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Abstract
In this paper, we consider the Galerkin finite element method (FEM) for the Kelvin-
Voigt viscoelastic fluid flow model with the lowest equal-order pairs. In order to
overcome the restriction of the so-called inf-sup conditions, a pressure projection
method based on the differences of two local Gauss integrations is introduced.
Under some suitable assumptions on the initial data and forcing function, we firstly
present some stability and convergence results of numerical solutions in spatial dis-
crete scheme. By constructing the dual linearized Kelvin-Voigt model, stability and
optimal error estimates of numerical solutions in various norms are established. Sec-
ondly, a fully discrete stabilized FEM is introduced, the backward Euler scheme is
adopted to treat the time derivative terms, the implicit scheme is used to deal with the
linear terms and semi-implicit scheme is applied to treat the nonlinear term, uncon-
ditional stability and convergence results are also presented. Finally, some numerical
examples are presented to verify the developed theoretical analysis and show the
performances of the considered numerical schemes.
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1 Introduction

As an important component of the non-Newton fluids, the viscoelastic fluid flow
model has been widely used in food products, molten plastic, biologic fluid, etc.
In recent years, some important viscoelastic models have been researched not only
from the viewpoint of theoretical analysis but also from the numerical simulations
point. For example, we can refer to [1–3] and the reference therein. In this paper, we
consider the following Kelvin-Voigt viscoelastic flow model

div 0

0

0 0

(1)

where 2 3 be a bounded convex domain or the boundary
2, and are the fluid velocity and pressure, the positive parameters and are

the kinematic coefficient viscosity and the retardation time or the time of relaxation
of deformations, respectively, is the prescribed body force, and 0 is the initial
velocity.

The Kelvin-Voigt model was first introduced by Pavlovskii [4], which can be
used to describe the motion of weakly concentrated water-polymer solution. It was
named the Kelvin-Voigt viscoelastic fluid model by Oskolkov and his collaborators
[5]. Later, the Kelvin-Voigt model as a smooth, inviscid regularization of the 2/3D
Navier-Stokes equations has been proposed in [6]. For applications of the Kelvin-
Voigt flow in organic polymer and food industry and in the mechanisms of diffuse
axonal injury, etc., we can refer to [7] and the reference therein. Many numeri-
cal works have also been done for the Kelvin-Voigt model. For example, under the
assumption of the exact solution is asymptotically stable, Oskolkov analyzed the con-
vergence of the spectral Galerkin approximation in [8]. Pani and his coauthors in [9]
shown that the optimal error estimation was consistent and effective in time under the
assumption of uniqueness by applying a variant of the nonlinear semi-discrete spec-
tral Galerkin method. Later, they considered the first- and second-order backward
difference methods for the Kelvin-Voigt model and established the global discrete
attractor and optimal error estimates by the Sobolev-Stokes projection and Stolz-
Cesaro classical result on sequences in [10–12]. Bajpai and his coauthors considered
the BDF schemes and two-grid Crank-Nicolson method for the Kelvin-Voigt vis-
coelastic fluid model in [13, 14]; stability and optimal error estimates were provided
and numerical tests were also presented to verify the performances of the considered
numerical methods.

When we solve the incompressible flow problem numerically, an important restric-
tion is the compatibility between the discrete velocity and pressure spaces [15,
16]. However, many simple construction and computationally convenience mixed
elements do not satisfy the inf-sup condition may also work well, especially the
equal-order mixed elements, because these pairs have the same node distributions
and basis functions on the same meshing. In order to overcome the restriction of
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the discrete inf-sup condition and make full use of the equal-order mixed elements,
researchers developed several stabilized techniques, for example, the polynomial
pressure projection method [17, 18], the macro-element method [19], and the local
Gauss integrations stabilized method [20]. In this work, we consider the stabilized
method for the Kelvin-Voigt model based on the lowest equal-order mixed elements.
The difference between two local Gauss integrations is used to bypass the inf-sup
condition due to this method has some attractive features, such as parameter-free, no
higher-order derivatives, and non-edge-based data structures.

The main contributions of this paper can be listed as follows:

(I) Compared with [10–14], some different theoretical analysis tools are adopted
to avoid using the Sobolev-Stokes projection and Stolz-Cesaro’s classical
result on sequences.

(II) Compared with [19], optimal error estimates for velocity in 2 -norm
are established by constructing the dual problem and using the negative norm
estimate technique.

(III) Compared with [20, 21], the unconditional stability and optimal convergence
results of velocity in various norms are provided for all 0.

The outline of this paper is organized as follows. Section 2 introduces the Sobolev
spaces, the stabilized FEM, and some preliminary results. Stability and convergence
results of stabilized FEM are presented in Sections 3 and 4 by the energy method
and L’Hospital rule. Section 5 devotes to the optimal 2 -norm error estimates
of velocity by constructing dual problem and using the negative norm technique.
Section 6 presents the fully discrete stabilized FEM and establishes the error esti-
mates of the fully discrete numerical approximations in various norms. Finally, some
numerical results are presented to verify the established theoretical analysis and show
the performances of the considered stabilized method.

2 Preliminaries

For the mathematical setting of problem (1), standard Sobolev spaces are used.
Denote the function with square integrable distribution derivatives up to order
over the domain , 1

0 is the closed subspace of 1 consisting of the func-
tions with zero trace on . We equip the spaces 1 2 with the norm ,

with the norm 0 and inner product , 1
0 with the scalar product

. and norm 1
1 2. Set

1
0

2 2 2 3

2
0

2 0

div 0 div 0 0

and denote the Stokes operator by , is 2-orthogonal projection of
onto .
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Some assumptions about the prescribed data for problem (1) are needed (see [13,
14, 22]).

(A1). The initial velocity 0
2 and the body force satisfy

0
2
2 sup

0

2
0

2
0 .

The continuous bilinear forms on and on are defined by

.

Define the trilinear form on with 1
2

by

1

2
div .

The following properties of trilinear term can be found in [16, 19]

1 1 1 (2)

0

2
1 2
0

1 2
1 1

1 2
0

1 2
1 1

1 2
0

1 2
1 (3)

for all and

0

2
1

1 2
0

1 2
2

1 2
0

1 2
1

1 2
1

1 2
2 0 (4)

for all , .
With above notations, the variational formulation of problem (1) reads as: find

, for all such that

(5)

where

.

The following results are valid for small in 2D and for 3D with data small.

Theorem 2.1 (see [9, 22, 23]) Under the assumption (A1), there exists a positive
constant 0 1 such that for 0 0 min 1

2 1 1 2 , for all 0,
problem (1) admits a unique solution and satisfies

2
0

2
0

0

0

0 2
2

2
1

2
0

2
1

2
1

0

0

0 2
1

2
2

where 1
1 0 satisfies 2

0
1

1
2
0, it is the best possible constant depending

on .
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Lemma 2.2 Under the assumptions of Theorem 2.1, for all 0 it holds

2 1 2

with min 1 .

Proof Differentiating (5) with respect to , one finds that

. (6)

Taking in (6), it yields

2
1

2
2 2

2
2

. (7)

Thanks to (2), (3), and the Cauchy inequality, we have

2 1 2
4

2
2

2
2

2
1

4
2
2

2
0.

Combining above inequalities with (7) and dropping some unnecessary terms, mul-
tiplying by 0 , noting the fact 1 1, integrating from 0 to ,
one finds

2
0 2

2
0

0 2
1

2
2

0

0 2
2

2
1 1

0
2
0 . (8)

Multiplying (8) by 0 , using Theorem 2.1 and the L’Hospital rule, we finish the
proof.

From now on, is a real positive parameter tending to 0, we let be a uniformly
regular mesh of made of -simplices with mesh size (see [15, 24]). Based
on , we introduce the finite-dimensional subspaces . This
paper focuses on the analysis for the unstable velocity-pressure pair of the lowest
equal-order elements:

0 2
1

2

0
1

where 1 1 if is triangular and 1 1 if is quadrilateral.
It is well known that the lowest equal-order elements do not satisfy the discrete

inf-sup condition, so we use the stabilized method to overcome this restriction and
set 0 is a constant, be a 2-projection and
satisfy (see [20, 25]):

0 0 0 (9)

0 1
1 . (10)
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Define the stabilized term based on the differences of two local Gauss integrations
(see[17, 20])

. (11)

With above notations, the stabilized finite element variational formulation of prob-
lem (5) reads as: Find , for all and 0, it
holds

(12)

where

is the discrete generalized bilinear form.
Now, we present some assumptions about the spaces and : There exist

operators and such that (see [17, 20, 25])

0 1
2

2 (13)

0 1
1 . (14)

Define the discrete Stokes operator by

where the 2-orthogonal projection operators and are
defined by

.

The discrete norm 2
0 with -order can be defined, where

1 0 2 0 1
1 2

0.

Denote the subspaces of by

0 .

The following theorem establishes the continuity and coercivity for
.

Theorem 2.3 (see[20, 25]) There exists a constant 0, independent of , such
that

1 0 1 0

1 0 sup
1 0

0 0 .
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3 Unconditional stability of spatial discrete numerical solutions

In this section, we establish some stability results of numerical solutions and .
Firstly, for all and , we define the Galerkin
projection by

(15)

which is well defined and for all 1 , it holds (see [19, 20])

0 1 0
2

2 1 . (16)

Due to 0 , one gets 0
1 . Defining 0 0

0 0 0 0 , setting and , with
Theorem 2.1 and (15)–(16), we have

Lemma 3.1 (see [19, 20]) Under the assumptions of Theorem 2.1 and the following
uniqueness condition

2
1 1 sup

1 1 1
(17)

where 1 sup
1

, for all 0, it holds

0 1 0
2

0

0

0 2
0

2 2
1

2 2
0

4.

Theorem 3.2 Under the assumptions of Theorem 2.1, for all 0, it holds

2
0

2
1

0

0

0 2
1 (18)

2
1

2
2

0

0

0 2
2 (19)

lim sup 2
1

1 2
1. (20)

Proof Taking in (12), using (2) and the Cauchy inequality, we
get

2
0

2
1

2
1 2 1 2

0. (21)

Multiplying (21) by 0 , noting the fact 2
1 1

2
0 2 0

2
0 and the

assumption (A1), integrating with respect to time from 0 to , we obtain (18) after a
multiplication by 0 .

Then, taking 0 and using the similar proof of (18), we get
(19).
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Furthermore, choosing in (12) and multiplying 0 , one finds

0 2
0

0 2
1 2 0 2

1

0
0 2

0
2
1 2 0 . (22)

Integrating above inequality from 0 to and multiplying by 0 , we have

2
0

2
1 2 0

0

0 2
1

0

0

0
0

2
0

2
1 2 0

0 0
2
0

0 0
2
1 .

Letting in above inequality, using the L’Hospital rule and noting the fact that

lim 2 2
1 lim 2

1
1 2

1.

Then, we deduce the desired result (20).

Theorem 3.3 Under the assumptions of Theorem 2.1, for all 0, satisfies

2
1

2
2

0

0

0 2
1

2
2 .

Proof Taking 0 in (12), using (3), the Cauchy inequality,
multiplying by 0 , integrating with respect to time from 0 to , we finish the proof
by multiplying 0 and using Theorem 3.2.

Theorem 3.4 Under the assumptions of Theorem 2.1, for all 0, it holds

2
0

2
1

0

0

0 2
1

2 (23)

2
1

0

0

0 2
0

2
1 . (24)

Proof Differentiating the terms in (12) with respect to the
time, taking , we get

2
0

2
1

1

2
2
1

. (25)
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Thanks to (2)–(3) and the inverse inequality, we obtain

1
1 1 0

1

8
2
0

2 2
1

1
1 1 0

1

8
2
0

2 2
1

2 1 0
1

8
2
0

2
2.

Combining above estimates with (25) and multiplying by 0 , we arrive at

0 2
0

2
1

0 2
1

0
0 2

1
0 2 2

1
2
2

2
0 . (26)

Integrating (26) with respect to time from 0 to , by Theorems 2.1 and 3.2, one finds

0
0

2
1 0 0

2

0

0 2
1

where

0 2
1

0

0 2
0

2
1 . (27)

From the definition of 0 0 , we have 0
2
1 0 0 0

2
1

0
2
0, then it holds

0 2

0

0 2
1 .

Subtracting (12) from (5) with , using the projection ,
for all , we get

0 (28)

with and .
With , we can rewrite (28) as

1

2
2
0

2
1

2
1

2

. (29)

Thanks to (2), it is valid that

1 1 1 1

1
2
1.
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Combining above estimates with (28), multiplying by 0 and using Theorem 2.1,
we obtain

0 2
0

2
1 2 0

2 0
1

2
1

0
0 2

0
2
1

0
0 0 0 (30)

0
1 1 1 1 1

0 2
1

0
2 2 0.

Integrating (30) with respect to time from 0 to , using Theorem 2.1 and Lemma 3.1,
after a final multiplication by 0 , we have

2
0

2
1 2 0

0

0
1

2
1

2
0

0

0

0 2
0

2
1

2 0

0

0 2
2

2
2

1 2

0

0

0 1 2
1

2
1

2
1

1 2. (31)

Letting in (31), using the L’Hopital rule and Lemma 3.2, one gets
1

1 lim sup 2
1

lim sup 1
2 lim 0

0

0 2
2

1 2 2. (32)

Considering the uniqueness condition (17), we obtain

lim sup 2
1

2 2 lim sup 0

0

0 2
2

1 2. (33)

Combining (27) with (33) and Theorem 3.3, using the L’Hopital rule, we find

lim sup 2
1

2 lim sup . (34)

As a consequence, using the fact 0 1, we have
2
0

2 0. (35)

Combining (31) with (35), using Theorem 3.2, we get (23) after a multiplication by
0 .

Theorem 3.5 Under the assumptions of Theorem 3.4, for all 0, it holds

2
0

2
1

0

0

0 2
1 . (36)
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Proof Differentiating (12) with respect to , taking , using (3),
the Cauchy inequality, integrating with respect to the time from 0 to , multiplying
by 0 and using Theorems 3.2 and 3.3, we complete the proof.

Theorem 3.6 . Under the assumptions of Theorem 3.4, for all 0, it holds

2
1

0

0

0 2
0

2
1 . (37)

Proof Differentiating (12) with respect to , then differentiating
with respect to time again, taking , thanks to (2)–

(4), the Cauchy inequality, integrating with respect to time from 0 to , multiplying
by 0 , applying Theorems 3.3, 3.4, and 3.5, we finish the proof.

Theorem 3.7 Under the assumptions of Theorem 3.4, for all 0, it holds

2 1 2 .

Proof Following the proof of Lemma 2.2, we derive the desired results.

4 Error estimates of spatial discrete numerical approximations

This section is devoted to present the error estimates of the numerical solutions
and in various norms. The main results of this section are the following theorem.

Theorem 4.1 Under the assumptions of Theorem 3.4, for all 0, it holds

1
1 2

0 0 .

Proof The proof of the Theorem 4.1 consists of Lemmas 4.2, 4.3, and 4.4.

Lemma 4.2 . Under the assumptions of Theorem 3.4, for 0, it holds

2
1

0

0

0 2
0

2
1

2.

Proof Differentiating the terms with respect to time in (28)
and taking , one deduces that

2
0

2
1

1

2
2
1

0. (38)

Numerical Algorithms (2021) 87:1201–1228 1211



Thanks to (2)–(4) and the inverse inequality, we have

2 1 0 0

1

8
2
0

2
2

2
1 2 1 1 0

1 2 1 2
0

3 2
1 0 0

1

8
2
0

1
0

3
1

1 2 1 2
0

3 2
1 0.

Combining above estimates with (38), we obtain

2
0

2
1

2
1

2 0 0 0 2 2 2 0

2 1 1 0
2
2

2
1

1
0

3
1

1 2 1 2
0

3 2
1 0.

Multiplying with 0 , integrating with respect to the time from 0 to and noting the
fact

2
1

2
1

2
1

then one finds by applying Lemma 3.1, Theorems 2.1, 3.4 and multiplying by 0

2
1

0

0

0 2
0

2
1

2 0

0

0 2
0

2
0

2
2 0 0

2 1 2

2 0

0

0 2
2

2
2

1 2

1 0

0

0
0

3
1

2 0

0

0 1
0

3
1

1 2 2. (39)

Thanks to Theorems 2.1, 3.3, and 3.4, we finish the proof of Lemma 4.2.

Lemma 4.3 Under the assumptions of Theorem 3.4, for 0, it holds

2
0

2
1

0

0

0 2
1

2.
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Proof Differentiating (28) with respect to , taking , using (3)–
(4), the Cauchy inequality, multiplying by 0 , integrating with respect to ,
applying Theorems 2.1, 3.4 and Lemmas 3.1, 4.2, we have by multiplying 0

2
0

2
1

0

0

0 2
1

0

0

0 1 2
1

2
0

sup
0

2
0

2 2
1

0

0

0 2
1

2 0

0

0 2
0

1 2

2 0

0

0 2
2

2
2

1 2 2. (40)

Thanks to Lemma 2.2, the triangle inequality, Theorem 3.6, and the fact
0

0
0 2

1
2, we deduce that

2
0

2
1

0

0

0 2
1

0

0

0 1 2
1

2
0

0

0

0 2
1

2 sup
0

2
0

2 2
1 .

Combining above inequality with Theorem 3.2 and Lemma 4.2, we complete the
proof.

Lemma 4.4 Under the assumptions of Theorem 3.4, for all 0, it holds

1 2
0 .

Proof The inf-sup condition (15) and (28) guarantee that

0 sup
1 0

0 1 1 1 1.

Combining above estimate with Lemma 3.1 and the triangle inequality, one finds

1 2
0

1 2
0 1

1 1 1. (41)

We finish the proof by combining (41), Theorem 3.2, Lemmas 4.2 and 4.3.
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5 Optimal L2-norm error estimates of velocity in spatial discrete
scheme

This section is devoted to establish the optimal 2-norm error estimates of numerical
solution in stabilized finite element method (12).

Theorem 5.1 Under the assumptions of Theorem 3.4, for all 0, it holds

0 1
1 2

0
2.

Proof The proof of Theorem 5.1 consists of Theorems 2.1, 3.2, 4.1 and Lemma 5.5.
In order to get the convergence of in 2-norm, we begin with a tech-

nical result concerning a linear Kelvin-Voigt problem, we can refer to this technique
from Heywood & Rannacher [26] and Hill & Süli [27] for the linear Navier-Stokes
equations.

For any given 0 and 0 2 0 2 2 , consider the following
problem: Find such that for 0

(42)

for all with 0.
Since 0 and 2 , Theorem 2.1 ensures that is sufficiently

smooth so that is correctly defined for all 0 . Thus for every
0 , (42) is a well-posed problem and has a unique solution with

0 2 1 2 1 .

This following result can be obtained by the similar methods used by [27, 28].

Lemma 5.2 Let be the solution of problem (42) with 0 , it holds

sup
0

0 2
1

0

0 2
2

2
0

2
1

0

0 2
0 .

Lemma 5.3 Under the assumptions of Theorem 3.4, the error satisfies

0

0

0 2
0

4 for all 0.

Proof Given 0 2 0 , let be the solution of
problem (42). Taking in (42), we have

0 2
0

.

(43)
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For all 0 , we consider the dual Galerkin projection

. (44)

By a similar approach to the proof of Lemma 3.1, we get

0 1 0
2

2

1 . (45)

Let us recall the error identity (28) with , we have

0. (46)

Adding (46) to (43) and using the relationship (44) with , where
and , one finds

0 2
0

. (47)

By (2), (11), (13), (14), (16), and (45), we deduce that

0 2
0 0 0

2 0
2

1

1 1 1 0 1 0
2
1 1

2
0 2

2
1 1

2
1

1 1 1 0 2 1
2

2 2. (48)

Integrating (48) about from 0 to , using Theorems 2.1, 3.2, 3.3 and Lemma 3.1, we
have

0

0 2
0 0 0 0 0 2 sup

0

1
2 0

1

2

0

0 2
2

2
1

1 2. (49)

Furthermore, we have

0 0 0 0 0 0 0 0

2
0 1 0 1

2

0

0 2
0

1 2 (50)

0 0 0 0 0 0 0 0

2
0 2 0 2

2

0

0 2
0

1 2. (51)

Combining Lemma 5.2 with (49)–(51), we finish the proof.
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Lemma 5.4 Under the assumptions of Theorem 3.4, the error satisfies

2
1

2
0

0

0

0 2
0

1

4 0

0

0 2
0

0

0

0 4
1 .

Proof Recalling the error equality (28) with 1 0 and noting
the fact that 1 1 1 , we obtain

1

2
2
1

2
0

2
1

2
0

2
0

1 1 1

1 1 . (52)

Thanks to the inverse inequality, (2), and Theorem 2.1, we have

1 1

8
2
1

2
2

2
0

1 2
1 1

8
2
1

4
1.

Combining above estimates with (52), multiplying with 0 , integrating for from 0
to , using the triangle inequality and Lemma 3.1, we obtain

0 2
1

2
0

0

0 2
0

0 4

0

0 2
0

0

0 4
1 . (53)

Multiplying (53) by 0 , we complete the proof of Lemma 5.4.

Lemma 5.5 Under the assumptions of Theorem 3.4, for all 0, it holds

2
0

4. (54)

Proof Choosing 1 0 in (28) and using (2), one derives that

2
1

2
0 2 1

2 1 2 2
0

2 1 2 1 2 1 0. (55)

For the trilinear terms of (55), using (2)–(4), we arrive at

1
1 0 0

1
1

2
0

1
1 0 0.
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Combining above estimates with (55), integrating for from 0 to , using Theorem
2.1 and Lemmas 3.1, 4.2, 5.3, and 5.4, after multiplying by 0 , we have

2
1

2
0 2 0

0

0
1

2
0

2 0

0

0 2
0

1 2

0
0

0

0 2
1

2
0

2 0

0

0
0

2 1 2 2 0

0

0 2
1

1 2. (56)

Setting

lim sup 2
0 lim sup 0

0

0 2
1

2
0 .

Letting in (56), applying the L’Hospital Rule, Lemma 4.2, and (17), one
finds

4 2 1 2. (57)

Taking 1 0 in (28), one deduces that

2
1

2
1

2
1

2
0

2
0

2
0

2
0 2 1 1

2 1 2 1 2 1

2 1

2 1 2 1

2 1 0. (58)

Thanks to (3)–(4), the inverse inequality, and Theorems 2.1 and 4.1, we have

1 1 1

8
2
1

2
2

2
0

1

8
2
0

2
0 0

1 1

8
2
0

2
1

2
0

1 1

8
2
0

2
1

2
0.
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Combining above estimates with (58), multiplying by 0 , integrating from 0 to ,
applying Theorem 2.1 and Lemma 3.1, we have by a final multiplication 0 ,

2
0 2 1 1

0

0

0 2
1

2
0

2 0 0 0
1 0 0 0 1 0 2 0 0 2

0

4 0

0

0 2
0 . (59)

Due to (2), Theorem 2.1, and Lemma 3.1, we know that for all 0

1 1

4
2
0

4.

Combining above estimate with (59), we arrive at

0

0

0 2
1

2
0

4 0

0

0 2
0 . (60)

Setting in (60) and using the L’Hospital rule, it holds that

4 . (61)

Using (57) with (61) that 4. Furthermore, by Lemma 3.1, we have

lim sup 2
0 2 lim sup 2

0
4.

Then, we finish the proof.

6 Fully discrete stabilized finite element method

In this section, we take the time step and denote the discrete times
0 1 . Then, the fully discrete stabilized FEM for the Kelvin-Voigt problem (5)
reads as: For all 1, find such that

1

(62)
for all with 0

0 , where 1 1

.
Based on Theorem 2.3 and the classical Lax-Milgram theorem, we know that prob-

lem (62) admits a unique solution. By choosing different test functions
and 0 in (62) with energy method, we can establish

the following stability results of numerical solutions. Here we omit these proof due
to the standard process.
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Theorem 6.1 Under the assumptions of Theorem 3.4, there exists a positive constant
1 such that for all 1, it holds

2
0

2
0

2
0

0
0

0 2
0

1

2
0

2
0

2
0

2
0

0
0

0 2
0

1

2
0.

In order to analyze the discretization errors and
, for all , we discrete (12) at th time level, it holds

(63)

with

1

1

1
1

1 . (64)

Subtracting (62) from (63), we obtain with 0 0 0 0

1 1 . (65)

Lemma 6.2 Under the assumptions of Theorem 6.1, it holds

2
0

2
1

1

2
1

2 1.

Proof Taking in (65) and using (2), we have

1

2
2
0

1 2
0

1 2
0

2
1

1

2
2
1

1 2
1

1 2
1 . (66)

For the trilinear terms and the right-hand side term, by (3) and Theorem 3.2, one
finds

1 1
0 0 1

4
2
1

2
0

1 2
0

0 0 1
4

2
1

2 2
0

2
0

1

1

1
1

1

4
2
1

1

2
0

2
0 .

Combining above estimate with (66), summing from 1 to , applying the
Gronwall Lemma and Theorem 3.7, we complete the proof.
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Lemma 6.3 Under the assumptions of Theorem 6.1, for all 1, we have

2
1

1

2
0

2
1

2.

Proof Taking 0 in (65), one finds

2
2
1

1 2
1

1 2
1

2
0

2

2
1

1 1 .

(67)

For the trilinear terms and the right-hand side term, by (3) and Cauchy inequality, it
holds

2 2
1 2 0

8
2
0

3 2
0

2
1

1 1
1 0 0

8
2
0

2
0

1 2
1

1 1
0 1 0

8
2
0

1 2
0

2
1

1

1
1

1

8
2
0

2

1

2
0

2
0 .

Combining above estimate with (67), summing from 1 to , applying Gronwall
Lemma and Theorem 3.7, we finish the proof.

Theorem 6.4 Under the assumptions of Theorem 6.1, for all 1, the errors
and satisfy

0
2

1 (68)

1

2
0

2 2 . (69)

Proof Thanks to the triangle inequality, Theorem 5.1, and Lemmas 6.2 and 6.3, we
finish the proof of (68).

For (69), by using (2)–(4) and Theorem 2.3, one finds

1 0 sup
1 0

sup
1

1 0

1 1

0 1
1

1 1 1 1 0

0 2 .
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Squaring above inequality, summing from 0 to , multiplying and combing
Theorem 5.1 with Lemma 6.3, we complete the proof of (69).

Remark 6.1 In Theorem 6.4, we obtain the optimal error estimates of velocity in
2 and 1-norms. The spatial convergence order for pressure in 2 norm is ,

which is optimal, but the time convergence order for pressure in 2 norm is one order
weakly. The reason is that we need a such estimate 0 1 . We
can obtain this result by taking the differences of (65) at and 1 time level and
choosing 0. Here we omit this proof due to the limitation of
pages and just verify from the point of numerical results.

Remark 6.2 In our results, we did not distinguish 1 from the constant , how to
establish the stability and convergence uniformly as 0 is a meaningful topic, we
can refer to [11, 12, 23]. In these literature, authors developed their novel stability
and convergence analysis and avoided using the constant in a priori bound and a
priori error estimates which depends on 1 with some suitable weight functions, as
a consequence, the estimates are valid uniformly as goes to zero. How to combine
our results with the techniques provided in [11, 12, 23] to obtain the desired results
will be our next work.

7 Numerical experiments

In this section, we present some numerical results to verify the performances of the
stabilized FEM for the Kelvin-Voigt viscoelastic fluid model with different param-
eters. The partition of domain uses the triangle mesh with the different mixed
elements for the velocity and pressure. The mesh is obtained by dividing into
squares and then drawing a diagonal in each square. The Euler backward scheme is
adopted to treat the time derivative term.

7.1 An analytical solution: convergence validation

In this test, we consider the domain 0 1 2 1.0 and present some numer-
ical results with the following analytical solutions for the velocity 1 2 and
pressure

1 2 sin2 sin cos 2 2 sin cos sin2

10 cos cos cos .

In order to show the performances of the developed stabilized FEMwith the lowest
equal-order elements, the standard Galerkin method is also introduced with stable
mixed elements, such as the MINI element (refer to Arnold et al. [29] and Gerbeau
[30]). Let 1

0
2 take the value 1 at the barycenter of and satisfy that

0 1, which is called a “bubble function,” we define
0 2

1 span 2

0
1 .
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Table 1 Stabilized FEM for problem (62) with 1- 1 element for and with 1 2 1

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.024353 - 0.159541 - 0.151513 - 4.4

20 0.0157088 1.9648 0.127907 0.9904 0.107177 1.5514 10.3

32 0.00618088 1.9846 0.0800996 0.9958 0.0458273 1.8076 64.8

40 0.00395808 1.9974 0.0641041 0.9983 0.0317864 1.6395 163.6

64 0.00154285 2.0045 0.0400787 0.9993 0.0153253 1.5522 1051.6

The 2- 1 element (refer to Boffi et al. [31]).

0 2
2

2

0
1 .

The 2- 0 element (refer to Boffi et al. [31] and Girault [15] )

0 2
2

2

0 .

Firstly, we set 1 and present the computational results of stabilized FEM with
1- 1 element for the Kelvin-Voigt model (62) with different . From Tables 1, 2,

3, and 4, we can see that the convergence orders of velocity in 2- and 1-norms
are 2 and 1, which confirm the provided theoretical analysis results of Theorem
6.4 well. The convergence order of pressure in 2-norm is about 1.5, which show
some superconvergence, that maybe due to the smoothness of the analytical solu-
tions. Compared with the standard Galerkin method with MINI element, we can see
that as decreases, the differences of the relative errors between the stabilized FEM
with 1- 1 element and the Galerkin method with MINI element become smaller and
smaller. However, 23% the CPU time of stabilized method with different is saved
than the standard Galerkin method’s.

Next, we fix the parameter 1 and present the relative errors of different numer-
ical schemes with different mixed elements. From Tables 5 and 6, we see that the
2-relative errors for the velocity and pressure in Galerkin method are 1

2 and 1
5 times

Table 2 Galerkin FEM for problem (62) with MINI element for and with 1 2 1

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.0136219 - 0.224001 - 0.115033 - 5.5

20 0.00870514 2.0066 0.179631 0.9893 0.0801895 1.6170 13.3

32 0.00338758 2.0081 0.112534 0.9950 0.0382815 1.5732 83.4

40 0.00216191 2.0127 0.0900671 0.9980 0.0271891 1.5333 223.2

64 0.000837597 2.0175 0.0563117 0.9993 0.0135077 1.4884 1355.7
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Table 3 Stabilized FEM for problem (62) with 1- 1 element for and with 1 2 0.01

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.0475575 - 0.174421 - 0.098042 - 4.9

32 0.0117822 2.0131 0.0803021 1.1191 0.0283513 1.7900 65.3

40 0.00755908 1.9890 0.0642164 1.0018 0.0196654 1.6394 162.6

64 0.00295714 1.9969 0.0401124 1.0012 0.00962675 1.5198 1054.2

Table 4 Galerkin FEM for problem (62) with MINI element for and with 1 2 0.01

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.0329686 - 0.151691 - 0.131481 - 5.5

32 0.00833616 1.9836 0.0757752 1.0013 0.0434872 1.5962 83.2

40 0.00533729 1.9982 0.0605911 1.0012 0.0308537 1.5381 224.6

64 0.00208164 2.0033 0.0378351 1.0019 0.0153027 1.4920 1362.2

Table 5 Stabilized FEM for problem (62) with 1- 1 element for and with 1 2

0.001

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.022269 - 0.159701 - 0.131104 - 4.5

20 0.014338 1.9731 0.127989 0.9920 0.0888887 1.7415 10.4

32 0.0056261 1.9904 0.0801195 0.9966 0.0398781 1.7054 65.6

40 0.0035996 2.0014 0.0641143 0.9987 0.0281581 1.5595 164.5

64 0.0014012 2.0074 0.0400814 0.9995 0.0139651 1.4921 1059.2

Table 6 Galerkin FEM for problem (62) with MINI element for and with 1 2 0.001

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.0120832 - 0.237078 - 0.0156107 - 5.6

20 0.00771355 2.0114 0.190148 0.9885 0.0111208 1.5198 13.5

32 0.00299844 2.0104 0.119147 0.9946 0.00601306 1.3083 83.4

40 0.00191307 2.0139 0.0953666 0.9977 0.00479782 1.0118 208.3

64 0.000761734 1.9593 0.0595964 1.0003 0.00324371 0.8329 1508.3

Numerical Algorithms (2021) 87:1201–1228 1223



Table 7 Galerkin FEM for problem (62) with 2- 1 element for and with 1 3 0.001

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.00300551 - 0.0118417 - 0.0237408 - 126.2

20 0.00193263 1.9788 0.0076137 1.9793 0.0145808 2.1846 382.6

32 0.000757116 1.9939 0.0029982 1.9828 0.00651497 1.7140 4238.5

40 0.000485252 1.9936 0.00192649 1.9822 0.00491699 1.2611 13073.4

50 0.000311052 1.9929 0.00123851 1.9798 0.00398591 0.9408 32832.7

Table 8 Galerkin FEM for problem (62) with 2- 0 element for and with 1 3 0.001

1 0
0

Rate 0
0

Rate 0
0

Rate CPU (s)

16 0.000677924 - 0.0116438 - 0.0661771 - 110.9

20 0.000368875 2.7273 0.00754774 1.9428 0.0528222 1.0101 350.4

32 0.000111011 2.5549 0.00308967 1.9004 0.0329648 1.0032 3750.8

40 6.60253e 005 2.3285 0.00205559 1.8262 0.0264004 0.9951 11361.6

50 4.00221e 005 2.2434 0.00139002 1.7533 0.0211747 0.9885 27824.5

Fig. 1 Lid-driven cavity flow
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Fig. 2 The pressure lines and velocity vectors of driven cavity flow with 1 10

than that obtained by the stabilized FEM with 0.001, while the computational
time of stabilized method can save 1

3 than that obtained by the Galerkin method.
Finally, we present the computational results of Galerkin method with stable 2-

1 and 2- 0 elements in Tables 7 and 8. From these data, we can see that more
accurate computational results are obtained with the stable higher mixed elements
at the cost of high CPU overhead. For the data of Table 7, the desired convergence
orders for velocity in 2-norm and 1-norm and pressure in 2-norm should be
3,2,2, respectively. However, the computational results far from ideal, the reason
may lie in that (1) the accumulation errors of computer destroys the accuracy of
computational results, (2) the truncation errors of Euler scheme take the dominant
position.

Fig. 3 The pressure lines and velocity vectors of driven cavity flow with 1 0
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Fig. 4 The pressure lines and velocity vectors of driven cavity flow with 0.0025 10

7.2 Lid-driven cavity problem

In this test, we consider the incompressible lid-driven cavity flow problem defined on
the unit square. Setting 0 and the boundary condition 0 on 0 0 1
0 1 0 1 0 1 and 1 0 on 0 1 1 (see Fig. 1). The mesh

consists of triangular element and the mesh size 1
40 , the final time 10 and

the time step 0.01.
Figures 2, 3, 4, and 5 show the velocity vectors and pressure contours of driven

cavity flow with different and . From these figures, we can see that the velocity
vectors and pressure contours are almost the same with 1 and show great differ-
ences with 1

400 with different , which show that our stabilized method has an

Fig. 5 The pressure lines and velocity vectors of driven cavity flow with 0.0025 0
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Fig. 6 The computed velocity profiles through the geometric center at 1
400 with different

effect to stabilize flow field. This also means the time derivatives of diffusion term
has little influence on the numerical solutions with large .

Furthermore, as the parameter decreases, the Kelvin-Voigt model tends to the
Navier-Stokes equations. Figure 6 presents the data of numerical velocity obtained
by stabilized FEM for the Kelvin-Voigt model at 0.5 and 0.5, respectively.
Compared with the results given in [32], we can see that the velocity vectors and
pressure contours are close to the lid-driven cavity problem of Navier-Stokes as
decreases. For large , the time derivatives of diffusion term plays an important role
in stabilizing the flow field with small viscosity parameter .

Funding This work was supported by NSF of China (No. 11971152).
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