ρ −(1 + τ)ρ)−α(1+x2)

q−γ (1+τ)ρ−1dτ

≤ C ‖ v ‖∞ |x1 − x2|κ .
Moreover

D2 ≤ C ‖ v ‖∞ |x1 − x2|κ
∫ x1
−1(1 + τ)ρ−1+q ((1+x2)

ρ−(1+τ)ρ)−α

(1+x2)
γ

|l(x1,τ )−l(x2,τ )|
|x1−x2|κ dτ

≤ C ‖ v ‖∞ |x1 − x2|κ‖l‖0,κ
∫ x1
−1(1 + τ)ρ−1+q ((1+x2)

ρ−(1+τ)ρ)−α

(1+x2)
γ dτ

≤ C ‖ v ‖∞ |x1 − x2|κ .

The above estimates finish the proof.

4 Convergence analysis

We now turn to the convergence analysis of the proposed scheme. Compared with the
common kernel (t − s)−α of the second-kind Volterra integral equation, the analysis
for the integral kernel t−β(t − s)−αof third-kind VIDEs is much more involved.

Let e(x) = u(x)−uN(x), then subtracting (15) from (14) and using the definition
of the continuous and discrete inner products (5) and (6) we get

u(xi) − ui = 1+xi

2 [(b(τ (xi, .)), u(τ (xi, .))ω0,0 + (1, z(τ (xi, .)))ω0,0

−(b(τ (xi, .)), uN(τ(xi, .)))N,ω0,0

−(1, (ψα,β,ρ(τ (xi, .), .), uN(τ(τ (xi, .), .)))N,χα,β,ρ )N,ω0,0]
= ∫ xi

−1 b(τ)e(τ )dτ + ∫ xi

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ

+ 1+xi

2 [(b(τ (xi, .)), uN(τ(xi, .)))ω0,0

−(b(τ (xi, .)), uN(τ(xi, .)))N,ω0,0 ]
+(

1+xi

2 , (ψα,β,ρ(τ (xi, .), .), uN(τ(τ (xi, .), .)))χα,β,ρ )ω0,0

−(
1+xi

2 , (ψα,β,ρ(τ (xi, .), .), uN(τ(τ (xi, .), .)))N,χα,β,ρ )N,ω0,0 .

(21)

For convenience, denote

zN(τ) = ∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)uN(s)ds

= (ψα,β,ρ(τ (xi, .), .), uN(τ(τ (xi, .), .)))χα,β,ρ

Ii,1 = 1+xi

2 [(b(τ (xi, .)), uN(τ(xi, .)))ω0,0 − (b(τ (xi, .)), uN(τ(xi, .)))N,ω0,0 ],
Ii,2 = (

1+xi

2 , z(τ (xi, .)))ω0,0 − (
1+xi

2 , z(τ (xi, .)))N,ω0,0 ,

Ii,3 = (
1+xi

2 , (zN − z)(τ (xi, .)))ω0,0 − (
1+xi

2 , (zN − z)(τ (xi, .)))N,ω0,0 ,

Ii,4 = (
1+xi

2 , zN(τ(xi, .))−(ψα,β,ρ(τ (xi, .), .), uN(τ(τ (xi, .), .)))N,χα,β,ρ )N,ω0,0 .

Multiplying both sides of (21) by Fi (x) and then summing up from i = 0 to i = N

leads to

IN
x u−uN = IN

x

∫ x

−1
[b(τ)e(τ ) +

∫ τ

−1
λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)ds]dτ +

4∑
k=1

IN
x Ii,k .
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Denote by I the identity operator; by reorganizing the terms in the above equation,
we obtain

e(x) = ∫ x

−1[b(τ)e(τ ) + ∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)ds]dτ +
4∑

i=1
Ei(x),

where

E1(x) = (I − IN
x )u(x), E2(x) =

4∑
k=1

IN
x Ii,k, E3(x)

= (IN
x − I )

∫ x

−1 b(τ)e(τ )dτ,

E4(x) = (IN
x − I )

∫ x

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ .

(22)

By using the relation∫ x

−1

∫ τ

−1
λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ =

∫ x

−1
e(τ )

∫ x

τ

λα,β,ρ(s, τ )Jα,β,ρ(s, τ )dsdτ,

and the estimate

∫ x

τ
λα,β,ρ(s, τ )ds

=
⎧⎨
⎩

∫ x

τ
ρ2T
2ρ

((1+s)ρ−(1+τ)ρ )−α

(1+s)βρ−ρ+1 (1 + τ)ρ(α+β)−1ds, α + β ≥ 1∫ x

τ
ρ2T
2ρ ( T

2ρ )1−α−β ((1+s)ρ−(1+τ)ρ )−α

(1+s)βρ−ρ+1 (1 + τ)ρ−1ds, α + β < 1

=
{

(1 + τ)ρα−1
∫ x

τ
ρ2T
2ρ ( 1+τ

1+s
)βρ((1 + s)ρ − (1 + τ)ρ)−α(1 + s)ρ−1ds, α + β ≥ 1

(1 + τ)ρ−1−βρ
∫ x

τ
ρ2T
2ρ ( T

2ρ )1−α−β( 1+τ
1+s

)βρ((1 + s)ρ − (1 + τ)ρ)−α(1 + s)ρ−1ds, α + β < 1

≤
{

ρT
2ρ

((1+x)ρ−(1+τ)ρ )1−α

1−α
(1 + τ)ρα−1, α + β ≥ 1

ρT
2ρ ( T

2ρ )1−α−β ((1+x)ρ−(1+τ)ρ )1−α

1−α
(1 + τ)ρ−1−βρ α + β < 1

≤ C
ρT
2ρ ((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1,

we can conclude

| ∫ x

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ |
≤ C

∫ x

−1 |e(τ )| ∫ x

τ
λα,β,ρ(s, τ )dsdτ

≤ C
∫ x

−1
ρT
2ρ ((1 + x)ρ − (1 + τ)ρ)1−α(1 + τ)ρα−1|e(τ )|dτ .

Thus,

|e(x)|≤C

∫ x

−1
(1+ ρT

2ρ
((1+x)ρ − (1+ τ)ρ)1−α(1+ τ)ρα−1)|e(τ )|dτ +

4∑
i=1

|Ei(x)|.
(23)

Theorem 1 Suppose that the given functions K(·, s), H(·, s), a(t) ∈
C

m,1− m+1
ρ (0, T ], and H(t, s) ∈ C1(D). If u, z ∈ Bm

ω−1,−1(−1, 1), then there exists
a positive constant C such that for sufficiently large N the following error estimate
holds

‖e‖∞ ≤ CN−m(lnNM∗ + N
1
2 ‖∂m

x u‖ωm−1,m−1), (24)

where

M∗ = ‖∂m
x b‖ωm−1,m−1‖u‖ω0,0 + K∗‖u‖χα,β,ρ + ‖∂m

x z‖ωm−1,m−1 + ‖∂m
x u‖ωm,m, (25)

and K∗ is defined by (20).
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Proof If a(t) ∈ C
m,1− m+1

ρ (0, T ], from Lemma 4.1 of [15], we obtain α( T
2ρ (1 +

x)ρ) ∈ Cm,−m(−1, 1]. Thus, b(x) = ρT
2ρ (1+x)ρ−1a( T

2ρ (1+x)ρ) ∈ Cm,−m(−1, 1] ⊆
Hm

ω0,0(−1, 1) ⊆ Bm
ω−1,−1(−1, 1).

From (23), using Gronwall inequality, we have

‖ e(x) ‖∞≤ C
4∑

i=1
‖Ei(x)‖∞. (26)

Firstly, by Lemma 1, we obtain

‖E1(x)‖∞ = ‖u(x) − IN
x u(x)‖∞ ≤ CN

1
2−m‖∂m

x u‖ωm−1,m−1 . (27)

In order to bound ‖E2(x)‖∞, we next estimate the terms max1≤i≤N |Ii,k|, k =
1, 2, 3, 4 one by one. Using Lemma 3 leads to

max
1≤i≤N

|Ii,1| = max
1≤i≤N

| 1+xi

2 [(b(τ (xi, .)), uN(τ(xi, .)))ω0,0

−(b(τ (xi, .)), uN(τ(xi, .)))N,ω0,0 ]|
≤ CN−m‖∂m

x b‖ωm−1,m−1‖uN‖ω0,0

≤ CN−m‖∂m
x b‖ωm−1,m−1(‖u‖ω0,0 + ‖e‖ω0,0)

≤ CN−m‖∂m
x b‖ωm−1,m−1(‖u‖ω0,0 + ‖e‖∞),

(28)

and

max
1≤i≤N

|Ii,2| = max
1≤i≤N

|( 1+xi

2 , z(τ (xi, .)))ω0,0 − (
1+xi

2 , z(τ (xi, .)))N,ω0,0 |
≤ CN−m‖∂m

x z‖ωm−1,m−1 .
(29)

By Hölder inequality, we deduce that

max
1≤i≤N

|Ii,3| = max
1≤i≤N

|( 1+xi

2 , (zN − z)(τ (xi, .)))ω0,0

−(
1+xi

2 , (zN − z)(τ (xi, .)))N,ω0,0 |
= max

1≤i≤N
| ∫ xi

−1 |(I − IN
τ )(z − zN)(τ )|dτ |

≤ max
1≤i≤N

(
∫ xi

−1 |(I − IN
τ )(z − zN)(τ )|2dτ)

1
2

≤ ‖(I − IN
τ )(z − zN)‖ω0,0 .

(30)

In order to bound max
1≤i≤N

|Ii,3|, next we need the error estimates for‖ (I − IN
τ )(z −

zN) ‖ω0,0 in three different cases.
-Case 1: α + β ≥ 1 and ρ = 1
If ρ = 1, the assumption of H(t, s) ∈ C1(D) results that Jα,β,1(x, τ ) ∈

C1([−1, 1] × [−1, 1]); therefore, there exist ξ ∈ (−1, x) and ζ ∈ (−1, τ ), so that
we have the first-order Taylor expansion

Jα,β,1(x, τ ) = Jα,β,1(−1, −1) + J̃α,β,1(x, τ ),

where

J̃α,β,1(x, τ ) = [(x + 1) ∂
∂x

+ (τ + 1) ∂
∂τ

]Jα,β,1(ξ, ζ ).
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Obviously,

(I − IN
x )(z − zN)(x) = (I − IN

x )
∫ x

−1 λα,β,1(x, τ )Jα,β,1(x, τ )e(τ )dτ .
= (I − IN

x )
∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)u(τ)dτ

−(I − IN
x )

∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)uN(τ)dτ

+(I − IN
x )

∫ x

−1 λα,β,1(x, τ )J̃α,β,1(x, τ )e(τ )dτ .

Then, we can see that

‖(I − IN
x )(z − zN)‖ω0,0 = ‖I 1i,3 + I 2i,3 + I 3i,3‖ω0,0 ≤ ∑3

k=1 ‖I k
i,3‖ω0,0 ,

where
I 1i,3 = (I − IN

x )
∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)u(τ)dτ,

I 2i,3 = (I − IN
x )

∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)uN(τ)dτ,

I 3i,3 = (I − IN
x )

∫ x

−1 λα,β,1(x, τ )J̃α,β,1(x, τ )e(τ )dτ .

With the help of Lemmas 1 and 2, we obtain that

‖I 1i,3‖ω0,0 = ‖(I − IN
x )

∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)u(τ )dτ‖ω0,0

≤ CN−m‖∂m
x

∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)u(τ )dτ‖ωm,m

≤ CN−m‖∂m
x

∫ 1
−1 χα,β,1(ϑ)φα,β,1(ϑ)Jα,β,1(−1, −1)u(τ (x, ϑ))dϑ‖ωm,m

≤ CN−m ‖ ∫ 1
−1 χα,β,1(ϑ)φα,β,1(ϑ)Jα,β,1(−1, −1) ∂m

∂xm [u(τ(x, ϑ))]dϑ ‖ωm,m

≤ CN−m ‖ ∫ 1
−1 χα,β,1(ϑ)φα,β,1(ϑ)Jα,β,1(−1, −1) ∂m

∂τm [u(τ(x, ϑ))]( ∂τ
∂x

)mdϑ ‖ωm,m

≤ CN−m ‖ ∫ 1
−1 χα,β,1(ϑ)φα,β,1(ϑ)Jα,β,1(−1, −1) ∂m

∂τm [u(τ(x, ϑ))]( 1+ϑ
2 )mdϑ ‖ωm,m

≤ CN−m‖∂m
x u‖ωm,m .

Furthermore, since uN(x) ∈ PN ,
∫ x

−1 λα,β,1(x, τ )Jα,β,1(−1, −1)uN(τ)dτ is still
a polynomial of the Nth degree, so we have

‖I 2i,3‖ω0,0 = 0.

And finally, we need to estimate ‖I 3i,3‖ω0,0 . From (9), we obtain
∫ x

−1 λα,β,1(x, τ )J̃α,β,1(x, τ )e(τ )dτ

= ∫ x

−1
((1+x)−(1+τ)−α

(1+x)β−1 (1 + τ)α+β−1 ∂
∂x

Jα,β,1(ξ, ζ )e(τ )dτ

+ ∫ x

−1
((1+x)−(1+τ)−α

(1+x)β
(1 + τ)α+β ∂

∂τ
Jα,β,1(ξ, ζ )e(τ )dτ .

Let
M1e(x) = ∫ x

−1
((1+x)−(1+τ)−α

(1+x)β−1 (1 + τ)α+β−1 ∂
∂x

Jα,β,1(ξ, ζ )e(τ )dτ,

M2e(x) = ∫ x

−1
((1+x)−(1+τ)−α

(1+x)β
(1 + τ)α+β ∂

∂τ
Jα,β,1(ξ, ζ )e(τ )dτ .

It can be verified that the integrals M1e(x) and M2e(x) satisfy all conditions of
Lemma 7, and κ1 = 1 − α ∈ (0, 1). By using Lemmas 6 and 7, we obtain

‖I 3i,3‖ω0,0 = ‖(IN
x − I )(M1 + M2)e‖ω0,0 = ‖(IN

x − I )(I − �N)(M1 + M2)e‖ω0,0

≤ C‖IN
x ‖ω0,0‖(I − �N)(M1 + M2)e‖∞ ≤ CNα−1‖(M1 + M2)e‖0,1−α

≤ CNα−1‖e‖∞.

Consequently,

‖(I − IN
x )(z − zN)‖ω0,0 ≤ CN−m‖∂m

x u‖ωm,m + CNα−1‖e(x)‖∞.
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-Case 2: α + β ≥ 1 and ρ ≥ 2
Let

M3e(x) = ∫ x

−1 λα,β,ρ(x, τ )Jα,β,ρ(x, τ )e(τ )dτ

= ∫ x

−1
ρ2T
2ρ

((1+x)ρ−(1+τ)ρ)−α

(1+x)βρ−ρ+1 (1 + τ)ρ(α+β)−1Jα,β,ρ(x, τ )e(τ )dτ .

It is easy to see that κ2 = min{1− α, 1− 1
ρ
} ∈ (0, 1). By using Lemmas 6 and 7, we

obtain

‖(I − IN
x )(z − zN)‖ω0,0 = ‖(IN

x − I )M3e‖ω0,0 = ‖(IN
x − I )(I − �N)(M3e)‖ω0,0

≤ C‖IN
x ‖ω0,0‖(I − �N)M3e‖∞ ≤ CN−κ2‖M3e‖0,κ2≤ CN−κ2‖e‖∞.

-Case 3: α + β < 1
Let

M4e(x) =
∫ x

−1
λα,β,ρ(x, τ )Jα,β,ρ(x, τ )e(τ )dτ

=
∫ x

−1

ρ2T

2ρ
(
T

2ρ
)1−α−β ((1 + x)ρ − (1 + τ)ρ)−α

(1 + x)βρ−ρ+1
(1 + τ)ρ−1Jα,β,ρ(x, τ )e(τ )dτ .

For any positive integer ρ, κ3 = min{(2− α − β)ρ − 1, 1− α, 2− α − β − 1
ρ
} > 0,

similar to the proof of Case 2, we obtain

‖(I − IN
x )(z − zN)‖ω0,0 ≤ CN−κ3‖e‖∞.

Therefore, combining the results of the above three cases, we can derive

‖(I − IN
x )(z − zN)‖ω0,0 ≤

⎧⎨
⎩

CN−m‖∂m
x u‖ωm,m + CN−κ1‖e‖∞, α + β ≥ 1 and ρ = 1,

CN−κ2‖e‖∞, α + β ≥ 1 and ρ ≥ 2,
CN−κ3‖e‖∞, α + β < 1,

which, substituted into (30), gives

max
1≤i≤N

|Ii,3| ≤

⎧⎪⎨
⎪⎩

CN−m‖∂m
x u‖ωm,m + CN−κ1‖e‖∞, α + β ≥ 1 and ρ = 1,

CN−κ2‖e‖∞, α + β ≥ 1 and ρ ≥ 2,

CN−κ3‖e‖∞, α + β < 1.
(31)

In addition, by Lemma 3, Lemma 4, and the fact | ∑N
k=1 ω1,k| = ∫ 1

−1 dτ = 2, we get

max
1≤i≤N

|Ii,4| = max
1≤i≤N

|( 1+xi

2 , zN (τ (xi , .)) − (ψα,β,ρ(τ (xi , .), .), uN (τ(τ (xi , .), .)))N,χα,β,ρ )N,ω0,0

= max
1≤i≤N

|
N∑

k=1
ω1,k{zN (τ(xi , θk))−(ψα,β,ρ(τ (xi , θk), .), uN (τ(τ (xi , θk), .)))N,χα,β,ρ }|

≤ 2 max
1≤i≤N

max
1≤k≤N

|zN (τ(xi , θk)) − (ψα,β,ρ(τ (xi , θk), .), uN (τ(τ (xi , θk), .)))N,χα,β,ρ |
≤ CN−m max

1≤i≤N
max

1≤k≤N
‖∂m

x ψα,β,ρ(τ (xi , θk), .)‖χα,β,ρ ‖uN(τ(τ (xi , θk), .))‖χα,β,ρ

≤ CN−mK∗(‖u‖χα,β,ρ + ‖e‖∞).
(32)
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This, along with Lemma 2 and the inequalities (28), (29), and (31), leads to

‖E2(x)‖∞ = ‖
4∑

k=1
IN
x Ii,k‖∞ ≤ ΛN

4∑
k=1

max
1≤i≤N

|Ii,k|

≤

⎧⎪⎨
⎪⎩

C lnNN−mM∗ + C lnNN−κ1‖e‖∞, α + β ≥ 1 and ρ = 1,

C lnNN−mM∗ + C lnNN−κ2‖e‖∞, α + β ≥ 1 and ρ ≥ 2,

C lnNN−mM∗ + C lnNN−κ3‖e‖∞, α + β < 1.
(33)

Moreover, by using Lemma 1, the last two terms ‖E3(x)‖∞ and ‖E4(x)‖∞ are
bounded by

‖E3(x)‖∞ = ‖(IN
x − I )

∫ x

−1 b(τ)e(τ )dτ‖∞ ≤ CN− 1
2 ‖∂x

∫ x

−1 b(τ)e(τ )dτ‖ω0,0

≤ CN− 1
2 ‖b(x)e(x)‖ω0,0 ≤ CN− 1

2 ‖e‖∞,

(34)
and

‖E4(x)‖∞ = ‖(IN
x − I )

∫ x

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ‖∞
≤ CN− 1

2 ‖∂x

∫ x

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ‖ω0,0

≤ CN− 1
2 ‖ ∫ x

−1 λα,β,ρ(x, s)Jα,β,ρ(x, s)e(s)ds‖ω0,0

≤ CN− 1
2 ‖e‖∞.

(35)

Hence, a combination of the above error bounds for (26) leads to the desired result.

Theorem 2 Suppose that the given functions K(·, s), H(·, s), a(t) ∈
C

m,1− m+1
ρ (0, T ], and H(t, s) ∈ C1(D). If u, z ∈ Bm

ω−1,−1(−1, 1), then there exists
a positive constant C such that for sufficiently large N the following error estimate
holds:

‖e‖ω0,0 ≤

⎧⎪⎨
⎪⎩

CN−m(M∗ + CN
1
2−κ1‖∂m

x u‖ωm−1,m−1), α + β ≥1 and ρ = 1,

CN−m(M∗ + CN
1
2−κ2‖∂m

x u‖ωm−1,m−1), α + β ≥ 1 and ρ ≥ 2,

CN−m(M∗ + CN
1
2−κ3‖∂m

x u‖ωm−1,m−1), α + β <1,
(36)

where
κ1 = 1 − α; κ2 = min{1 − α, 1 − 1

ρ
};

κ3 = min{(2 − α − β)ρ − 1, 1 − α, 2 − α − β − 1
ρ
};

and M∗ is defined by (25).

Proof It follows from (23) and the generalized Hardy’s inequality that

‖e(x)‖ω0,0 ≤ C
4∑

i=1
‖Ei(x)‖ω0,0 . (37)

Firstly, by Lemma 1, we obtain

‖E1(x)‖ω0,0 = ‖u(x) − IN
x u(x)‖ω0,0 ≤ CN−m‖∂m

x u‖ωm,m . (38)
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Using (28), (29), (31), (32), and Lemma 2, we obtain

‖E2(x)‖ω0,0 = ‖
4∑

k=1
IN
x Ii,k‖ω0,0 ≤ C

4∑
k=1

max1≤i≤N |Ii,k |

≤
⎧⎨
⎩

CN−mM∗ + CN−κ1‖e‖∞, α + β ≥ 1 and ρ = 1
CN−mM∗ + CN−κ2‖e‖∞, α + β ≥ 1 and ρ ≥ 2
CN−mM∗ + CN−κ3‖e‖∞, α + β < 1

≤

⎧⎪⎨
⎪⎩

CN−m(M∗ + CN
1
2−κ1‖∂m

x u‖ωm−1,m−1 ), α + β ≥ 1 and ρ = 1

CN−m(M∗ + CN
1
2−κ2‖∂m

x u‖ωm−1,m−1 ), α + β ≥ 1 and ρ ≥ 2

CN−m(M∗ + CN
1
2−κ3‖∂m

x u‖ωm−1,m−1 ), α + β < 1.
(39)

Furthermore, using Lemma 1, it is obvious that

‖E3(x)‖ω0,0 = ‖(IN
x − I )

∫ x

−1 b(τ)e(τ )dτ‖ω0,0 ≤ CN−1‖∂x

∫ x

−1 b(τ)e(τ )dτ‖ω1,1

≤ CN−1‖b(x)e(x)‖ω1,1 ≤ CN−1‖e‖ω0,0 ,

and

‖E4(x)‖ω0,0 = ‖(IN
x − I )

∫ x

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ‖ω0,0

≤ CN−1‖∂x

∫ x

−1

∫ τ

−1 λα,β,ρ(τ, s)Jα,β,ρ(τ, s)e(s)dsdτ‖ω1,1

≤ CN−1‖ ∫ x

−1 λα,β,ρ(x, s)Jα,β,ρ(x, s)e(s)ds‖ω1,1

≤ CN−1‖e‖ω0,0 .

Thus, the desired result follows.

5 Numerical experiments

In this section, we present the numerical results obtained by implementing the pro-
posed Legendre collocation method on two numerical examples for demonstrating
the accuracy of the method and effectiveness of applying coordinate transfor-
mation. All calculations were performed on a PC running Matlab software. To
estimate the L∞ error, we have computed the absolute error at the points ti =

Table 1 The L∞ errors of Legendre collocation method for Example 5.1

N 6 8 10 12 14

ρ = 1 1.0164e−02 2.7353e−03 1.2313e−03 7.0814e−04 4.4161e−04

ρ = 3 2.2156e−10 2.5224e−12 1.3145e−13 1.7941e−13 4.9116e−13

ρ = 4 2.9532e−03 2.6973e−06 9.1201e−08 7.1076e−09 8.8405e−10

ρ = 6 2.9941e−01 1.9902e−03 1.7490e−11 3.6149e−13 6.0396e−14

N 16 18 20 22 24

ρ = 1 2.9238e−04 2.0272e−04 1.4582e−04 1.0808e−04 8.2132e−05

ρ = 3 7.7360e−13 7.5850e−13 1.5010e−13 3.0731e−13 5.7199e−13

ρ = 4 1.4994e−10 3.1831e−11 8.0198e−12 2.3142e−12 9.1216e−13

ρ = 6 6.9633e−13 1.7071e−12 2.3359e−13 6.3771e−13 1.0036e−12
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Table 2 The L2
ω0,0 errors of Legendre collocation method for Example 5.1

N 6 8 10 12 14

ρ = 1 3.4857e−03 9.2907e−04 3.2510e−04 1.3510e−04 6.3531e−05

ρ = 3 5.1672e−11 5.2620e−13 2.7636e−14 3.7821e−14 9.2455e−14

ρ = 4 5.3970e−04 5.1745e−07 3.6034e−09 1.4802e−10 1.1082e−11

ρ = 6 5.7622e−02 2.7708e−04 2.7615e−12 5.4931e−14 7.2150e−15

N 16 18 20 22 24

ρ = 1 3.2790e−05 1.8198e−05 1.0706e−05 6.6067e−06 4.2428e−06

ρ = 3 1.3733e−13 1.4766e−13 2.7628e−14 5.6000e−14 1.0971e−13

ρ = 4 1.2639e−12 2.4262e−13 3.4994e−14 1.1957e−13 1.4506e−13

ρ = 6 9.4284e−14 2.3211e−13 3.4624e−14 8.4707e−14 1.3925e−13

T
2N i, i = 0, · · · , 2N . Obtained numerical results confirm the theoretical predictions
of Theorems 1 and 2.

It is worth noting that the choice of ρ is also important to the efficiency of the pro-
posed method. Although the optimal choice of the parameter ρ for general problems
remains an open problem, it can be made according to the following strategy: If the
structure of the analytic solution is known, we want to choose the value of ρ such
that u(x) = y( T

2ρ (1 + x)ρ) is smooth or as regular as possible. In case the regularity
of the exact solution is unavailable, the parameter ρ can be taken moderately large
integer so that u(x) is smooth enough.

Example 1 We consider the third-kind VIDE with non-compact integral:

t
2
3 y′(t) = g1(t) + t

5
3 y(t) +

∫ t

0

√
3

3π
(t − s)−

2
3 s

1
3 y(s)ds, t ∈ I := [0, 3], (40)

6 8 10 12 14 16 18 20 22 24

6  N  24

10-15

10-10

10-5

100

L
2

0,
0
 e

rr
or

=1
=3
=4
=6

Fig. 1 The L∞ errors of Legendre collocation method for Example 5.1 versus the number of collocation
points
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=1
=3
=4
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Fig. 2 The L2
ω0,0 errors of Legendre collocation method for Example 5.1 versus the number of collocation

points

with

g1(t) = 5

3
t
4
3 − t

10
3 − Γ ( 13 )Γ (3)

π
√
3Γ ( 103 )

t
7
3 .

It can be verified that the exact solution of (40) is y(t) = t5/3. We first consider
performance of proposed Legendre collocation method with ρ = 1, 3, 4, 6, respec-
tively, and report obtained L∞ and L2

ω0,0 norm errors for 6 ≤ N ≤ 24 in Tables 1
and 2. The corresponding errors are also plotted in Figs. 1 and 2.

6 8 10 12 14 16 18 20 22 24

6  N  24

10-20

10-15

10-10

10-5

100

L  error, =1
L  error, =4

L2
0,0 error, =1

L2
0,0 error, =4

 N-3

 N-13

Fig. 3 Errors of Legendre collocation method for Example 5.1 where the parameter ρ is chosen as ρ = 1
and ρ = 4 respectively
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Table 3 The L∞ errors of Legendre collocation method for Example 5.2

N 6 8 10 12 14

ρ = 1 1.5681e−05 1.1331e−06 1.6132e−07 3.3554e−08 8.9482e−09

ρ = 2 3.4564e−03 2.0582e−05 5.5511e−17 1.1102e−15 1.3323e−15

ρ = 3 3.2131e−02 2.2150e−03 5.6463e−05 2.9257e−07 1.0744e−10

ρ = 4 8.8685e−02 1.3219e−02 1.1092e−03 4.7373e−05 8.4937e−07

N 16 18 20 22 24

ρ = 1 2.8500e−09 1.0379e−09 4.1986e−10 1.8488e−10 8.7306e−11

ρ = 2 6.6613e−16 5.5511e−16 7.7716e−16 6.6613e−16 6.6613e−16

ρ = 3 5.3618e−13 9.6471e−15 6.6613e−16 6.6613e−16 1.1102e−15

ρ = 4 4.0612e−09 1.2212e−15 1.7764e−15 7.7716e−16 1.1102e−15

It can be seen that the numerical errors for ρ = 1 decay slowly than other cases,
due to the limited regularity of the analytical solution. In this case, the transformed
solution u(x) = 3

2 (1 + x)5/3 ∈ B3
ω−1,−1(I ). In view of convergence analysis results

(24) and (36), numerical errors will decay at the speed

‖e‖∞ ≈ O(logNN−3), ‖e‖ω0,0 ≈ O(N−3).

In order to get higher convergence accuracy, we can choose bigger values of ρ,
so, for example, here we have chosen ρ = 3, 4, 6 respectively; comparison of our
obtained results shows that after the regularization, the rate of convergence grows
powerfully. Especially when ρ = 3 or ρ = 6, we have the exponential rate of con-
vergence, which coincides with the theoretical results. When we choose ρ = 4, the

transformed solution is u(x) = ( 3
16 )

5
3 (1 + x)20/3 ∈ B13

ω−1,−1(I ); here, we expect the
errors to converge with order

‖e‖∞ ≈ O(logNN−13), ‖e‖ω0,0 ≈ O(N−13).

Table 4 The L2
ω0,0 errors of Legendre collocation method for Example 5.2

N 6 8 10 12 14

ρ = 1 9.1295e−09 3.2578e−10 2.6089e−11 3.3336e−12 5.8229e−13

ρ = 2 3.3523e−06 1.4823e−08 3.9384e−17 5.8193e−17 8.4119e−17

ρ = 3 3.2243e−05 1.6009e−06 3.1811e−08 1.3396e−10 3.3435e−14

ρ = 4 9.5467e−05 9.8590e−06 6.3602e−07 2.1955e−08 3.2798e−10

N 16 18 20 22 24

ρ = 1 1.2754e−13 3.3208e−14 9.9219e−15 3.3080e−15 1.2289e−15

ρ = 2 8.2990e−17 5.2016e−17 7.4184e−17 6.5653e−17 7.0350e−17

ρ = 3 1.2869e−16 4.2435e−17 4.8966e−17 6.5225e−17 7.3167e−17

ρ = 4 1.3347e−12 6.8365e−17 4.7306e−17 6.3440e−17 5.1512e−17
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Fig. 4 The L∞ errors of Legendre-collocation method for Example 5.2 versus the number of collocation
points

Moreover, to closely observe the error decay rates in detail, we compare the errors of
ρ = 1 and ρ = 4 with the N−3 and N−13 decay rates in Fig. 3. Figure 3 shows that
our numerical results verify the theoretical results again.

Example 2 We consider the following Volterra integro-differential equation of the
third kind [18]:

t
1
2 y′(t) = 1

20
ty(t)+ 9

2
t
7
2 − 1

20
t5− 1

30
t
11
2 + 1

5

∫ t

0
s
1
2 y(s)ds, t ∈ I := [0, 1]. (41)
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Fig. 5 The L2
ω0,0 errors of Legendre collocation method for Example 5.2 versus the number of collocation

points
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0,0 error, =3
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Fig. 6 Errors of Legendre collocation method for Example 5.2 where the parameter ρ is chosen as ρ = 1
and ρ = 3 respectively

The exact solution of this example is y(t) = t
9
2 . Numerical results of this example

corresponding to ρ = 1, 2, 3, 4 are given in Tables 3 and 4 and Figs. 4 and 5. As listed
in Table 2 of [18], the error ‖e‖∞ is 1.80 × 10−4 when N = 128 and m = 2. From
Table 3, we observe that the error ‖e‖∞ is 5.5511× 10−17 when N = 10 and ρ = 2.
Therefore, compared with the collocation method in [18], our proposed Legendre
collocation method has the advantages of higher accuracy and lower computation. It
also can be seen from Figs. 4 and 5 that when ρ ≥ 2, the rate of convergence grows
powerfully and we have the exponential rate of convergence. A reasonable explana-
tion for this excellent result is that the transformed solution u(x) becomes smooth or
regular enough if a suitably small ρ is used in the approximation. Moreover, in order
to investigate the convergence order in detail, we compare the errors of ρ = 1 and
ρ = 3 with the N−8 and N−26 decay rates in Fig. 6. This comparison indicates that
the convergence rate is in a good agreement with the theoretical prediction given in
(24) and (36).

6 Concluding remarks

This paper proposes the Legendre collocation method for solving a class of third-
kind Volterra integro-differential equations (1). When the underlying solutions of
the VIDEs have a non-smooth behavior at the origin, the traditional spectral method
may converge slowly. To overcome this difficulty, we apply the coordinate trans-
formation (7) to obtain an equivalent (8) with a smoother solution. In addition, we
prove that after this transformation, we will have an exponential rate of convergence
for the obtained numerical solution. The numerical results also demonstrate that our
method is very easy to implement and has the advantages of high precision and lower
computational cost despite the solution singularity.
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