
https://doi.org/10.1007/s11075-020-01013-5

ORIGINAL PAPER

Tensor extrapolation methods with applications

F. P. A. Beik1 ·A. El Ichi2,3 ·K. Jbilou3 ·R. Sadaka4

Received: 13 April 2020 / Accepted: 10 September 2020 /
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we mainly develop the well-known vector and matrix polynomial
extrapolation methods in tensor framework. To this end, some new products between
tensors are defined and the concept of positive definitiveness is extended for tensors
corresponding to T-product. Furthermore, we discuss on the solution of least-squares
problem associated with a tensor equation using Tensor Singular Value Decomposi-
tion (TSVD). Motivated by the effectiveness of some proposed vector extrapolation
methods in earlier papers, we describe how an extrapolation technique can be also
implemented on the sequence of tensors produced by truncated TSVD (TTSVD) for
solving possibly ill-posed tensor equations.

Keywords Extrapolation · Ill-posed problems · Least-squares · Sequence of
tensors · Tensor SVD · T-product
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1 Introduction

In the last few years, several iterative methods have been proposed for solving large
and sparse linear and nonlinear systems of equations. When an iterative process con-
verges slowly, the extrapolation methods are required to obtain rapid convergence.
The purpose of vector extrapolation methods is to transform a sequence of vector or
matrices generated by some process to a new one that converges faster than the initial
sequence. The well-known extrapolation methods can be classified into two cate-
gories: the polynomial methods that include the minimal polynomial extrapolation
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(MPE) method of Cabay and Jackson [5], the modified minimal polynomial extrapo-
lation (MMPE) method of Sidi, Ford, and Smith [27], the reduced rank extrapolation
(RRE) method of Eddy [22] and Mesina [24], Brezinski [4] and Pugatchev [26]; and
the ε-type algorithms including the topological ε-algorithm of Brezinski [4] and the
vector ε-algorithm of Wynn [30]. Efficient implementations of some of these extrap-
olation methods have been proposed by Sidi [28] for the RRE and MPE methods
using QR decomposition, while Jbilou and Sadok [12] give an efficient implementa-
tion of the MMPE based on a LU decomposition with pivoting strategy. It was also
shown that when applied to linearly generated vector sequences, RRE and TEAmeth-
ods are mathematically equivalent to GMRES and Lanczos methods, respectively.
Those results were also extended to the block and global cases dealing with matrix
sequences; see [11, 14]. Our aim in this paper is to define the analogue of these vector
and matrix extrapolation methods to the tensor framework.

Basically, in the present paper, we develop some tensor extrapolation methods
namely, the Tensor RRE (TRRE), the Tensor MPE (TMPE), the Tensor MMPE
(TMMPE), and the Tensor Topological ε-Algorithm (TTEA). We define new prod-
ucts and establish some of their properties. As an application, it is shown that these
new tensor extrapolation methods can be applied to sequences obtained by trunca-
tion of the Tensor Singular Value Decomposition (TSVD) to solve tensor discrete
ill-posed problems.

The remainder of this paper is organized as follows. Before ending this section,
we recall some fundamental concepts in tensor framework. In Section 2, we give
notations, some basic definitions, and properties related to tensors. Moreover, we
introduce the concept of positive definiteness for tensors with respect to T-product;
some new products are also defined between tensors and their properties are ana-
lyzed. In Section 3, we introduce the tensor versions of the vector polynomial
extrapolation methods namely the Tensor Reduced Rank Extrapolation (TRRE),
the Tensor Minimal Polynomial Extrapolation (TMPE), the Tensor Modified Mini-
mal Polynomial Extrapolation (TMMPE), and the Tensor Topological ε-Algorithm
(TTEA). Section 4 describes the TSVD and its the truncated or low rank version. In
addition, as an application, the TRRE method is applied to the sequence produced by
truncated TSVD for solving linear discrete tensor ill-posed problems. Some numeri-
cal experiments are reported in Section 5 for the mentioned application. Concluding
remarks are given in Section 6.

Preliminaries A tensor is a multidimensional array of data. The number of indices
of a tensor is called modes or ways. Notice that a scalar can be regarded as a zero
mode tensor, first mode tensors are vectors and matrices are second mode tensor. For
a given N-mode tensor X ∈ R

n1×n2×n3...×nN , the notation xi1,...,iN (with 1 ≤ ij ≤ nj

and j = 1, . . . N) stand for the element (i1, . . . , iN ) of the tensor X. The norm of a
tensor X ∈ R

n1×n2×···×n� is specified by:

‖X‖2 =
n1∑

i1=1

n2∑

i2=1

· · ·
n�∑

i�=1

x2
i1i2···i� .
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Corresponding to a given tensor X ∈ R
n1×n2×n3...×nN , the notation:

X :: . . . :︸ ︷︷ ︸
(N−1)− times

k for k = 1, 2, . . . , nN

denotes a tensor inRn1×n2×n3...×nN−1 which is obtained by fixing the last index and is
called frontal slice. Fibers are the higher order analogue of matrix rows and columns.
A fiber is defined by fixing all the indexes except one. A matrix column is a mode-1
fiber and a matrix row is a mode-2 fiber. Third-order tensors have column, row, and
tube fibers. An element c ∈ R

1×1×n is called a tubal-scalar of length n [17]. More
details are found in [16, 19].

2 Definitions and new tensor products

The current section is concerned with two main parts. In the first part, we recall def-
initions and properties related to T-product. Furthermore, we develop the definition
of positive definiteness for tensors and establish some basic results. The second part
deals with presenting some new products between tensors which can be used for
simplifying the algebraic computations of the main results.

2.1 Definitions and properties

In this part, we briefly review some concepts and notations related to the T-product;
see [3, 8, 17, 18] for more details.

Definition 1 The T-product (∗) between two tensors X ∈ R
n1×n2×n3 and Y ∈

R
n2×m2×n3 is an n1 × m2 × n3 tensor given by:

X ∗ Y = Fold(bcirc(X)MatVec(Y))

where

bcirc(X) =

⎛

⎜⎜⎜⎜⎝

X1 Xn3 Xn3−1 . . . X2
X2 X1 Xn3 . . . X3
...

. . .
. . .

. . .
...

Xn3 Xn3−1

. . . X2 X1

⎞

⎟⎟⎟⎟⎠
∈ R

n1n3×n2n3

MatVec(Y) =

⎛

⎜⎜⎜⎝

Y1
Y2
...
Yn3

⎞

⎟⎟⎟⎠ ∈ R
n2n3×m2 , Fold (MatVec(Y)) = Y

here for i = 1, . . . , n3, Xi and Yi are frontal slices of the tensors X and Y,
respectively.
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The n1 × n1 × n3 identity tensor In1n1n3 is the tensor whose first frontal slice is
the n1 × n1 identity matrix, and whose other frontal slices are all zeros, that is:

MatVec(In1n1n3) =

⎛

⎜⎜⎜⎝

In1n1

0n1n1
...
0n1n1

⎞

⎟⎟⎟⎠

where In1n1 is the identity matrix.
In the special case in which n1 = 1, the identity tensor is a tubal-scalar and

denoted by e, in other words MatVec(e) = (1, 0, 0 . . . , 0)T .

Definition 2 We have the following definitions:

1. An n1 × n1 × n3 tensor A is invertible, if there exists a tensor B of order n1 ×
n1 × n3 such that:

A ∗ B = In1n1n3 and B ∗ A = In1n1n3

It is clear that A is invertible if and only if bcirc(A) is invertible (see [25]).
2. If A is an n1 × n2 × n3 tensor, then AT is the n2 × n1 × n3 tensor obtained

by transposing each of the front-back frontal slices and then reversing the order
of transposed frontal slices 2 through n3. It should be commented that one may
define AT as the tensor satisfying bcirc(A)T = bcirc(AT ) :

Example 1 If A ∈ R
n1×n2×5 and its frontal slices are given by the n1 × n2 matrices

A1, A2, A3, A4, A5, then:

AT = Fold

⎛

⎜⎜⎜⎜⎝

AT
1

AT
5

AT
4

AT
3

AT
2

⎞

⎟⎟⎟⎟⎠

Remark 1 As pointed out earlier, the tensor A of order m × m × n is invertible if
bcirc(A) is invertible. It is equivalent to say that A is invertible if A ∗X = O implies
X = O where X ∈ R

m×1×n and O is zero tensor.

Here, we define the notion of positive definiteness for tensors in term of T-product
which can be seen as a natural extension of the same concept for matrices.

Definition 3 The tensor A ∈ R
m×m×n is said to be positive (semi) definite if

(XT ∗ A ∗ X)::1 > (≥)0,

for all nonzero tensors X ∈ R
m×1×n.

Here, we comment that it is not difficult to verify that the summation of positive
definite tensors is positive definite.
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Remark 2 In view of Remark 1, it is immediate to see that every positive definite
tensor is invertible. It can be also verified that the inverse of a positive definite tensor
is also positive definite. For any tensor B ∈ R

n1×n2×n3 and arbitrary nonzero tensor
X ∈ R

n2×1×n3 , it can be seen that:

(XT ∗ BT ∗ B ∗ X)::1 = ((B ∗ X)T ∗ B ∗ X)::1 = ‖B ∗ X‖2 ≥ 0,

in which the last equality follows from [18]. As a result, the tensor BT ∗B is positive
semi-definite. Evidently, for any scalar ε > 0:

(XT ∗ (BT ∗ B + ε In2n2n3) ∗ X)::1 = ‖B ∗ X‖2 + ε‖X‖2 > 0,

This shows that the tensor BT ∗ B + ε In2n2n3 is positive definite.

Definition 4 Let A ∈ R
n1×n2×n3 . Then, the tensor X ∈ R

n2×n1×n3 satisfying the
following four conditions:

(a) A ∗ X ∗ A = A (b) X ∗ A ∗ X = X,
(c) (A ∗ X)T = A ∗ X, (d) (X ∗ A)T = X ∗ A.

is called the Moore-Penrose inverse of A and denoted by A†.

In view of [18, Lemmas 3.3 and 3.16] and by using straightforward computa-
tions, one can easily observe that conditions (a)-(d) determineA† uniquely. Here, we
further comment that if A is invertible, then A† = A−1.

For X,Y, two tensors in R
n1×1×n3 , the T-scalar product 〈., .〉 is a bilinear form

defined by:
{
R

n1×1×n3 × R
n1×1×n3 −→ R

1×1×n3

(X,Y) −→ 〈X,Y〉 = XT ∗ Y
. (1)

Let X1, . . . ,X� a collection of � third tensors in R
n1×1×n3 , if

〈
Xi ,Xj

〉 =
{

αie i = j

0 i 
= j

where αi is a non-zero scalar, then the set X1, . . . ,X� is said to be an orthogonal
collection of tensors. The collection is called orthonormal if αi = 1, i = 1, . . . , l.

Definition 5 An n × n × � real-values tensor Q is said to be orthogonal if QT ∗ Q =
Q ∗ QT = Inn�.

We end this part with the following proposition.

Proposition 1 Suppose that A and B are two tensors of order n1 × n2 × n3. Then

(AT ∗ B)ij : = (A:i:)T ∗ B:j :.

Proof Let Ĩτ be an n2 × 1×n3 tensor whose all frontal slices are zero except its first
frontal being the τ -th column of the n2 × n2 identity matrix. Then, we have:

B ∗ Ĩj = B:j : and ĨTi ∗ AT = AT
i:: = (A:i:)T .
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Notice also that:
(AT ∗ B)ij : = ĨTi ∗ (AT ∗ B) ∗ Ĩj .

From [18, Lemma 3.3], it is known that:

ĨTi ∗ (AT ∗ B) ∗ Ĩj = (ĨTi ∗ AT ) ∗ (B ∗ Ĩj ),

which completes the proof.

We end this part by the following simple remark which is helpful in the sequel for
more clarification.

Remark 3 In what follows, we may need to solve a system of tensor equations in the
following form:

Ai1 ∗ X1 + · · · + Aik ∗ Xk = Bi , i = 1, 2, . . . , k, (2)

where X1,X2, . . . ,Xk are the unknown tensors to be determined. The above system
is uniquely solvable if the following system of equations has only the trivial solution:

Ai1 ∗ X1 + · · · + Aik ∗ Xk = O, i = 1, 2, . . . , k,

where O stands for the zero tensor. When the diagonal tensorsA11,A22, . . . ,Akk are
invertible, we can easily conclude that (2) has a unique solution in the following two
special cases:

– Aij = 0 for j > i,
– Aij = 0 for j < i,

for i, j = 1, 2, . . . , k.

2.2 New tensor products

In order to simplify derivation of generalized extrapolation methods in tensor format,
we need to define new tensor products.

Definition 6 LetA andB be 4-mode tensors with frontal slicesAi ∈ R
n1×n2×n3 and

Bj ∈ R
n1×n2×n3 for i = 1, 2, . . . , � and j = 1, 2, . . . , k, respectively. The product

A♦B is defined as a 5-mode tensor of order n2 ×n2 ×n3 × k × � defined as follows:

(A♦B):::ji = AT
i ∗ Bj ,

for i = 1, 2, . . . , � and j = 1, 2, . . . , k. In the case where k = 1, i.e.B ∈ R
n1×n2×n3 ,

A♦B is a 4-mode tenor whose i-th frontal slice is given byAT
i ∗B for i = 1, 2, . . . , �.

Here, we comment that the ♦ product can be seen as a generalization of �-product
between two matrices given in [2]. In the sequel, we further present an alternative
product called �-product which can be seen as an extension of the ∗-product between
a set of matrices and vectors; see [13] for more details.

Definition 7 Let A be a 5-mode tensor of order n2 × n1 × n3 × k × � and B be a
4-mode tensor with frontal slices B1, . . . ,Bk ∈ R

n1×n2×n3 . The product A � B is
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defined as a 4-mode tensor of order n2 × n2 × n3 × � such that:

(A � B):::i =
k∑

j=1

A:::ji ∗ Bj , i = 1, 2, . . . , �.

Evidently, a 4-mode tensor of order n2×n1×n3×k can be considered as an 5-mode
tensor of order n2 × n1 × n3 × k × 1. As a result, if A is a 4-mode tensor of order
n2×n1×n3×k, i.e., � = 1, thenA�B ∈ R

n2×n2×n3 defined byA�B = ∑k
η=1Aη∗Bη

where Ai stands for the i-th frontal slice of A for i = 1, 2, . . . , k.

In the main results, it is worth to define a notion of the left inverse of a 5-mode ten-
sors dealing with ∗, �, and ♦ products. To this end, we define the �̄-product between
two 5-mode tensors which can be seen as an extension of � product.

Definition 8 Let A ∈ R
n1×n2×n3×k×� and B ∈ R

n2×n1×n3×k×�, the product A �̄ B

is a 5-mode tensor of order n1 × n1 × n3 × k × k such that for τ, η = 1, 2, . . . , k,

(A �̄ B):::τη =
�∑

j=1

A:::ηj ∗ B:::τj .

Definition 9 The tensor B+ ∈ R
n1×n2×n3×k×� is called a left inverse of B ∈

R
n2×n1×n3×k×�, if

(B+ �̄ B):::τη =
{
In1n1n3 τ = η

O τ 
= η

for τ, η = 1, 2, . . . , k. Here, O is the 3-mode zero tensor of order n1 × n1 × n3.

Now, we establish a proposition which reveals the relation between the two
proposed products � and �̄.

Proposition 2 Let A ∈ R
n1×n2×n3×k×k , B ∈ R

n2×n1×n3×k×k , and Y ∈
R

n1×n2×n3×k . Then, the following relation holds:

(A �̄ B) � Y = A∗ � (B � Y).

Here,A∗ stands for an 5-mode tensor of order n1 × n2 × n3 × k × k associated with
A where A∗:::ij = A:::ji for 1 ≤ i, j ≤ k.

Proof It is clear that both sides of the above relation are 4-mode tensors of order
n1 ×n2 ×n3 × k. To prove the assertion, we show that the frontal slices of both sides
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are equal. Let 1 ≤ z ≤ k; we can observe that:

((A �̄ B) � Y):::z =
k∑

�=1

(A �̄ B):::�z ∗ Y�

=
k∑

�=1

k∑

μ=1

A:::zμ ∗ B:::�μ ∗ Y�

=
k∑

μ=1

A:::zμ ∗
(

k∑

�=1

B:::�μ ∗ Y�

)

=
k∑

μ=1

A:::zμ ∗ (B � Y):::μ

=
k∑

μ=1

A∗:::μz ∗ (B � Y):::μ = (A∗ � (B � Y)):::z.

The result follows immediately from the above computations.

Remark 4 Notice that the system (2) in Remark 3 can be rewritten in the following
form:

A � X = B,

where A is 5-mode tensor such that A:::ji = Aij and X,B are 4-mode tensors with
frontal slices Xi ,Bi for i, j = 1, 2, . . . , k. In theoretical point of view, it turns out
that the solution of above equation can be uniquely derived if the left inverse of A
(uniquely) exists. In fact if C = A+ then C∗ � (A � α) = C∗ � B. Now, from the
previous proposition, we get X = C∗ � B.

We end this section by a proposition which can be established by using straight-
forward algebraic computations.

Proposition 3 Let A,B,C ∈ R
n1×s×n3×� and D ∈ R

s×n2×n3 . The following
statements hold:

1. (A + B)♦C = A♦C + B♦C

2. A♦(B + C) = A♦B + A♦C

3. (A♦B) � D = A♦(B � D).

3 Extrapolationmethods based on tensor formats

In this section, we define new tensor extrapolation methods. In the first part, we
present in the tensor polynomial-type extrapolation methods by using the new tensor
products introduced in the preceding section. In the second part, a tensor topological
ε-algorithm is developed. We notice that when we are dealing with vectors, all these
new methods reduce to the classical vector extrapolation methods.
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3.1 Tensor polynomial-type extrapolationmethods

Corresponding to a given sequence of tensors (Sn) in R
n1×n2×n3 , we consider the

transformation (T
(n)
k ) defined by:

Tk(Sn) = T
(n)
k :=

{
R

n1×n2×n3 → R
n1×n2×n3

Sn 
→ T
(n)
k = Sn + Gk,n � αk

(3)

where the 4-mode Gk,n with frontal slices Gi(n) ∈ R
n1×n2×n3 is given for i =

1, . . . , k. The 4-mode tensor αk is unknown and its frontal slices are denoted by

α
(n)
i ∈ R

n2×n2×n3 for i = 1, . . . , k. As the vector and matrix cases, in extrapola-
tion methods, we aim to determine the unknown tensors. To this end, we use the
transformation T̃

(n)
k obtained from T

(n)
k as follows:

T̃
(n)
k = T̃k(Sn) = Sn+1 + Gk,n+1 � αk,

here, the 4-mode Gk,n+1 has frontal slices Gi(n + 1) ∈ R
n1×n2×n3 for i = 1, . . . , k.

LetΔ denote the forward difference operator on the index n defined asΔSn = Sn+1−
Sn andΔGk,n stand for the 4-mode tensor whose frontal slices are given byΔGi(n) =
Gi(n + 1) − Gi(n) for i = 1, . . . , k. The generalized residual of T

(n)
k is represented

by R(T
(n)
k ) defined as follows:

R(T
(n)
k ) = T̃k(Sn) − Tk(Sn)

= ΔSn + ΔGk,n � αk . (4)

For an arbitrary given set of tensors Y
(n)
1 , . . . , Y

(n)
k ∈ R

n1×n2×n3 , let H̃k,n and

L̃k,n denote the subspaces generated by ΔG1(n), . . . , ΔGk(n) and Y
(n)
1 , . . . , Y

(n)
k

respectively. We comment that subspace generated by ΔG1(n), . . . , ΔGk(n) is the
subspace generated with respect to the multiplication �. Evidently, we have

R(T
(n)
k ) − ΔSn ∈ H̃k,n (5)

and the unknown tensors α
(n)
i are determined by imposing the following condition,

R(T
(n)
k ) ∈ L̃⊥

k,n.

Let Lk,n be a 4-mode tensor with frontal slices Y
(n)
1 , . . . , Y

(n)
k , the above orthogo-

nality condition can be equivalently expressed by

Lk,n ♦R(T
(n)
k ) = O, (6)

where O is a zero tensor of order n2 × n2 × n3 × k. Therefore, from Proposition 3,
we have:

O = Lk,n♦R(T
(n)
k )

= Lk,n♦(ΔSn + ΔGk,n � αk)

= Lk,n♦ΔSn + Lk,n♦(ΔGk,n � αk) = Lk,n♦ΔSn + (Lk,n♦ΔGk,n) � αk .
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In fact the unknown tensor αk can be seen as the solution of thee following tensor
equation:

(Lk,n♦ΔGk,n) � αk = −Lk,n♦ΔSn.

The choices of sequence of tensors G1(n), . . . , Gk(n) and Y
(n)
1 , . . . , Y

(n)
k deter-

mine the type of the tensor polynomial extrapolation method. In fact, for all these
polynomial-type methods, the auxiliary sequence of tensors is given by Gi(n) =
ΔSn+i−1 for i = 1, . . . , k (n ≥ 0). The following choices for Y

(n)
1 , . . . , Y

(n)
k can be

used:

Y
(n)
i = ΔSn+i−1 for TMPE,

Y
(n)
i = Δ2Sn+i−1 for TRRE,

Y
(n)
i = Yi for TMMPE,

where the operator Δ2 refers to the second forward difference with respect to the
index n defined as:

Δ2Sn = ΔSn+1 − ΔSn and Δ2Gi(n) = ΔGi(n + 1) − ΔGi(n),

for i = 1, . . . , k. The approximation T
(n)
k produced by TMPE, TRRE, and TMMPE

can be also expressed as follows:

T
(n)
k =

k∑

j=0

Sn+j ∗ γ
(k)
j

and the unknown tensors γ
(k)
0 , γ

(k)
1 , . . . , γ

(k)
k are determined by imposing the

following condition:

k∑

j=0

γ
(k)
j = In2n2n3 and

k∑

j=0

η
(n)
i,j ∗ γ

(k)
j = On2n2n3 0 ≤ i < k (7)

such that γ
(k)
k is assumed to be invertible. Here, On2n2n3 ∈ R

n2×n2×n3 is the tensor

with all entries equal to 0, η(n)
i,j = (Y

(n)
i+1)

T ∗ ΔSn+j .
From now on and for simplification, we set n = 0. The system of (7) is given in

the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(k)
0 + γ

(k)
1 + · · · + γ

(k)
k = In2n2n3

(Y
(0)
1 )T ∗ ΔS0 ∗ γ

(k)
0 + (Y

(0)
1 )T ∗ ΔS1 ∗ γ

(k)
1 + · · · + (Y

(0)
1 )T ∗ ΔSk ∗ γ

(k)
k = On2n2n3

(Y
(0)
2 )T ∗ ΔS0 ∗ γ

(k)
0 + (Y

(0)
2 )T ∗ ΔS1 ∗ γ

(k)
1 + · · · + (Y

(0)
2 )T ∗ ΔSk ∗ γ

(k)
k = On2n2n3

. . . . . . . . . . . . . . . . . .

(Y
(0)
k )T ∗ ΔS0 ∗ γ

(k)
0 + (Y

(0)
k )T ∗ ΔS1 ∗ γ

(k)
1 + · · · + (Y

(0)
k )T ∗ ΔSk∗γ k

k = On2n2n3

.(8)
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Let β
(k)
i = γ

(k)
i ∗ (γ

(k)
k )−1 where (γ

(k)
k )−1 is the inverse of γ

(k)
k , i.e., γ

(k)
k ∗

(γ
(k)
k )−1 = In2n2n3 , for 0 ≤ l ≤ k. The system of (8) can be rewritten as follows:
⎧
⎪⎨

⎪⎩

(Y
(0)
1 )T ∗ ΔS0 ∗ β

(k)
0 + · · · + (Y

(0)
1 )T ∗ ΔSk−1 ∗ β

(k)
k−1 = −(Y

(0)
1 )T ∗ ΔSk

. . . . . . . . . . . . . . . . . . . . .

(Y
(0)
k )T ∗ ΔS0 ∗ β

(k)
0 + · · · + (Y

(0)
k )T ∗ ΔSk−1 ∗ β

(k)
k−1 = −(Y

(0)
k )T ∗ ΔSk

. (9)

The above system can be transformed in the following form:

(Lk,n♦Vk) � βk = −(Lk,n♦ΔSk) (10)

where βk is the 4-mode tensor with the k frontal slices β
(k)
0 , . . . , β

(k)
k−1 and Vk is a

4-mode tensor whose i-th frontal slice is given by ΔSi−1 for i = 1, 2, . . . , k. We
consider the case that (10) has unique solution (see Remark 3). Notice that from the
first relation in (8), we get:

β
(k)
0 + β

(k)
1 + · · · + β

(k)
k−1 + In2n2n3 = (γ

(k)
k )−1.

Therefore, setting β
(k)
k = In2n2n3 , we conclude that the inverse of

∑k
l=0β

(k)
l exists

when γ
(k)
k is assumed to be invertible. It is not difficult to verify that:

γ
(k)
i = β

(k)
i ∗ (

k∑

l=0

β
(k)
l )−1 for 0 ≤ i < k. (11)

Having γ0, γ1, . . . , γk computed, we set:

α
(k)
0 = In2n2n3 − γ

(k)
0 , α

(k)
j = α

(k)
j−1 − γ

(k)
j , 1 ≤ j < k and α

(k)
k−1 = γ

(k)
k . (12)

Setting Tk = T
(0)
k , we get:

Tk = S0 +
k−1∑

j=0

Vj ∗ α
(k)
j = S0 + Vk � αk, (13)

where Vj = ΔSj the (j + 1)-th frontal slice of Vk for j = 0, . . . , k − 1 and αk is

a 4-mode tensor with frontal slices alpha
(k)
0 , . . . , α

(k)
k−1. To determine γ

(k)
i for i =

0, 1, . . . , k, we first we need to compute β(k) by solving system of (10). Using (4),
(12), and (13), the generalized residual R(Tk) can be also seen as follows:

R(Tk) =
k∑

i=0

Vi ∗ γ
(k)
i = Vk+1 � γk (14)

in which γk and Vk+1 are 4-mode tensors with whose i-th frontal slices are
respectively given by γ

(k)
i−1 and Vi−1 for i = 1, 2, . . . , k + 1.

3.2 The tensor toplogical ε- transformation

For vector sequences, Brezinski [4] proposed the well-known topological ε-algorithm
(TEA) which is a generalization of the scalar ε-algorithm [30] known as a technique
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for transforming slowly convergent or divergent sequences. In this section, we briefly
see how to extend this idea in tensor framework and define the Tensor Toplogical ε-
Transformation (TTET). The following results can be regarded as the generalization
of discussions in [11, Subsection 3.2] to the tensor framework.

Let (Sn) be a given sequence of tensors inRn1×n2×n3 . We consider approximations
Ek(Sn) = E

(n)
k of the limit or the anti-limit of the of sequence (Sn)n∈N such that:

E
(n)
k = Sn +

k∑

i=1

ΔSn+i−1 ∗ β
(n)
i , n ≥ 0. (15)

where β
(n)
i ∈ R

n2×n2×n3 are the unknown tensors to be determined for i = 1 . . . , k.
We set:

Ẽ
(n)
k,j = Sn+j +

k∑

i=1

ΔSn+i+j−1 ∗ β
(n)
i j = 1, . . . , k,

where Ẽ
(n)
k,0 = E

(n)
k . Let R̃j (Ē

(n)
k ) denote the j -th generalized residual tensor, i.e.:

Rj (E
(n)
k ) = Ẽ

(n)
k,j − Ẽ

(n)
k,j−1.

Let Y ∈ R
n1×n2×n3 be a given third-order tensor. The coefficients β

(n)
i in (15) are

computed such that:

k∑

i=1

(Y T ∗ Δ2Sn+i+j−1) ∗ β
(n)
i = O, j = 0, 1 . . . , k − 1.

where O ∈ R
n2×n2×n3 . The above conditions result in the following system of

equations:

⎧
⎪⎨

⎪⎩

(Y T ∗ Δ2Sn) ∗ β
(n)
1 + · · · + (Y T ∗ Δ2Sn+k−1) ∗ β

(n)
k = −YT ∗ ΔSn

...
(Y T ∗ Δ2Sn+k−1) ∗ β

(n)
1 + · · · + (Y T ∗ Δ2Sn+2k−2) ∗ β

(n)
k = −YT ∗ ΔSn+k−1

In the case that the above system is uniquely solvable, we can obtain E
(n)
k .

4 Application of tensor extrapolationmethods to solve ill-posed
tensor problems

The main purpose of this section is to adopt the idea used by Jbilou et al. [15] for
solving a class of ill-posed tensor equations. To this end, first, we need to give a brief
overview on some basic concepts related to tensor SVD (TSVD) and its truncated
version [18] based on the T-product of tensors.
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4.1 TTSVD: truncated tensor singular value decomposition

Truncating the SVD of a matrix can lead to an efficient approximation for its Moore–
Penrose inverse which is helpful for solving least-squares problem. More precisely,
the truncated version consumes less space of storage when the rank of matrix is
not very large. This inspired Miao et al. [25] to extend the theory of TSVD [18] to
truncated TSVD (TTSVD).

In this part, first, we review some existing results for TSVD and TTSVD. Then,
an explicit form is obtained for the minimum norm solution of least-squares problem
with respect to the T-product. In the sequel, an F-diagonal tensor refers to a third-
order tensor whose all frontal slices are diagonal.

The following theorem is proved in [18] where the existence of TSVD is
established by construction.

Theorem 1 [18] Let A ∈ R
n1×n2×n3 be a real valued tensor, then there exists

orthogonal tensors U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 such that

A = U ∗ S ∗ VT (16)

in which S ∈ R
n1×n2×n3 is an F-diagonal tensor.

The notion of TTSVD ofA was used in [18, 25]. In particular, the following result
was proved in [25, Corollary 6].

Corollary 1 [25] Let A ∈ R
n1×n2×n3 be a real valued tensor and

Ak = U(k) ∗ S(k) ∗ VT
(k). (17)

where U(k) ∈ R
n1×k×n3 and V(k) ∈ R

n2×k×n3 are unitary tensors extracted from
TSVD of A. The Moore–Penrose inverse of tensor Ak is given by:

A
†
k = V(k) ∗ S

†
(k) ∗ UT

(k),

where Sk ∈ R
k×k×n3 is a F-diagonal tensor and k < min(n1, n2) is called the

tubal-rank of A based on the T-product.

The expression (17) can be regarded the rank-k approximation of the tensor A,
denoted by A ≈ Ak . We comment that the decomposition (17) is also called the
tensor compact SVD (T-CSVD); see [25] for instance.

The TTSVD of A can be expressed as follows:

Ak =
k∑

j=1

Ūj ∗ dj ∗ V̄ T
j (18)

where Ūj = U(k)(:, j, :) ∈ R
n1×1×n3 , V̄j = V(k)(:, j, :) ∈ R

n2×1×n3 and dj =
S(j, j, :) ∈ R

1×1×n3 for j = 1, 2, . . . , k.
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Remark 5 Let A = U ∗ S ∗ VT be the TSVD of A. In view of Proposition 1, we can
see that:

ŪT
i ∗ Ūj = (UT ∗ U)ij : and V̄ T

i ∗ V̄j = (VT ∗ V)ij :.
Therefore, we have ŪT

i ∗ Ūj and V̄ T
i ∗ V̄j are zero tubal-scalar of length n3 for i 
= j ;

ŪT
i ∗ Ūi = e and V̄ T

i ∗ V̄i = e.

The following theorem reveals that Ak is an optimal approximation of a tensor;
see [18] for the proof.

Theorem 2 Let the TSVD of A ∈ R
n1×n2×n3 be given by A = U ∗ S ∗ VT and for

k < min(n1, n2), the tensor Ak given by (18) satisfies:

Ak = argmin
Ã∈M

‖A − Ã‖
where M = {C = X ∗ Y | X ∈ R

n1×k×n3 ,Y ∈ R
k×n2×n3}.

In view of Theorem 2, the Moore-Penrose inverse of tensor A is efficiently
estimated on M̃ = {C = X ∗ Y | X ∈ R

n2×k×n3 ,Y ∈ R
k×n1×n3} by

A† ≈
k∑

j=1

V̄j ∗ d
†
j ∗ ŪT

j , (19)

in which tubal-scalar d
†
j ∈ R

1×1×n3 stands for the (j, j, :) entry of S†(k).

The following theorem has a key role in deriving the results of the next section.

Theorem 3 Assume that A ∈ R
n1×n2×n3 and B ∈ R

n1×s×n3 . If X̂ = A† ∗ B, then

‖A ∗ X̂ − B‖ = min
X∈Rn2×s×n3

‖A ∗ X − B‖. (20)

Moreover, for any X̃ ∈ R
n1×s×n3 such that X̃ 
= X̂ and ‖A∗ X̂−B‖ = ‖A∗ X̃−B‖,

then ‖X̂‖ < ‖X̃‖.

Proof Let A = U ∗ S ∗ VT be the TSVD of A. From [18, Lemma 3.19], it can be
seen that

‖A ∗ X − B‖ = ‖UT ∗ (A ∗ X − B)‖.
By some straightforward computations, we have:

‖UT ∗ (A ∗ X − B)‖ = ‖S ∗ VT ∗ X − UT ∗ B‖.
Setting Z = VT ∗ X andW = UT ∗ B, we get:

‖UT ∗ (A ∗ X − B)‖ = ‖S ∗ Z − W‖
= ‖(F ∗

n3
⊗ In1 )MatVec(S ∗ Z) − (F ∗

n3
⊗ In1 )MatVec(W)‖F

= ‖(F ∗
n3

⊗ In1 )bcirc(S)MatVec(Z) − (F ∗
n3

⊗ In1 )MatVec(W)‖F (21)
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where ‖ · ‖F is the well-known Frobenius matrix norm, the notation ⊗ stands for
the Kronecker product and the matrix Fn3 is the discrete Fourier matrix of size n3×n3
defined by (see [6]):

Fn3 = 1√
n3

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn3−1

1 ω2 ω4 ω6 · · · ω2(n3−1)

1 ω3 ω6 ω9 · · · ω3(n3−1)

...
...

...
...

. . .
...

1 ωn3−1 ω2(n3−1) ω3(n3−1) · · · ω(n3−1)(n3−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

in which ω = e−2π i/n3 is the primitive n3–th root of unity in which i = √−1 and F ∗
denotes the conjugate transpose of F .

For simplicity, we set Z = (F ∗
n3

⊗ In2)MatVec(Z) and W = (F ∗
n3

⊗
In1)MatVec(W); hence, (21) can be rewritten as follows:

‖UT ∗ (A ∗ X − B)‖ = ‖(F ∗
n3

⊗ In1)bcirc(S)(Fn3 ⊗ In2)Z − W‖F .

Notice that

‖Z‖F = ‖MatVec(Z)‖F = ‖Z‖ = ‖VT ∗ X‖ = ‖X‖. (22)

From [18, 25], it is known that there exist diagonal (rectangular) matrices
Σ1, Σ2, . . . , Σn3 such that:

(F ∗
n3

⊗ In1)bcirc(S)(Fn3 ⊗ In2) = Σ =

⎛

⎜⎜⎜⎝

Σ1
Σ2

. . .
Σn3

⎞

⎟⎟⎟⎠ ,

and

(F ∗
n3

⊗ In2)bcirc(S
†)(Fn3 ⊗ In1) = Σ† =

⎛

⎜⎜⎜⎝

Σ
†
1

Σ
†
2
. . .

Σ
†
n3

⎞

⎟⎟⎟⎠ .

From the above computations, we have:

‖A ∗ X − B‖ = ‖Σ Z − W‖F .

It is well-known from the literature that the minimum Frobenius norm solution of
‖Σ Z − W‖F over Rn2n3×s is given by Ẑ = Σ†W , i.e.:

Ẑ = argminZ∈Rn2n3×s ‖Σ Z − W‖F .

Let X̂ be the tensor such that

MatVec(VT ∗ X̂) = (Fn3 ⊗ In2)Σ
†W

= (Fn3 ⊗ In2)Σ
†(F ∗

n3
⊗ In1)MatVec(W)

= bcirc(S†)MatVec(UT ∗ B).
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It is immediate to deduce the following equality:

MatVec(VT ∗ X̂) = MatVec(S† ∗ UT ∗ B),

which is equivalent to say that VT ∗ X̂ = S† ∗UT ∗B. Finally, the result follows from
(22).

Similar to the TSVD [18], the TTSVD can be obtained using the fast Fourier trans-
form. Notice that circulant matrices are diagonalizable via the normalized DFT. This
fact was used for proving Theorem 1 and deriving the Matlab pseudocode for TSVD;
see Algorithm 1 for more details. Here, we further use this fact and present a Matlab
pseudocode for computing TTSVD and the corresponding approximation of Moore-
Penrose inverse in Algorithm 2. Note that the Matlab function pinv(.) reduces to
inv(.) when the diagonal matrix S in Step 2 of the algorithm is nonsingular.

4.2 Tensor extrapolationmethods applied to TTSVD sequences in ill-posed
problems

Let A ∈ R
n1×n2×n3 be given and consider its TSVD, i.e., let us apply Algorithm 1

for A. In case the matrix bcirc(A) has too many singular values being close to zero,
the tensor A is called ill-determined rank.
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In this subsection, we discuss solutions of tensor equations in the following form:

A ∗ X = B (23)

where the ill-determined rank tensor A ∈ R
n1×n2×n3 and right-hand side B ∈

R
n1×n2×n3 are given and X ∈ R

n2×n2×n3 is an unknown tensor to be determined. We
assume that the right-hand side B ∈ R

n1×n2×n3 is contaminated by an error E, i.e.,
B = B̃ + E where B̃ denotes the unknown error-free right-hand side. We are inter-
ested in determining an accurate approximation of the minimum norm (least-squares)
solution of (23). From Theorem 3, it is known that the exact solution is given by:

X̃ = A† ∗ B.

Systems of tensors (23) with a tensor of ill-determined rank often are referred to as
linear discrete tensor ill-posed problems. They arise in several areas in science and
engineering, such as the restoration of color and multispectral images [1, 20, 29], and
blind source separation [21], when one seeks to determine the cause of an observed
effect.

In the matrix case, when the size of the rank deficient matrix A is moderate, using
the truncated SVD is a popular method for computing an approximation for the (least-
squares) solution of (in)consistent linear system of equations Ax = b. The approach
replaces the matrix A† by a low-rank approximation; see, e.g., Golub and Van Loan
[7] or Hansen [9]. Following the same idea, we approximate the exact solution by
using the expression (19) and available right-hand sideB, i.e., X̃ ≈ A†∗B. Basically,
we take X̃k ≈ X̃ in which:

X̃k =
k∑

j=1

V̄j ∗ d
†
j ∗ ŪT

j ∗ B̃,

where Ūj = U(k)(:, j, :) ∈ R
n1×1×n3 , V̄j = V(k)(:, j, :) ∈ R

n2×1×n3 and dj =
S(j, j, :) ∈ R

1×1×n3 are determined by Algorithm 2 for j = 1, 2, . . . , k. For the
matrix case, Jbilou et al. [14] proposed the application of the RRE to the sequence of
vectors generated by the truncated SVD. In the remainder of this paper, we follow the
same idea and consider the application of TRRE to the sequence of tensors generated
by the truncated TSVD (TTSVD). To do so, we set:

Yi = Δ2Si−1 1 ≤ i ≤ � − 2,

in which � = min(n1, n2) and (Sk)k≥0 is the tensor sequence generated by the
TTSVD. Thus,

Sk = A
†
k ∗ B̃ =

k∑
j=1

V̄j ∗ δj (24)
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where δj = d
†
j ∗ ŪT

j ∗ B̃ and S0 is set to be a zero tensor of order n2 × n2 × n3. It
can be observed that:

ΔSk−1 = Sk − Sk−1

=
k∑

j=1

V̄j ∗ δj −
k−1∑

j=1

V̄j ∗ δj

= V̄k ∗ δk . (25)

We assume here that δT
k ∗δk is invertible and notice that if δT

k ∗δk is zero, then we can
delete the corresponding member from the sequence (24) and compute the next one
by keeping the same index notation. To overcome the cases δT

k ∗δk is numerically non
invertible, we can use a small shift εI (say ε = 1e − 8) on the positive semi-definite
tensor δT

k ∗ δk; see Remark 2.
Let ΔSk and Δ2Sk be 4-mode tensors whose i-th frontal slices are given by ΔSi−1

and Δ2Si−1 for i = 1, 2, . . . , k, respectively, for i = 1, 2, . . . , k.
Notice that Δ2Sj−1 = V̄j+1 ∗ δj+1 − V̄j ∗ δj for j = 1, 2, . . . , k. Hence,

(Δ2Sk♦ΔSk):::ji = (δT
i+1 ∗ V̄ T

i+1 − δT
i ∗ V̄ T

i ) ∗ V̄j ∗ δj

= δT
i+1 ∗ V̄ T

i+1 ∗ V̄j ∗ δj − δT
i ∗ V̄ T

i ∗ V̄j ∗ δj for i, j = 1, 2, . . . , k.

Using Remark 5, we can deduce that the non-zero frontal slices of Δ2S̃k♦ΔSk are
given by:

(Δ2Sk♦ΔSk):::(i+1)i = δT
i+1 ∗ δi+1,

and

(Δ2Sk♦ΔSk):::ii = −δT
i ∗ δi .

Straightforward computations together with Remark 5 show that the frontal slices of
the 4-mode tensor (Δ2Sk♦ΔSk) are equal to zero except the last frontal slice being
equal to δT

k+1 ∗ δk+1. For notational simplicity, we define Θi+1 = δT
i+1 ∗ δi+1 for

i = 0, . . . , k. In summary, we need to solve the following tensor equation:

(Δ2Sk♦ΔSk) � βk = −(Δ2Sk♦ΔSk),

where βk is a 4-mode tensor with frontal slices β
(k)
0 , β

(k)
1 , . . . , β

(k)
k−1. Or equivalently,

we need to find the solution of the following system of tensor equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Θ1 ∗ β
(k)
0 + Θ2 ∗ β

(k)
1 = O

− Θ2 ∗ β
(k)
1 + Θ3 ∗ β

(k)
2 = O

. . .

− Θk ∗ β
(k)
k−1 = −Θk+1

, (26)

here O stands for zero tensor of order n2 × n2 × n3. It is immediate to see that

β
(k)
i = Θ−1

i+1 ∗ Θk+1 0 ≤ i < k, (27)
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is a solution of (26). Evidently, we have:

k∑

i=0

β
(k)
i =

k∑

i=0

Θ−1
i+1 ∗ Θk+1, (28)

where β
(k)
k = In2n2n3 . Note that

∑k
i=0Θ

−1
i+1 is the summation of positive definite

tensors which implies its invertibility. In fact, we have:
(

k∑

i=0

β
(k)
i

)−1

= Θ−1
k+1 ∗

(
k∑

i=0

Θ−1
i+1

)−1

.

We comment here that the assumption made on the invertibility of γ
(k)
k in Section 3.1

is implicitly satisfied here.
By the discussions in Section 3.1, from (11), we can derive γ

(k)
j for j =

0, 1, . . . , k − 1 noticing that γ (k)
k = In2n2n3 − ∑k−1

i=0 γ
(k)
i . More precisely, we have:

γ
(k)
j = Θ−1

j+1 ∗ Θk+1 ∗
(

k∑

i=0

β
(k)
i

)−1

= Θ−1
j+1 ∗ Θk+1 ∗ Θ−1

k+1 ∗
(

k∑

i=0

Θ−1
i+1

)−1

= Θ−1
j+1 ∗

(
k∑

i=0

Θ−1
i+1

)−1

j = 0, 1, . . . , k − 1. (29)

Having γ
(k)
0 , γ

(k)
1 , . . . , γ

(k)
k obtained, we can further compute α

(k)
i for i =

0, 1, . . . , k − 1 by (12).
Finally, the extrapolated third tensor can be written as follows:

Tk = ΔSk � α(k) (30)

where ΔSk and α(k) are 4-mode tensors whose j -th frontal slices are receptively
given by ΔSj−1 = Sj − Sj−1 = V̄j ∗ δj and α

(k)
j−1 for j = 1, 2, . . . , k.

The generalized residual can be written in the following form:

R(Tk) = ΔSk � γ (k) =
k∑

i=0

V̄i+1 ∗ δi+1 ∗ γ
(k)
i ,

where γ (k) is a 4-mode tensor with frontal slices γ
(k)
0 , γ

(k)
2 , . . . , γ

(k)
k . By Remark 5,

one can derive:

R(Tk)
T ∗ R(Tk) =

k∑

i=0

(γ
(k)
i )T ∗ δT

i+1 ∗ δi+1 ∗ γ
(k)
i

=
k∑

i=0

(γ
(k)
i )T ∗ Θi+1 ∗ γ

(k)
i
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Notice that Θi+1 is symmetric, i.e., Θi+1 = ΘT
i+1. It can be verified that the inverse

of a symmetric tensor is also a symmetric tensor. From (27) and (29), we can observe:

R(Tk)
T ∗ R(Tk) =

k∑

i=0

(γ
(k)
i )T ∗ Θi+1 ∗ γ

(k)
i

=
k∑

i=0

(γ
(k)
i )T ∗

(
k∑

�=0

Θ−1
�+1

)−1

=
⎛

⎝
k∑

j=0

Θ−1
j+1

⎞

⎠
−1

∗
(

k∑

i=0

Θ−1
i+1

)
∗

(
k∑

�=0

Θ−1
�+1

)−1

=
⎛

⎝
k∑

j=0

Θ−1
j+1

⎞

⎠
−1

= Θk ∗ Θ−1
k ∗

⎛

⎝
k∑

j=0

Θ−1
j+1

⎞

⎠
−1

.

Now, we can deduce that (see the proof of [18, Lemma 3.19] for more details):

‖R(Tk)‖2 = trace
((

Θk ∗ γ
(k)
k−1

)

::1

)
. (31)

For ill-posed problems, the value of ‖R(Tk)‖ decreases when k increases and is suf-
ficiently small. However, the norm of R(Tk) may increase with k. Hence, similar to
[15], we may need to simultaneously exploit an alternative stopping criterion when
the problem is ill-posed. To this end, we can stop iterations once either ‖R(Tk)‖ or

ηk := ‖Tk+1 − Tk‖
‖Tk‖ =

√
trace

((
(Tk+1 − Tk)T ∗ (Tk+1 − Tk)

)
::1

)

√
trace

((
T T

k ∗ Tk

)
::1

) (32)

is smaller than a prescribed tolerance. Using Remark 5 and some computations, one
may simplify the above relation exploiting the following relations,

(Tk+1−Tk)
T ∗(Tk+1−Tk) =

k∑

j=1

(α
(k+1)
j−1 −α

(k)
j−1)

T ∗Θj ∗(α
(k+1)
j−1 −α

(k)
j−1)+α

(k+1)
k ∗Θk+1∗α

(k+1)
k ,

and

T T
k ∗ Tk =

k∑

j=1

(α
(k)
j−1)

T ∗ Θj ∗ α
(k)
j−1.

We end this part by summarizing the above discussions in Algorithm 3.
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5 Numerical experiments

In this part, we consider a test problem to numerically compare the performance of
Algorithm 3 with TTSVD for solving ill-conditioned problems. All computations are
carried out using MATLAB with machine epsilon about 10−16.

The desired solution X̃ is chosen as a tensor with all entries being equal to 1.
The error-free right-hand side is given by B̃ = A ∗ X̃ and the associated error-
contaminated right-hand side B = B̃ + E where the error-tensor E has normally
distributed entries with zero mean and is normalized to correspond to a specific noise-
level:

ν = ‖E‖
‖B̃‖ . (33)

For all the experiments, we reported the relative error norms:

‖Sk − X̃‖/‖X̃‖ and ‖Tk − X̃‖/‖X̃‖
corresponding to TTSVD and TRRE-TSVD, respectively.

We used the Regularization Tools package by Hansen [10] to define the frontal
slices A1 = shaw, A2 = baart , and A3 = f oxgood of the tensor A. The computed
condition numbers of the frontal slices of A are κ(A1) = 1.25 · 1020 and κ(A2) =
1.5 · 1018, and κ(A3) = 7 · 1019 where κ(Ai) = ‖Ai‖2 ‖A−1

i ‖2.
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Frontal Singular Values

Fig. 1 Singular values of the first frontal slice of the tensor S

In Fig. 1, we plotted, in a logarithmic scale, the singular values of the first frontal
slice of the tensor S such that A = U ∗ S ∗ VT is the TSVD of the tensor A.

As seen, in Fig. 1, only a small number of those singular values are not close to 0
which means that the problem is very ill-conditioned. The computed tubal rank (the
number of non-zero elements in the first frontal slices of S) is rankt (A) = 32; see
[23] for more details on the definition of a tubal rank.

We set n1 = n2 = 400, n3 = 3, and chose ν = 10−2, 10−3. The obtained relative
error norms corresponding to approximate solutions computed by TRRE-TTSVD
and TTSVD are reported in Tables 1 and 2.

We observed numerically that after iteration k = 10 the error norm for TTSVD
begins to increase while the one for TRRE-TTSVD stagnates and this is the same
phenomena observed in the vector case.

Table 1 The computed relative errors for TTSVD and TRRE-TTSVD (ν = 10−2)

Method TRRE-TTSVD TTSVD

k ‖Tk − X̃‖/‖X̃‖ ‖Sk − X̃‖/‖X̃‖
6 2.2 · 10−1 1.2 · 10−1

10 4.3 · 10−2 1.7 · 10−1
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Table 2 The computed relative errors for TTSVD and TRRE-TTSVD (ν = 10−3)

Method TRRE-TTSVD TTSVD

k ‖Tk − X̃‖/‖X̃‖ ‖Sk − X̃‖/‖X̃‖
4 4.1 · 10−2 1.7 · 10−2

12 4.2 · 10−3 2.4 · 10−2

6 Conclusion

We proposed in this work some tensor extrapolation methods. The first class con-
tains the tensor extrapolation polynomial-type methods while for the second class,
we introduced the tensor topological ε-transformation. These techniques can be
regarded as generalizations of the well-known vector and matrix extrapolation meth-
ods. Besides, we introduced some new products between two tensors which can
simplify the derivation of extrapolation methods based on tensor format. Some the-
oretical results were also established including the properties of introduced tensor
products and an expression for the minimum norm least-square solution of a tensor
equation. Finally, the proposed techniques were applied on the sequence of tensors
corresponding to the truncated tensor singular value decomposition which can be
used for solving tensor ill-posed problems.
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