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Abstract
In this paper, based on the three-term conjugate gradient method and the hybrid
technique, we propose a hybrid three-term conjugate gradient projection method by
incorporating the adaptive line search for solving large-scale nonlinear monotone
equations with convex constraints. The search direction generated by the proposed
method is close to the one yielded by the memoryless BFGS method, and has the
sufficient descent property and the trust region property independent of line search
technique. Under some mild conditions, we establish the global convergence of the
proposed method. Our numerical experiments show the effectiveness and robustness
of the proposed method in comparison with two existing algorithms in the litera-
ture. Moreover, we show applicability and encouraging efficiency of the proposed
method by extending it to solve sparse signal restoration and image de-blurring
problems.
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1 Introduction

In this paper, we consider numerically solving the following constrained nonlinear
monotone equations of the form:

F(x) = 0, x ∈ C, (1)

where C ⊂ R
n is a nonempty closed convex set, and F is a continuous and monotone

mapping from R
n to itself. The monotonicity of the mapping F means that:

(F (x) − F(y))T (x − y) ≥ 0, ∀ x, y ∈ R
n. (2)

We call problem (1) the unconstrained nonlinear monotone equations if C = R
n.

The problem (1) arises in many important modern applications in applied math-
ematics, economics and engineering, and so on. Moreover, some mathematical
problems can be converted into the form of (1), such as some nonlinear monotone
complementarity problems, the compressed sensing problems, and the optimal power
flow control problems in electricity (see [1–4] for references). The wide applica-
tions of nonlinear monotone equations have motivated many researchers to study the
efficient methods for solving (1). Up to now, numerous iterative methods have been
developed to solve (1). Among these methods, we only focus on the derivative-free
projection-based methods (DFPMs for short); see, for example, [5–19]. This kind of
methods are quite suitable for solving large-scale constrained nonlinear monotone
equations due to their simplicity and low storage requirement.

Inspired by the projection technique [20] and the spectral gradient method [21], Yu
et al. [5] first extended the spectral gradient projection method in [22] from uncon-
strained nonlinear monotone equations to constrained nonlinear monotone equations.
The reported numerical results in [5] show that the proposed method works quite
well even for large-scale problems. Since then, it has attracted much attention, and
many DFPMs have sprung up, such as the spectral gradient-type projection method
[6, 7], the conjugate gradient-type projection method [8–15], the spectral conjugate
gradient-type projection method [16–19], to mention just a few. Recently, the spec-
tral gradient-type projection method has been further developed. Abubakar et al. [23]
proposed a positive spectral gradient projection method whose search direction is a
convex combination of two different positive spectral coefficients multiplied with the
residual vector. Awwal et al. [24] presented a two-step spectral gradient projection
method. Mohammad and Abubakar [25] further designed an adaptive spectral gra-
dient projection method. The numerical results in [23–25] show that these methods
work well and are more suitable compared to the similar methods for solving (1).

In [26], Wang et al. proposed a three-term conjugate gradient projection method
based on the HS method [27] for solving (1). Subsequently, motivated by [26], Gao
and He [28] proposed another three-term conjugate gradient projection method by
choosing a part of the LS method in [29] as the conjugate parameter. Recently, Gao
et al. [30] developed an adaptive three-term conjugate gradient projection method,
in which the search direction is close to the direction of the self-scaling memo-
ryless BFGS method proposed by Oren and Luenberger [31] in the sense of the
minimum Frobenius norm. And they successfully applied this algorithm to solve the
compressed sensing problems in [30]. Quite recently, Awwal et al. [32] proposed a
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Perry-type derivative-free method based on the BFGS quasi-Newton search direction.
The reported numerical results in [32] show that the proposed method is effective and
promising for solving (1) and signal recovery problem. On the other hand, based on
the ideas of hybrid conjugate gradient method in [33], Sun and Liu [34] developed
a hybrid conjugate gradient projection method for solving (1), in which the search
direction satisfies the sufficient descent property and the trust region property inde-
pendent of line search technique. Some large-scale numerical results in [34] show
that the proposed method is quite competitive for some fixed initial points.

Recently, based on the memoryless BFGS method proposed by Nocedal [35] and
Shanno [36], Li [37–39] developed a family of three-term conjugate gradient meth-
ods, in which the search directions are close to that of the memoryless BFGS method.
A large number of numerical comparisons indicate that the proposed methods are
quite efficient for solving unconstrained optimization problems.

To the best of our knowledge, no existing such a conjugate gradient method in
the literature can combine the three-term conjugate gradient method, whose search
direction is close to that of the memoryless BFGS method, with the ideas of hybrid
methods. Hence, it is interesting to design a hybrid three-term conjugate gradient
projection method for solving problem (1) such that its search direction is close to
that of the memoryless BFGS method and possesses the sufficient descent property
and the trust region property independent of line search technique.

In this paper, inspired by the hybrid conjugate gradient projection method in [34]
and the three-term conjugate gradient methods in [37–39], we propose a hybrid three-
term conjugate gradient projection method for solving (1). The rest of the paper is
organized as follows. In the next section, we describe in detail the motivation of this
paper and propose the algorithm. In Section 3, we establish the global convergence
under some mild conditions. In Section 4, we perform numerical experiments to
illustrate the performance of the proposed method and apply it to solve compressed
sensing problems in Section 5. Some conclusions are summarized in the last section.

Notation Throughout this paper, the symbols ‖ · ‖ and ‖ · ‖1 denote the Euclidean
norm and �1-norm on R

n, respectively. For convenience, we abbreviate F(xk) to
Fk , and similar abbreviations are also used. For a nonempty closed convex set C ⊂
R

n, PC[·] denotes the projection mapping from R
n onto the set C, namely, PC[x] =

argmin{‖y − x‖ | y ∈ C}.

2 Motivation and algorithm

In this section, we are devoted to developing a hybrid three-term conjugate gradient
projection method for solving problem (1). To this end, we first briefly review the
three-term conjugate gradient methods for solving unconstrained optimization prob-
lems proposed in [37–39] and the hybrid conjugate gradient projection method for
solving problem (1) in [34].

As we all know, for solving large-scale unconstrained optimization problems:

min
x∈Rn

f (x),
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where f : Rn → R is a continuously differentiable function, one of the most effec-
tive methods is the three-term conjugate gradient method, which dates back to Beale
[40] and later developed by Nazareth [41], Zhang et al. [42], etc. They are of the
form:

xk+1 = xk + αkdk,

where αk > 0 is the steplength determined by some line search and dk is the search
direction generated by:

dk = −Fk + βkdk−1 + θkyk−1, k ≥ 1, d0 = −F0, (3)

where Fk := ∇f (xk), βk and θk are scalar parameters, and yk−1 := Fk − Fk−1.
Different choices for the parameters βk and θk correspond to different three-term con-
jugate gradient methods. Clearly, the three-term conjugate gradient method reduces
to the classical conjugate gradient method when θk ≡ 0 in (3). There are at least four
well-known formulas for βk , such as:

βPRP
k = F


k yk−1

‖Fk−1‖2 , βHS
k = F


k yk−1

d

k−1yk−1

, βDY
k = ‖Fk‖2

d

k−1yk−1

, βLS
k = F


k yk−1

−d

k−1Fk−1

.

We refer the readers to the monograph [43] and the comprehensive survey [44] for
more details.

Based on the memoryless BFGS method proposed by Nocedal [35] and Shanno
[36], in which the search direction can be written as:

dLBFGS
k = −Fk+

(
F


k yk−1

d

k−1yk−1

− ‖yk−1‖2F

k dk−1

(d

k−1yk−1)2

)
dk−1+ F


k dk−1

d

k−1yk−1

(yk−1−sk−1),

where sk−1 := xk − xk−1, Li [37] proposed a three-term HS conjugate gradient
method, in which:

βTHS
k = F


k yk−1

d

k−1yk−1

− ‖yk−1‖2F

k dk−1

(d

k−1yk−1)2

, θk = tk
F


k dk−1

d

k−1yk−1

, (4)

and 0 ≤ tk ≤ t̄ < 1. In practical computation, the parameter t̄ is set to 0.3 and then
tk is calculated by:

tk = min

{
t̄ , max

{
0, 1 − y


k−1sk−1

‖yk−1‖2
}}

, (5)

where 1 − y

k−1sk−1

‖yk−1‖2 is the solution of the univariate minimal problem:

min
t∈R ‖(yk−1 − sk−1) − t · yk−1‖2.

It is not hard to know that the search direction defined in (3)–(5) is close to that of the
memoryless BFGS method in the sense of the above univariate minimum problem.
Subsequently, based on the fact that d


k−1yk−1 = ‖Fk−1‖2 holds when the objective
function f is a strongly convex quadratic and the exact line search is used, Li [38]
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proposed a three-term PRP conjugate gradient method with the search direction of
the form (3) being generated by replacing d


k−1yk−1 with ‖Fk−1‖2 in (4), i.e.:

βTPRP
k = F


k yk−1

‖Fk−1‖2 − ‖yk−1‖2F

k dk−1

‖Fk−1‖4 , θ̂k = tk
F


k dk−1

‖Fk−1‖2 , (6)

and 0 ≤ tk ≤ t̄ < 1. Recently, based on the comprehensive analysis of [37, 38], Li
[39] proposed a family of three-term conjugate gradient methods for solving uncon-
strained optimization problems. Interestingly, a remarkable feature of these methods
is that the search directions defined by [37–39] always satisfy the sufficient descent
property:

F

k dk ≤ −

(
1 − (1 + t̄ )2

4

)
‖Fk‖2.

On the other hand, based on the ideas of hybrid conjugate gradient method in [33],
Sun and Liu [34] developed a hybrid conjugate gradient method and then extended
it to solve problem (1). In [34], the search direction is determined by the following
scheme:

dk = −Fk + βHCG
k dk−1, k ≥ 1, d0 = −F0,

where:

βHCG
k =

‖Fk‖2 − max
{
0, ‖Fk‖‖Fk−1‖F


k Fk−1

}
max{κ‖dk−1‖‖Fk‖, d


k−1yk−1}
,

with κ > 1 being a constant. It is easy to show that the search direction defined in
the above two relations satisfies the sufficient descent property and the trust region
property independent of line search technique; see Lemma 3.1 and Lemma 3.2 of
[34], respectively. Notice that the parameter βHCG

k can be viewed as a hybrid of βHS
k

and βDY
k .

Inspired by the three-term conjugate gradient methods and the hybrid conju-
gate gradient projection method introduced above, we propose a hybrid three-term
conjugate gradient method by incorporating the projection technique to solve non-
linear monotone equations with convex constraints. The search direction dk for the
proposed method is given by:

dk = −Fk + βHTP
k dk−1 + θ̃kyk−1, k ≥ 1, d0 = −F0, (7)

where:

wk = max{μ‖dk−1‖‖yk−1‖, d

k−1yk−1, ‖Fk−1‖2},

βHTP
k = F


k yk−1

wk

− ‖yk−1‖2F

k dk−1

w2
k

,

θ̃k = tk
F


k dk−1

wk

, (8)

with 0 ≤ tk ≤ t̄ < 1 and μ > 0. Clearly, due to the definition of wk in (8), the
parameter βHTP

k is a hybrid of βTHS
k in (4) and βTPRP

k in (6). Similarly, the parameter
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θ̃k is a hybrid of θk in (4) and θ̂k in (6). Thus, the search direction defined in (7) is

close to that of the memoryless BFGS method when tk = 1 − y

k−1sk−1

‖yk−1‖2 . Notice that
the first term of the maximum function from the first relation in (8) is chosen to make
the search direction have a trust region property; see Lemma 2 below. It is easy to see
that wk > 0 due to the existence of ‖Fk−1‖2 in (8). Therefore, the parameters βHTP

k

and θ̃k in (8) are both well defined.
We now give the steps of our algorithm which we call the hybrid three-term

conjugate gradient projection (HTTCGP) method.

Remark 1 (i) The adaptive line search (9) was proposed by our recent work in [45].
From the definition of P[λ,ν][·], we have that λ ≤ P[λ,ν][u] ≤ ν for any u ∈ R.
Introducing the parameter ν is to prevent the right-hand side of (9) from being too
large, especially when xk is far from the solution set of (1) and ‖F(zk)‖ is also large.
This can effectively reduce the computational cost of the line search. The parameter
λ is chosen to guard against the worst possible outcome, i.e., F(zk) = 0 and zk /∈ C.
Indeed, from step 2 of Algorithm 1, we have ‖dk‖ > 0. Combining this with the fact
that P[λ,ν][‖F(xk + ςρidk)‖] ≥ λ > 0, we know that the right-hand side of (9) is
positive for any finite nonnegative integer i. Thus, we see immediately from Lemma
3 below that F(zk) �= 0 holds.

(ii) The adaptive line search (9) is a derivative-free line search and contains two
well-known line search procedures in [22, 46] which were used in many of works.
In fact, if λ = ν = 1, then P[λ,ν][‖F(zk)‖] ≡ 1. Thus, (9) reduces to the line search
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used in [22]. If λ = 0 and ν is sufficiently large, such as ν ≥ ‖F0‖, then we have
P[λ,ν][‖F(zk)‖] ≡ ‖F(zk)‖. Therefore, (9) is equivalent to the line search used in
[46]. Notice that when λ = 0 and ν = 1, (9) is equivalent to the line search recently
proposed by Sun and Tian in [47]. Quite recently, Awwal et al. [24] proposed another
adaptive line search, that is, αk = ςρik with ik being the smallest nonnegative integer
i such that:

− F(xk + αkdk)

dk ≥ σαk‖F(xk + αkdk)‖1/c · ‖dk‖2, c ≥ 1. (12)

Clearly, if c = 1, (12) can be viewed as a special case of (9), provided that λ = 0 and
ν is sufficiently large. On the other hand, if c is sufficiently large, then (12) behaves
like the adaptive line search (9) with λ = ν = 1.

(iii) Notice that γ ∈ (0, 2) in (10) is a relaxation factor whose suitable value may
speed up convergence for the projection and contraction methods as stated in [48]. In
practical computation, one can take a larger relaxation factor γ ∈ [1, 2).

3 Convergence property

In this section, we analyze the global convergence of the proposed method. To this
end, we need the following standard assumptions used in most DFPMs.

(A1) The solution set of problem (1), denoted by S, is nonempty.
(A2) The mapping F is Lipschitz continuous onRn, i.e., there is a constant L > 0

such that:

‖F(x) − F(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ R
n. (13)

We now start our convergence analysis by giving a well-known nonexpansive
property of the projection operator [49].

Lemma 1 Let C be a nonempty closed convex subset of Rn. Then:

‖PC[x] − PC[y]‖ ≤ ‖x − y‖, ∀ x, y ∈ R
n.

The next lemma shows that the search direction defined in (7) has some nice
properties independent of line search technique.

Lemma 2 For all k ≥ 0, the search direction sequence {dk} generated by the
HTTCGP always satisfies the sufficient descent property:

F

k dk ≤ −

(
1 − (1 + t̄ )2

4

)
‖Fk‖2 (14)

and the trust region property:(
1 − (1 + t̄ )2

4

)
‖Fk‖ ≤ ‖dk‖ ≤

(
1 + 1 + t̄

μ
+ 1

μ2

)
‖Fk‖ (15)

with 0 ≤ tk ≤ t̄ < 1 and μ > 0.
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Proof Since d0 = −F0, we have F

0 d0 = −‖F0‖2, which satisfies (14) for k = 0.

From the definition of dk in (7), we conclude that for all k ≥ 1,

F

k dk = −‖Fk‖2 + βHTP

k F

k dk−1 + θ̃kF



k yk−1

= −‖Fk‖2 +
(

F

k yk−1

wk

− ‖yk−1‖2F

k dk−1

w2
k

)
F


k dk−1 + tk
F


k dk−1

wk

F

k yk−1

= −‖Fk‖2 + (1 + tk)
F


k yk−1F


k dk−1

wk

− ‖yk−1‖2(F

k dk−1)

2

w2
k

= −‖Fk‖2 + 2

(
1 + tk

2
F


k

)
yk−1F



k dk−1

wk

− ‖yk−1‖2(F

k dk−1)

2

w2
k

≤ −‖Fk‖2 + (1 + tk)
2

4
‖Fk‖2 + ‖yk−1‖2(F


k dk−1)
2

w2
k

− ‖yk−1‖2(F

k dk−1)

2

w2
k

= −‖Fk‖2 + (1 + tk)
2

4
‖Fk‖2 ≤ −

(
1 − (1 + t̄ )2

4

)
‖Fk‖2,

which implies that (14) holds.
Again, from d0 = −F0, we obtain ‖d0‖ = ‖F0‖, which satisfies (15) for k = 0.

We next prove that the relation (15) holds for all k ≥ 1. Note from step 2 of Algorithm
1 that dk �= 0 for all k. If yk−1 = 0, then the desired result immediately follows from
the fact that dk = −Fk due to the definition of dk in (7). Therefore, for the remainder
of the proof, we assume that yk−1 �= 0 for all k ≥ 1. From (14) and the Cauchy-
Schwarz inequality, we know that the first inequality in (15) holds. To proceed, we
note from (8) that:

|βHTP
k | =

∣∣∣∣∣F


k yk−1

wk

− ‖yk−1‖2F

k dk−1

w2
k

∣∣∣∣∣
≤ ‖Fk‖‖yk−1‖

wk

+ ‖yk−1‖2‖Fk‖‖dk−1‖
w2

k

≤ ‖Fk‖‖yk−1‖
μ‖dk−1‖‖yk−1‖ + ‖yk−1‖2‖Fk‖‖dk−1‖

(μ‖dk−1‖‖yk−1‖)2

=
(
1

μ
+ 1

μ2

) ‖Fk‖
‖dk−1‖

and

|θ̃k| = tk

∣∣∣∣∣F


k dk−1

wk

∣∣∣∣∣
≤ t̄

‖Fk‖‖dk−1‖
wk
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≤ t̄‖Fk‖‖dk−1‖
μ‖dk−1‖‖yk−1‖

= t̄‖Fk‖
μ‖yk−1‖ .

Combining the above two relations with the definition of dk in (7) yields:

‖dk‖ = ‖ − Fk + βHTP
k dk−1 + θ̃kyk−1‖

≤ ‖Fk‖ + |βHTP
k |‖dk−1‖ + |θ̃k|‖yk−1‖

≤
(
1 + 1 + t̄

μ
+ 1

μ2

)
‖Fk‖.

This completes the proof.

Remark 2 The first inequality in (15) implies that we find a solution of problem (1)
when dk = 0. This is the reason why we choose dk = 0 as the stopping criterion in
step 2 of Algorithm 1.

The following lemma not only shows that the adaptive line search (9) is well-
defined but also provides a uniform lower bound of the sequence {αk}.

Lemma 3 (i) Let {xk} and {dk} be the sequences generated by the HTTCGP. If the
mapping F is continuous on Rn, then for all k ≥ 0, there exists a nonnegative integer
ik satisfying (9).

(ii) Suppose that assumption (A2) holds, then the steplength αk yielded by (9)
satisfies:

αk ≥ α := min

{
ς,

ρμ4[4 − (1 + t̄ )2]
4(L + σν)[μ2 + μ(1 + t̄ ) + 1]2

}
. (16)

Proof (i) We proceed by contradiction and assume that there exists an integer k0 ≥ 0
such that the adaptive line search (9) does not hold for any nonnegative integer i.
Hence, for all i ≥ 0, we have:

−F(xk0 + ςρidk0)

dk0 < σςρiP[λ,ν][‖F(xk0 + ςρidk0)‖] · ‖dk0‖2

≤ σνςρi‖dk0‖2,
where the second inequality follows from the fact that P[λ,ν][·] ≤ ν. Taking the limit
in the above inequality, using the continuity of the mapping F and rearranging terms
in the resulting relation, we obtain:

F(xk0)

dk0 ≥ 0,

which contradicts (14) since F(xk0)

dk0 ≤ −

(
1 − (1+t̄ )2

4

)
‖F(xk0)‖2 < 0. Thus,

the desired result holds.
(ii) We now prove part (ii). Clearly, if αk = ς , then (16) holds. Otherwise, α̂k :=

ρ−1αk does not satisfy the adaptive line search (9), namely:

−F (̂zk)
Tdk < σ α̂kP[λ,ν][F (̂zk)]‖dk‖2 ≤ σνα̂k‖dk‖2,
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where ẑk = xk + α̂kdk . This together with (13) and (14) yields:(
1 − (1 + t̄ )2

4

)
‖Fk‖2 ≤ −F T

k dk = (F (̂zk) − Fk)
Tdk − F (̂zk)

Tdk

< α̂k(L + σν)‖dk‖2 = ρ−1αk(L + σν)‖dk‖2.
Therefore:

αk >
ρ[4 − (1 + t̄ )2]
4(L + σν)

‖Fk‖2
‖dk‖2

≥ ρ[4 − (1 + t̄ )2]
4(L + σν)

‖Fk‖2(
1 + 1+t̄

μ
+ 1

μ2

)2 ‖Fk‖2

= ρμ4[4 − (1 + t̄ )2]
4(L + σν)[μ2 + μ(1 + t̄ ) + 1]2 ,

where the second inequality follows from the second inequality in (15). This yields
the desired inequality (16).

The following result is adapted from [20, Lemma 2.1] to show that for any x∗ ∈ S,
the whole sequence {‖xk − x∗‖} generated by the HTTCGP is convergent.

Lemma 4 Suppose that the assumptions (A1)-(A2) hold. Let {xk} and {zk} be the
sequences generated by the HTTCGP. Then for any x∗ ∈ S the sequence {‖xk −x∗‖}
is convergent, therefore the sequence {xk} is bounded. Furthermore, it holds that:

lim
k→∞ αk‖dk‖ = 0. (17)

Proof We start our proof by noticing from the definition of zk and (9) that:

F(zk)
T(xk − zk) ≥ σα2

kP[λ,ν][‖F(zk)‖]‖dk‖2
≥ σλα2

k‖dk‖2 = σλ‖xk − zk‖2 > 0.
(18)

From (2) and x∗ ∈ S, we obtain that:

F(zk)
T(xk − x∗) = F(zk)

T(xk − zk) + F(zk)
T(zk − x∗)

≥ F(zk)
T(xk − zk) + F(x∗)T(zk − x∗)

= F(zk)
T(xk − zk).

Combining the above two relations with (10), Lemma 1 and (11), we conclude that:

‖xk+1 − x∗‖2 = ‖PC[xk − γ · ξkF (zk)] − PC[x∗]‖2
≤ ‖xk − γ · ξkF (zk) − x∗‖2
= ‖xk − x∗‖2 − 2γ · ξkF (zk)

T(xk − x∗) + γ 2ξ2k ‖F(zk)‖2
≤ ‖xk − x∗‖2 − 2γ · ξkF (zk)

T(xk − zk) + γ 2ξ2k ‖F(zk)‖2
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= ‖xk − x∗‖2 − γ (2 − γ )

(
F(zk)

T(xk − zk)
)2

‖F(zk)‖2

≤ ‖xk − x∗‖2 − γ (2 − γ )
σ 2λ2‖xk − zk‖4

‖F(zk)‖2 , (19)

which implies 0 ≤ ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ since 0 < γ < 2 from the choice of
γ in the HTTCGP. That is, the sequence {‖xk − x∗‖} is non-increasing and bounded
below, and therefore is convergent. So, the boundedness of {xk} is at hand.

We next derive an upper bound of ‖F(zk)‖. To proceed, notice from the bound-
edness of {xk} and the continuity of F that there exists a constant M > 0 such
that:

‖xk‖ ≤ M, ‖Fk‖ ≤ M, ∀ k ≥ 0.

Hence, we see from the Cauchy-Schwarz inequality, (2) and (18) that:

M ≥ ‖Fk‖ ≥ F T
k (xk − zk)

‖xk − zk‖ ≥ F(zk)
T(xk − zk)

‖xk − zk‖ ≥ σλ‖xk − zk‖ ≥ σλ‖zk‖ − σλM,

which shows that {zk} is bounded. Therefore, it again follows from the continuity of
F that there exists a constant M̂ > 0 such that:

‖F(zk)‖ ≤ M̂, ∀ k ≥ 0.

This together with (19) implies:

γ (2 − γ )
σ 2λ2

M̂2

∞∑
k=0

‖xk − zk‖4 ≤
∞∑

k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)

= ‖x0 − x∗‖2 − lim
k→∞ ‖xk+1 − x∗‖2 < ∞,

which shows 0 = lim
k→∞ ‖xk −zk‖ = lim

k→∞ αk‖dk‖ since zk = xk +αkdk and 0 < γ <

2 from the HTTCGP. This completes the proof.

Remark 3 Notice that the proof of the above lemma relies heavily on the projection
technique and the line search technique independent of the specific structure of the
search direction. It should be mentioned that although the whole sequence {‖xk−x∗‖}
is convergent from the above lemma, this does not guarantee that {xk} converges to
x∗ ∈ S, and even it is not necessarily convergent.

We now combine these results to prove the global convergence of the HTTCGP
under some mild conditions.

Theorem 1 Suppose that the assumptions (A1)-(A2) hold. Then the whole sequence
{xk} generated by the HTTCGP converges to a solution of proplem (1).
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Proof We start our proof by noticing from (16) and (17) that 0 ≤ α‖dk‖ ≤
αk‖dk‖ → 0. This shows limk→∞ ‖dk‖ = 0. Combining this with (15), we have:

0 ≤
(
1 − (1 + t̄ )2

4

)
‖Fk‖ ≤ ‖dk‖ → 0,

which implies limk→∞ ‖Fk‖ = 0. Since the sequence {xk} ⊂ C is bounded from the
fact that x0 ∈ C, (10) and Lemma 4, there exists at least one cluster point of {xk}.
Suppose that x̄ is a cluster point of the sequence {xk} ⊂ C and let K ⊂ {0, 1, 2, . . . }
be an infinite index set such that:

lim
k→∞,k∈K

xk = x̄ ∈ C,

where the inclusion follows from the closedness of C. Thus, it follows from these and
the continuity of F that:

0 = lim
k→∞ ‖Fk‖ = lim

k→∞,k∈K
‖Fk‖ = ‖F(x̄)‖,

which implies that x̄ is a solution of problem (1), i.e., x̄ ∈ S. Therefore, setting
x∗ := x̄ in Lemma 4, we know that the sequence {‖xk − x̄‖} is convergent and then:

lim
k→∞ ‖xk − x̄‖ = lim

k→∞,k∈K
‖xk − x̄‖ = 0.

Consequently, we conclude that the whole sequence {xk} converges to x̄ ∈ S. This
completes the proof.

4 Numerical experiments

In this section, we perform numerical experiments to illustrate the effectiveness and
robustness of the proposed method (HTTCGP), in comparison with two existing
algorithms—Algorithm 2.1 in [30] (denoted by ATTCGP) and Algorithm 3.1 in [34]
(denoted by HCGP)—in terms of the total number of iterations (Itr), the number of
function evaluations (NF), and the CPU time in second (Tcpu) in the same calculat-
ing environment. All codes are written in MATLAB R2007b and run on a 64-bit Dell
PC with Intel(R) Core(TM) i7-9700 CPU (3.00 GHz), 16.00 GB RAM and Windows
10.0 operating system.

The parameters in the HTTCGP are chosen as follows: ρ = 0.5, ς = 1, σ =
0.01, λ = 0.001, ν = 0.8, μ = 0.2, γ = 1.6, t̄ = 0.3 with tk being calculated by:

tk = min

{
t̄ , max

{
0, 1 − y


k−1sk−1

‖yk−1‖2
}}

.

The parameters of ATTCGP are taken from Section 5 of [30], i.e., ρ = 0.4, ς =
1, σ = 0.0001, r = 0.1, μ1 = 0.01, μ2 = 0.1, tk = tbk . The parameters of HCGP
are taken from Section 4 of [34], i.e., ρ = 0.5, ς = 1, σ = 0.0001, μ = 1.4, γ =
1.5. For each algorithm and each test problem, we stop the program when one of the
following three conditions is satisfied:

( i) ‖Fk‖ ≤ 10−6, (ii) ‖dk‖ ≤ 10−7, or (iii) Itr > 2000.
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Although Lemma 3 shows that the adaptive line search (9) terminates finitely, we
impose a restriction on the steplength computation. That is, for some integer i > 0,
if the trial steplength ςρi ≤ 10−10 does not satisfy (9), then we set αk = ςρi . We
now give the following popular test problems in which the mapping F is taken as:

F(x) = (f1(x), f2(x), . . . , fn(x))T .

Problem 4.1 [50] Set fi(x) = exi − 1, for i = 1, 2, . . . , n and C = R
n+. Clearly, this

problem has a unique solution x∗ = (0, 0, . . . , 0)T.

Problem 4.2 [7] Set

f1(x) = x1 − ecos(
x1+x2
n+1 ),

fi(x) = xi − ecos(
xi−1+xi+xi+1

n+1 ), for i = 2, 3, . . . , n − 1,

fn(x) = xn − ecos(
xn−1+xn

n+1 ),

and C = R
n+.

Problem 4.3 [5] Set fi(x) = xi − sin |xi − 1|, for i = 1, 2, . . . , n and C = {x ∈
R

n| ∑n
i=1 xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}. Clearly, Problem 4.3 is nonsmooth at

x = (1, . . . , 1)T.

Problem 4.4 [28] Set

f1(x) = 2x1 + sin x1 − 1,

fi(x) = 2xi−1 + 2xi + sin xi − 1, for i = 2, 3, . . . , n − 1,

fn(x) = 2xn + sin xn − 1,

and C = R
n+.

Problem 4.5 [28] Set

f1(x) = x1 − ecos(
x1+x2

2 ),

fi(x) = xi − ecos(
xi−1+xi+xi+1

i
), for i = 2, 3, . . . , n − 1,

fn(x) = xn − ecos(
xn−1+xn

n
),

and C = R
n+.

Problem 4.6 [28] Set fi(x) = (exi )2 + 3 sin xi · cos xi − 1, for i = 1, 2, . . . , n and
C = R

n+.

Problem 4.7 This problem is Problem 2 in [51] with additional C = R
n+, i.e.,

fi(x) = 2xi − sin xi , for i = 1, 2, . . . , n and C = R
n+.

Problem 4.8 This problem is Problem 10 in [52] with additional C = R
n+, i.e.,

fi(x) = ln(xi + 1) − xi

n
, for i = 1, 2, . . . , n and C = R

n+.
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For Problem 4.3, we use the quadratic program solver quadprog.m from the
MATLAB optimization toolbox to compute a new iterate xk+1 in step 4 of
HTTCGP. For the above test problems, we use the following different initial points:
x1 = (1, 1, . . . , 1)T, x2 = ( 13 ,

1
32

, . . . , 1
3n )T, x3 = ( 12 ,

1
22

, . . . , 1
2n )T, x4 =

(0, 1
n
, . . . , n−1

n
)T, x5 = (1, 1

2 , . . . ,
1
n
)T, x6 = ( 1

n
, 2

n
, . . . , 1)T, x7 = (1 − 1

n
, 1 −

2
n
, . . . , 0)T. The numerical results are listed in Tables 1, 2, 3, 4, 5, 6, 7, and 8, where

“Init” means the initial point, “n” is the problem dimension multiplied by 104, and
“‖F ∗‖” stands for the final value of ‖F(xk)‖ when the program is stopped.

In order to compare the performance of these methods clearly, we adopt the per-
formance profiles introduced by Dolan and Moré [53] based on Tcpu, NF, and Itr,
respectively. From Tables 1–8 and Figs. 1, 2, and 3, we conclude that for these fixed
initial points, the proposed method in general is the most effective and robust in terms
of Tcpu, NF, and Itr, respectively. The reason may lie in twofold, one is that the search
direction defined by (7) inherits the effectiveness and robustness of the memoryless
BFGS method, and the other is that the hybrid technique may numerically effectively
improve the performance of the three-term conjugate gradient projection method.

Table 1 Numerical results on Problem 4.1

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 1/4/0.012/0.00e+00 1/4/0.007/0.00e+00 35/106/0.034/6.90e−07

x2(1) 2/6/0.003/2.22e−16 9/28/0.008/6.21e−07 25/76/0.018/7.76e−07

x3(1) 7/19/0.005/4.92e−07 9/28/0.007/7.77e−07 26/79/0.019/6.83e−07

x4(1) 17/48/0.014/5.55e−07 12/37/0.009/9.98e−07 34/103/0.026/8.53e−07

x5(1) 9/24/0.007/4.42e−07 10/31/0.008/5.69e−07 27/82/0.019/6.76e−07

x6(1) 12/32/0.009/7.01e−09 12/37/0.009/9.98e−07 34/103/0.026/8.53e−07

x7(1) 17/48/0.014/5.55e−07 12/37/0.009/9.98e−07 34/103/0.026/8.53e−07

x1(5) 1/4/0.006/0.00e+00 1/4/0.006/0.00e+00 36/109/0.133/9.25e−07

x2(5) 2/6/0.007/2.22e−16 9/28/0.028/6.21e−07 25/76/0.074/7.76e−07

x3(5) 7/19/0.023/4.92e−07 9/28/0.030/7.77e−07 26/79/0.079/6.83e−07

x4(5) 16/44/0.059/2.18e−07 13/40/0.048/5.58e−07 36/109/0.131/6.86e−07

x5(5) 9/24/0.031/4.39e−07 10/31/0.035/5.69e−07 27/82/0.089/6.76e−07

x6(5) 14/38/0.053/7.49e−07 13/40/0.048/5.58e−07 36/109/0.130/6.86e−07

x7(5) 16/44/0.061/2.18e−07 13/40/0.047/5.58e−07 36/109/0.131/6.86e−07

x1(10) 1/4/0.013/0.00e+00 1/4/0.012/0.00e+00 37/112/0.354/7.85e−07

x2(10) 2/6/0.018/2.22e−16 9/28/0.074/6.21e−07 25/76/0.201/7.76e−07

x3(10) 7/19/0.060/4.92e−07 9/28/0.075/7.77e−07 26/79/0.211/6.83e−07

x4(10) 16/43/0.157/1.33e−15 13/40/0.124/7.89e−07 36/109/0.341/9.71e−07

x5(10) 9/24/0.083/4.39e−07 10/31/0.089/5.69e−07 27/82/0.237/6.76e−07

x6(10) 15/40/0.146/3.45e−07 13/40/0.124/7.89e−07 36/109/0.342/9.71e−07

x7(10) 16/43/0.156/1.33e−15 13/40/0.124/7.89e−07 36/109/0.343/9.71e−07
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Table 2 Numerical results on Problem 4.2

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 15/39/0.029/2.51e−07 14/43/0.028/6.40e−07 38/115/0.075/6.38e−07

x2(1) 15/39/0.027/3.97e−07 15/46/0.030/2.53e−07 39/118/0.076/6.06e−07

x3(1) 15/39/0.027/3.97e−07 15/46/0.030/2.53e−07 39/118/0.076/6.06e−07

x4(1) 15/39/0.027/3.26e−07 14/43/0.028/8.33e−07 38/115/0.075/8.31e−07

x5(1) 15/39/0.027/3.97e−07 15/46/0.030/2.53e−07 39/118/0.076/6.05e−07

x6(1) 15/39/0.027/3.26e−07 14/43/0.028/8.33e−07 38/115/0.074/8.31e−07

x7(1) 15/39/0.027/3.26e−07 14/43/0.028/8.33e−07 38/115/0.074/8.31e−07

x1(5) 15/39/0.135/5.61e−07 15/46/0.146/3.58e−07 39/118/0.376/8.56e−07

x2(5) 15/39/0.135/8.87e−07 15/46/0.147/5.66e−07 40/121/0.384/8.13e−07

x3(5) 15/39/0.135/8.87e−07 15/46/0.146/5.66e−07 40/121/0.385/8.13e−07

x4(5) 15/39/0.135/7.30e−07 15/46/0.146/4.66e−07 40/121/0.383/6.69e−07

x5(5) 15/39/0.134/8.87e−07 15/46/0.146/5.66e−07 40/121/0.385/8.12e−07

x6(5) 15/39/0.134/7.30e−07 15/46/0.145/4.66e−07 40/121/0.383/6.69e−07

x7(5) 15/39/0.135/7.30e−07 15/46/0.147/4.66e−07 40/121/0.385/6.69e−07

x1(10) 15/39/0.308/7.93e−07 15/46/0.326/5.06e−07 40/121/0.860/7.26e−07

x2(10) 16/41/0.322/4.32e−07 15/46/0.325/8.01e−07 41/124/0.882/6.89e−07

x3(10) 16/41/0.322/4.32e−07 15/46/0.325/8.01e−07 41/124/0.883/6.89e−07

x4(10) 16/41/0.323/3.55e−07 15/46/0.325/6.59e−07 40/121/0.860/9.46e−07

x5(10) 16/41/0.322/4.32e−07 15/46/0.324/8.01e−07 41/124/0.881/6.89e−07

x6(10) 16/41/0.323/3.55e−07 15/46/0.326/6.59e−07 40/121/0.860/9.46e−07

x7(10) 16/41/0.324/3.55e−07 15/46/0.325/6.59e−07 40/121/0.861/9.46e−07

To further explore the influence of initial points on the algorithm, we test each
problem by using the initial points randomly generated from the interval (0,1) with
a gradually increasing number of dimensions. For the given dimension, we run the
same test 20 times to obtain the average CPU time in second (Tcpu), the average
number of function evaluations (NF), the average number of iterations (Itr), and the
average value of ‖F ∗‖ (‖F ∗‖). The numerical results are listed in Table 9, where “P”
stands for the test problems used and“n” is still the problem dimension multiplied by
104. We also plot the performance profiles of Tcpu, NF, and Itr, respectively. It is not
hard to see from Table 9 and Figs. 4, 5, and 6 that (i) all the methods can solve all the
test problems successfully; (ii) our method outperforms the other two methods about
68%, 72%, and 70% of the experiments in terms of Tcpu, NF, and Itr, respectively.
In most of the experiments, our method needs less number of function evaluations to
obtain an approximate solution compared to the other two methods. The reason may
be that the former benefits from the adaptive line search technique proposed by Yin
et al. [45]. In a word, the proposed method is more efficient and competitive than the
other two methods for the given test problems.
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Table 3 Numerical results on Problem 4.3

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 8/25/0.006/2.83e−07 7/22/0.004/4.50e−07 14/43/0.008/3.10e−07

x2(1) 14/50/0.009/4.36e−07 14/46/0.008/2.23e−08 14/43/0.008/4.90e−07

x3(1) 16/58/0.010/1.55e−07 15/49/0.008/6.53e−07 14/43/0.008/4.90e−07

x4(1) 21/79/0.014/3.10e−07 17/57/0.010/2.83e−07 13/40/0.007/9.40e−07

x5(1) 15/54/0.010/2.08e−07 17/59/0.010/2.40e−07 14/43/0.008/4.89e−07

x6(1) 20/75/0.013/6.29e−07 20/67/0.011/5.01e−07 13/40/0.007/9.40e−07

x7(1) 21/79/0.014/3.10e−07 17/57/0.010/2.83e−07 13/40/0.007/9.40e−07

x1(5) 8/25/0.024/6.32e−07 8/25/0.020/1.70e−09 14/43/0.035/6.94e−07

x2(5) 11/38/0.033/2.78e−07 18/61/0.048/9.43e−07 15/46/0.037/2.75e−07

x3(5) 16/56/0.048/6.84e−07 14/46/0.036/1.12e−07 15/46/0.037/2.75e−07

x4(5) 20/71/0.061/8.47e−07 20/67/0.052/5.15e−07 14/43/0.035/5.28e−07

x5(5) 13/45/0.041/4.00e−07 15/51/0.040/7.65e−07 15/46/0.038/2.75e−07

x6(5) 21/79/0.066/3.38e−07 18/61/0.047/2.55e−07 14/43/0.034/5.28e−07

x7(5) 20/71/0.061/8.47e−07 20/67/0.052/5.15e−07 14/43/0.035/5.28e−07

x1(10) 8/25/0.065/8.94e−07 8/25/0.056/2.41e−09 14/43/0.097/9.81e−07

x2(10) 16/55/0.134/3.71e−07 13/42/0.093/3.94e−07 15/46/0.105/3.89e−07

x3(10) 14/46/0.114/3.50e−07 17/56/0.122/8.24e−09 15/46/0.104/3.89e−07

x4(10) 23/85/0.200/2.84e−07 20/68/0.146/2.48e−08 14/43/0.098/7.46e−07

x5(10) 15/51/0.125/9.24e−07 15/50/0.109/1.47e−08 15/46/0.107/3.89e−07

x6(10) 21/78/0.183/7.88e−07 18/61/0.132/8.89e−08 14/43/0.097/7.46e−07

x7(10) 23/85/0.200/2.84e−07 20/68/0.145/2.48e−08 14/43/0.098/7.46e−07

5 Applications in compressed sensing

In this section, we apply our method to solve compressed sensing problems and
compare it with two existing solvers: CGD [9] and ATTCGP [30].

5.1 Problem description

In compressed sensing problems, the task is to find/recover sparse solutions/signals
of underdetermined linear systems Ax = b, where A ∈ R

m×n (m � n) is a sampling
matrix, and b ∈ R

m is the observation signal. To this end, a popular approach is to
solve the �1-norm regularized optimization problem:

min
x∈Rn

f (x) := 1

2
‖Ax − b‖2 + τ‖x‖1, (20)

where τ > 0 is a constant balancing the data-fitting and sparsity. Notice that the
objective function f (x) in (20) is nonsmooth convex. Interestingly, one can reformu-
late (20) as a convex quadratic programming by Figueiredo, Nowak, andWright [54].
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Table 4 Numerical results on Problem 4.4

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 35/155/0.043/9.05e−07 39/179/0.045/6.14e−07 19/77/0.020/6.54e−07

x2(1) 41/178/0.048/9.64e−07 40/183/0.046/6.09e−07 18/73/0.019/9.49e−07

x3(1) 42/181/0.048/8.29e−07 38/174/0.044/9.60e−07 18/73/0.019/9.82e−07

x4(1) 29/132/0.035/9.06e−07 42/192/0.048/7.01e−07 20/81/0.021/5.70e−07

x5(1) 36/160/0.042/8.28e−07 40/183/0.046/8.04e−07 19/77/0.020/8.48e−07

x6(1) 29/132/0.035/8.11e−07 42/192/0.048/7.01e−07 20/81/0.021/5.70e−07

x7(1) 30/133/0.035/7.70e−07 41/187/0.047/6.06e−07 19/77/0.020/4.57e−07

x1(5) 34/151/0.197/5.33e−07 39/179/0.214/5.87e−07 19/77/0.096/7.93e−07

x2(5) 36/160/0.206/8.56e−07 42/191/0.228/6.07e−07 18/73/0.091/8.85e−07

x3(5) 37/163/0.210/6.42e−07 39/178/0.213/9.27e−07 19/77/0.096/4.77e−07

x4(5) 32/143/0.184/7.82e−07 44/200/0.238/6.69e−07 19/77/0.096/8.04e−07

x5(5) 34/152/0.195/7.89e−07 42/191/0.228/7.65e−07 19/77/0.096/8.34e−07

x6(5) 36/158/0.203/5.18e−07 44/200/0.240/6.69e−07 19/77/0.097/8.04e−07

x7(5) 24/111/0.142/7.97e−07 39/179/0.213/6.08e−07 19/77/0.096/5.36e−07

x1(10) 33/148/0.481/6.67e−07 41/187/0.563/5.87e−07 19/77/0.242/8.80e−07

x2(10) 39/170/0.564/6.01e−07 41/187/0.562/5.89e−07 18/73/0.229/9.19e−07

x3(10) 43/185/0.609/6.24e−07 39/178/0.533/9.00e−07 19/77/0.240/4.93e−07

x4(10) 30/135/0.437/8.71e−07 44/200/0.599/6.54e−07 19/77/0.240/7.76e−07

x5(10) 33/149/0.484/6.34e−07 41/187/0.560/7.51e−07 19/77/0.240/8.67e−07

x6(10) 30/135/0.438/9.04e−07 44/200/0.602/6.54e−07 19/77/0.240/7.76e−07

x7(10) 27/124/0.399/9.79e−07 39/179/0.538/5.91e−07 19/77/0.244/5.97e−07

Here we provide the concrete process for completeness. By introducing the auxiliary
variables u ∈ R

n and v ∈ R
n, we can reformulate x as:

x = u − v, u ≥ 0, v ≥ 0,

where ui = max{xi, 0} and vi = max{−xi, 0} for all i = 1, 2, . . . , n. Then,
‖x‖1 = e


n u + e

n v, where en = (1, 1, . . . , 1)
 ∈ R

n. Mathematically, the �1-norm
regularized optimization problem (20) can be equivalently expressed as:

min
u,v

1
2‖A(u − v) − b‖2 + τe


n u + τe

n v,

s.t. u
v = 0, u ≥ 0, v ≥ 0.

However, due to the special structure of the objective function above as analyzed in
[54], we know that the above optimization problem is equivalent to:

min
u,v

1
2‖A(u − v) − b‖2 + τe


n u + τe

n v,

s.t. u ≥ 0, v ≥ 0.
(21)
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Table 5 Numerical results on Problem 4.5

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 20/65/0.044/5.42e−08 28/98/0.061/7.40e−07 26/79/0.051/5.73e−07

x2(1) 27/83/0.055/5.92e−07 31/108/0.068/4.50e−07 27/82/0.053/6.56e−07

x3(1) 26/81/0.053/9.51e−07 31/108/0.068/4.50e−07 26/79/0.051/9.83e−07

x4(1) 19/62/0.040/2.36e−07 34/117/0.073/4.69e−07 28/85/0.055/5.45e−07

x5(1) 25/79/0.052/4.04e−07 31/108/0.067/4.50e−07 26/79/0.051/6.53e−07

x6(1) 19/61/0.040/5.84e−07 34/117/0.073/4.69e−07 27/82/0.053/5.92e−07

x7(1) 23/73/0.048/7.65e−07 35/120/0.075/4.89e−07 27/82/0.053/3.47e−07

x1(5) 22/79/0.248/3.04e−07 31/108/0.331/4.04e−07 28/85/0.268/9.13e−07

x2(5) 22/73/0.233/1.75e−07 31/108/0.332/3.48e−07 28/85/0.270/6.05e−07

x3(5) 23/74/0.240/8.18e−07 31/108/0.329/3.48e−07 31/94/0.299/4.43e−07

x4(5) 25/91/0.283/3.14e−07 31/108/0.330/3.60e−07 29/88/0.280/3.04e−07

x5(5) 23/77/0.245/4.91e−07 31/108/0.330/3.48e−07 28/85/0.271/7.01e−07

x6(5) 22/80/0.250/6.79e−07 31/108/0.332/3.60e−07 29/88/0.280/3.04e−07

x7(5) 30/94/0.306/3.28e−07 31/108/0.330/3.66e−07 28/85/0.270/2.73e−07

x1(10) 21/67/0.489/4.40e−07 31/108/0.734/3.58e−07 29/88/0.628/3.59e−07

x2(10) 24/80/0.575/2.56e−07 33/114/0.778/4.69e−07 28/85/0.603/9.75e−07

x3(10) 21/71/0.508/9.25e−07 33/114/0.778/4.69e−07 29/88/0.626/7.21e−07

x4(10) 19/63/0.454/7.36e−07 33/114/0.777/4.70e−07 29/88/0.625/3.19e−07

x5(10) 22/73/0.524/8.93e−07 33/114/0.777/4.69e−07 28/85/0.607/6.09e−07

x6(10) 19/63/0.454/7.16e−07 33/114/0.779/4.70e−07 29/88/0.626/3.19e−07

x7(10) 21/68/0.494/8.69e−07 33/114/0.778/4.94e−07 30/91/0.649/2.42e−07

Then by expanding the quadratic term ‖A(u − v) − b‖2 in (21) and rearranging
terms in the resulting relation, (21) can be written as the following simple bound
constrained quadratic programming:

min
z∈R2n

1
2z


Hz + c
z,

s.t. z ≥ 0,
(22)

where:

z =
[

u

v

]
, c =

[
τen − A
b

τen + A
b

]
, H =

[
A
A −A
A

−A
A A
A

]
.

It is easy to show that H is positive semi-definite. Then, (22) is a convex quadratic
programming. Hence, it follows from the first-order optimality conditions of (22) that
z is a minimizer of (22) if and only if z is a solution of the following unconstrained
equations:

F(z) = min{z, Hz + c} = 0,

where the “min” is interpreted as componentwise minimum. We then have from
[55, Lemma 3] and [2, Lemma 2.2] that F : R

2n → R
2n is Lipschitz continuous
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Table 6 Numerical results on Problem 4.6

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 1/6/0.005/0.00e+00 1/6/0.004/0.00e+00 1/4/0.003/0.00e+00

x2(1) 1/6/0.003/2.22e−16 1/6/0.003/2.22e−16 9/37/0.015/7.62e−07

x3(1) 1/6/0.003/3.14e−16 1/6/0.003/3.14e−16 10/41/0.018/3.85e−07

x4(1) 12/59/0.024/0.00e+00 10/51/0.022/1.56e−07 14/58/0.021/8.70e−07

x5(1) 10/49/0.019/3.55e−08 10/46/0.018/1.54e−07 13/52/0.018/3.82e−07

x6(1) 12/59/0.024/0.00e+00 10/51/0.021/1.49e−07 14/58/0.021/8.73e−07

x7(1) 12/59/0.024/0.00e+00 10/51/0.021/1.56e−07 14/58/0.021/8.70e−07

x1(5) 1/6/0.018/0.00e+00 1/6/0.017/0.00e+00 1/4/0.014/0.00e+00

x2(5) 1/6/0.011/2.22e−16 1/6/0.010/2.22e−16 9/37/0.063/7.62e−07

x3(5) 1/6/0.011/3.14e−16 1/6/0.010/3.14e−16 10/41/0.071/3.85e−07

x4(5) 12/59/0.117/0.00e+00 10/51/0.104/3.42e−07 15/62/0.111/3.90e−07

x5(5) 10/49/0.090/2.97e−08 10/46/0.089/4.68e−07 13/52/0.091/3.82e−07

x6(5) 12/59/0.118/0.00e+00 10/51/0.104/3.39e−07 15/62/0.111/3.90e−07

x7(5) 12/59/0.117/0.00e+00 10/51/0.104/3.42e−07 15/62/0.111/3.90e−07

x1(10) 1/6/0.037/0.00e+00 1/6/0.036/0.00e+00 1/4/0.029/0.00e+00

x2(10) 1/6/0.023/2.22e−16 1/6/0.022/2.22e−16 9/37/0.147/7.62e−07

x3(10) 1/6/0.023/3.14e−16 1/6/0.022/3.14e−16 10/41/0.163/3.85e−07

x4(10) 12/59/0.271/6.00e−15 10/51/0.236/4.83e−07 15/62/0.260/5.51e−07

x5(10) 10/49/0.211/2.89e−08 10/46/0.204/6.10e−07 13/52/0.211/3.82e−07

x6(10) 12/59/0.272/5.62e−15 10/51/0.236/4.81e−07 15/62/0.259/5.52e−07

x7(10) 12/59/0.273/6.00e−15 10/51/0.237/4.83e−07 15/62/0.260/5.51e−07

and monotone. Thus, we can apply the proposed method to solve the unconstrained
equations above.

5.2 Numerical results

In this subsection, we perform two types of numerical experiments to verify the
effectiveness and efficiency of the proposed method.

In our first experiment, the main goal is to restore a one-dimensional sparse signal
of length n from m observations, where m � n. For fairness, the parameters for our
method HTTCGP are taken as the same as those in Section 4 except for μ = 2; the
parameters of CGD are taken from Section 5.2 of [9]; the parameters of ATTCGP
are chosen from Section 6.2 of [30] with tk = tbk . As usual, the quality of recovery is
measured by the mean of squared error (MSE, for succinctness):

MSE = 1

n
‖x̄ − x‖2,

where x̄ is the restored signal and x is the original sparse one. From the definition
of MSE, the capability of achieving a lower MSE value reflects a better quality of
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Table 7 Numerical results on Problem 4.7

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 2/6/0.002/0.00e+00 13/40/0.007/7.74e−07 36/109/0.018/8.79e−07

x2(1) 2/6/0.002/1.48e−323 10/31/0.008/3.19e−07 25/76/0.018/9.88e−07

x3(1) 2/6/0.002/9.88e−324 10/31/0.009/4.94e−07 26/79/0.022/9.52e−07

x4(1) 7/18/0.004/2.59e−07 13/40/0.007/6.16e−07 35/106/0.017/8.99e−07

x5(1) 3/8/0.002/0.00e+00 10/31/0.005/8.74e−07 28/85/0.014/7.08e−07

x6(1) 7/18/0.004/2.61e−07 13/40/0.007/6.16e−07 35/106/0.017/8.99e−07

x7(1) 7/18/0.004/2.59e−07 13/40/0.007/6.16e−07 35/106/0.017/8.99e−07

x1(5) 2/6/0.007/0.00e+00 14/43/0.033/4.33e−07 38/115/0.086/7.07e−07

x2(5) 2/6/0.007/1.48e−323 10/31/0.026/3.19e−07 25/76/0.062/9.88e−07

x3(5) 2/6/0.007/9.88e−324 10/31/0.028/4.94e−07 26/79/0.069/9.52e−07

x4(5) 7/18/0.018/5.81e−07 14/43/0.033/3.44e−07 37/112/0.084/7.24e−07

x5(5) 3/8/0.008/0.00e+00 10/31/0.024/8.74e−07 28/85/0.064/7.08e−07

x6(5) 7/18/0.018/5.82e−07 14/43/0.032/3.44e−07 37/112/0.084/7.24e−07

x7(5) 7/18/0.018/5.81e−07 14/43/0.032/3.44e−07 37/112/0.083/7.24e−07

x1(10) 2/6/0.016/0.00e+00 14/43/0.096/6.12e−07 39/118/0.263/6.00e−07

x2(10) 2/6/0.016/1.48e−323 10/31/0.070/3.19e−07 25/76/0.173/9.88e−07

x3(10) 2/6/0.016/9.88e−324 10/31/0.073/4.94e−07 26/79/0.184/9.52e−07

x4(10) 7/18/0.050/8.22e−07 14/43/0.095/4.87e−07 38/115/0.257/6.14e−07

x5(10) 3/8/0.022/0.00e+00 10/31/0.068/8.74e−07 28/85/0.189/7.08e−07

x6(10) 7/18/0.050/8.22e−07 14/43/0.095/4.87e−07 38/115/0.257/6.14e−07

x7(10) 7/18/0.050/8.22e−07 14/43/0.095/4.87e−07 38/115/0.256/6.14e−07

the restored signal for one method. Therefore, the lower the asymptotically optimal
MSE value is, the better the method is. All the algorithms start their iterations with
x0 = A
b, and all take the stopping criterion as:

|f (xk) − f (xk−1)|
|f (xk−1)| ≤ 10−5,

where f (x) is defined in (20). The parameter τ defined in (20) for three algorithms
is obtained by the same continuation technique used in [54].

In our experiments, let r denote the number of nonzero entries of x. For a given
triple (m, n, r), we use the following MATLAB codes to generate the test data:

x=zeros(n,1); % initialize the original sparse signal
q=randperm(n);
x(q(1:r))=randn(r,1);
A=randn(m,n);
A = orth(A’)’; % orthonormalize the rows of A
b=A* x+0.001* randn(m,1);
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Table 8 Numerical results on Problem 4.8

Init(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

x1(1) 1/3/0.003/0.00e+00 1/3/0.001/0.00e+00 5/11/0.006/3.62e−09

x2(1) 3/7/0.003/2.22e−16 5/11/0.005/1.23e−14 7/15/0.007/6.85e−08

x3(1) 5/11/0.006/3.79e−13 7/15/0.007/2.49e−15 7/15/0.007/8.49e−07

x4(1) 5/11/0.006/0.00e+00 7/15/0.008/0.00e+00 8/17/0.008/1.91e−07

x5(1) 3/7/0.004/0.00e+00 6/13/0.006/0.00e+00 8/17/0.008/7.58e−09

x6(1) 5/11/0.006/0.00e+00 7/15/0.008/0.00e+00 8/17/0.008/1.91e−07

x7(1) 5/11/0.006/0.00e+00 7/15/0.008/0.00e+00 8/17/0.008/1.91e−07

x1(5) 1/3/0.007/0.00e+00 1/3/0.007/0.00e+00 13/36/0.068/6.69e−07

x2(5) 3/7/0.013/2.22e−16 5/11/0.020/1.23e−14 16/44/0.070/8.86e−07

x3(5) 5/11/0.022/1.04e−13 6/13/0.024/1.22e−15 15/40/0.066/8.75e−07

x4(5) 5/11/0.028/0.00e+00 7/15/0.036/0.00e+00 24/67/0.119/8.27e−07

x5(5) 3/7/0.019/0.00e+00 6/13/0.029/0.00e+00 24/67/0.130/6.28e−07

x6(5) 5/11/0.029/0.00e+00 7/15/0.036/0.00e+00 24/67/0.120/8.28e−07

x7(5) 5/11/0.028/0.00e+00 7/15/0.037/0.00e+00 24/67/0.120/8.27e−07

x1(10) 1/3/0.015/0.00e+00 1/3/0.014/0.00e+00 13/36/0.162/9.21e−07

x2(10) 3/7/0.032/2.22e−16 5/11/0.047/1.23e−14 16/44/0.171/9.20e−07

x3(10) 5/11/0.052/2.37e−14 6/13/0.057/1.22e−15 15/40/0.158/9.69e−07

x4(10) 5/11/0.066/0.00e+00 7/15/0.085/0.00e+00 25/70/0.301/7.45e−07

x5(10) 3/7/0.043/0.00e+00 6/13/0.067/0.00e+00 24/67/0.310/7.53e−07

x6(10) 5/11/0.066/0.00e+00 7/15/0.085/0.00e+00 25/70/0.301/7.45e−07

x7(10) 5/11/0.067/0.00e+00 7/15/0.086/0.00e+00 25/70/0.303/7.45e−07

Fig. 1 Performance profiles on Tcpu
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Fig. 2 Performance profiles on NF

From Fig. 7, we observe that the original signal is almost exactly restored from
the disturbed one by the above-mentioned three algorithms, while our algorithm
outperforms the other two algorithms in terms of MSE, Itr, and Tcpu. To further
demonstrate the performance of our algorithm, we set (m, n, r) = (256i, 1024i, 32i)
with i = 1 : 0.5 : 8. For each i = 1 : 0.5 : 8, we generate 20 random instances
as described above. The detailed numerical results are reported in Table 10, where
we report the average number of iterations (Itr), the average CPU time in second
(Tcpu), and the average MSE (MSE) over the 20 instances. We see from Table 10
that HTTCGP clearly outperforms the other two algorithms in terms of Itr, Tcpu
and MSE. Moreover, ATTCGP is always faster than CGD, and its solution qual-
ity is also better than CGD in terms of MSE. In summary, the reported numerical

Fig. 3 Performance profiles on Itr
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Table 9 Numerical results on Problems 4.1–4.8 with the randomly initial points

P(n) HTTCGP HCGP ATTCGP

Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖ Itr/NF/Tcpu/‖F ∗‖

4.1(1) 10/27/0.009/2.47e−07 12/38/0.010/8.46e−07 34/103/0.027/8.54e−07

4.1(3) 10/27/0.024/5.13e−07 13/40/0.030/4.32e−07 35/106/0.080/8.86e−07

4.1(5) 10/26/0.037/3.20e−07 13/40/0.050/5.57e−07 36/109/0.136/6.86e−07

4.1(8) 10/26/0.082/3.01e−07 13/40/0.103/7.05e−07 36/109/0.285/8.68e−07

4.1(10) 11/28/0.109/3.33e−07 13/40/0.129/7.89e−07 36/109/0.356/9.71e−07

4.2(1) 15/39/0.028/3.26e−07 14/43/0.028/8.33e−07 38/115/0.075/8.31e−07

4.2(3) 15/39/0.081/5.66e−07 15/46/0.089/3.61e−07 39/118/0.227/8.64e−07

4.2(5) 15/39/0.135/7.30e−07 15/46/0.147/4.66e−07 40/121/0.388/6.68e−07

4.2(8) 15/39/0.247/9.24e−07 15/46/0.264/5.89e−07 40/121/0.697/8.46e−07

4.2(10) 16/41/0.326/3.55e−07 15/46/0.329/6.59e−07 40/121/0.871/9.46e−07

4.3(1) 20/73/0.014/4.33e−07 18/62/0.011/5.80e−07 13/40/0.008/9.40e−07

4.3(3) 21/75/0.041/5.94e−07 18/62/0.032/5.11e−07 14/43/0.023/4.09e−07

4.3(5) 21/76/0.069/5.54e−07 19/63/0.054/5.08e−07 14/43/0.038/5.28e−07

4.3(8) 22/80/0.161/5.47e−07 18/61/0.112/3.54e−07 14/43/0.083/6.68e−07

4.3(10) 22/81/0.206/4.28e−07 18/63/0.145/4.31e−07 14/43/0.104/7.47e−07

4.4(1) 57/248/0.067/7.61e−07 60/274/0.070/6.24e−07 76/288/0.077/9.21e−07

4.4(3) 59/256/0.198/8.09e−07 63/285/0.208/6.04e−07 80/304/0.232/9.00e−07

4.4(5) 60/261/0.334/7.78e−07 63/283/0.341/7.87e−07 82/311/0.393/9.27e−07

4.4(8) 61/263/0.697/8.38e−07 63/285/0.692/9.62e−07 84/316/0.812/9.61e−07

4.4(10) 63/270/0.899/8.04e−07 65/293/0.891/6.26e−07 86/323/1.039/8.82e−07

4.5(1) 22/72/0.047/5.74e−07 34/117/0.074/4.72e−07 27/81/0.053/4.76e−07

4.5(3) 27/84/0.165/6.50e−07 31/108/0.201/3.91e−07 27/82/0.158/6.50e−07

4.5(5) 23/83/0.260/5.48e−07 31/108/0.333/3.60e−07 28/85/0.271/5.52e−07

4.5(8) 23/73/0.433/5.04e−07 31/108/0.596/3.47e−07 28/85/0.490/5.45e−07

4.5(10) 23/75/0.550/5.76e−07 33/114/0.786/4.71e−07 28/86/0.620/4.75e−07

4.6(1) 13/63/0.026/3.33e−07 11/54/0.023/2.25e−07 14/58/0.022/8.79e−07

4.6(3) 12/61/0.075/2.10e−07 10/51/0.065/3.72e−07 15/62/0.070/3.03e−07

4.6(5) 13/62/0.127/1.14e−07 10/51/0.108/3.48e−07 15/62/0.115/3.88e−07

4.6(8) 12/60/0.229/1.26e−07 10/51/0.195/4.55e−07 15/62/0.215/4.94e−07

4.6(10) 12/61/0.293/7.50e−08 10/51/0.244/5.00e−07 15/62/0.270/5.55e−07

4.7(1) 7/18/0.004/2.54e−07 13/40/0.007/6.16e−07 35/106/0.019/8.99e−07

4.7(3) 7/18/0.011/4.53e−07 14/43/0.022/2.67e−07 36/109/0.055/9.35e−07

4.7(5) 7/18/0.018/5.69e−07 14/43/0.036/3.45e−07 37/112/0.092/7.24e−07

4.7(8) 7/18/0.042/7.37e−07 14/43/0.082/4.36e−07 37/112/0.215/9.16e−07

4.7(10) 7/18/0.053/8.19e−07 14/43/0.102/4.87e−07 38/115/0.276/6.14e−07

4.8(1) 5/11/0.006/0.00e+00 7/15/0.008/0.00e+00 8/17/0.009/1.89e−07

4.8(3) 5/11/0.017/0.00e+00 7/15/0.022/0.00e+00 23/64/0.074/9.85e−07

4.8(5) 5/11/0.028/0.00e+00 7/15/0.037/0.00e4+00 24/67/0.127/8.27e−07

4.8(8) 5/11/0.053/0.00e+00 7/15/0.069/0.00e+00 25/70/0.254/6.56e−07

4.8(10) 5/11/0.067/0.00e+00 7/15/0.087/0.00e+00 25/70/0.319/7.46e−07
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Fig. 4 Performance profiles on Tcpu

results indicate that the proposed method is promising for recovering a sparse signal
in compressive sensing.

In our second experiment, we concentrate on the image de-blurring problem and
apply the proposed method to restore the original image from its blurred image.
We refer the readers to the monograph [56] for the background of the digital image
restoration problem. In the literature, the quality of restoration is usually measured
by the peak signal-to-noise ratio (PSNR):

PSNR = 10 × log10
V 2

MSE

Fig. 5 Performance profiles on NF
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Fig. 6 Performance profiles on Itr
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Fig. 7 From top to bottom: the original signal, the measurement, and the recovered signals by three
algorithms
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and the structured similarity (SSIM) index which measures the similarity between the
original image and the restored one; see [57] for more details. Here V is the maximum
absolute value of the reconstruction. The MATLAB implementation of the SSIM
index can be obtained at http://www.cns.nyu.edu/∼lcv/ssim/. The larger the PSNR
and SSIM are, the better the corresponding method is. The initialization and stopping
criterion of all three algorithms are exactly the same as the first experiment above.
The parameters for HTTCGP are chosen from the first experiment. For CGD and
ATTCGP, we empirically determine appropriate values for their involved parameters.
The tuned parameters are as follows: ρ = 0.1 for CGD; ς = 0.8 for ATTCGP and
the other parameters are taken from their original papers. Here, the matrix A defined
in (20) is a partial discrete Walsh-Hadamard transform (DWT) matrix. We refer the
readers to [2] and references therein for a discussion about the computational cost
associated with matrix A.

The tested images are Chart.tiff (256 × 256), Barbara.png (512 × 512), Lena.png
(512 × 512) and Man.bmp (1024 × 1024). See Fig. 8 for the original, blurred, and
restored images by three algorithms. We report the corresponding results in Table 11.
According to Table 11, we know that our method is attractive and efficient in terms
of the solution quality. Although the proposed method requires more number of iter-
ations, we observe that its CPU time is usually less than CGD. In a word, all the
numerical results show that our method provides a effective approach for solving
compressed sensing problems.

Table 10 Numerical results for sparse signal restoration

Problem size CGD HTTCGP ATTCGP

(m, n, r) Itr/Tcpu/MSE Itr/Tcpu/MSE Itr/Tcpu/MSE

(256,1024,32) 229/0.10/1.313e−05 67/0.03/6.915e−06 92/0.03/7.007e−06

(384,1536,48) 244/0.18/1.137e−05 64/0.04/6.854e−06 92/0.05/6.993e−06

(512,2048,64) 234/0.31/1.132e−05 61/0.07/7.737e−06 89/0.11/7.829e−06

(640,2560,80) 249/0.60/9.893e−06 62/0.14/8.355e−06 89/0.20/8.683e−06

(768,3072,96) 246/0.86/1.482e−05 63/0.21/1.081e−05 92/0.30/1.081e−05

(896,3584,112) 236/1.15/1.835e−05 63/0.30/9.409e−06 88/0.41/9.609e−06

(1024,4096,128) 241/1.64/1.448e−05 62/0.41/9.971e−06 88/0.57/1.021e−05

(1152,4608,144) 249/1.98/1.078e−05 62/0.48/9.833e−06 88/0.67/9.833e−06

(1280,5120,160) 241/2.37/2.629e−05 64/0.62/1.005e−05 89/0.84/1.056e−05

(1408,5632,176) 244/2.86/1.708e−05 63/0.73/9.862e−06 87/0.99/9.923e−06

(1536,6144,192) 254/4.18/1.147e−05 59/0.97/9.633e−06 90/1.45/9.702e−06

(1664,6656,208) 250/4.06/1.470e−05 60/0.97/9.969e−06 89/1.41/9.698e−06

(1792,7168,224) 256/4.95/1.498e−05 61/1.17/1.124e−05 90/1.70/1.153e−05

(1920,7680,240) 249/5.25/2.763e−05 59/1.24/9.961e−06 87/1.80/1.007e−05

(2048,8192,256) 250/7.37/1.642e−05 62/1.83/1.099e−05 87/2.51/1.113e−05
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Fig. 8 The original images (first row), the blurred images (second row), and the restored images by CGD
(third row), HTTCGP (fourth row), and ATTCGP (last row)
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Table 11 Numerical results for the image de-blurring problem

Image
CGD HTTCGP ATTCGP

Itr/Tcpu/PSNR/SSIM Itr/Tcpu/PSNR/SSIM Itr/Tcpu/PSNR/SSIM

Chart 19/2.39/20.77/0.84 72/2.95/24.95/0.94 13/0.59/20.27/0.82

Barbara 21/11.72/23.98/0.86 51/9.28/24.77/0.90 23/4.03/24.37/0.87

Lena 21/11.41/30.33/0.95 32/5.83/32.00/0.97 15/2.59/30.99/0.96

Man 18/42.05/28.53/0.98 36/30.27/30.74/0.99 35/28.94/30.26/0.99

6 Conclusions

In this paper, we propose a hybrid three-term conjugate gradient projection method
for solving large-scale constrained nonlinear monotone equations, in which the
search direction is close to that of the memoryless BFGS method in the sense of the
univariate minimum problem and has the sufficient descent property and the trust
region property independent of line search technique. With the help of the adaptive
line search technique, the global convergence of the proposed method is established
under some mild conditions. A large number of numerical experiments about the
constrained nonlinear monotone equations indicate that our method not only inher-
its the good properties of the three-term conjugate gradient methods and the hybrid
conjugate gradient methods but also benefits from the adaptive line search technique,
thus greatly improves its computational efficiency compared to the two existing algo-
rithms. Moreover, we apply the proposed method to solve sparse signal restoration
and image de-blurring problems, and compare it with two existing methods. The
numerical results show that our method is practical and promising.
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