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Abstract
We show that a direct numerical computation of the coefficients of any method
based on the exponential fitting is possible. This makes unnecessary the knowledge
of long sets of analytical expressions for the coefficients, as usually presented in
the literature. Consequently, the task of any potential user for writing his/her own
code becomes much simpler. The approach is illustrated on the case of the Numerov
method for the Schrödinger equation, on a version for which the analytic expressions
of coefficients are not known.

Keywords Numerov method · Schrödinger equation · Regularization ·
Coffey-Evans potential

1 Introduction

Exponential fitting (ef for short) is a mathematical procedure for generating numer-
ical methods for various operations (solution of differential or integral equations,
numerical differentiation, quadrature, least-square approximation, interpolation, etc.)
on functions with a pronounced oscillatory or hyperbolic variation. The typical con-
dition for generating the coefficients of such methods is that the method must be
exact for a set of functions including exponential functions.

The literature is very vast, see, e.g., [1–17] and references therein, but in the large
majority of papers the efforts were directed on the analytic determination of the coef-
ficients. However, the resulting expressions are often so long and cumbersome that
their use becomes a difficult task for any potential reader who wants to apply such
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methods. Attempts of reducing the number of the expressions do also exist, e.g., in
[18], but for a potential user the problem continues to remain quite complicated.

As a matter of fact, the need for analytic expressions was important especially in
the early stages of the field when properties of the new ef versions, for example the
stability properties of solvers of differential equations, were better seen on analytic
expressions. At present, however, the main interest consists in applications such that
by now only the numerical determination of the coefficients is sufficient.

In this paper, we consider the problem from this perspective. The need of analytic
expressions, which in many papers fill pages and pages of formulas, becomes redun-
dant. Only the generating system of equations has to be mentioned, and everything
after that is done numerically by using a dedicated subroutine.

We illustrate this on the case of the Numerov method for the Schrödinger equation.

2 Numerovmethod

This is to solve the Schrödinger equation

y′′ = (V (x) − E)y, x ∈ [a, b], (1)

where V (x), called the potential, is a given function, and E, the energy, is a constant.
Two problems are usually considered: (i) initial value problem, with initial values
y(a) and y′(a), with unique solution for any E, and (ii) eigenvalue problem where
conditions at the two ends are given, α1y(a) + β1y

′(a) = 0 and α2y(b) + β2y
′(b) =

0. Here the weights have to satisfy the conditions |αi | + |βi | �= 0, i = 1, 2. The
eigenvalues and their eigenfunctions have to be computed in this case.

Let us introduce an equidistant partition of [a, b] with the step h: xi = a+ih, i =
0, 1, 2, ..., imax ; Of course, ximax = b. The Numerov method links the numerical
values of y at three consecutive points,

yi+1 + a1yi + yi−1 = h2[b0(fi+1yi+1 + fi−1yi−1) + b1fiyi] (2)

where fi = V (xi) − E. It allows computing yi+1 in terms of yi−1 and yi (forwards
propagation) or yi−1 in terms of yi and yi+1 (backwards propagation).

In the frame of the exponential fitting, four different versions of this method
(schemes), denoted Sm, m = 0, 1, 2, 3, are available, see [1, 19]. In each, the coef-
ficients a1, b0, and b1 are known in analytic form but there is one restriction. While
in principle each scheme depends on three parameters, Z1, Z2, Z3, of the form
S(Z1, Z2, Z3), in the existing publications, the maximal number of parameters that
can be different is only two: one is 0 and the other, Z, allowed to be not vanishing.
Specifically, the existing schemes are: S0 = S(0, 0, 0) (classical), S1 = S(0, 0, Z),
S2 = S(0, Z, Z), and S3 = S(Z, Z, Z).

A scheme where all three parameters Z1, Z2 and Z3 are different can be
also derived in analytic form but an accurate numerical procedure to compute its
coefficients is available.
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The theory behind this procedure is presented in [20]. In that paper, the following
system of linear algebraic equations is examined:

N∑

n=1

Fn(Zk)vn = B(Zk) , k = 1, 2, · · · , N , (3)

written compactly as Fv = B, where Fkn = Fn(Zk) and Bk = B(Zk). We see that
a set of N + 1 functions, Fn(Z), n = 1, 2, · · · , N and B(Z), and of N arguments
Zk, k = 1, 2, · · · , N , are involved. Each column n of matrix F contains one and the
the same function Fn and each row k has one and the same argument Zk . The latter
holds true also for the column vector B.

The numerical problem with this system is that any standard numerical method
to solve it meets difficulties when some arguments are close together. For example,
the first two equations coincide if Z1 = Z2 and then the determinant of the sys-
tem vanishes. To solve this type of difficulty, authors of [20] develop a regularization
procedure for the system. The numerical solution of the resulting regularized sys-
tem is free of difficulties such that its results are uniformly accurate irrespective of
how close or separated are the arguments. A code is also available. This is Fortran
subroutine REGSOLV (double precision arithmetics) in the CD attached to book [1].

The approach developed in [20] and the associate REGSOLV are rather general,
and many existing investigations on ef methods lead to the need of solving systems of
this form. For the Numerov method, the system for computing the three coefficients
consists of three equations:

− a1 + 2Zkη−1(Zk)b0 + Zkb1 = 2η−1(Zk) , k = 1, 2, 3. (4)

see [20]. For the set η−1(Z), η0(Z), η1(Z), · · · see the Appendix.
To build up this system, we associate to the Numerov algorithm (2) the functional

L[h, a1, b0, b1]y(x) = y(x + h) + a1y(x) + y(x − h) − h2[b0(y′′(x + h)

+y′′(x − h)) + b1y
′′(x)], (5)

and ask that this is identically vanishing if y(x) is any of the six functions

e±μ1x, e±μ2x, e±μ3x, (6)

where μk may be either real or purely imaginary. We get

L[h, a1, b0, b1]e±μkx = e±μkx{eμkh+a1+e−μkh−μ2
kh

2[b0(eμkh+e−μkh)+b1]} = 0
(7)

for each k. By expressing the expression in the curly brackets in terms of η−1,

eμkh + a1 + e−μkh − μ2
kh

2[b0(eμkh + e−μkh) + b1]
= 2η−1(Zk) + a1 − Zk(2η−1(Zk)b0 + b1), Zk = μ2

kh
2,

system (4) results. We have preferred to write the system in terms of η functions
because, on one hand, REGSOLV works for real arguments and functions and there-
fore, if μkh were used as arguments, a system in complex arithmetics would result
and, on the other hand, this subroutine asks for the expressions of the derivatives of
the involved Fn and B, and these are very short if written in terms of the η functions,
see again the Appendix.
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By solving this system with REGSOLV, the computed coefficients are highly
accurate. Their errors are quite often within the round-off limits. Thus, for example, if
we put here Z1 = Z2 = Z3 = 0, we reobtain the numerical values of the coefficients
of the classical S0. In the following, the scheme S(Z1, Z2, Z3) with the coefficients
computed numerically will be denoted S∗

3 .
The expressions of the leading term of local truncation error, denoted lte, are

known for versions Sm, m = 0, 1, 2, 3. As for the new S∗
3 , we follow the general

theory, see, e.g., [1, 19].
The point is that the functions in (6) are six linear independent solutions of the

sixth order differential equation Dy(x) = 0, where

Dy = y(6) − (μ2
1 + μ2

2 + μ2
3)y

(4) + (μ2
1μ

2
2 + μ2

1μ
2
3 + μ2

2μ
2
3)y

′′ − μ2
1μ

2
2μ

2
3y. (8)

This means that, if the coefficients are those resulting from solving the generating
system (4), then functional L of (5) can be written as a product of the form

L[h, a1, b0, b1]y(x) = ADy(x), (9)

where the factor A must be determined. To do this, we consider the lowest power
function for which L is nonvanishing. This is y(x) = 1 in our case. Equation (5)
gives L[h, a1, b0, b1]1 = 2 + a1 and, since D1 = −μ2

1μ
2
2μ

2
3, we obtain

A = − 2 + a1

μ2
1μ

2
2μ

2
3

= −h6
2 + a1

Z1Z2Z3
, (10)

such that finally the lte of S∗
3 at xi is

lte = −h6
2 + a1

Z1Z2Z3
Dy(xi). (11)

The numerical computation of the middle factor may meet difficulties for small |Zk|
because this factor is of the form 0/0 if Zk = 0. A direct procedure for determining
approximate but reliable values is as follows. To each Zk , we associate

Z′
k =

⎧
⎨

⎩

Zk if |Zk| > 0.1
−0.1 if − 0.1 ≤ Zk < 0
0.1 if 0 ≤ Zk ≤ 0.1

. (12)

and solve (4) for this set. If a′
1, b′

1, and b′
2 are the resulting coefficients then the

expression (2+a′
1)/Z

′
1Z

′
2Z

′
3 produces values which are exact in at least three figures

for any Z1, Z2, Z3.
To conclude, the new S∗

3 remains of the same order (four) as any other scheme of
this method but a gain in accuracy is expected from the last factor in the lte provided
Zk parameters are advantageously selected.
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Remark An extension of REGSOLV is also presented in book [1]. This is subroutine
REGSOLV2 which solves a system consisting of two blocks:

N∑

n=1

F 1
n (Zk)vn = B1(Zk) , k = 1, 2, · · · , k̄,

N∑

n=1

F 2
n (Zk)vn = B2(Zk) , k = k̄ + 1, k̄ + 2, · · · , N , (13)

where functions F i
n , Bi, i = 1, 2 and their derivatives have to be furnished by the

user. This opens the possibility of solving a substantially larger class of problems
related to the ef approach. In particular, for the Numerov method, we may address
the problem of generating the most general set of coefficients consistent with the set
(6). Specifically, the functional to be addressed is now

L[h, a1, a2, b0, b1, b2]y(x) = y(x + h) + a1y(x) + a2y(x − h) − h2[b0y′′(x + h)

+b1y
′′(x) + b2y

′′(x − h)], (14)

instead of (5). On asking that this is identically vanishing for the pair e±μx , we get

L[h, a1, a2, b0, b1, b2]e±μx = e±μxE±z = 0, z = μh,

where

E±z = e±z + a1 + a2e
∓z − z2(b0e

±z + b1 + b2e
∓z).

The set of two equations E±z = 0 is now expressed in terms of the eta functions of
argument Z = z2. The following equivalent pair results:

G+(Z)≡(Ez+E−z)/2=η−1(Z)+a1+a2η−1(Z)−Z(b0η−1(Z)+b1+b2η−1(Z))=0,

G−(Z) ≡ (Ez − E−z)/(2z) = η0(Z) − a2η0(Z) − Z(b0η0(Z) − b2η0(Z)) = 0.

All together, the five coefficients consistent with the set of six functions (6) satisfy
the system of six linear equations G±(Zk) = 0, k = 1, 2, 3, but, to determine them
numerically, one of these equations must be disregarded. For example, if we choose
disregarding G−(Z3) = 0, the following system of five equations and of form (13)
remains to be solved:

−a1 − η−1(Zk)a2 + Zkη−1(Zk)b0 + Zkb1 + Zkη−1(Zk)b2 = η−1(Zk), k = 1, 2, 3

η0(Zk)a2 + Zkη0(Zk)b0 − Zkη0(Zk)b2 = η0(Zk), k = 1, 2. (15)

As expected, if a2 = 1 and b0 = b2, as tacitly assumed in (4), system (15) reduces
to (4). By solving (15) with REGSOLV2, the values furnished by REGSOLV for (4)
and the additional relations a2 = 1 and b0 = b2 are reproduced with an absolute error
which is typically within the round-off limits. As an extra check, we can examine if
the disregarded equation G−(Z3) = 0 is also satisfied for the computed coefficients,
to find out that this is indeed confirmed within the same accuracy.
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3 A numerical illustration

We take the case of the eigenvalue problem for the Schrödinger equation (1) with the
Coffey-Evans potential

V (x) = −2β cos(2x) + β2 sin2(2x) (16)

with β = 25, see Fig. 1. The domain is [a = 0, b = π/2] and the boundary conditions
are y(0) = y(π/2) = 0. As a matter of fact, in the literature related to this problem,
e.g., [22, 23], the domain is [−π/2, π/2], and various values for parameter β are
considered. However, the domain and the value of β used by us are sufficient for this
illustration.

We compare three schemes: S0, S3, and the new S∗
3 . The domain is divided in two

sectors, [0, π/4] and [π/4, π/2], and the eigenvalues are located by shooting. A set
of test values E ∈ [50, 400] is considered and for each E the equation is propagated
forwards with the starting values y0 = 0, y1 = h up to π/4+ h and backwards, with
yimax = 0, yimax−1 = h for start, up to π/4. The values obtained at π/4 and π/4 + h

from the two directions, denoted y
f

1 (E), y
f

2 (E) and yb
1 (E), yb

2 (E), respectively, are
used to form the mismatch function

�(E) = y
f

1 (E)yb
2 (E) − yb

1 (E)y
f

2 (E). (17)

Fig. 1 Coffey-Evans potential function (16) with β = 25 on interval [0, π/2] and the three piecewise
average values of it on each sector
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The eigenvalues are located as the zeros of this �(E).
Computation of the coefficients:

• S0 : This is the classical scheme. Its coefficients are a1 = −2, b0 = 1/12, and
b1 = 5/6.

• S3 : Let V̄ f and V̄ b be the average values of V (x) over the two sectors. Argu-

ments Zf = (V̄
f −E)h2/ Zb = (V̄

b −E)h2 are used in the forwards/backwards
propagations with this S3. The coefficients are computed by the known analytic
expressions, see [1, 2, 19].

• S∗
3 : Each of the two sectors is divided into three equal subsectors, and let V̄

f
k /

V̄ b
k , (k = 1, 2, 3), be the corresponding average values (horizontal segments in

Fig. 1). The three arguments Z1, Z2, Z3 are now Z
f
k = (V̄

f
k − E)h2 / Zb

k =
(V̄ b

k − E)h2 (k = 1, 2, 3), and the coefficients are computed by REGSOLV.

Notice that the computational effort is the same for S3 and S∗
3 : for each E they need

only two computations of the coefficients, one for each direction.
In Table 1, we give the absolute errors in eigenvalues from the three schemes and

different values of h. The reference eigenvalues, denoted Eexact , were computed by
S∗
3 at h = π/1024.

Table 1 Absolute errors
�E = Eexact − Ecomput in
10−6 units from the three
compared Numerov versions for
the first four eigenvalues of the
Coffey-Evans potential on
[0, π/2]

�E

Eexact h S0 S3 New S∗
3

97.9345617 π/32 36572 555229 5509

π/64 2248 32, 423 258

π/128 139 1937 14

π/256 8 118 0

π/512 0 7 0

191.5876333 π/32 31797 310471 7539

π/64 1956 19, 804 411

π/128 121 1244 24

π/256 7 77 1

π/512 0 4 0

280.6142453 π/32 271059 331072 −7231

π/64 16500 18341 −563

π/128 1024 1082 −36

π/256 63 65 −2

π/512 3 4 0

364.5556442 π/32 228089 184067 2259

π/64 13903 11143 54

π/128 863 691 2

π/256 53 43 0

π/512 3 2 0
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We see that, as expected, all schemes are of the same order, four. Indeed the errors
typically decrease by a factor of around 16 when h is halved. What is also significant
is that S3 does not improve the accuracy if compared with the classical S0. For con-
trast, the new S∗

3 produces systematically better results than the other two schemes.
The accuracy gain with S∗

3 is of between one and two decimal figures if compared
with the best placed from S0 and S3.

Our results suggest that, more general, the use of ef-based versions with one
and the same value for the parameters (that is, with Z1 = Z2 = Z3) does not
automatically lead to an improvement in accuracy for potentials with a pronounced
variation. This holds true only for potentials that are reasonably well approximated
by a step function, as is the case of the Woods-Saxon potential which is fre-
quently used in the literature. Otherwise, using three different Zk represents a good
idea.

These remarks do not restrict to the Numerov method. For any other method
based on exponential fitting, the choice of sets with different values for the param-
eters, instead of a single one, will add more flexibility and therefore more chances
for accuracy gain. The total number of parameters may vary from one method to
another. Anyway, in any such situation, the use of the numerical solvers REGSOLV
or REGSOLV2 for the coefficients will continue to play a central role.

Also worth adding is that the way how the values of the parameters should
be advantageously selected remains open at this stage, especially for second-order
differential equations of general form y′′ = f (x, y).

4 Conclusions

We have considered the Numerov method to introduce the new scheme S∗
3 which is

more flexible than the existing ones and includes them as particular cases. The impor-
tant feature is that now the coefficients are computed numerically, not by analytical
expressions, as before, and the numerical values obtained in this way are practically
as accurate as those from analytic expressions. Fortran 95 subroutine REGSOLV
was used for this purpose. Subroutine REGSOLV2 can be also used according to
the case. The major advantage is that now the knowledge of the analytic expres-
sions of the coefficients and their series expansions, which usually consists in sets of
lengthy formulas, is no more needed. Only the generating system, as are (4) or (15)
for the Numerov method, has to be formulated and communicated to the potential
readers.

Acknowledgments This research was supported in the frame of contract PN 18090101/ 2018 with the
Romanian Ministry of Research and Innovation.

Appendix

Eta functions η−1(Z), η0(Z), η1(Z), ... are defined as follows [1, 19, 21]:
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The first two are

η−1(Z) =
{
cos(|Z|1/2) if Z ≤ 0
cosh(Z1/2) if Z > 0

, η0(Z) =

⎧
⎪⎨

⎪⎩

sin(|Z|1/2)
|Z|1/2 if Z < 0

1 if Z = 0
sinh(Z1/2)

Z1/2 if Z > 0

. (18)

In some papers, function η−1(Z) is denoted ξ(Z).
Functions ηm(Z) with m > 0 are generated by recurrence

ηm(Z) = ηm−2(Z) − (2m − 1)ηm−1(Z)

Z
, m = 1, 2, 3, ... (19)

if Z �= 0, and by following values at Z = 0 :
ηm(0) = 1

(2m + 1)!! , m = 1, 2, 3, ... (20)

Some useful properties are:
Series expansion:

ηm(Z) = 2m
∞∑

q=0

(q + m)!
q!(2q + 2m + 1)!Z

q, m = 0, 1, 2, ... (21)

Asymptotic behavior at large |Z| :

ηm(Z) ≈
{

η−1(Z)

Z(m+1)/2 for odd m
η0(Z)

Zm/2 for even m.
(22)

Differentiation properties:

η′
m(Z) = 1

2
ηm+1(Z), m = −1, 0, 1, 2, ... (23)

The latter is important in subroutine REGSOLV for solving (3) because there the
expressions of the derivatives of functions Fn(Z), n = 1, 2, · · · , N and B(Z) are
also requested.

The expressions needed in system (4) for these functions and their derivatives are:

F1(Z) = −1 and F
(m)
1 (Z) = 0 for m ≥ 1,

F2(Z) = 2Zη−1(Z), F
(1)
2 (Z) = 2η−1(Z) + Zη0(Z) and

F
(m)
2 (Z) = 21−m[ηm−3(Z) + 3ηm−2(Z)] for m ≥ 2,

F3(Z) = Z, F
(1)
3 (Z) = 1 and F

(m)
3 (Z) = 0 for m ≥ 2,

B(Z) = 2η−1(Z) and B(m)(Z) = 21−mηm−1(Z) for m ≥ 1.

Codes for the computation of the eta functions are available: subroutines GEBASE
and GEBASEV (fortran 95, double precision arithmetic) in the compact disk attached
to book [1]; see also formConv (mathematica) in [24].

For solving (4), we have used derivatives up to mmax = 30 with eta functions
computed by GEBASEV.
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