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Abstract
We report a new kind of waveform relaxation (WR) method for general semi-linear
fractional sub-diffusion equations, and analyze the upper bound for the iteration
errors. It indicates that the WR method is convergent superlinearly, and the conver-
gence rate is dependent on the order of the time-fractional derivative and the length
of the time interval. In order to accelerate the convergence, we present the windowing
WR method. Then, we elaborate the parallelism based on the discrete window-
ing WR method, and present the corresponding fast evaluation formula. Numerical
experiments are carried out to verify the effectiveness of the theoretic work.

Keywords Waveform relaxation · Fractional sub-diffusion equations ·
Superlinear convergence · Windowing technique · Parallelism

Mathematics Subject Classification (2010) 49M20 · 35K57 · 65M15

1 Introduction

In recent years, fractional differential equations have attracted more and more
researchers’ attention, since they have inherent advantages to describe the various
processes and phenomenon with memory and hereditary properties [1, 2]. Fractional
sub-diffusion equation is one of the most typical equations and it is often used to
model the viscoelastic anomalous diffusion in disordered media [3], nanoprecipitate
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growth in solid solutions [4], diffusion process in magnetic resonance imaging [5],
and so on. Because of the nonlocal properties, the sub-diffusion equations are more
complicated than the classical integer-order differential equations, and it is usu-
ally difficult to obtain the analytic solutions of the sub-diffusion equations. Various
numerical schemes for such equations are emerging [6–8].

The waveform relaxation (WR) method, as an iterative method for time-dependent
equations, produces a series of functions with respect to the time variable, to approx-
imate the solution of the equations. The WR method is firstly proposed for the
simulation of large circuits [9], and it is able to decouple a complicated large system
into a series of weakly coupled small sub-systems, which can be solved simultane-
ously. It has been proved in [10, 11] that the WRmethod has superlinear convergence
for general nonlinear ordinary differential equations (ODEs) on bounded domain,
and is of linear convergence for linear ODEs on unbounded domain. The WR
method has been widely used to solve differential algebra equations (DAEs) [12, 13],
integral-differential-algebraic equations (IDAEs) [14], and delay-differential equa-
tions (DDEs) [15]. To apply the WR method to partial differential equations (PDEs),
one popular method is to decompose spatial domain into several sub-domains, and
solve a set of systems on sub-domains, which is also called SchwarzWRmethod [16–
18]. Moreover, we have also proposed a kind of WR method for reaction diffusion
equations [19], in which we preserve the diffusion term and relax the nonlinear reac-
tion term. This kind of WR method converges quickly, and can also be implemented
in parallel.

The WR method is also an alternative method for fractional differential equations.
In ref. [20], the WR method is used to solve linear and nonlinear time-fractional
ODEs, and proper convergent splitting is constructed. Then, the WR method is
extended to handle fractional DDEs [21] and DAEs [22]. In ref. [23], a multigrid
WR method is proposed for the time-fractional heat equation, and a fast comput-
ing technique is also supplied, based on the Toeplitz-like structure of the coefficient
matrix. Furthermore, Schwarz WR methods for fractional PDEs are also reported
recently [24, 25]. In this paper, we apply the WR method to a kind of fractional sub-
diffusion equation with a nonlinear reaction term at the PDE level, which produces
a series of linear time-fractional PDEs. The WR method has the same advantages as
that for integer-order PDEs in [19], but the convergence is totally different, which
is dependent on the order of the fractional derivative, see Theorem 2.1 for details.
In order to accelerate the convergence, a windowing technique is combined, and the
corresponding discrete windowing WR method is discussed.

The outline of the paper is as follows. In Section 2, we propose the new WR
method for a kind of semi-linear fractional sub-diffusion equations, and analyze the
convergence. Combing the windowing technique, we introduce the windowing WR
method in Section 3. In Section 4, the discrete windowingWRmethod is constructed,
and the convergence and the parallelism are presented, then the fast evaluation
formula for the windowing WR method is provided. In Section 5, two numerical
experiments are given to verify the effectiveness of the theoretic results. Finally,
conclusions are attached in the last section.
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2 Waveform relaxationmethod and convergence

We consider the following fractional-order initial value problem satisfying homoge-
neous boundary conditions
⎧
⎪⎨

⎪⎩

C
0Dα

t u(x, t) = Kuxx(x, t) + f (x, t, u(x, t)), 0 < x < L, 0 < t < T,

u(x, 0) = ϕ(x), 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T ,

(1)

where the positive constant K is the transport-related coefficient, f (x, t, u(x, t)) is
a given nonlinear source/sink term, ϕ(x) is a prescribed initial value, and C

0Dα
t u(x, t)

is the Caputo fractional derivative of order α (0 < α < 1) defined by [1]

C
0Dα

t u(x, t) := 1

�(1 − α)

∫ t

0

∂u(x, s)

∂s

ds

(t − s)α
, (2)

where �(·) denotes the Gamma function. It can be seen that system (1) involves a
nonlinear fractional sub-diffusion equation.

2.1 Construction of theWRmethod

A typical iterative scheme of the WR method for system (1) is

⎧
⎪⎪⎨

⎪⎪⎩

C
0Dα

t u(k+1)(x, t)=Ku(k+1)
xx (x, t) + F(x, t, u(k+1)(x, t), u(k)(x, t)), 0<x <L, 0<t <T,

u(k+1)(x, 0) = ϕ(x), 0 ≤ x ≤ L,

u(k+1)(0, t) = u(k+1)(L, t) = 0, 0 ≤ t ≤ T ,

for k = 0, 1, . . ., where the splitting function F(x, t, u(x, t), v(x, t)) determines
the type of WR algorithm, and it always satisfies F(x, t, u(x, t), u(x, t)) =
f (x, t, u(x, t)). In this paper, we choose F(x, t, u(k+1)(x, t), u(k)(x, t)) =
f (x, t, u(k)(x, t)) for simplicity, i.e., the iterative scheme can be written as
⎧
⎪⎪⎨

⎪⎪⎩

C
0Dα

t u(k+1)(x, t) = Ku(k+1)
xx (x, t) + f (x, t, u(k)(x, t)), 0<x <L, 0<t <T,

u(k+1)(x, 0) = ϕ(x), 0 ≤ x ≤ L,

u(k+1)(0, t) = u(k+1)(L, t) = 0, 0 ≤ t ≤ T ,

(3)
for k = 0, 1, . . .. The initial guess of the iterations is often chosen as u(0)(x, t) ≡
ϕ(x), for 0 ≤ t ≤ T . The special WR algorithm (3) is also called Picard relaxation
algorithm. We can see that WR algorithm (3) leads to a series of linear systems.

For any fixed iteration index k, by the separation of variables, the solution of
system (3) has the form

u(k)(x, t) =
∞∑

n=1

a(k)
n (t) sin

nπx

L
, (x, t) ∈ [0, L] × [0, T ], (4)
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where the coefficients a
(k)
n , for n = 1, 2, . . ., are to be determined. We further

suppose

f (x, t, u(k)(x, t)) =
∞∑

n=1

fn(t) sin
nπx

L
, ϕ(x) =

∞∑

n=1

ϕn sin
nπx

L
, (5)

with

fn(t) = 2

L

∫ L

0
f (x, t, u(k)(x, t)) sin

nπx

L
dx, ϕn = 2

L

∫ L

0
ϕ(x) sin

nπx

L
dx.

Substituting expressions (4) and (5) into system (3), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞∑

n=1

[
C
0Dα

t a(k+1)
n (t) + K

(nπ

L

)2
a(k+1)
n (t)

]

sin
nπx

L
=

∞∑

n=1

fn(t) sin
nπx

L
,

∞∑

n=1

a(k+1)
n (0) sin

nπx

L
=

∞∑

n=1

ϕn sin
nπx

L
.

Comparing the coefficients of the basis functions {sin nπx
L

}∞n=1, we can obtain

⎧
⎨

⎩

C
0Dα

t a(k+1)
n (t) + K

(nπ

L

)2
a(k+1)
n (t) = fn(t),

a(k+1)
n (0) = ϕn.

(6)

According to Theorem 5.15 of ref. [26], we get the solution of (6)

a(k+1)
n (t) = ϕnEα

[

−K
(nπ

L

)2
tα
]

+
∫ t

0
(t−s)α−1Eα,α

[

−K
(nπ

L

)2
(t−s)α

]
2

L

∫ L

0
f (ξ, s, u(k)(ξ, s)) sin

nπξ

L
dξds,

where Eα,β(z) is the Mittag-Leffler function, defined by [26]

Eα,β(z) :=
∞∑

i=0

zi

�(iα + β)
, (α, β ∈ C, R(α) > 0),

and

Eα(z) = Eα,1(z) =
∞∑

i=0

zi

�(iα + 1)
.
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Then, the solution of system (3) has the form

u(k+1)(x, t) =
∞∑

n=1

a(k+1)
n (t) sin

nπx

L

= 2

L

∞∑

n=1

∫ L

0
ϕ(x) sin

nπx

L
dxEα

[

−K
(nπ

L

)2
tα
]

sin
nπx

L

+
∫ t

0

( ∞∑

n=1

2

L

∫ L

0
f (ξ, s, u(k)(ξ, s)) sin

nπξ

L
dξ(t − s)α−1

× Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπx

L

)

ds.

(7)

Denote

an(t) := 2

L

∫ L

0
ϕ(x) sin

nπx

L
dxEα

[

−K
(nπ

L

)2
tα
]

+
∫ t

0
(t − s)α−1Eα,α

[

−K
(nπ

L

)2
(t − s)α

]
2

L

∫ L

0
f (ξ, s, u(ξ, s))

sin
nπξ

L
dξds,

we can verify that the function
∞∑

n=1
an(t) sin nπx

L
satisfies system (1).

2.2 Convergence analysis

In this part, we present the convergence of the iterative sequence by WR algorithm
(3). Before that, we still need a preliminary definition and lemmata as follows.

For ϕ(t) ∈ C([0, T ],R), we define an operator

(Aϕ)(t) =
∫ t

0
λ(t − s)α−1ϕ(s)ds, (8)

where λ is s positive constant. Then, we have

Lemma 2.1 For any positive integer k,

|(Akϕ)(t)| ≤ (λ�(α)tα)k

�(kα + 1)
max
0≤s≤t

|ϕ(s)|, t ∈ [0, T ], (9)

where (Akϕ)(t) = (A(Ak−1ϕ))(t).

Proof We prove the result by induction. For k = 1, we have

|(Aϕ)(t)| ≤
∫ t

0
λ(t − s)α−1ds max

0≤s≤t
|ϕ(s)| = λtα

α
max
0≤s≤t

|ϕ(s)|

= λ�(α)tα

�(α + 1)
max
0≤s≤t

|ϕ(s)|.
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Suppose that inequality (9) holds for any fixed index k, then

|(Ak+1ϕ)(t)| ≤
∫ t

0
λ(t − s)α−1|(Akϕ)(s)|ds

≤ λ

∫ t

0
(t − s)α−1 (λ�(α)sα)k

�(kα + 1)
ds max

0≤s≤t
|ϕ(s)|

= λk+1�k(α)t(k+1)α

�(kα + 1)
B(α, kα + 1) max

0≤s≤t
|ϕ(s)|

= λk+1�k(α)t(k+1)α

�(kα + 1)

�(α)�(kα + 1)

�(kα + α + 1)
max
0≤s≤t

|ϕ(s)|

= (λ�(α)tα)k+1

�((k + 1)α + 1)
max
0≤s≤t

|ϕ(s)|,

where B(·, ·) denotes the Beta function. The conclusion results.

Lemma 2.2 For any t ∈ [0, T ], α ∈ (0, 1), and λ > 0, the series

∞∑

n=1

Eα,α(−λn2tα)

converges.

Proof Since function Eα,α(−λn2tα) is completely monotonous with respect to n

[27], for any λ, t > 0, the series
∑∞

n=1 Eα,α(−λn2tα) has the same convergence as
the integration

∫∞
1 Eα,α(−λtαx2)dx.

To evaluate the integration, we consider
∫ y

1 Eα,α(−λtαx2)dx for y ≥ 1, then we
have
∫ y

1
Eα,α(−λtαx2)dx ≤

∫ y

1
Eα,α(−λtαx)dx =

∫ y

1

∞∑

i=0

(−λtα)ixi

�(iα + α)
dx

=
∞∑

i=0

(−λtα)i(yi+1 − 1)

(i + 1)�(iα + α)
=

∞∑

i=1

α(−λtα)i(yi − 1)

(−λtα)iα�(iα)

= α

−λtα

∞∑

i=0

(−λtα)i(yi −1)

�(iα + 1)
= α

λtα
[Eα(−λtα)−Eα(−λtαy)].

For any y ≥ 1, Eα(−λtαy) converges, and then
∫∞
1 Eα,α(−λtαx2)dx converges.

The conclusion results.

The convergence of the WR algorithm (3) can be found in the following theorem.

Theorem 2.1 If the nonlinear function f (x, t, u) has a continuous first-order deriva-
tive with respect to u, then the iterative sequence of functions {u(k)(x, t)} for k =
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1, 2, . . ., generated by the WR algorithm (3) converges to the true solution u(x, t) of
system (1), and satisfies

max
0≤x≤l,0≤t≤T

|u(k)(x, t)−u(x, t)| ≤ (M̄�(α)T α)k

�(kα + 1)
max

0≤x≤l,0≤t≤T
|u(0)(x, t)−u(x, t)|,

(10)
where M̄ is a positive constant.

Proof We define ε(k)(x, t) = u(k)(x, t) − u(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ T , which
satisfies

⎧
⎪⎪⎨

⎪⎪⎩

C
0Dα

t ε(k+1)(x, t)=Kε(k+1)
xx (x, t)+f (x, t, u(k)(x, t))−f (x, t, u(x, t)), 0<x <L, 0<t <T,

ε(k+1)(x, 0) = 0, 0 ≤ x ≤ L,

ε(k+1)(0, t) = ε(k+1)(L, t) = 0, 0 ≤ t ≤ T ,

(11)

By the separation of variables, the solution of system (11) is

ε(k+1)(x, t) =
∫ t

0

( ∞∑

n=1

2

L

∫ L

0
[f (ξ, s, u(k)(ξ, s)) − f (ξ, s, u(ξ, s))] sin nπξ

L
dξ

×(t − s)α−1Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπx

L

)

ds

=
∫ t

0

( ∞∑

n=1

2

L

∫ L

0
f ′(ξ, s, u(k)∗ (ξ, s))ε(k)(ξ, s) sin

nπξ

L
dξ

×(t − s)α−1Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπx

L

)

ds.

where u
(k)∗ ∈ [min(u(k)(x, t), u(x, t)),max(u(k)(x, t), u(x, t))].

We notice that for any 0 ≤ s ≤ t ≤ T ,

∞∑

n=1

2

L

∫ L

0
f ′(ξ, s, u(i)∗ (ξ, s))ε(i)(ξ, s) sin

nπξ

L
dξ sin

nπx

L

= f ′(x, s, u(i)∗ (x, s))ε(i)(x, s), (12)

and the function Eα,α

[
−K

(
nπ
L

)2
(t − s)α

]
is bounded and monotonous with respect

to n [27]. According to Abel’s test for uniform convergence, the series of functions

∞∑

n=1

2

L

∫ L

0
f ′(ξ, s, u(k)∗ (ξ, s))ε(k)(ξ, s) sin

nπξ

L
dξEα,α

[

−K
(nπ

L

)2
(t−s)α

]

sin
nπx

L
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converges uniformly for x ∈ [0, l] and s ∈ [0, t]. Denote

η(x, t, s) =
∞∑

n=1

2

L

∫ L

0
f ′(ξ, s, u(k)∗ (ξ, s))ε(k)(ξ, s) sin

nπξ

L
dξ

×Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπx

L
,

then we have

ε(k+1)(x, t) =
∫ t

0
(t − s)α−1η(x, t, s)ds.

For any fixed t ∈ (0, T ], we suppose that there is a s0 ∈ (0, t), such that

min
s0≤s≤t

max
0≤x≤L

|f ′(ξ, s, u(i)∗ (x, s))ε(i)(x, s)| > 0,

and denote ε0 = 1
�(α)

min
s0≤s≤t

max
0≤x≤L

|f ′(ξ, s, u
(i)∗ (x, s))ε(i)(x, s)|. From (12) we know

that,

η(x, t, t) = 1

�(α)
f ′(x, t, u(i)∗ (x, t))ε(i)(x, t),

so there exist a constant δ1 ∈ (0, t), such that for any s ∈ (t − δ1, t),
∣
∣
∣
∣η(x, t, s) − 1

�(α)
f ′(x, t, u(i)∗ (x, t))ε(i)(x, t)

∣
∣
∣
∣ <

ε0

2
,

and there exist a constant δ2 ∈ (0, t), such that for any s ∈ (t − δ2, t),
∣
∣
∣
∣

1

�(α)
f ′(x, s, u(i)∗ (x, s))ε(i)(x, s) − 1

�(α)
f ′(x, t, u(i)∗ (x, t))ε(i)(x, t)

∣
∣
∣
∣ <

ε0

2
.

Let s1 = max{t − δ1, t − δ2, s0}. For any s ∈ (s1, t), we have
∣
∣
∣
∣η(x, t, s) − 1

�(α)
f ′(x, s, u(i)∗ (x, s))ε(i)(x, s)

∣
∣
∣
∣

≤
∣
∣
∣
∣η(x, t, s) − 1

�(α)
f ′(x, t, u(i)∗ (x, t))ε(i)(x, t)

∣
∣
∣
∣

+
∣
∣
∣
∣

1

�(α)
f ′(x, s, u(i)∗ (x, s))ε(i)(x, s) − 1

�(α)
f ′(x, t, u(i)∗ (x, t))ε(i)(x, t)

∣
∣
∣
∣

≤ε0.

Therefore,

|η(x, t, s)| ≤ 1

�(α)
|f ′(x, s, u(i)∗ (x, s))ε(i)(x, s)| + ε0,

and

max
0≤x≤L

|η(x, t, s)| ≤ 1

�(α)
max
0≤x≤L

|f ′(x, s, u(i)∗ (x, s))ε(i)(x, s)| + ε0

≤ 2

�(α)
max
0≤x≤L

|f ′(x, s, u(i)∗ (x, s))ε(i)(x, s)|

≤ 2M

�(α)
max
0≤x≤L

|ε(i)(x, s)|,

(13)
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where M is a uniform upper bound of |f ′(x, t, u(x, t))|, for 0 ≤ x ≤ L and
0 ≤ t ≤ T .

For s ∈ [0, s1], we consider the following series of functions,

G(x, ξ, t − s) = 2

L

∞∑

n=1

Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπξ

L
sin

nπx

L
. (14)

For any x, ξ ∈ [0, L], we have
∣
∣
∣
∣Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπξ

L
sin

nπx

L

∣
∣
∣
∣ ≤ Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

.

Together with Lemma 2.2, series of functions (14) is convergent uniformly for x, ξ ∈
[0, L], and 0 ≤ s ≤ t ≤ s1. We denote by M1 an upper bound of the series of
functions (14), then

η(x, t, s) =
∫ L

0
G(x, ξ, t − s)f ′(ξ, s, u(k)∗ (ξ, s))ε(k)(ξ, s)dξ .

and
max
0≤x≤L

|η(x, t, s)| ≤ LM1M max
0≤x≤L

|ε(k)(x, s)|. (15)

We choose M̄ = max{ 2M
�(α)

, LM1M}. By the inequalities (13) and (15), we obtain
max
0≤x≤L

|η(x, t, s)| ≤ M̄ max
0≤x≤L

|ε(k)(x, s)|, s ∈ [0, t],
and

max
0≤x≤L

|ε(k+1)(x, t)| ≤
∫ t

0
(t − s)α−1 max

0≤x≤L
|η(x, t, s)|ds

≤
∫ t

0
M̄(t − s)α−1 max

0≤x≤L
|ε(k)(x, s)|ds.

According to Lemma 2.1, we can obtain

max
0≤x≤L

|ε(k)(x, t)| ≤ (M̄�(α)tα)k

�(kα + 1)
max

0≤x≤L,0≤s≤t
|ε(0)(x, s)|, t ∈ [0, T ],

which leads to

max
0≤x≤L,0≤t≤T

|ε(k)(x, t)| ≤ (M̄�(α)T α)k

�(kα + 1)
max

0≤x≤L,0≤t≤T
|ε(0)(x, t)|.

This completes the proof.

Remark For the convergence rate shown in estimation (10), we denote vk =
(M̄�(α)T α)k

�(kα+1) . Then, we compute

r = lim
k→∞

vk+1

vk

= M̄�(α)T α lim
k→∞

�(kα)

�(kα + α)
.

Based on Stirling’s formula of the Gamma function, we get r ∼ O(k−α), which
means that WR algorithm (3) is convergent superlinearly to the true solution of
system (1).
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3 WindowingWRmethod

We can see from Theorem 2.1 that the upper bound of the WR iteration is related to
the length of the time interval. Therefore, the windowing technique is a proper way to
reduce the iteration error [28]. In this section, we combine the windowing technique
with the WR method introduced in the last section to establish an improved WR
method, say the windowing WR method.

3.1 Construction of the windowingWRmethod

For the fractional sub-diffusion equation (1), we first divide the time interval [0, T ]
into N windows, with

0 = T0 < T1 < . . . < TN = T .

We denote the i-th window by �i = [Ti, Ti+1], with the length Hi = Ti+1 − Ti ,
for i = 0, 1, . . . , N − 1, and the maximum length of the windows is H =
max0≤i≤N−1{Hi}.

We denote by u
(k)
i (x, t) the k-th waveform on the i-th window �i , for k =

0, 1, . . . , ki , where ki is the maximum number of WR iterations on �i . Then, the
windowing WR method for system (1) on �i is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
Ti
Dα

t u
(k+1)
i (x, t) +

i−1∑

j=0

1

�(1 − α)

∫ Tj+1

Tj

(t − s)−α ∂

∂s
u

(kj )

j (x, s)ds

= K
∂2

∂x2
u

(k+1)
i (x, t) + f (x, t, u

(k)
i (x, t)), 0 < x < L, Ti < t < Ti+1,

u
(k+1)
i (x, Ti) = u

(ki−1)

i−1 (x, Ti), 0 ≤ x ≤ L,

u
(k+1)
i (0, t) = u

(k+1)
i (L, t) = 0, Ti ≤ t ≤ Ti+1,

(16)
for k = 0, 1, . . . , ki − 1, and i = 0, 1, . . . , N − 1. We define u

(k−1)

−1 (x, 0) = ϕ(x)

and choose u
(0)
i (x, t) ≡ u

(ki−1)

i−1 (x, Ti) as the initial guess on �i . We can observe that,

when solving the waveforms u
(k)
i on �i , the approximations of the solution on the

previous windows are already known.
For t ∈ [Ti, Ti+1] and any fixed k, we denote

f̄i (x, t) = f (x, t, u
(k)
i (x, t)) −

i−1∑

j=0

1

�(1 − α)

∫ Tj+1

Tj

(t − s)−α ∂

∂s
u

(kj )

j (x, s)ds.

Similar to the method shown in sub-section 2.1, we have the solution of system (16)
with the form

u
(k+1)
i (x, t) =

∞∑

n=1

2

L

∫ L

0
u

(ki−1)

i−1 (x, Ti ) sin
nπx

L
dxEα

[

−K
(nπ

L

)2
(t − Ti)

α

]

sin
nπx

L

+
∫ t

Ti

( ∞∑

n=1

2

L

∫ L

0
f̄i (ξ, s) sin

nπξ

L
dξ(t − s)α−1Eα,α

[

−K
(nπ

L

)2
(t − s)α

]

sin
nπx

L

)

ds.
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3.2 Convergence of the windowingWRmethod

Before giving the convergence of the windowing WR method (16), we first investi-
gate an operator and its property.

For ϕ(t) ∈ C([0, T ],R), we define an operator

(Bϕ)(t) = B0 +
∫ t

Ti

λ(t − s)α−1ϕ(s)ds, t ∈ [Ti, Ti+1], (17)

where B0 and λ are positive constants. Then, we have

Lemma 3.1 For any positive integer k, we have

|(Bkϕ)(t)| ≤ B0

k−1∑

j=0

(λ�(α)(t − Ti)
α)j

�(jα + 1)
+ (λ�(α)(t − Ti)

α)k

�(kα + 1)
max

Ti≤s≤t
|ϕ(s)|, (18)

where (Bkϕ)(t) = (B(Bk−1ϕ))(t).

Proof We prove the result by induction. For k = 1, we have

|(Bϕ)(t)|≤B0+
∫ t

Ti

λ(t−s)α−1ds max
Ti≤s≤t

|ϕ(s)|=B0+λ�(α)(t − Ti)
α

�(α + 1)
max

Ti≤s≤t
|ϕ(s)|.

Suppose that inequality (18) holds for any fixed index k, then

|(Bk+1ϕ)(t)|

≤ B0 + λ

∫ t

Ti

(t − s)α−1

⎡

⎣B0

k−1∑

j=0

(λ�(α)(s − Ti)
α)j

�(jα + 1)
+ (λ�(α)(s − Ti)

α)k

�(kα + 1)
max

Ti≤μ≤s
|ϕ(μ)|

⎤

⎦ ds

= B0 + B0

k−1∑

j=0

λj+1�j (α)

�(jα + 1)
(t − Ti)

(j+1)αB(α, jα + 1) + λk+1�k(α)

�(kα + 1)
(t−Ti)

(k+1)αB(α, kα + 1)

max
Ti≤s≤t

|ϕ(s)|,

where we have used the equality
∫ t

Ti

(t − s)α−1(s − Ti)
jαds = (t − Ti)

(j+1)αB(α, jα + 1), j = 0, 1, . . . , k.

By the properties of the Beta function B(α, jα + 1), we further have

|(Bk+1ϕ)(t)|

≤ B0 + B0

k−1∑

j=0

λj+1�j+1(α)

�((j + 1)α + 1)
(t − Ti)

(j+1)α + λk+1�k+1(α)

�((k + 1)α + 1)
(t − Ti)

(k+1)α

max
Ti≤s≤t

|ϕ(s)|

= B0

k∑

j=0

(λ�(α)(t − Ti)
α)j

�(jα + 1)
+ (λ�(α)(t − Ti)

α)k+1

�((k + 1)α + 1)
max

Ti≤s≤t
|ϕ(s)|.
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The conclusion results.

Then, the convergence of the windowing WR method for system (1) can be found
in the following theorem.

Theorem 3.1 If the nonlinear function f (x, t, u) has a continuous first-order
derivative with respect to u, then the iteration error between the approximation
{u(ki )

i (x, t), i = 0, 1, . . . , N − 1}, generated by the windowing WR method (16), and
the true solution {ui(x, t), i = 0, 1, . . . , N −1} of system (1) restricted in �i , can be
bounded by

max
Ti≤t≤Ti+1

max
0≤x≤L

|u(ki )
i (x, t) − ui(x, t)|

≤
i∑

j=0


̄j

⎛

⎝
i∏

l=j+1

�lϒ̄l

⎞

⎠ max
Tj ≤t≤Tj+1

max
0≤x≤L

|u(0)
i (x, t) − ui(x, t)|, (19)

where

�i = Mi

(

1 + 2

�(1 − α)

π

sin(πα)

)

, ϒ̄i =
ki−1∑

j=0

(MMi�(α)Hα
i )j

�(jα + 1)
,


̄i = (MMi�(α)Hα
i )ki

�(kiα + 1)
,

with M , M̄ positive constants, for i = 0, 1, . . . , N − 1.

Proof We define ε
(k)
i (x, t) = u

(k)
i (x, t)−ui(x, t), 0 ≤ x ≤ L, Ti ≤ t ≤ Ti+1, which

satisfies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
Ti
Dα

t ε
(k+1)
i (x, t) +

i−1∑

j=0

1

�(1 − α)

∫ Tj+1

Tj

(t − s)−α ∂

∂s
ε
(kj )

j (x, s)ds

= K
∂2

∂x2
ε
(k+1)
i (x, t) + f (x, t, u

(k)
i (x, t)) − f (x, t, ui(x, t)), 0 < x < L,

Ti < t < Ti+1,

ε
(k+1)
i (x, Ti) = ε

(ki−1)

i−1 (x, Ti), 0 ≤ x ≤ L,

ε
(k+1)
i (0, t) = ε

(k+1)
i (L, t) = 0, Ti ≤ t ≤ Ti+1.

(20)
The solution of system (20) has the form

ε
(k+1)
i (x, t)=

∞∑

n=1

2

L

∫ L

0
ε
(ki−1)

i−1 (ξ, Ti) sin
nπξ

L
dξEα

[

−K
(nπ

L

)2
(t − Ti)

α

]

sin
nπx

L

+
∫ t

Ti

( ∞∑

n=1

2

L

∫ L

0
gi(ξ, s) sin

nπξ

L
dξ(t−s)α−1Eα,α

[

−K
(nπ

L

)2
(t−s)α

]

sin
nπx

L

)

ds.

(21)
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where

gi(x, t) = f (x, t, u
(k)
i (x, t)) − f (x, t, ui(x, t))

−
i−1∑

j=0

1

�(1 − α)

∫ Tj+1

Tj

(t − s)−α ∂

∂s
ε
(kj )

j (x, s)ds.

Similar to Theorem 2.1, there exist constants Mi , for i = 0, 1, . . . , N − 1, such that

max
0≤x≤L

|ε(k+1)
i (x, t)| ≤ Mi max

0≤x≤L
|ε(ki−1)

i−1 (x, Ti)| + Mi

∫ t

Ti

(t − s)α−1

max
0≤x≤L

|gi(x, s)|ds, t ∈ [Ti, Ti+1]. (22)

We might as well suppose Mi ≥ 1, for i = 0, 1, . . . , N − 1.

Using integration by parts and the property ε
(kj )

j (x, Tj+1) = ε
(kj+1)

j+1 (x, Tj+1), we
have

gi(x, t) =f ′(x, t, u
(k)
i,∗ (x, t))ε

(k)
i (x, t) + α

�(1 − α)

i−1∑

j=0

∫ Tj+1

Tj

(t − s)−α−1ε
(kj )

j

(x, s)ds

− 1

�(1 − α)

i−1∑

j=0

[
(t − Tj+1)

−αε
(kj )

j (x, Tj+1) − (t − Tj )
−αε

(kj )

j (x, Tj )
]

=f ′(x, t, u
(k)
i,∗ (x, t))ε

(k)
i (x, t) − 1

�(1 − α)
(t − Ti)

−αε
(ki−1)

i−1 (x, Ti)

+ α

�(1 − α)

i−1∑

j=0

∫ Tj+1

Tj

(t − s)−α−1ε
(kj )

j (x, s)ds,

where u
(k)
i,∗ ∈

[
min(u(k)

i (x, t), ui(x, t)),max(u(k)
i (x, t), ui(x, t))

]
. Then,

max
0≤x≤L

|gi(x, t)| ≤M max
0≤x≤L

|ε(k)
i (x, t)| + 1

�(1 − α)
(t − Ti)

−α max
0≤x≤L

|ε(ki−1)

i−1 (x, Ti)|

+ 1

�(1 − α)
(t − Ti)

−α max
0≤j≤i−1

max
Tj ≤t≤Tj+1

max
0≤x≤L

|ε(kj )

j (x, t)|,
(23)
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where M is an upper bound of |f ′(x, t, u
(k)
i,∗ (x, t))|. Taking inequality (23) into

inequality (22), we get

max
0≤x≤L

|ε(k+1)
i (x, t)| ≤Mi max

0≤x≤L
|ε(ki−1)

i−1 (x, Ti)| + MMi

∫ t

Ti

(t − s)α−1 max
0≤x≤L

|ε(k)
i

(x, s)|ds

+ Mi

�(1 − α)

∫ t

Ti

(t − s)α−1(s − Ti)
−αds max

0≤x≤L
|ε(ki−1)

i−1 (x, Ti)|

+ Mi

�(1 − α)

∫ t

Ti

(t − s)α−1(s − Ti)
−αds max

0≤j≤i−1
max

Tj ≤t≤Tj+1

max
0≤x≤L

|ε(kj )

j (x, t)|

≤Ci max
0≤x≤L

|ε(ki−1)

i−1 (x, Ti)| + M̄i max
0≤j≤i−1

max
Tj ≤t≤Tj+1

max
0≤x≤L

|ε(kj )

j (x, t)|

+ MMi

∫ t

Ti

(t − s)α−1 max
0≤x≤L

|ε(k)
i (x, s)|ds,

where M̄i = Mi

�(1−α)
B(α, 1 − α) = Mi

�(1−α)
π

sin(πα)
, and Ci = Mi + M̄i . After ki

iterations of WR on [Ti, Ti+1], we have by Lemma 3.1 that

max
0≤x≤L

|ε(ki )
i (x, t)|

≤
[

Ci max
0≤x≤L

|ε(ki−1)

i−1 (x, Ti)| + M̄i max
0≤j≤i−1

max
Tj ≤t≤Tj+1

max
0≤x≤L

|ε(kj )

j (x, t)|
]

ki−1∑

j=0

(MMi�(α)(t − Ti)
α)j

�(jα + 1)

+ (MMi�(α)(t − Ti)
α)ki

�(kiα + 1)
max

Ti≤s≤t
max
0≤x≤L

|ε(0)
i (x, s)|,

for t ∈ [Ti, Ti+1]. We notice that

max
0≤x≤L

|ε(ki−1)

i−1 (x, Ti)| ≤ max
0≤j≤i−1

max
Tj ≤t≤Tj+1

max
0≤x≤L

|ε(kj )

j (x, t)|.

For simplicity, we further denote

ϒi(t) =
ki−1∑

j=0

(MMi�(α)(t − Ti)
α)j

�(jα + 1)
,


i(t) = (MMi�(α)(t − Ti)
α)ki

�(kiα + 1)
, t ∈ [Ti, Ti+1].
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Then, we have

max
0≤x≤L

|ε(ki )
i (x, t)| ≤ �iϒi(t) max

0≤j≤i−1
max

Tj ≤t≤Tj+1
max
0≤x≤L

|ε(kj )

j (x, t)|

+
i(t) max
Ti≤s≤t

max
0≤x≤L

|ε(0)
i (x, s)|. (24)

Since �i ≥ 1, and ϒi(t) ≥ 1, we can deduce from inequality (24) that the iteration
errors accumulate along the windows line, i.e.,

max
0≤j≤i−1

max
Tj ≤t≤Tj+1

max
0≤x≤L

|ε(kj )

j (x, t)| ≤ max
Ti−1≤t≤Ti

max
0≤x≤L

|ε(ki−1)

i−1 (x, t)|,

which leads to

max
0≤x≤L

|ε(ki )
i (x, t)| ≤ �iϒi(t) max

Ti−1≤t≤Ti

max
0≤x≤L

|ε(ki−1)

i−1 (x, t)|

+
i(t) max
Ti≤s≤t

max
0≤x≤L

|ε(0)
i (x, s)|,

and further we have

max
Ti≤t≤Ti+1

max
0≤x≤L

|ε(ki )
i (x, t)| ≤ �iϒ̄i max

Ti−1≤t≤Ti

max
0≤x≤L

|ε(ki−1)

i−1 (x, t)|

+
̄i max
Ti≤t≤Ti+1

max
0≤x≤L

|ε(0)
i (x, t)|.

By recurrence, we get

max
Ti≤t≤Ti+1

max
0≤x≤L

|ε(ki )
i (x, t)| ≤

i∑

j=0


̄j

⎛

⎝
i∏

l=j+1

�lϒ̄l

⎞

⎠ max
Tj ≤t≤Tj+1

max
0≤x≤L

|ε(0)
j (x, t)|,

The conclusion results.

4 Discrete windowingWRmethod

In fact, the standard WR method introduced in Section 2 is a special case of the
windowing WR method. In this section, we only consider the discrete version of the
windowing WR method.

4.1 Construction of the discrete windowingWRmethod

For simplicity, we suppose that all the time windows have the same lengths, i.e.,
Hi = H , for i = 0, 1, . . . , N−1. LetN0 andNs be two positive integers. We partition
the spatial domain [0, L] by a uniform mesh, xl = lh, for l = 0, 1, . . . , Ns , with
h = L

Ns
, and further partition the time window �i by a uniform mesh ti,n = Ti + nτ ,

for n = 0, 1, . . . , N0, with τ = H
N0

, which satisfy ti,N0 = Ti+1.
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At any mesh point (xl, ti,n), the windowing WR method (16) is

C
Ti
Dα

ti,n
u

(k+1)
i (xl, ti,n) +

i−1∑

j=0

1

�(1 − α)

∫ Tj+1

Tj

(ti,n − s)−α ∂

∂s
u

(kj )

j (xl, s)ds

= K
∂2

∂x2
u

(k+1)
i (xl, ti,n) + f (xl, ti,n, u

(k)
i (xl, ti,n)),

(25)

for l = 1, 2, . . . , Ns − 1, i = 0, 1, . . . , N − 1, and n = 0, 1, . . . , N0. We

denote by
[
u

(k)
i

]p

l
the approximation of u

(k)
i (xl, ti,p), and [ui]pl the approximation

of ui(xl, ti,p). We approximate the term ∂2

∂x2
u

(k+1)
i (xl, ti,n) in the right-hand side of

(25) by the classical finite difference operation δ2x

[
u

(k+1)
i

]n

l
, and adopt the idea of

L1 scheme [29] to approximate the terms in the left-hand side of (25). Then, we have

C
Ti
Dα

ti,n
u

(k+1)
i (xl , ti,n) = 1

�(1 − α)

n−1∑

p=0

∫ ti,p+1

ti,p

(ti,n − s)−α ∂

∂s
u

(k+1)
i (xl, s)ds

≈ 1

�(1 − α)

n−1∑

p=0

1

τ

([
u

(k+1)
i

]p+1

l
−
[
u

(k+1)
i

]p

l

)∫ ti,p+1

ti,p

(ti,n − s)−αds

= τ−α

�(2−α)

⎛

⎝a1

[
u

(k+1)
i

]n

l
−

n−1∑

p=1

(an−p−an−p+1)
[
u

(k+1)
i

]p

l
−an

[
u

(k+1)
i

]0

l

⎞

⎠

:= D
α
τ

[
u

(k+1)
i

]n

l
,

where
aq = q1−α − (q − 1)1−α, q ≥ 1.

For each term in the summation in the left side of (25), we have

1

�(1 − α)

∫ Tj+1

Tj

(ti,n − s)−α ∂

∂s
u

(kj )

j (xl, s)ds

≈ 1

�(1 − α)

N0−1∑

p=0

1

τ

([
u

(kj )

j

]p+1

l
−
[
u

(kj )

j

]p

l

)∫ tj,p+1

tj,p

(ti,n − s)−αds

= τ−α

�(2 − α)

⎛

⎝a(i−j−1)N0+n+1

[
u

(kj )

j

]N0

l
−

N0−1∑

p=1

(a(i−j)N0+n−p

− a(i−j)N0+n−p+1)
[
u

(kj )

j

]p

l
− a(i−j)N0+n

[
u

(kj )

j

]0

l

⎞

⎠ := D
α
τ

[
u

(kj )

j

]n

l
.

The resulting numerical scheme for (25) can be written as

D
α
τ

[
u

(k+1)
i

]n

l
+

i−1∑

j=0

D
α
τ

[
u

(kj )

j

]n

l
= Kδ2x

[
u

(k+1)
i

]n

l
+ f (xl, ti,n,

[
u

(k)
i

]n

l
). (26)
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Similarly, the L1 scheme for the original equation can be written as

D
α
τ [ui]nl +

i−1∑

j=0

D
α
τ [uj ]nl = Kδ2x[ui]nl + f (xl, ti,n, [ui]nl ). (27)

4.2 Convergence of the discrete windowingWRmethod

Let
[
ε
(k)
i

]n

l
=
[
u

(k)
i

]n

l
− [ui]nl , for l = 1, 2, . . . , Ns − 1, i = 0, 1, . . . , N − 1,

n = 0, 1, . . . , N0 and k = 0, 1, . . . , ki , which satisfies

D
α
τ

[
ε
(k+1)
i

]n

l
+

i−1∑

j=0

D
α
τ

[
ε
(kj )

j

]n

l
= Kδ2x

[
ε
(k+1)
i

]n

l
+ f

(
xl, ti,n,

[
u

(k)
i

]n

l

)

− f (xl, ti,n, [ui]nl ). (28)

We denote the vectors

[
u

(k)
i

]n =
([

u
(k)
i

]n

1
,
[
u

(k)
i

]n

2
, . . . ,

[
u

(k)
i

]n

Ns−1

)�
∈ R

Ns−1,

[ui]n = ([ui]n1, [ui]n2, . . . , [ui]nNs−1)
� ∈ R

Ns−1,
[
ε

(k)
i

]n =
[
u

(k)
i

]n − [ui]n,

together with the fact
[
ε

(kj )

j

]N0 =
[
ε

(kj+1)

j+1

]0
, for j = 0, 1, . . . , i −1, and

[
ε

(k0)
0

]0 =
0, we have

τ−α

�(2 − α)

⎛

⎝a1

[
ε

(k+1)
i

]n −
n−1∑

p=1

(an−p − an−p+1)
[
ε

(k+1)
i

]p

−
i−1∑

j=0

N0∑

p=1

(a(i−j)N0+n−p − a(i−j)N0+n−p+1)
[
ε

(kj )

j

]p

⎞

⎠

= K

h2
B
[
ε

(k+1)
i

]n + f
(
ti,n,

[
u

(k)
i

]n)− f (ti,n, [ui]n),

(29)

where

f
(
ti,n,

[
u

(k)
i

]n) =
(
f (x1, ti,n,

[
u

(k)
i

]n

1
), f (x2, ti,n,

[
u

(k)
i

]n

2
), . . . ,

f (xNs−1, ti,n,
[
u

(k)
i

]n

Ns−1
)

)�
,

f (ti,n, [ui]n)=
(
f (x1, ti,n, [ui]n1), f (x2, ti,n, [ui]n2), . . . , f (xNs−1, ti,n, [ui]nNs−1)

)�
,

[
ε

(k)
i

]n =
[
u

(k)
i

]n − [ui]n,
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and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 0

1 −2 1
. . .

0 1
. . .

. . . 0
. . .

. . .
. . . 1

0 0 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
(Ns−1)×(Ns−1).

We further define the vector

ε̄
(k)
i =

(([
ε

(k)
i

]1
)�

,

([
ε

(k)
i

]2
)�

, . . . ,

([
ε

(k)
i

]N0
)�)�

∈ R
N0(Ns−1).

Then, equality (29) can be rewritten in the following matrix form,

(A ⊗ I s)ε̄
(k+1)
i −

i−1∑

j=0

(Gij ⊗ I s)ε̄
(kj )

j

= �(2 − α)
Kτα

h2
(I 0 ⊗ B)ε̄

(k+1)
i + τα�(2 − α)

(
f̄ (ti , ū

(k)
i ) − f̄ (ti , ūi )

)
,

(30)

where I s and I 0 are identity matrixes with scales Ns − 1 and N0, respectively, A is
a N0 × N0 lower triangular Toeplitz matrix with

A(p, q) =

⎧
⎪⎨

⎪⎩

a1, p = q,

ap−q+1 − ap−q, p > q,

0, else,

Gij is a N0 × N0 Toeplitz matrix with

Gij (p, q) = a(i−j)N0+p−q − a(i−j)N0+p−q+1,

and

f̄ (ti , ū
(k)
i )=

(

f �
(

ti,1,
[
u

(k)
i

]1
)

, f �
(

ti,2,
[
u

(k)
i

]2
)

, . . . , f �
(

ti,N0 ,
[
u

(k)
i

]N0
))�

,

f̄ (ti , ūi ) =
(
f � (ti,1, [ui]1

)
, f � (ti,2, [ui]2

)
, . . . , f � (ti,N0 , [ui]N0

))�
.

We denote r = �(2− α)Kτα

h2
and D = A ⊗ I s − r(I 0 ⊗ B), the error (30) can be

written as

ε̄
(k+1)
i = τα�(2 − α)D−1J f ε̄

(k)
i +

i−1∑

j=0

D−1(Gij ⊗ I s)ε̄
(kj )

j , (31)

where J f is the Jacobian matrix of f̄ , which is bounded by a positive M0. Then, we
have

‖ε̄(k+1)
i ‖∞ ≤ τα�(2 − α)M0‖D−1‖∞‖ε̄(k)

i ‖∞ +
i−1∑

j=0

‖D−1‖∞‖Gij‖∞‖ε̄(kj )

j ‖∞.
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By induction on the index k, it leads to

‖ε̄(ki )
i ‖∞ ≤ θki ‖ε̄(0)

i ‖∞ +
i−1∑

j=0

ψij‖ε̄(kj )

j ‖∞, (32)

where

θ = τα�(2 − α)M0‖D−1‖∞, ψij = 1

1 − θ
‖D−1‖∞‖Gij‖∞. (33)

We can choose τ small enough, such that θ < 1, and ψij > 0.
Define the real numbers ηij , for i = 0, 1, . . . , N − 1, and j = 0, 1, . . . , i − 1 by

ηii = 1, ηij =
i−1∑

l=j

ψilηlj . (34)

We have the following theorem.

Theorem 4.1 If the nonlinear function f (x, t, u) has a continuous first-order deriva-
tive with respect to u, then the iteration error ε̄

(ki )
i of the windowing WR method (26)

on the i-th time window �i can be bounded by

‖ε̄(ki )
i ‖∞ ≤

i∑

j=0

ηij θ
kj ‖ε̄(0)

j ‖∞, i = 0, 1, . . . , N − 1, (35)

where kj is the maximum number of WR iterations on �j .

Proof We prove the result by induction on the index i.
For i = 0, on the first window, we obtain that by (32)

‖ε̄(k0)
0 ‖∞ ≤ θk0‖ε̄(0)

0 ‖∞ = η00θ
k0‖ε̄(0)

0 ‖∞.

Assume that inequality (35) holds for i = 1, 2, . . . , n − 1, then we have

‖ε̄(kn)
n ‖∞ ≤ θkn‖ε̄(0)

n ‖∞ +
n−1∑

j=0

ψnj ‖ε̄(kj )

j ‖∞ ≤ θkn‖ε̄(0)
n ‖∞ +

n−1∑

j=0

ψnj

j∑

l=0

ηjlθ
kl ‖ε̄(0)

l ‖∞.

By exchanging the summation order, we can obtain

‖ε̄(kn)
n ‖∞ ≤ θkn‖ε̄(0)

n ‖∞ +
n−1∑

l=0

⎛

⎝
n−1∑

j=l

ψnjηjl

⎞

⎠ θkl‖ε̄(0)
l ‖∞

= ηnnθ
kn‖ε̄(0)

n ‖∞ +
n−1∑

l=0

ηnlθ
kl‖ε̄(0)

l ‖∞

=
n∑

l=0

ηnlθ
kl‖ε̄(0)

l ‖∞.

It means that the result also holds for i = n, and the theorem is proved.
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It can be seen that {ηij } are defined by recurrence, and it is not intuitive to bound

‖ε̄(ki )
i ‖∞. Therefore, we present the following corollary.

Corollary 4.1 The iteration error ε̄
(ki )
i can be further bounded by

‖ε̄(ki )
i ‖∞ ≤ max

{

1,
‖D−1‖i∞
(1 − θ)i

}

θkmin max
0≤j≤i−1

‖ε̄(0)
j ‖∞, i = 0, 1, . . . , N − 1,

(36)
where kmin = min

0≤j≤i−1
{kj }, and θ is defined in (33) with θ < 1.

Proof From estimation (35), we have

‖ε̄(ki )
i ‖∞ ≤

⎛

⎝
i∑

j=0

ηij

⎞

⎠ θkmin max
0≤j≤i−1

‖ε̄(0)
j ‖∞. (37)

Denote Wi =∑i
j=0 ηij , then we have W0 = 1, and for i = 1, 2, . . . , N − 1,

Wi =
i∑

j=0

i−1∑

l=j

ψilηlj =
i−1∑

l=0

ψil

l∑

j=0

ηlj =
i−1∑

l=0

ψilWl

≤
(

i−1∑

l=0

ψil

)

max
0≤l≤i−1

Wl

= 1

1 − θ
‖D−1‖∞

⎛

⎝
i−1∑

j=0

‖Gij‖∞

⎞

⎠ max
0≤l≤i−1

Wl .

(38)

Since Gij is a Toeplitz matrix, and

i−1∑

j=0

‖Gij‖∞ =
i−1∑

j=0

(a(i−j−1)N0+1−a(i−j)N0+1) = 1+(iN0)
1−α −(iN0+1)1−α ≤ 1.

We have

Wi ≤ 1

1 − θ
‖D−1‖∞ max

0≤l≤i−1
Wl .

By the induction on the index i, we get

Wi ≤ max

{

1,
‖D−1‖i∞
(1 − θ)i

}

.

Together with inequality (37), we can obtain the result (36).

Remark The quantity ‖D−1‖∞ in estimation (36) is usually a moderate number. In
fact, a number of numerical tests are carried out to support this observation. There-
fore, we can take a proper WR iteration number ki on each time window to control
the iteration errors.
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4.3 Parallelism of the discrete windowingWRmethod

The discrete windowing WR method (26) can be written in the following form,

(
τ−αa1

�(2 − α)
I s − K

h2
B

)[
u

(k+1)
i

]n = τ−α

�(2 − α)

×
⎛

⎝
n−1∑

p=1

(an−p − an−p+1)
[
u

(k+1)
i

]p +
i−1∑

j=0

N0∑

p=1

(a(i−j)N0+n−p

−a(i−j)N0+n−p+1)
[
u

(kj )

j

]p

⎞

⎠

+ f
(
ti,n,

[
u

(k)
i

]n)
.

(39)

For any fixed n = 1, 2, . . . , N0, in order to compute
[
u

(k+1)
i

]n
, we need

[
u

(k+1)
i

]p

on the present waveform for p = 1, 2, . . . , n − 1, and
[
u

(k)
i

]n
, which is the approxi-

mation at t = ti +nτ on the last waveform, as well as
[
u

(kj )

j

]p
, for p = 1, 2, . . . , N0

and j = 0, 1, . . . , i − 1, which are the approximations of the waveforms on all the
previous time windows. It is unnecessary to wait for all the approximations on the
k-th waveform before computing the approximations on the (k + 1)-th waveform.

For simplicity, we assume that the WR methods on all the time windows have the
same number of iterations, say k0. The parallelism of the discrete windowing WR
method (39) is shown in Fig. 1, where “dt” denotes the computational cost at each
time step. In fact, for the computation of the time-fractional PDE, the computational
costs at later time steps are usually bigger than that at former time steps, since more
matrix-vector multiplications are involved in later time steps, though “dt” is used
uniformly for clarity.

Assume that k0 processors are available, and each processor is in charge of the
computation of a waveform. We can see from Fig. 1 that k0 processors are running
almost simultaneously on each time window, such that the theoretical total running
time is N(N0 + k0)dt , rather than Nk0N0dt in serial manner.

The steps of the parallel procedure are shown in the following algorithm,

Fig. 1 The parallelism of the discrete windowing WR scheme (39)
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4.4 Efficient implementation of the discrete windowingWRmethod

We can see from (26) that the discrete windowing WR method is based on the idea
of L1 scheme, which is computationally expensive on long time interval. In this sub-
section, we employ the sum-of-exponentials (SOE) method [30, 31] to further reduce
the memory and the computational cost. The fast evaluation formula based on SOE
method for the Caputo fractional derivative in (25) can be expressed as

[
u

(k+1)
i

]n

l
−
[
u

(k+1)
i

]n−1

l

τ α�(2 − α)

+ 1

�(1 − α)

⎡

⎢
⎣

[
u

(k+1)
i

]n−1

l

τ α
−
[
u

(0)
0

]0

l

tαi,n
− α

Nexp∑

j=1

ωj

[
U

(k+1)
hist,j (ti,n)

]

l

⎤

⎥
⎦

=Kδ2x

[
u

(k+1)
i

]n

l
+ f (xl, ti,n,

[
u

(k)
i

]n

l
).

(40)
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At the initial point, we have

⎧
⎪⎨

⎪⎩

[
u

(k)
0

]0

l
= ϕ(xl),

[
U

(k)
hist,j (t0,1)

]

l
= 0, for k = 1, 2, . . . , k0,

and at the boundaries of any two time windows, we have

⎧
⎨

⎩

[
u

(k)
i+1

]0

l
=
[
u

(ki )
i

]N0

l
,

U
(k)
hist,j (ti+1,0) = U

(ki)
hist,j (ti,N0), for k = 1, 2, . . . , k0.

It means that the discrete windowing WR method is implemented on one time
window after another, and the WR iterations are performed ki times on the i-th
window.

In fact, the fast evaluation formula based on SOE method transforms the discrete
windowing WR method as a nonlocal numerical integrator to be a local evaluation,
and the computational cost at each time point looks more balanced. Suppose that
we have enough processors and denote by τ̃ the computational cost at each time
point, then the theoretical computational cost of the fast windowing WR method is
N(N0 + k0 − 1)τ̃ .

For the choice of the parameters, we have two considerations. First, k0 should be as
small as possible to avoid too much computational cost. Second, if the time window
is too short, the number of time steps on each window,N0, will be very small, then the
degree of parallelism will be reduced. In particular, if only one time step is contained
in each window, i.e., N0 = 1, the WR method will deteriorate to the classical semi-
implicit scheme, which cannot be implemented in parallel at all. In order to balance
the two aspects, we can take moderate values for N0, such that N0 is much larger
than k0. Therefore, the theoretical computational cost with enough processors seems
slightly more than the cost of a general numerical scheme for a linear problem.

5 Numerical experiments

In this section, we use two examples to verify the effectiveness of the windowing
WR methods, and the methods are coded using Matlab R2017b on a Lenovo desktop
with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz.

Example 5.1 We first consider the following sub-diffusion equation in one spatial
dimension,

⎧
⎪⎨

⎪⎩

C
0Dα

t u(x, t) = 0.2 uxx(x, t) + u(x, t) + u2(x, t), 0 < x < 1, 0 < t < 2,

u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 2.
(41)
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To discretize the x and t variables, we use a uniform space-time mesh with time
step τ = 1

2048 and spatial grid size h = 1
256 . The time interval [0, 2] is divided into N

time windows uniformly, and each window includes 4096
N

time steps. For simplicity,
we perform the same number of WR iterations on all time windows, i.e., ki = k0, for
i = 0, 1, . . . , N − 1.

The discrete windowing WR method for (41) can be written as

D
α
τ

[
u

(k+1)
i

]n

l
+

i−1∑

j=0

D
α
τ

[
u

(k0)
j

]n

l
= 0.2 δ2x

[
u

(k+1)
i

]n

l
+
[
u

(k)
i

]n−1

l
+
([

u
(k)
i

]n−1

l

)2

,

(42)
for i = 0, 1, . . . , N − 1, l = 1, 2, . . . , 255, n = 1, 2, . . . , 4096

N
, k = 0, 1, . . . , k0 − 1,

and the reference solution can be obtained by the scheme

τ−α

�(2 − α)

⎛

⎝a1u
n
l −

n−1∑

p=1

(an−p − an−p+1)u
p
l − anu

0
l

⎞

⎠ = 0.2 δ2xu
n
l +un−1

l +
(
un−1

l

)2
,

(43)
for l = 1, 2, . . . , 256, and n = 1, 2, . . . , 4096. We notice from scheme (42) that
the nonlinear term is approximated using the values at t = tiN0+n−1, in order to
match with scheme (43). In fact, if we employ a fully implicit scheme in the discrete
windowing WR method for (41), the resulting numerical scheme, i.e., the nonlinear

term in (42) is replaced by
[
u

(k)
i

]n

l
+
([

u
(k)
i

]n

l

)2
, will still be a linear equation, since

the values are from the last waveform, while the corresponding reference equation is
a nonlinear equation.

The iteration error of the windowing WR method is measured by

Error = max
1≤l≤256

∣
∣
∣
∣

[
u

(k0)
N−1

]N0

l
− u

NN0
l

∣
∣
∣
∣ .

The iteration errors for various values of k0 and N are shown in Tables 1, 2, and 3,
for α = 0.2, 0.5, 0.8, respectively. In fact, the windowing WR method with only
one time window, i.e., N = 1, is indeed the standard WR method. We can see from
Tables 1, 2, and 3 that the windowing technique can reduce the number of iterations
effectively.

To show the convergence of WR clearly, we plot the relationship between the
iteration error and the iteration number k0 with various time windows in the first three
figures of Fig. 2, for α = 0.2, α = 0.5, and α = 0.8, respectively. Furthermore, We
also compare the convergence behaviors of WR with 64 time windows for various
values of α in the last figure in Fig. 2. We can see that the convergence rates of the
windowing WR method are related to the values of α, and such an observation fits
very well with the theoretical results introduced in Sections 2–3.

We also test the efficiency of the fast evaluation formula of the WR method. We
fix NN0 = 4096, the observed errors, and the consumed CPU time for the discrete
windowing WR method, and its fast evaluation version with tolerance ε=1.0e-10 is
shown in Table 4. We can see that the fast windowing WR method has almost the
same errors as the windowing WR method which is based on L1 scheme, while the
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Table 1 Errors of the windowing WR method (42) for Example 5.1 with α = 0.2

k0 N = 1024 N = 256 N = 64 N = 16 N = 1

1 3.83e-04 2.07e-03 9.54e-03 4.74e-02 2.90e-01

2 5.51e-05 5.35e-04 2.95e-03 1.53e-02 2.48e-01

3 6.39e-06 1.81e-04 1.24e-03 7.12e-03 2.07e-01

4 0 6.59e-05 5.82e-04 3.77e-03 1.70e-01

10 0 1.02e-07 1.07e-05 1.75e-04 3.99e-02

15 0 1.42e-11 3.87e-07 1.62e-05 9.92e-03

30 0 0 5.62e-12 1.03e-08 1.15e-04

40 0 0 1.11e-15 5.45e-11 5.01e-06

60 0 0 0 1.11e-15 6.74e-09

80 0 0 0 0 5.86e-12

100 0 0 0 0 3.66e-15

Table 2 Errors of the windowing WR method (42) for Example 5.1 with α = 0.5

k0 N = 1024 N = 256 N = 64 N = 16 N = 1

1 7.29e-04 3.84e-03 1.76e-02 7.74e-02 3.60e-01

2 1.85e-05 3.23e-04 2.75e-03 1.97e-02 3.07e-01

3 2.39e-07 2.76e-05 4.99e-04 5.99e-03 2.53e-01

4 0 2.12e-06 8.97e-05 1.92e-03 2.02e-01

10 0 2.52e-14 1.16e-09 1.48e-06 3.06e-02

16 0 0 3.44e-15 4.71e-10 2.64e-03

24 0 0 0 3.44e-15 5.58e-05

40 0 0 0 0 4.09e-09

60 0 0 0 0 1.89e-15

Table 3 Errors of the windowing WR method (42) for Example 5.1 with α = 0.8

k0 N = 1024 N = 256 N = 64 N = 16 N = 1

1 9.55e-04 4.80e-03 2.03e-02 8.09e-02 3.81e-01

2 3.01e-06 8.29e-05 1.13e-03 1.23e-02 3.16e-01

3 3.93e-09 1.13e-06 5.50e-05 1.75e-03 2.47e-01

4 0 1.24e-08 2.30e-06 2.23e-04 1.81e-01

7 0 6.00e-15 8.07e-11 2.52e-07 4.98e-02

12 0 0 1.89e-15 6.71e-13 2.27e-03

14 0 0 0 2.33e-15 5.05e-04

25 0 0 0 0 1.21e-08

37 0 0 0 0 3.00e-15
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Fig. 2 Errors of windowing WR for Example 5.1 with α = 0.2 (top left), α = 0.5 (top right), and α = 0.8
(bottom left), and errors of WR with 64 windows for various values of α (bottom right)

Table 4 Comparisons of the discrete WR method and its fast version for Example 5.1

α = 0.2, k0 = 9 α = 0.5, k0 = 7 α = 0.8, k0 = 4

N Error Time (s) Error Time (s) Error Time (s)

16 2.83e-04 63.31 5.95e-05 43.68 2.23e-04 27.82

32 8.18e-05 62.93 5.55e-06 44.31 2.41e-05 27.83

WR 64 2.05e-05 62.10 3.97e-07 44.03 2.30e-06 28.06

128 3.90e-06 62.21 1.95e-08 43.77 1.91e-07 27.69

256 3.44e-07 62.30 4.47e-10 45.03 1.24e-08 27.90

16 2.83e-04 6.96 5.95e-05 5.47 2.23e-04 3.16

32 8.18e-05 6.85 5.55e-06 5.59 2.41e-05 3.20

Fast WR 64 2.05e-05 6.88 3.97e-07 5.41 2.30e-06 3.45

128 3.90e-06 6.91 1.95e-08 5.55 1.91e-07 3.16

256 3.44e-07 6.76 4.47e-10 6.00 1.24e-08 3.06

1470 Numerical Algorithms (2021) 87:1445–1478



fast version costs much less CPU time. For example, when N = 16, α = 0.2, and
k0 = 9, the two methods have the same observed error 2.83e-04, but the consumed
CPU time of the fast windowing WR method has reduced from 63 to 7 s.

Based on the fast evaluation formula of the WR method, we also investigate the
relationship between the number of windows N and the number of iterations k0. We
fix the number of time steps NN0 = 4800 on the whole time interval, and denote k0
as the minimum uniform number of WR iterations on each time window, such that
the iteration error below 2.0e-10 and the relationships between N and k0 for different
values of α can be found in Table 5, which are also shown in Fig. 3. It can be observed
that, with more time windows, less WR iterations are needed for a desired accuracy.

Example 5.2 We then consider the following sub-diffusion equation in two spatial
dimensions,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0Dα

t u(x, y, t) = 0.2 uxx(x, y, t) + 0.3 uyy(x, y, t)

+ u(x, y, t) + u2(x, y, t), (x, y) ∈ �, 0 < t < 2,

u(x, y, 0) = sin(πx) sin(πy), (x, y) ∈ �̄,

u(x, y, t) = 0, (x, y) ∈ ∂�, 0 ≤ t ≤ 2,

(44)

where � = [0, 1] × [0, 1].

We still use a uniform space-time mesh with time step τ = 1
256 and spatial grid

size hx = hy = 1
64 . N uniform time windows are employed, and each of them has

512
N

time steps. The discrete windowing WR method for (44) can be written as

D
α
τ

[
u

(k+1)
i

]n

lq
+

i−1∑

j=0

D
α
τ

[
u

(k0)
j

]n

lq
= 0.2 δ2x

[
u

(k+1)
i

]n

lq
+ 0.3 δ2y

[
u

(k+1)
i

]n

lq

+
[
u

(k)
i

]n−1

lq
+
([

u
(k)
i

]n−1

lq

)2

, (45)

for i = 0, 1, . . . , N −1, l, q = 1, 2, . . . , 63, n = 1, 2, . . . , 512
N

, k = 0, 1, . . . , k0 −1,
and the reference solution can be obtained by the scheme

τ−α

�(2 − α)

⎛

⎝a1u
n
lq −

n−1∑

p=1

(an−p − an−p+1)u
p
lq − anu

0
lq

⎞

⎠

= 0.2 δ2xu
n
lq + 0.3 δ2yu

n
lq + un−1

lq +
(
un−1

lq

)2
, (46)

for l, q = 1, 2, . . . , 63, and n = 1, 2, . . . , 512. The iteration error of the windowing
WR method is measured by

Error = max
1≤l,q≤63

∣
∣
∣
∣

[
u

(k0)
N−1

]N0

lq
− u

NN0
lq

∣
∣
∣
∣ .
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Fig. 3 Relationships between N and k0 for different values of α in Example 5.1

Table 6 Errors of the windowing WR method (45) for Example 5.2 with α = 0.2

k0 N = 128 N = 64 N = 32 N = 8 N = 1

1 6.98e-04 1.71e-03 3.90e-03 2.39e-02 2.84e-01

2 1.08e-04 3.81e-04 1.00e-03 5.88e-03 1.57e-01

3 1.38e-05 1.04e-04 3.39e-04 2.28e-03 9.30e-02

4 0 2.81e-05 1.23e-04 9.98e-04 5.51e-02

7 0 1.55e-07 5.67e-06 1.01e-04 1.06e-02

15 0 0 3.00e-11 2.15e-07 1.03e-04

36 0 0 0 2.28e-15 2.84e-10

55 0 0 0 0 1.50e-15

Table 7 Errors of the windowing WR method (45) for Example 5.2 with α = 0.5

k0 N = 128 N = 64 N = 32 N = 8 N = 1

1 1.51e-03 3.73e-03 8.61e-03 4.64e-02 3.44e-01

2 7.82e-05 3.76e-04 1.26e-03 1.03e-02 1.99e-01

3 2.30e-06 3.71e-05 2.08e-04 2.96e-03 1.19e-01

4 0 2.99e-06 3.28e-05 9.05e-04 6.95e-02

7 0 1.46e-10 7.04e-08 2.39e-05 1.15e-02

13 0 0 4.83e-15 6.83e-09 1.98e-04

22 0 0 0 3.05e-15 1.81e-07

42 0 0 0 0 1.28e-15
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Table 8 Errors of the windowing WR method (45) for Example 5.2 with α = 0.8

k0 N = 128 N = 64 N = 32 N = 8 N = 1

1 2.44e-03 5.84e-03 1.31e-02 6.31e-02 3.98e-01

2 3.08e-05 1.91e-04 8.17e-04 1.02e-02 2.33e-01

3 1.72e-07 4.74e-06 4.55e-05 1.73e-03 1.35e-01

4 0 8.40e-08 2.11e-06 2.74e-04 7.28e-02

7 0 2.60e-14 7.05e-11 6.18e-07 7.84e-03

10 0 0 6.10e-16 6.36e-10 5.41e-04

15 0 0 0 1.61e-15 2.64e-06

30 0 0 0 0 1.61e-15
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Fig. 4 Errors of windowing WR for Example 5.2 with α = 0.2 (top left), α = 0.5 (top right), and α = 0.8
(bottom left), and errors of WR with 8 windows for various values of α (bottom right)
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Table 9 Comparisons of the discrete WR method and its fast version for Example 5.2

α = 0.2, k0 = 7 α = 0.5, k0 = 6 α = 0.8, k0 = 4

N Error Time (s) Error Time (s) Error Time (s)

16 4.09e-05 355.77 1.61e-05 280.08 3.86e-05 194.73

32 1.36e-05 353.67 2.10e-06 278.31 4.15e-06 194.92

WR 64 4.16e-06 355.38 2.25e-07 279.96 3.95e-07 194.50

128 1.08e-06 355.94 1.84e-08 282.42 3.23e-08 194.72

256 1.84e-07 356.06 8.84e-10 280.02 2.07e-09 191.91

16 4.09e-05 123.51 1.61e-05 104.57 3.86e-05 68.06

32 1.36e-05 125.11 2.10e-06 104.96 4.15e-06 70.91

Fast WR 64 4.16e-06 124.97 2.25e-07 104.72 3.95e-07 71.42

128 1.08e-06 123.45 1.84e-08 104.20 3.23e-08 70.19

256 1.84e-07 125.05 8.84e-10 104.53 2.07e-09 70.42

The iteration error for various values of k0 and N are shown in Tables 6, 7, and 8,
for α = 0.2, 0.5, 0.8, respectively. We can also see that the windowing technique can
accelerate the convergence of the WR method.

We plot the relationship between the iteration error and the iteration number k0
with various time windows for α = 0.2, α = 0.5, and α = 0.8, as well as the
convergence behaviors of WR with 8 time windows for various values of α, in Fig. 4.
The same observation can be found as that in Example 5.1.

We also use the fast evaluation formula of theWRmethod for Example 5.2. We fix
NN0 = 4096, and the observed errors and the consumed CPU times for the discrete
windowing WR method and its fast evaluation version with different values of N and
tolerance ε=1.0e-10 are shown in Table 9. We can also see that the two versions with
the same parameters have the same accuracy, while the fast windowing WR method
needs much less running time.

Moreover, we fix the number of time steps NN0 = 2400 on [0, T ], and denote k0
as the minimum uniform number of WR iterations on each time window, such that
the iteration error below 2.0e-10 and the relationships between N and k0 for different
values of α are shown in Table 10 and Fig. 5, from which the same observation as
that in Example 5.1 can be found.

Table 10 Relationships between N and k0 for different values of α in Example 5.2

N 400 300 200 100 50 25 10 5 1

k0(α = 0.2) - - 11 15 18 21 25 27 37

k0(α = 0.5) 5 6 7 8 10 12 16 19 30

k0(α = 0.8) 4 5 5 6 7 8 10 13 23
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Fig. 5 Relationships between N and k0 for different values of α in Example 5.2

6 Conclusions

A new WR method for semi-linear fractional sub-diffusion equations has been pre-
sented, and the error estimation has been given. Then, the windowing WR method
and its discrete version have also been presented. We can see from the numerical
experiments that the (windowing) WR method is convergent superlinearly, and the
convergence rate will be slow with the decrease of the order of the time-fractional
derivative. Furthermore, we have also combined the fast evaluation formula based
on SOE approximation with the windowing WR method, and verified the efficiency
of the fast windowing WR method by numerical tests.

Moveover, the WR method used in this paper is one of the simplest WR methods.
Proposing some other effective WR methods to further improve the convergence rate
will be considered in the future.
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