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Abstract

In this paper, we consider the Galerkin finite element method (FEM) for the Kelvin-
Voigt viscoelastic fluid flow model with the lowest equal-order pairs. In order to
overcome the restriction of the so-called inf-sup conditions, a pressure projection
method based on the differences of two local Gauss integrations is introduced.
Under some suitable assumptions on the initial data and forcing function, we firstly
present some stability and convergence results of numerical solutions in spatial dis-
crete scheme. By constructing the dual linearized Kelvin-Voigt model, stability and
optimal error estimates of numerical solutions in various norms are established. Sec-
ondly, a fully discrete stabilized FEM is introduced, the backward Euler scheme is
adopted to treat the time derivative terms, the implicit scheme is used to deal with the
linear terms and semi-implicit scheme is applied to treat the nonlinear term, uncon-
ditional stability and convergence results are also presented. Finally, some numerical
examples are presented to verify the developed theoretical analysis and show the
performances of the considered numerical schemes.
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1 Introduction

As an important component of the non-Newton fluids, the viscoelastic fluid flow
model has been widely used in food products, molten plastic, biologic fluid, etc.
In recent years, some important viscoelastic models have been researched not only
from the viewpoint of theoretical analysis but also from the numerical simulations
point. For example, we can refer to [1-3] and the reference therein. In this paper, we
consider the following Kelvin-Voigt viscoelastic flow model

3

a—I:—KAu,—vAu—l—u-Vu—i—Vp:f, (x.1) € Q x R*,

divu =0, (x,1) € Q x RT, (1)
u=0, (x,1) € 92 x RT,

u(x, 0) = uo, x € Q,

where Q € R%(d = 2,3) be a bounded convex domain or the boundary 02 €
C?, u and p are the fluid velocity and pressure, the positive parameters v and « are
the kinematic coefficient viscosity and the retardation time or the time of relaxation
of deformations, respectively, f is the prescribed body force, and u( is the initial
velocity.

The Kelvin-Voigt model was first introduced by Pavlovskii [4], which can be
used to describe the motion of weakly concentrated water-polymer solution. It was
named the Kelvin-Voigt viscoelastic fluid model by Oskolkov and his collaborators
[5]. Later, the Kelvin-Voigt model as a smooth, inviscid regularization of the 2/3D
Navier-Stokes equations has been proposed in [6]. For applications of the Kelvin-
Voigt flow in organic polymer and food industry and in the mechanisms of diffuse
axonal injury, etc., we can refer to [7] and the reference therein. Many numeri-
cal works have also been done for the Kelvin-Voigt model. For example, under the
assumption of the exact solution is asymptotically stable, Oskolkov analyzed the con-
vergence of the spectral Galerkin approximation in [8]. Pani and his coauthors in [9]
shown that the optimal error estimation was consistent and effective in time under the
assumption of uniqueness by applying a variant of the nonlinear semi-discrete spec-
tral Galerkin method. Later, they considered the first- and second-order backward
difference methods for the Kelvin-Voigt model and established the global discrete
attractor and optimal error estimates by the Sobolev-Stokes projection and Stolz-
Cesaro classical result on sequences in [10—12]. Bajpai and his coauthors considered
the BDF schemes and two-grid Crank-Nicolson method for the Kelvin-Voigt vis-
coelastic fluid model in [13, 14]; stability and optimal error estimates were provided
and numerical tests were also presented to verify the performances of the considered
numerical methods.

When we solve the incompressible flow problem numerically, an important restric-
tion is the compatibility between the discrete velocity and pressure spaces [15,
16]. However, many simple construction and computationally convenience mixed
elements do not satisfy the inf-sup condition may also work well, especially the
equal-order mixed elements, because these pairs have the same node distributions
and basis functions on the same meshing. In order to overcome the restriction of
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the discrete inf-sup condition and make full use of the equal-order mixed elements,
researchers developed several stabilized techniques, for example, the polynomial
pressure projection method [17, 18], the macro-element method [19], and the local
Gauss integrations stabilized method [20]. In this work, we consider the stabilized
method for the Kelvin-Voigt model based on the lowest equal-order mixed elements.
The difference between two local Gauss integrations is used to bypass the inf-sup
condition due to this method has some attractive features, such as parameter-free, no
higher-order derivatives, and non-edge-based data structures.
The main contributions of this paper can be listed as follows:

(I) Compared with [10-14], some different theoretical analysis tools are adopted
to avoid using the Sobolev-Stokes projection and Stolz-Cesaro’s classical
result on sequences.

(II) Compared with [19], optimal error estimates for velocity in L% (L?)-norm
are established by constructing the dual problem and using the negative norm
estimate technique.

(ITIT) Compared with [20, 21], the unconditional stability and optimal convergence
results of velocity in various norms are provided for all # > 0.

The outline of this paper is organized as follows. Section 2 introduces the Sobolev
spaces, the stabilized FEM, and some preliminary results. Stability and convergence
results of stabilized FEM are presented in Sections 3 and 4 by the energy method
and L’Hospital rule. Section 5 devotes to the optimal L (L*)-norm error estimates
of velocity by constructing dual problem and using the negative norm technique.
Section 6 presents the fully discrete stabilized FEM and establishes the error esti-
mates of the fully discrete numerical approximations in various norms. Finally, some
numerical results are presented to verify the established theoretical analysis and show
the performances of the considered stabilized method.

2 Preliminaries

For the mathematical setting of problem (1), standard Sobolev spaces are used.
Denote H' () the function with square integrable distribution derivatives up to order
i over the domain €2, H(} () is the closed subspace of H!(2) consisting of the func-
tions with zero trace on 2. We equip the spaces H 1(Q)(i = 1, 2) with the norm -1l
L' () with the norm || - ||o and inner product (-, -), HO1 (£2) with the scalar product
((u, v)) = (Vu.Vv) and norm ||ul; = ((u, u))/?%. Set

X =Hi (@, DA =H*Q'NX, Y =L*Q)?@d=23),

M = 13 = g € L@ | adx =0).
Q
V={ve X;divv=0}, H={veY;divv =0, v-n|yg =0}

and denote the Stokes operator by A = —PA, P is L?-orthogonal projection of ¥
onto H.
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Some assumptions about the prescribed data for problem (1) are needed (see [13,
14, 22]).
(A1). The initial velocity ug € H 2(Q)4 NV and the body force f satisfy

luoll3 + sug(llf(t)ll?) +IAOI <c.
>
The continuous bilinear forms a(-, -) on X x X and d(-, -) on X x M are defined by
a(u,v) =v((u,v)) =v(Vu,Vv), d(v,q) =(@,V-v) Yu,ve X, ge M.

Define the trilinear form b(-, -, -) on X x X x X with B(u, v) = (u-V)v—}—%(Vw)v
by

b(u,v,w) = (B(u,v), wxyxx = (u- Vv, w)+ %((divu)v, w).

The following properties of trilinear term can be found in [16, 19]

b(u,v,w) =—=b(u,w,v), |b(u,v,w)| < Nlulillviiwli, 2)
1b(u, v, w)| + [b(w, u, v)|

co 1/2 1/2 1/2 1/2 1/2 1/2
< 5(||u||0/ laelly ol + ol 2ol el lw > wll 3)

forall u, v, w € X and
|b(u, v, w)| + [b(v, u, w)| + |b(w, u, v)|
c0 1/2 1/2 1/2 1/2 1/2 1/2
< 3(||u||1||v||0/ oIy + el > el 11011 101> wllo, )

forallu e X, ve D(A),w €Y.
With above notations, the variational formulation of problem (1) reads as: find
(u, p) € X x M, forall (v,q) € X x M such that

(ur, v) + & ((ur, v)) + B, p); (v, q)) + b, u,v) = (f,v), (&)

where

B((u’ p)’ (U, C])) = a(u’ 'U) - d(U, P) + d(l/i, CI)

The following results are valid for small « in 2D and for 3D with data small.
Theorem 2.1 (see [9, 22, 23]) Under the assumption (Al), there exists a positive
constant ¢ = c(v, 8o, 2, A1) such that for 0 < §y < min{%, %},for allt > 0,
problem (1) admits a unique solution (u, p) and satisfies

t
el + P15 +e—5°’/0 O (ull3 + I pliHds < e,

'
2 2 2 =t | 8 2 2
llue |l + & lluelly + Iy + e 0/eos(lluzlll+K||utII2)dS§c,
0

where )»fl > 0 satisfies ||v ||(2) < )»fl Vv ||%, it is the best possible constant depending
on 2.
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Lemma 2.2 Under the assumptions of Theorem 2.1, for all t > 0 it holds
(@) (uell2 + llunlln + kllugll2) < c,

with T(t) = min{z, 1}.

Proof Differentiating (5) with respect to ¢, one finds that
(ut[9 U)+K((Un, U))+a(ulv U) _d(l}, pl) + b(l/l[, u, U) + b(l/l, Uz, U) = (fla U)' (6)
Taking v = —Au,; € V in (6), it yields

vd -
lueellF + relle 13 + Mnu,nﬁ + b(ug, u, —Auyg)
+ b(u, uy, _Autt) = (f, —Aun)~ @)

Thanks to (2), (3), and the Cauchy inequality, we have
- - K
|bus, u, —Aug) |+ b, up, —Aug)| < cllug Ml 1l ll2 < = g3 +cllug 1317

- K
|(fr, —Aug)| < Znunn% +ell fll3

Combining above inequalities with (7) and dropping some unnecessary terms, mul-
tiplying by e50’r(t), noting the fact t(¢) < 1, daz(®) < 1, integrating from ¢t = 0 to ¢,

. dt
one finds

v t t
Ee%’rmnu,n%/o ()l I3 + llugel13)ds SC/O % (lu 13 (lullf + 1

+ 80) + Il £ I13)ds. )

Multiplying (8) by e~

proof.

From now on, £ is a real positive parameter tending to 0, we let 7, be a uniformly
regular mesh of © made of n-simplices K with mesh size & (see [15, 24]). Based
on 7y, we introduce the finite-dimensional subspaces (X, M) C X x M. This
paper focuses on the analysis for the unstable velocity-pressure pair of the lowest
equal-order elements:

, using Theorem 2.1 and the L’Hospital rule, we finish the

X ={vn € CUQ>N X :vplk € RI(K)?, VK € T},
My = {gn € CO(Q) N M : gulk € Ri(K), YK € Ty},

where R{(K) = P1(K) if K is triangular and R{(K) = Q1(K) if K is quadrilateral.

It is well known that the lowest equal-order elements do not satisfy the discrete
inf-sup condition, so we use the stabilized method to overcome this restriction and
set Tl : M — Ry ={gn € M : qn|k is aconstant,VK € T} be a L2-pr0jection and
satisfy (see [20, 25]):

(p,agn) = Tlpp,qr), Mppllo < clipllo, Yp € M, qi € Ro, 9)
Ip — ypllo < chliplh, ¥p e HY(Q)N M. (10
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Define the stabilized term based on the differences of two local Gauss integrations
(see[17, 20])

G(p.q) = (p = up.q — Ing). (1)

With above notations, the stabilized finite element variational formulation of prob-
lem (5) reads as: Find (up, pn) € Xn x My, for all (v, gn) € X x Mj, and ¢ > 0, it
holds

Wne, vp) + k((Upes vr)) + Bp(@p, pr); (W, gn)) + by, up, vp) = (f, vp), (12)
where
B ((un, pn); (Wi, qn)) = a(up, vp) — dn, pr) +dWn, qn) + G(pr, qn),

is the discrete generalized bilinear form.
Now, we present some assumptions about the spaces X;, and Mpy: There exist
operators 1, and py, such that (see [17, 20, 25])

lv = muvllo + hllv — vl < ch*[vll2, Vv € D(A), (13)
lg — pnqllo < chliglh, ¥q € H'(Q)N M. (14)

Define the discrete Stokes operator A, = — P, Aj, by
(Apup, vp) = Vup, Vop), Yup, vy € Xp,

where the Lz—orthogonal projection operators P, : Y — Xy and pj : M — M), are
defined by

(Ppv,vp) = (v,vp) Yo e, v, € Xy (onq,qn) =(q,q1) Yq € M, g, € M.

The discrete norm ||vy |l = ||AZ/ 2vh |lo with a-order can be defined, where

loalls = IVonllo. llvalla = IAnvallo. loall—1 = 1A, *vallo.
Denote the subspaces V}, of X; by
Vi ={vn € Xp;d (v, qn) =0, Ygn € Mp}.
The following theorem establishes the continuity and coercivity for By ((-, -);

¢, 9)- O

Theorem 2.3 (see[20, 25]) There exists a constant B > 0, independent of h, such
that
|Bi((u, p); (v, g)| < cllully + Ipllo)(Ulvlis + liglo), ¥(u, p), (v.q) € X x M,

|Br((un, pr); (i, qn))
Blurlli+1prllo) < sup , Y(up, pr) € Xpx My,
(Vngi)eXnx My lvrllt + ligrllo

IG(p, @)l <cllp—upllollg — Mugllo, Yp,q € M.
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3 Unconditional stability of spatial discrete numerical solutions

In this section, we establish some stability results of numerical solutions u;, and py,.
Firstly, for all (4, p) € X x M and (vp, q) € Xp X My, we define the Galerkin
projection (Ry, Op) : X x M — X, x M), by

Bn((Rn(u, p), Qn(u, p)); (v, qn)) = B((u, p); (vn, qn)), (15)
which is well defined and for all (u, p) € D(A) x H'(Q)N M, it holds (see [19, 20])

llue— Ry, (e, p)llo+h(llu— Ry e, plli+1p— Qi p)llo) < ch*(llulla+1plh)- (16)

Due to ug € D(A), one gets pg € H'(Q) N M. Defining (uop, pon) =

(Rn(uo, po), Qn(uo, po)), setting wp = u — Ry(u, p) and rp = p — Qp(u, p), with
Theorem 2.1 and (15)—(16), we have

Lemma 3.1 (see [19, 20]) Under the assumptions of Theorem 2.1 and the following
uniqueness condition
|(( - Vv, w)|

VN fllot <1, N= sup ——> T, (17)
wwvwex el lwl

where || fooll—1 = sup |(]”C‘l’f”’lv)|,f0r allt > 0, it holds
veX

lwa () llo + h(lwa Ol1 + lra (@) llo) < ch?,
t

e~ f 5 (w13 4 12 lwpe |13+ B2 e 13 ds < ch®.
0

Theorem 3.2 Under the assumptions of Theorem 2.1, for all t > 0, it holds
2 2 sor 6 2
lun @I+ kllun N7 + e Ot/ e Wllunly + G(pn, pp))ds <c,  (18)
0

t
lun (17 + & llun (@) 13 + e / ESvlupl3ds <e,  (19)
0

Jim supllun 17 + G (pa pw)) < v fool2ye (20)

Proof Taking (vp, qn) = (up, py) in (12), using (2) and the Cauchy inequality, we
get

d 2 2 2 1y £112
E(Iluhllo + «llunlly) + vilunlly +2G (pr, pr) < v 1 £l 21

Multiplying (21) by %, noting the fact vl|uy |7 = vAi|lunlld = 280llun |3 and the
assumption (A1), integrating with respect to time from O to ¢, we obtain (18) after a
multiplication by e =%,

Then, taking v, = Apuy € Vp, gn = 0 and using the similar proof of (18), we get
(19).
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Furthermore, choosing (vs, gn) = (us, pp) in (12) and multiplying €%, one finds

d
E(e“‘)’ lunlly + ke lup |13) 4 2% wllun |} + G(pn, pr))
< 80€% (llun I3 + «cllunll}) + 2" (£, up). (22)

—d8ot

Integrating above inequality from O to # and multiplying by e™°0", we have

t
lun )13 + i llup (0|7 + 2e% /O 5 (Wllup ()T + G(p(s), pr(s)))ds

t

< %! f 5 Soun Iy + rellun13) + 20, un))ds + e (|| Ry (uo, po)lIg
0

+ k|| R (uo, po)I?).

Letting t — oo in above inequality, using the L’Hospital rule and noting the fact that
lim 2w llunOIF + G(pa. pw)) < im vllua @[] + v~ fooll -
11— 00 11— 00

Then, we deduce the desired result (20). O]

Theorem 3.3 Under the assumptions of Theorem 2.1, for all t > 0, up; satisfies

t
2 2 -4 803 2 2
lunelly + K llunelly + e 0'/ e (lunelly + K llunell3)ds < c.
0

Proof Taking v, = Apup: € Vi, qn = 01in (12), using (3), the Cauchy inequality,
multiplying by ¢%’, integrating with respect to time from 0 to ¢, we finish the proof
by multiplying e~%’ and using Theorem 3.2. O

Theorem 3.4 Under the assumptions of Theorem 2.1, for all t > 0, it holds
!
lu = unllg + K llu — unllf + e—5°’/ ||l — up||ids < ch?, (23)
0

t
vlunl? 4 G(pn, pn) + e / 05 (Jlun |13 + i lupe 1D)ds < c. (24)
0

Proof Differentiating the terms d(up, gn) + G(pn, qn) in (12) with respect to the
time, taking (v, gn) = (Ups, pr), We get

2 2 ld 2
leene 1o + s llunlly + 5 = O lunllt + G (ps pr)) = bl =, s up)
—bQup, u — up, upe) + b, u,up) = (f,un). (25)
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Thanks to (2)—(3) and the inverse inequality, we obtain
|b( _ < h—l _ <l 2 h_2 _ 2

u—up, u, up)| < ch™lu —upllilullillunllo < 8||Mht||o+c llu — unlly,
b . < ch! _ < l 2 0 ch 2 — 2
[bQup, u—up, up)| < chlupllillu — uplitllunllo < 8||Mht||o+c lu —unlly,

1 2 2

b, u, up)| < cllull2llullillunllo < g””ht”o + cllullz.

Combining above estimates with (25) and multiplying by €%, we arrive at

d
O (lupe If + & lluneI3) + Z(e%’(vnuhn% + G(pn, pn)))
< 80’ Wllupll} + G(pn, pr)) + c€® (W2 lu — up |1} + ull3 + 1 £1I3)- (26)

Integrating (26) with respect to time from O to ¢, by Theorems 2.1 and 3.2, one finds
t
V) < ce -+ vluon I + Gpn. pon) + ™2 [ =y s,
0
where

t
Y(t) = ™ wllup )3 + G(pu(t), pr(0)) + fo 0 (Jlune 13 + relupe IDds.  (27)

From the definition of (uos, por), we have v|uosll3 + G(por, pon) < clluoll} +
cll poll3, then it holds

t
Y(t) < ce® + ch—2f 5 ||u — up||3ds.
0

Subtracting (12) from (5) with (v, g) = (vy, g), using the projection (Ry,, Op),
for all (vp, qn) € X5 x My, we get
(ur — wpe, vp) + k(U — e, vi)) + Bu((ens in); (i, qn))
+b(u, u — up, vp) +b(u —up, u, vp) —b(u —up, u —up,vp) =0 (28)

with e, = Ry (u, p) —up, wup = Qn(u, p) — ppand u — up = wy, + ep.
With (vy,, g5) = (en, n), we can rewrite (28) as

d

577l = uplly + wcllu — unlld) — @ — wne, wp) — (@ — wpe, wp))
+vllu — upll? + G(tn, in)

= 2a(wp, u —up) —a(wp, wp) — b(u, u —up, wp) — b — up, up, wp)

+b(u — up, up, u — up). (29)
Thanks to (2), it is valid that

Nilwpllr(lully + llupllD)llue — upll1,

|b(u — up, up, wp)| + 16, u —up, wp)| <
2
|b(u — up, up,u —up)l < Nluplille —uplly.
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Combining above estimates with (28), multiplying by ¢%’ and using Theorem 2.1,

we obtain
d
Z(e%’(nu —upll + kllu — upll])) + 2% G (wn, 1an)

+26% (v — Nllup ) llu — upll

Sot Sot

2 2
< 80e® (lu — uplly + «llw — uplly) + ce® (lurllo + llunello) lwallo
5 5 2
+ee® w1 (1 =+ llully + llunll) lu — unlls + ce® lwp

B
+ce® i (llurlla + llunell2) wallo-

(30)

Integrating (30) with respect to time from O to ¢, using Theorem 2.1 and Lemma 3.1,

—d8ot

after a final multiplication by e, we have

t
lu — uplly + il — upll} +2e—5°f/ 5 (v — Nllup ) llu — upll}
0
+G(Wn, mp))ds
t
< ch? 4 s9e ! / 0 (= upllZ + icllu — up |D)ds
0

t
+ch? (e / ke (I3 + llune13)ds)'?
0

t
+ch(e™ %! f 5 (1 + Nluplld + NulDllu — upllids) /2.
0

Letting t — oo in (31), using the L’Hopital rule and Lemma 3.2, one gets

(v = v N fooll=1) lim supllu — up|?
=00

t
< ch lim supl|lu — upll1 + ch? lim (ef‘sot/ e‘SOSKHLth[||%ds)1/2 + ch?.
11— 00 —00 0

Considering the uniqueness condition (17), we obtain
t
lim sup|lu — up ||% < ch?® + ch® lim sup(ef‘%’/ e‘SOSKHuht ||%ds)1/2.
t—00 t—00 0
Combining (27) with (33) and Theorem 3.3, using the L’Hopital rule, we find
lim supllu — upl|} < ch?,  lim sup Y (1) < c.
t—00 t—00

As a consequence, using the fact ||u]lo < c|lu]||1, we have

lu — upll3 < ch?® vt > 0.

€1y

(32)

(33)

(34)

(35)

Combining (31) with (35), using Theorem 3.2, we get (23) after a multiplication by

e—%t,
Theorem 3.5 Under the assumptions of Theorem 3.4, for all t > 0, it holds

t
letne |13+ i llupe I + e~ f S Wllune |1} + G(pe, pre))ds < c.
0
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Proof Differentiating (12) with respect to ¢, taking (vy,, gn) = (Uns, pnt), using (3),
the Cauchy inequality, integrating with respect to the time from 0 to ¢, multiplying
by =%’ and using Theorems 3.2 and 3.3, we complete the proof. O

Theorem 3.6 . Under the assumptions of Theorem 3.4, for all t > 0, it holds

t
Vllune I + G (i pa) + &= / e (uanar |2 + i lene 1 D)ds < . (37)
0

Proof Differentiating (12) with respect to #, then differentiating d(up;, gn) +
G (pht, pnr) With respect to time again, taking (vi, gn) = (Unst, Phe), thanks to (2)—
(4), the Cauchy inequality, integrating with respect to time from O to 7, multiplying
by e %", applying Theorems 3.3, 3.4, and 3.5, we finish the proof. O

Theorem 3.7 Under the assumptions of Theorem 3.4, for all t > 0, it holds

(O lunell2 + Nunielln + & lunnell2) < c.

Proof Following the proof of Lemma 2.2, we derive the desired results. O

4 Error estimates of spatial discrete numerical approximations

This section is devoted to present the error estimates of the numerical solutions uy,
and pj, in various norms. The main results of this section are the following theorem.

Theorem 4.1 Under the assumptions of Theorem 3.4, for all t > 0, it holds
lu = unlly + '@ U p = pallo + lus — unello) < ch.
Proof The proof of the Theorem 4.1 consists of Lemmas 4.2, 4.3, and 4.4. O

Lemma 4.2 . Under the assumptions of Theorem 3.4, fort > 0, it holds

t

2 ot [ s 2 2 2

lu —uplly +e Ofem(llut—uhtllo-FKllut—uhtlll)dSECh.
0

Proof Differentiating the terms d(ej, q) + G (un, gn) With respect to time ¢ in (28)
and taking (v, qn) = (ens, 1n), one deduces that

2 2
s —unelly — e — wpe, whe) + iy — wpelly — k(e — wpe, Whe))

+b(u — Up, U, ehl)

1d
+zz(‘)”€h“% + G(un, n)) +b(u, u — up, epr)
—b(u —up, u —uyp, ep) =0. (38)
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Thanks to (2)—(4) and the inverse inequality, we have

|b(u—up, u, en)|+1bGu, u—up, en)| <cllullzllu—uplly(llus —unllo + llwnello)

1
2 2 2
= glwe —unilig + cllulizllw = unlly + cllull2 (el + Hun ) lwn o,

1/2

_ 1/2 32
|b(u—up, u—up, en)| <ch IIM—MhIIO/ lu—uplly”" ur — upello + llwnello)

1/2

1
2 —1 3 — 1/2 3/2
< gl —ndll§+ch™ = lollue—un I} +ch = 1y e = 17w lo-

Combining above estimates with (38), we obtain

d
e — wne I + rellte — upell + Z(vnehu% + G (wn, wn))

= 2(llurllo + Nunello) lwaello + 26 (Nlueg 12 + Nune 12) lwne llo
telluli2(llully + llunll)wallo
2 2 —1 3
tellullzllu —uplly +ch™ lu — unllollu — unlly

—1/2 1/2 3/2
eh™ 2w = wi = un 13 1wt llo.

Multiplying with €%’

fact

, integrating with respect to the time from O to # and noting the

2 2 2
llu — unlly < llwally + llenlly,

then one finds by applying Lemma 3.1, Theorems 2.1, 3.4 and multiplying by =%’
vllw = unllf + G, pn) + eﬁof/()te%%nu, — upellg + e llur — unelIDds
< ch*(e™ /0 te“o‘%nutn% + e G + N3 lullo + llenllo)®)ds) 2
+eh? (e fo [e"Wnu,n% + llun13)ds) /2
renlew [ "~ unlollu — unllds
+ch2(e_5°’/0le5°sh_l lu — unllollu — upll3ds)'/? + ch?. (39)

Thanks to Theorems 2.1, 3.3, and 3.4, we finish the proof of Lemma 4.2. O]

Lemma 4.3 Under the assumptions of Theorem 3.4, for t > 0, it holds

t
2 2 -4 80 2
(O lur — upelly + xcllur — unelly) + e 0[/ P T(O)Wllur — upelly
0

+G (ihss fine))ds < ch?.
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Proof Differentiating (28) with respect to ¢, taking (vp, gn) = (ent, hnr), using (3)—
(4), the Cauchy inequality, multiplying by %'t (), integrating with respect to ¢,
applying Theorems 2.1, 3.4 and Lemmas 3.1, 4.2, we have by multiplying e %

t
T () (lur —une 13+ i lltr —upe 1) + e / ST Wllen 1?4+ G (ine, fane))ds
0

t
—3 50 2 2
< ce 0’/eO%ma+||uh||1>||ut—um||ods
0

+c sup (lu(s) — up()IE + A llu — upll})

0<s<t

t t
+ce—50ff ST (O)clluy — upe|3ds +ch2(e—50’f 05T (1) |lun I13ds) 2
0 0
t
+ch? (e / ST ()i (e 13 + e 13)ds)/* + ch?. (40)
0

Thanks to Lemma 2.2, the triangle inequality, Theorem 3.6, and the fact
%1 [1e%5 |lwy, ||2ds < ch?, we deduce that

2 2
(@) (s — unelly + wllur — unell7)

t
+6760t/ ST ()Y Wlluy — upell} + G (hes pne))ds
0

t t
< ce b / VL)1 + un ) g —upg |2ds + e / T (yellug — up|2ds
0 0

+ch? + ¢ sup (lu(s) — un ()13 + A2 [lu — unll3).

O<s<t

Combining above inequality with Theorem 3.2 and Lemma 4.2, we complete the
proof. O

Lemma 4.4 Under the assumptions of Theorem 3.4, for all t > 0, it holds

t2)llp — pullo < ch.

Proof The inf-sup condition (15) and (28) guarantee that

Br((en, 1n); (va, gn))

Bllwnllo < sup
maneXn sy lvrlln + lignllo
< clluy — upello + crelluy — upelly + c(lully + Nupll Dl — upll

Combining above estimate with Lemma 3.1 and the triangle inequality, one finds

! 2Olp — pullo < ch+ et @) (lur — unello + kcllr — upelly)
eI+ llup ) llu — uplls. (41)

We finish the proof by combining (41), Theorem 3.2, Lemmas 4.2 and 4.3. O
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5 Optimal L2-norm error estimates of velocity in spatial discrete
scheme

This section is devoted to establish the optimal L2-norm error estimates of numerical
solution uy, in stabilized finite element method (12).

Theorem 5.1 Under the assumptions of Theorem 3.4, for all t > 0, it holds

lu —unllo + h(llu — wnlls + 2@ p — pallo) < ch?.

Proof The proof of Theorem 5.1 consists of Theorems 2.1, 3.2, 4.1 and Lemma 5.5.

In order to get the convergence of e() = u —uy, in L?>-norm, we begin with a tech-
nical result concerning a linear Kelvin-Voigt problem, we can refer to this technique
from Heywood & Rannacher [26] and Hill & Siili [27] for the linear Navier-Stokes
equations.

For any given s > Oand g = ee(r) € L0, s; L2(2)?), consider the following
problem: Find (&, V) € X x M suchthatfor0 <t < s

(v, ®1) +k((v, @) —a(v, ) —d(v, ¥)
+ d(®,q9) —b(u, v, ®) — b, u, ®) = (v, g, 42)

for all (v, q) € X x M with ®(s) = 0.

Since ug € V and f, f; € LZ(RJ“, Y), Theorem 2.1 ensures that u is sufficiently

smooth so that (®, W) is correctly defined for all 0 < ¢ < s. Thus for every ¢ €
(0, 5), (42) is a well-posed problem and has a unique solution (&, V) with

® e C0,s;V)NL*(0,s: DA)NH (0,5,Y), ¥ € L*(o, s; H(Q) N M).

This following result can be obtained by the similar methods used by [27, 28]. [
Lemma 5.2 Let (®, V) be the solution of problem (42) with g = e e(t), it holds

s N
sup e~ (s)1§ + / RIS + @5+ W IDdr < ce® / e lle() 13-
0 0

0<t<s
Lemma 5.3 Under the assumptions of Theorem 3.4, the error u — uy, satisfies
N
e—’SOS/ N Nu(t) — up(0)|3dt < ch*, foralls > 0.
0
Proof Given g = ¢%e(t) € L%*(0,5;Y), let (®, W) € X x M be the solution of
problem (42). Taking (v, g) = (e(t), p — pn) in (42), we have

d
e = E((e, D) +«k((e, D)) — (e, P) — k((er, P))

— Bu((e, p — pn); (P, W) — b(u, e, @) — ble,u, ®) + G(p—pp, V).
(43)
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For all 0 < ¢ < s, we consider the dual Galerkin projection (®j, Vy,) € X, x M),
By ((vns gn); (@ — @p, W — Wp)) = G(gn, V), Y (vn,qn) € Xp X My (44)
By a similar approach to the proof of Lemma 3.1, we get

1D(0) = Dr@)llo + AP @) — Pu(@) 1+ RIW (@) — Wi(@)llo < ch* (D@2
WOl (45)

Let us recall the error identity (28) with (v, gn) = (®p, Wp), we have

(er, @p) +k((er, Dp)) + Br((e, p — pr); (Pp, W) + b(u, e, ©p) + ble, u, ®p)
—b(e, e, ) = 0. (46)

Adding (46) to (43) and using the relationship (44) with (vy,, gn) = (en, 1n), where
en = Rn(u, p) —up, pn = Qnu, p) — pp and u — uj, = wy, + ey, one finds

d
e el = 7€, @)+ ke, @) = (e, @ = Bp) = ke ((er, @ = D))

—Bp((wp, rp); (& — Op, ¥ — Wp)) + b(u, e,  — Op)
+be,u, ®—0p)+b(e, e, ®—Dy)—b(e, e, P)+G(p—Q0p, V). (47)

By (2), (11), (13), (14), (16), and (45), we deduce that
d
e le||? < (€, ®) +k(Ve, V) +cllerllo|® = Pillo

+erlledlall® — Prllo + k(W
+e(llullillell+llwalli+Irallo) (19— Pl +1¥ — Whllo)+cllel 1Pl

d
< (e, ®) +x(Ve, VO) + ch?llelloll®ll2 + cllellF 1@l + ch? W],

+ch(lullillell i+ lwalli+ Irallo) IR l2+ 1w 1) +cxh? e 1211 @ll2. (48)

Integrating (48) about ¢ from O to s, using Theorems 2.1, 3.2, 3.3 and Lemma 3.1, we
have

: Sot 112 . . 2 cs —Lsor
e lelgdt < —(e(0), (0)) — k(Ve(0), VO(0)) + ch"e™ sup e 2°||P]|;
0

0<t<s
ke fo e ()3 4 W D)2, (49)
Furthermore, we have
1(e(0), ©(0))| = |(to — Ry (uo. po). ®(0) — Ry(@(0), W(0)))|
ch?|luolli @ O) 11 < ch?( /O Ae“°’||e<t)||3dr>”2, (50)

IA

«|(Ve(0), VO (0)| = «|(V(uo = Ru(uo, po)), V(P (0) — Ry (®(0), ¥(0))))]

IA

S
cich*{lug 21| @ (0) |12 < exch’( /0 ey 13dn 2. (51)

Combining Lemma 5.2 with (49)—(51), we finish the proof. O
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Lemma 5.4 Under the assumptions of Theorem 3.4, the error e(t) = u —uy, satisfies
t
(e = wpl|Zy + sl — unllg) + e—%’f ¥ Wlenll§ + G Gun, Ay un))ds
0

t t
< ch*+ ce_‘s‘)’[ %% |lu — uh||%ds + ce_‘sot/ &% |lu — uh||‘1‘ds.
0 0

Proof Recalling the error equality (28) with v, = A;leh € Vi, gn = 0 and noting
the fact that (u; —uyp,, A;leh) = (enr, A;leh) + (wpy, A;l (u—up —wy)), we obtain

1d
2 2 2 2 2
57 UlenllZy +«llenly = llwrllZy — kllwnlig) + vileally

2dt
< Nwpes Ay — )|+ ke (wae, A — up))| + b, u — un, Ay en)
+b(u — up, u, A} Yen) — b(u — up, u — up, Ay en). (52)

Thanks to the inverse inequality, (2), and Theorem 2.1, we have
bu — A1 b _ A1 <Y 2 200 2
|bu —up,u, Ay en)| + |b(u, u —up, Ay ep)| < 8||€h||_1 + cllullzllu — unllg,
b — _ A < _ 2 <Y 2 . 4
b —up,u—up, Ay "en)| < cllu —upliyllenll-1 < 8IIEhII,l + cllu — uplly.

Combining above estimates with (52), multiplying with ¢’ integrating for  from 0

to ¢, using the triangle inequality and Lemma 3.1, we obtain

t
5 2 2 8o 2
e (llu —upllZy +rellu — upllp) + V/ e llenllgds
0

t
< ce®'pt + c/

t
05w — up||3ds + c/ 5 ||u — up||tds. (53)
0 0

Multiplying (53) by e =%, we complete the proof of Lemma 5.4. O

Lemma 5.5 Under the assumptions of Theorem 3.4, for all t > 0, it holds

(@) — un (NG < eh*. (54)
Proof Choosing v, = A;leh € Vi, gn = 01n (28) and using (2), one derives that

%(Ilu — upllZy + rellu = unll) — 200 — wps, Ay wp)
—2uc (g — upe, Ay wn)) +2vllen
12b(u — up, u, Ay en) + 2b(up, e, Ay en) 4+ 2bGup, wy, A, ten) = 0. (55)
For the trilinear terms of (55), using (2)—(4), we arrive at
|b(up, wi, Ay en)| < cllulltllenliollwnllo. 116G, en, A} en)l < Nluplllenld,

—1
|b(u —up,u, Ay en)| < cllulltllu —upllollenllo-
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Combining above estimates with (55), integrating for ¢ from O to s, using Theorem
2.1 and Lemmas 3.1, 4.2, 5.3, and 5.4, after multiplying by ¢ =%, we have

S
(lu = un | + llu — upll3) +2e—503/ e (v — Nlluplln) lenll3dt
0
S
< k(e / ety — up |2d1) '
0
N
8pe 09 / e (= un |2, + Kl — up2de
0
S S
G / e |lepll0)>dr) 2 ch? (e 7% / M |uy —up |21 d0)' 2. (56)
0 0

Setting

s
Z = lim supllex(s)[|§, ¥ = lim supe* f ' (luy — une |2y + cllug
§—>00 §—>00 0
2
—upllp)dt.

Letting s — oo in (56), applying the L’Hospital Rule, Lemma 4.2, and (17), one
finds

Z < ch* + ch*y'/2, (57)
Taking v, = A~ 'ej; € Vi, gr, = 01in (28), one deduces that
e — unell® ) + lene 1y — Nwnell2 g+l — wne 1y + «llend 13 — xcllwne 13
d 2 d -1 -1
= vllenll§ + 2 (bGwn, u, Ay en) + b, wi, Ay en))

+2b(en. u. Ay ens) +2b(u, en, Ay ens) — 2b(wne, u, Ay en)

—2b(u, wpy, A}, 'en)

—2b(u — up, u — up, A;leht) — 2b(wp, uy, A;leh)

~2b(us, wi, Ay en) = 0. (58)

Thanks to (3)—(4), the inverse inequality, and Theorems 2.1 and 4.1, we have

1
-1 -1 2 2 2
|b(en, u, Ay “en)| + |D(u, en, Ay "en)| < gllemll_l + cllullzllenllgs
-1 K 2 2
[b(u —up, u —up, A; "en)| < g”ehz”o‘i‘Ch (lerllo + lwallo),
-1 -1 v 2 2 2
[b(wpe, u, A “ep)| + |b(u, wie, Ay “ep)| < gllehllo+6‘|Iu||1||whtllo,

-1 -1 v 2 2 2
[D(wp, us, Ay “ep)| + |b(us, wy, Ay “ep)| < g”eh”o+C||“t||1||wh||0~
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Combining above estimates with (58), multiplying by €%, integrating from 0 to s,
applying Theorem 2.1 and Lemma 3.1, we have by a final multiplication e =%,

vllenlld + 2(b(wp, u, A;leh) + b(u, wy, A;Tleh))
N
+e—50s/ 6501(””[ — Mht||271 + k|lur — up; ||(2))dt
0
- 2e750x(b(wh(0), o, A;leh(o)) + b(ug, wy(0), A};leh 0))) + 2e*50Sv||€h(0)||%

s
+ch* + ce™%! / ey 13dz. (59)
0
Due to (2), Theorem 2.1, and Lemma 3.1, we know that for all s > 0
V
b(wi(s), u(s), Ay, en(s)| + [buls), wy(s), A, en(s))| < Z||eh||(2) +ch®.

Combining above estimate with (59), we arrive at
N N
e [ 0 (lur—une |21 + icllus —une |5)ds < ch*+ce™" / ' |ley [I§dz. (60)
0 0

Setting s — oo in (60) and using the L’Hospital rule, it holds that
Y <ch* +cZ. (61)
Using (57) with (61) that Z < ch*. Furthermore, by Lemma 3.1, we have
Tim supllu(s) — up(s)[§ <2 lim supllwy($)[g +¢Z < ch*.

Then, we finish the proof. O

6 Fully discrete stabilized finite element method

In this section, we take the time step Af and denote the discrete times t, = nAt, n =
0,1, ---. Then, the fully discrete stabilized FEM for the Kelvin-Voigt problem (5)
reads as: For all n > 1, find (u}, pZ) € X, X Mj, such that

(dyupy, vi) + (g, vp)) + Br(Wiy, pi); (o q)) + by~ ult, vi) = (f", vp),

(62)
for all (v, qn) € X, X M) with u2 = uop, where dyuj, = &(uz - uz_l), "=
).

Based on Theorem 2.3 and the classical Lax-Milgram theorem, we know that prob-
lem (62) admits a unique solution. By choosing different test functions (vj, qp) =
(uy, py) and v, = Apu), € Vj, g = 0in (62) with energy method, we can establish
the following stability results of numerical solutions. Here we omit these proof due
to the standard process.
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Theorem 6.1 Under the assumptions of Theorem 3.4, there exists a positive constant
¢ =c(v, 2, A1) such that for all m > 1, it holds

m
! 1§ + IV 15 + vIVug 1§ + Gy pi) < lupllo + xIVupllg + At D 115,

n=1

m
2 2 2 0 02 2
IVui 15+l Antp g + v Anup 1§ < 1Vupllo + cll Anupllg + cAt D115

n=1

In order to analyze the discretization errors ej = up(ty) — uj and pj = pp(ty) —
pZ,for all (v, qn) € Xp x My, we discrete (12) at nth time level, it holds

(drup(tn), vi) + k ((diun(ty), vi)) + Br((un(ty), pr(tn)); (Ui, gn))
+b(up(tn), un(tn), vi) = (f", vp) + (En, va), (63)

with
tn In

1 K
E,=— t—ty_ dr — — t—th_1A dt. 64
n At t,,_1( n—1)Uhtt At tn_1( n—1)Alpyy (64)

Subtracting (62) from (63), we obtain with (e}, u3)) = (0, 0)
(drep, va) + « ((drey, vi)) + Bu((ey, 13); (Wn, gn)) + Atb(ug, u(tn), va)
+b(e ! un(tn), o) + by~ €], vg) = (En, vi). (65)

Lemma 6.2 Under the assumptions of Theorem 6.1, it holds

m
lep I3+ xllefllt + Ar > (lepllt + Gy 14p)) < cA, Vm > 1.

n=1
Proof Taking (vp,, gn) = (e}, iu3,) in (65) and using (2), we have

1 _ _ _
Z—Al(nezné—nez Y2+ llef — e 12+ vllel? + Gl 1) + blel ™" un(t), ef)
K _ —
+E(||e;;||% — el 3+ llep — eI + Atb(up, u(ty), €f) = (En, €}). (66)

For the trilinear terms and the right-hand side term, by (3) and Theorem 3.2, one
finds

-1 -1 v 2 2 n—1,2
lbley " un(tn), ep)| < clleg llollAnun ) llollenlln < leeﬁlll+C||Ahuh(tn)||o||€Z 155

v 2 2 2 2
[Atb(us, u(tn), )l < cAtlluglloll Au(t) llolley I < ZIIEZ,‘Ill + A Au () lIgllu: g,

n

1 Kk [
(Ep, ep) = A7 I'H(f — ta—1) Uy, €)dt — A7 /I’H(l — ta1)(Vupy, Ve )dt

v n
< J16R + At [ ol + 1V s
th—1

Combining above estimate with (66), summing from n = 1 to m, applying the
Gronwall Lemma and Theorem 3.7, we complete the proof. O
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Lemma 6.3 Under the assumptions of Theorem 6.1, for allm > 1, we have

m
et 11T + At Y (lidief g + clidief|1]) < cAL.

n=1

Proof Taking v, = d,ej, At € Vi, gn = 0 in (65), one finds
v _ _
z(nezn% — el 3+ Nl — e M) + Atlldie} IR + AP (ug, ulty), diel)

i At dief I3+ be) ™ un(t), dief) At + b, e, diel) At = (Ey, drel) At.
(67)

For the trilinear terms and the right-hand side term, by (3) and Cauchy inequality, it
holds

At
|APD(ur, utn), dref)] < A gl lut)ll2lldre) llo < gndte;:ué+cAr3nAu<rn)n5||u,n%,

At
-1 -1 2 2 —1,2
|Atb(e, ™ un(ty), drep)| < cAtlley™ Il | Apun(ta)llolldrey o < 5 drep Nl + cAtll Apun )lglle, ™ 11T,
n—1 _n n n—1 n n Ar ny 2 n—=12y,n2
\Atb(uh sep diey)| < CAt”Ah“h llollep Il lldrey llo < ) ld; e, H0+0At”Ah“h llglexllys

N n
|AHEn. dre)] :/ (r—zr,fl)(uhn,d,ez)dz—xf (= ta)(Apttnar dedt
In—1

In—1

At In
< —ldeef I3+ A% [ Qe I3 + cll Apunec 13)dr.
8

tn—1

Combining above estimate with (67), summing from n = 1 to m, applying Gronwall
Lemma and Theorem 3.7, we finish the proof. O

Theorem 6.4 Under the assumptions of Theorem 6.1, for all m > 1, the errors
u(ty) — uy and p(ty) — pj, satisfy
lu(tm) = uj o < c(h? + Ab), lu(tn) — up 1 < c(h+ AD), (68)
m
ALY T(t)lp(tn) — pyliG < c(h® + Ar?). (69)

n=1

Proof Thanks to the triangle inequality, Theorem 5.1, and Lemmas 6.2 and 6.3, we
finish the proof of (68).
For (69), by using (2)—(4) and Theorem 2.3, one finds

|Br (e, mp)s (Wi, qn))l
Blexlln + llepllo) < sup he Zh
(VR qn) EX ) x My, lvrllt + ligrllo

1
= sup ——————|(die}, vp) + k ((dre, vp)) + Atb(us, u(ty), vi)
wnanex,<m, 1vnllt + lignllo

+b(ef ™ unty), vn) + b~ el vp) — (En, vp)]
Cllde} llo + klldef llt + ller ™ N llun @)l + Neglilul il + 1 Enllo
+ Atllugllolluta)ll2).

A
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Squaring above inequality, summing from n = 0 to m, multiplying At and combing
Theorem 5.1 with Lemma 6.3, we complete the proof of (69). O]

Remark 6.1 In Theorem 6.4, we obtain the optimal error estimates of velocity in
L? and H'-norms. The spatial convergence order for pressure in L> norm is O(h),
which is optimal, but the time convergence order for pressure in L? norm is one order
weakly. The reason is that we need a such estimate ||d; ey, |lo + «||d;e |1 < CAt. We
can obtain this result by taking the differences of (65) at n and n — 1 time level and
choosing v, = d,ez € Vi, gqn = 0. Here we omit this proof due to the limitation of
pages and just verify from the point of numerical results.

Remark 6.2 In our results, we did not distinguish  ~!' from the constant ¢, how to
establish the stability and convergence uniformly as « +— 0 is a meaningful topic, we
can refer to [11, 12, 23]. In these literature, authors developed their novel stability
and convergence analysis and avoided using the constant in a priori bound and a
priori error estimates which depends on ¥ ~! with some suitable weight functions, as
a consequence, the estimates are valid uniformly as « goes to zero. How to combine
our results with the techniques provided in [11, 12, 23] to obtain the desired results
will be our next work.

7 Numerical experiments

In this section, we present some numerical results to verify the performances of the
stabilized FEM for the Kelvin-Voigt viscoelastic fluid model with different param-
eters. The partition of domain 2 uses the triangle mesh with the different mixed
elements for the velocity and pressure. The mesh is obtained by dividing €2 into
squares and then drawing a diagonal in each square. The Euler backward scheme is
adopted to treat the time derivative term.

7.1 An analytical solution: convergence validation

In this test, we consider the domain Q = [0, 1]2, T = 1.0 and present some numer-
ical results with the following analytical solutions for the velocity u = (11, u2) and
pressure p
up = 2w sinz(nx) sin(ry) cos(mwy), ur = —2m sin(wx) cos(mwx) sinz(ny),
p = 10cos(mx) cos(my) cos(t).
In order to show the performances of the developed stabilized FEM with the lowest
equal-order elements, the standard Galerkin method is also introduced with stable

mixed elemAents, such as the MINI element (refer to Arnold et al. [29] and Gerbeau
[30]). Let b € HOI(K )2 take the value 1 at the barycenter of K and satisfy that

0< b < 1, which is called a “bubble function,” we define

Xn = {vn € COQ> N X; vl € (P1(K) @ span{b})?, VK € T},
My = {gn € C°(Q) N M; gulx € PI(K), YK € Tp).

@ Springer



1222 Numerical Algorithms (2021) 87:1201-1228

Table 1 Stabilized FEM for problem (62) with P;-P; element for # and p withv = 1, At = h2, k=1

1/h el Rate [Pl Rate le-pelo Rate CPU (s)
16 0.024353 - 0.159541 - 0.151513 - 4.4

20 0.0157088 19648 0.127907 09904  0.107177 15514 103

32 0.00618088  1.9846  0.0800996  0.9958  0.0458273  1.8076  64.8

40 0.00395808  1.9974  0.0641041 09983 00317864  1.6395  163.6
64 0.00154285  2.0045  0.0400787 09993  0.0153253 15522 1051.6

The P;-P; element (refer to Boffi et al. [31]).

Xn = {vn € CO%Q)* N X; vplx € (P2(K))?, VK € T},
My = {gn € C°() N M; gulx € PI(K), YK € Tp).

The P,- Py element (refer to Boffi et al. [31] and Girault [15] )

Xn = {vn € COUR)? N X; vplx € (P2(K))?, VK € Th),
My, ={qn € M; qnlx € Py(K), YK € Tp}.

Firstly, we set v = 1 and present the computational results of stabilized FEM with
P1- P element for the Kelvin-Voigt model (62) with different . From Tables 1, 2,
3, and 4, we can see that the convergence orders of velocity in L2- and H'-norms
are 2 and 1, which confirm the provided theoretical analysis results of Theorem
6.4 well. The convergence order of pressure in L>-norm is about 1.5, which show
some superconvergence, that maybe due to the smoothness of the analytical solu-
tions. Compared with the standard Galerkin method with MINI element, we can see
that as « decreases, the differences of the relative errors between the stabilized FEM
with P;-Pj element and the Galerkin method with MINI element become smaller and
smaller. However, 23% the CPU time of stabilized method with different « is saved
than the standard Galerkin method’s.

Next, we fix the parameter k = 1 and present the relative errors of different numer-
ical schemes with different mixed elements. From Tables 5 and 6, we see that the
L>-relative errors for the velocity and pressure in Galerkin method are % and é times

Table 2 Galerkin FEM for problem (62) with MINI element for # and p withv = 1, At = W oe=1

Nl —un |l IV @—up)|l llp—=pnll
1/h W Rate W Rate w Rate CPU (s)
16 0.0136219 - 0.224001 - 0.115033 - 5.5
20 0.00870514 2.0066 0.179631 0.9893 0.0801895 1.6170 13.3
32 0.00338758 2.0081 0.112534 0.9950 0.0382815 1.5732 83.4
40 0.00216191 2.0127 0.0900671 0.9980 0.0271891 1.5333 223.2

64 0.000837597 2.0175 0.0563117 0.9993 0.0135077 1.4884 1355.7
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Table3 Stabilized FEM for problem (62) with P;-P; element for u and p withv = 1, Ar = h2, x =0.01

llu—unllo

IV (u=un)llo

llp—prllo

1/h Tallo Rate Vallo Rate Tolo Rate CPU (s)
16 0.0475575 - 0.174421 - 0.098042 - 4.9

32 0.0117822 20131 0.0803021 L1191 0.0283513 17900  65.3

40 0.00755908  1.9890  0.0642164  1.0018  0.0196654 1.6394  162.6
64 0.00295714  1.9969  0.0401124  1.0012  0.00962675 15198 10542

Table 4 Galerkin FEM for problem (62) with MINI element for u and p withv = 1, At = hz, x =0.01

llu—unllo

IV (u—up)llo

llp—prllo

1/h Tello Rate 1Vl Rate Tlo Rate CPUG)
16 00329686 - 0.151691 - 0131481 - 5.5

32 000833616 19836 00757752 10013 00434872 15962 8322
40 000533729 19982 00605911  1.0012 00308537 15381 2246
64 000208164 20033 00378351 10019 00153027 14920 13622

Table 5 Stabilized FEM for problem (62) with P;-P; element for u and p with k = 1, At = "2, v =

0.001

e —up |l IV (u—up)|l lp—=pull
1/h ””u'f"; o Rate ”“Vu‘l’"; 0 Rate ”H pﬂ) 0 Rate CPU (s)
16 0.022269 - 0.159701 - 0.131104 - 4.5
20 0.014338 1.9731 0.127989 0.9920 0.0888887 1.7415 10.4
32 0.0056261 1.9904 0.0801195 0.9966 0.0398781 1.7054 65.6
40 0.0035996 2.0014 0.0641143 0.9987 0.0281581 1.5595 164.5
64 0.0014012 2.0074 0.0400814 0.9995 0.0139651 1.4921 1059.2

Table 6 Galerkin FEM for problem (62) with MINI element for u and p withx = 1,

At = h2, v =0.001

llu—upllo

IV e=up)llo

llp—pnllo

1/h Tally Rate IValo Rate Tolo Rate CPU®)
16 00120832 - 0237078 - 00156107 - 56

20 000771355 20114 0190148 09885 00111208 15198 135
32000209844 20104  0.119147 09946 000601306 13083 834

40 000191307 20139 00953666 09977 000479782 10118 2083
64 0000761734 19593 00595964 10003 000324371 08329  1508.3
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Table7 Galerkin FEM for problem (62) with P>-P; element for u and p withk = 1, Ar = h3, v =0.001

llu—unllo

IV (u—=up)llo

llp—prllo

1/h Tale Rate ~Valo Rate Tl Rate CPU (s)
16 0.00300551 - 0.0118417 - 0.0237408 - 126.2
20 0.00193263 1.9788 0.0076137 1.9793 0.0145808 2.1846 382.6
32 0.000757116 1.9939 0.0029982 1.9828 0.00651497 1.7140 4238.5
40 0.000485252 1.9936 0.00192649 1.9822 0.00491699 1.2611 13073.4
50 0.000311052 1.9929 0.00123851 1.9798 0.00398591 0.9408 32832.7

Table8 Galerkin FEM for problem (62) with P;- Py element for u and p withx = 1, Ar = K3, v =0.001

Nl —up |l IV u—up)ll llp=pnllo
1/h WOO Rate W"O“ Rate T Rate CPU (s)
16 0.000677924 - 0.0116438 - 0.0661771 - 110.9
20 0.000368875 2.7273 0.00754774 1.9428 0.0528222 1.0101 3504
32 0.000111011 2.5549 0.00308967 1.9004 0.0329648 1.0032 3750.8
40 6.60253e—005 2.3285 0.00205559 1.8262 0.0264004 0.9951 11361.6
50 4.00221e—005 2.2434 0.00139002 1.7533 0.0211747 0.9885 27824.5
u=1I, u,=0
S o
I Il
~ ~
- X L=1]
|} Il
3 &3
U=u,=0

L=1

Fig.1 Lid-driven cavity flow
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Fig.2 The pressure lines and velocity vectors of driven cavity flow withv = 1, x = 10

than that obtained by the stabilized FEM with v = 0.001, while the computational
time of stabilized method can save % than that obtained by the Galerkin method.

Finally, we present the computational results of Galerkin method with stable P;-
P; and P>-Py elements in Tables 7 and 8. From these data, we can see that more
accurate computational results are obtained with the stable higher mixed elements
at the cost of high CPU overhead. For the data of Table 7, the desired convergence
orders for velocity in L?-norm and H'-norm and pressure in L?-norm should be
3,2,2, respectively. However, the computational results far from ideal, the reason
may lie in that (1) the accumulation errors of computer destroys the accuracy of
computational results, (2) the truncation errors of Euler scheme take the dominant
position.

% ! - //2:5& //}//\\\W
: T 7 —
— | — || V\V\;/:\/T%\m\ |
= |
N /, N =
S s W
) A\
N
NS
?E:EE\\\ R

Fig.3 The pressure lines and velocity vectors of driven cavity flow withv = 1,k =0
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Fig.4 The pressure lines and velocity vectors of driven cavity flow with v = 0.0025, x = 10

7.2 Lid-driven cavity problem

In this test, we consider the incompressible lid-driven cavity flow problem defined on
the unit square. Setting f = 0 and the boundary condition # = 0 on [{0} x (0, D] U
[(0,1) x {0}JU[{1} x (0, )] and u = (1,0)7 on (0, 1) x {1} (see Fig. 1). The mesh
consists of triangular element and the mesh size h = 4—10, the final time 7 = 10 and
the time step Ar = 0.01.

Figures 2, 3, 4, and 5 show the velocity vectors and pressure contours of driven
cavity flow with different v and «. From these figures, we can see that the velocity
vectors and pressure contours are almost the same with v = 1 and show great differ-
ences with v = 4% with different «, which show that our stabilized method has an

!
NS e

7 ] ‘\'
|
g N | |

Fig.5 The pressure lines and velocity vectors of driven cavity flow with v = 0.0025,x =0
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Fig.6 The computed velocity profiles through the geometric center at v = Wlo with different

effect to stabilize flow field. This also means the time derivatives of diffusion term
has little influence on the numerical solutions with large v.

Furthermore, as the parameter « decreases, the Kelvin-Voigt model tends to the
Navier-Stokes equations. Figure 6 presents the data of numerical velocity obtained
by stabilized FEM for the Kelvin-Voigt model at y = 0.5 and x = 0.5, respectively.
Compared with the results given in [32], we can see that the velocity vectors and
pressure contours are close to the lid-driven cavity problem of Navier-Stokes as «
decreases. For large «, the time derivatives of diffusion term plays an important role
in stabilizing the flow field with small viscosity parameter v.

Funding This work was supported by NSF of China (No. 11971152).
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