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Abstract
The kth Fréchet derivative of a matrix function f is a multilinear operator from
a cartesian product of k subsets of the space C

n×n into itself. We show that the
kth Fréchet derivative of a real-valued matrix function f at a real matrix A in real
direction matrices E1, E2, . . . , Ek can be computed using the complex step approxi-
mation. We exploit the algorithm of Higham and Relton (SIAM J. Matrix Anal. Appl.
35(3):1019–1037, 2014) with the complex step approximation and mixed derivative
of complex step and central finite difference scheme. Comparing with their approach,
our cost analysis and numerical experiment reveal that half and seven-eighths of
the computational cost can be saved for the complex step and mixed derivative,
respectively. When f has an algorithm that computes its action on a vector, the
computational cost drops down significantly as the dimension of the problem and k

increase.

Keywords Matrix function · Fréchet derivative · Higher order Fréchet derivative ·
Complex step approximation · Action of matrix functions

1 Introduction

Matrix functions play important roles in a variety of applications such as quantum
graphs [10], network analysis [11], computer animation [29], and solutions of sys-
tems of differential equations [3, 7]. In the computation of matrix functions, it is
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important to understand how perturbations in input data effect the results. The con-
dition number plays an essential role in measuring the sensitivity of the data to
perturbations and the norm of the Fréchet derivative is the main component of the
condition number. Apart from the sensitivity analysis, the Fréchet derivative is also
used in image reconstruction in tomography [28], the computation of choice prob-
abilities [2], the analysis of carcinoma treatment [14], and computing the matrix
geometric mean and Karcher mean [19]. In the literature, there are some numer-
ical algorithms for the Fréchet derivative for the matrix exponential, square root,
logarithm, and fractional power; see [4, 8, 12, 15, 17, 21]. By using Daleckiǐ-
Kreǐn formula, Noferini gives an explicit expression for the Fréchet derivative of
generalized matrix functions [27].

The second-order Fréchet derivative has an application in the extension of iterative
methods to solve a nonlinear scalar equation to Banach spaces [9]. The computa-
tion of the higher order Fréchet derivative s of matrix functions was first proposed
by Higham and Relton [18]. The authors develop algorithms for computing the kth
derivative and its Kronecker form. They analyze the level-2 absolute condition num-
ber of a matrix function, which is the condition number of the condition number, and
bound it in terms of the norm of the second Fréchet derivative.

The use of complex arithmetic to approximating the derivative of analytic func-
tions was introduced by Lyness [26] and Lyness and Moler [25]. The work of Squire
and Trapp [30] appears the earliest manipulation of the complex step approxima-
tion for the derivative of a real function at a real number. Later, many authors
have extended the complex step approach to produce approximations of higher rate
of convergence (see, for instance, [1, 22–24]). The extension of the complex step
approximation to the first-order Fréchet derivative of real matrix functions was first
introduced by Al-Mohy and Higham [6].

The aim of this work is to make the computation of the higher order Fréchet
derivative of a matrix function as efficient as possible via the use of derivative tech-
niques: complex step and finite difference, and the implementation of the action of
the matrix function on a thin tall matrix whenever available. The paper is organized
as follows. In Section 2 we review the definition and the computation aspects of the
kth Fréchet derivative given by Higham and Relton [18]. Based on the definition, we
derive a recurrence relation for the kth Fréchet derivative of a monomial matrix func-
tion. Section 3 represents the main body of the paper. First, using the definition of the
kth Fréchet derivative, we derive the central finite difference scheme and the com-
plex step approximation showing the order of convergence rate. Second, we use the
block matrix Xk−1 (half the size of Xk) alongside the complex step approximation to
compute the kth Fréchet derivative, yielding about 50% saving of the computational
cost. Third, we derive the mixed derivative scheme of the central finite difference
and the complex step approximation. This allowed us to use the block matrix Xk−2
(one-fourth the size of Xk) with certain inputs to compute the kth Fréchet deriva-
tive. The computational saving is about 87%. Fourth, since the kth Fréchet derivative
is extracted from f (Xk) by reading off the top right n × n block, it is attractive to
use the action of f (Xk) on a certain thin and tall matrix to extract that block. We
explain how to obtain the kth Fréchet derivative as a whole matrix and how to obtain
its action on a vector. This approach yields a significant reduction of computational
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cost and CPU time. Finally, we give our numerical experiment in Section 4 and draw
our concluding remarks in the last section.

2 Higher order Fréchet derivative

The kth-order Fréchet derivative of f : Cn×n → C
n×n at A ∈ C

n×n can be defined
recursively as the unique multilinear operator L

(k)
f (A) of the direction matrices Ei ∈

C
n×n, i = 1 : k, that satisfies

‖L(k−1)
f (A + Ek, E1, · · · , Ek−1) − L

(k−1)
f (A, E1, · · · , Ek−1)

− L
(k)
f (A, E1, · · · , Ek)‖ = o(‖Ek‖), (2.1)

where L
(0)
f (A) = f (A) and L

(1)
f (A, E1) is the first-order Fréchet derivative. To

shorten our expressions, we denote the k-tuple (E1, E2, · · · , Ek) by Ek regardless of
the order of Ek since the multilinear operator L

(k)
f (A) is symmetric.

If E = Ej , j = 1 : k, we denote the kth Fréchet derivative of f at E by

L
(k)
f (A, E); that is, L

(k)
f (A, E) = L

(k)
f (A, E, E, · · · , E).

For the monomial Xr , where r is any nonnegative integer, we obtain the following
recurrence for L

(k)
xr (A, Ek), which can be proven by induction on k and using the

product rule of the Fréchet derivative.

Lemma 2.1 The kth Fréchet derivative of Xr is given by

L
(k)
xr (A,E1, E2, · · · , Ek) = AL

(k)

xr−1(A,E1, E2, · · · , Ek)

+
k∑

j=1

EjL
(k−1)

xr−1 (A,E1, · · · , Ej−1, Ej+1, · · · , Ek) (2.2)

with L
(k)
xr (A, E1, E2, · · · , Ek) = 0 if k > r .

In particular if E = Ej , j = 1 : k, the recurrence relation (2.2) boils down to the
recurrence relation [6, Eq. (3.1)].

We recall next an important result by Higham and Relton [18] that allows the
computation of the kth Fréchet derivative as a block of f (Xk), where

Xk = I2 ⊗ Xk−1 +
[

0 1
0 0

]
⊗ I2k−1 ⊗ Ek, X0 = A. (2.3)

The symbol ⊗ denotes the Kronecker product [15, Chap. 12] and Im denotes the
m × m identity matrix.

We will state the following theorem for the existence of the kth Fréchet derivative.

Theorem 2.1 ([18, Theorem. 3.5]) Let A ∈ C
n×n whose largest Jordan block is of

size p and whose spectrum lies in an open subsetD ⊂ C. Let f : D → C be 2kp−1
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times continuously differentiable onD. Then the kth Fréchet derivativeL
(k)
f (A) exists

and L
(k)
f (A, Ek) is continuous in A and E1, E2, . . . , Ek ∈ C

n×n. Moreover

L
(k)
f (A, Ek) = [f (Xk)]1n,

the upper right n × n block of f (Xk).

3 Complex step approximation

3.1 Scalar case

If f (x) is a real function with real variables and is analytic then it can be expanded
in a Taylor series

f (x + ih) = f (x) + ihf ′(x) − h2 f ′′(x)

2! − ih3 f (3)(x)

3! + · · · . (3.1)

Thus, the imaginary part Im(f (x + ih))/h and the real part Re(f (x + ih)) give
order O(h2) approximations to f ′(x) and f (x), respectively. Approximating f ′(x)

by the imaginary part of the function avoids the subtractive cancellation occurring in
finite difference scheme. In addition, complex step approximation allows the use of
an arbitrary small h without sacrificing the accuracy. Numerical results obtained by
numerical algorithm design in meteorology proved the accuracy obtained even with
h = 10−100 [13].

Next we investigate how to implement complex step techniques to compute higher
order Fréchet derivative s of matrix functions.

3.2 Matrix case

Assume that A and Ei , i = 1 : k, are real matrices and f is a real-valued function
at real arguments obeying the assumption of Theorem 2.1. Replacing the matrix Ek

in the definition of the kth Fréchet derivative (2.1) by hEk , where h is a positive real
number, and exploiting the linearity of the operator L

(k)
f (A), we have

L
(k−1)
f (A + hEk, Ek−1) − L

(k−1)
f (A, Ek−1) − hL

(k)
f (A, Ek) = o(h).

Thus

lim
h→0

L
(k−1)
f (A + hEk, Ek−1) − L

(k−1)
f (A, Ek−1)

h
= L

(k)
f (A, Ek), (3.2)

which is an O(h) finite difference approximation to L
(k)
f (A, Ek). The central finite

difference approximation can be derived by replacing h in (3.2) by −h and adding
the obtained limit to (3.2) to cancel out the term L

(k−1)
f (A, Ek−1). That is,

L
(k)
f (A, Ek) = lim

h→0

L
(k−1)
f (A + hEk, Ek−1) − L

(k−1)
f (A − hEk, Ek−1)

2h
, (3.3)
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which yields O(h2) approximation to L
(k)
f (A, Ek) as shown below.

Now replacing the matrix Ek in the definition of the kth Fréchet derivative (2.1)
by ihEk yields

L
(k−1)
f (A + ihEk, Ek−1) − L

(k−1)
f (A, Ek−1) − ihL

(k)
f (A, Ek) = o(h).

Since L
(k)
f (A, Ek) is real, we obtain

lim
h→0

Im
(
L

(k−1)
f (A + ihEk, Ek−1)

)

h
= L

(k)
f (A, Ek). (3.4)

This yields the complex step approximation of L
(k)
f (A) via L

(k−1)
f (A) as

L
(k)
f (A, Ek) ≈ Im

(
L

(k−1)
f (A + ihEk, Ek−1)

)

h
, (3.5)

for a sufficiently small scalar h. Clearly,

L
(k−1)
f (A, Ek−1) ≈ Re

(
L

(k−1)
f (A + ihEk, Ek−1)

)
.

However, this derivation of complex step approximation does not reveal the rate
of convergence of the approximation as h goes to zero. To determine the rate of
convergence, we need stronger assumptions on f .

Theorem 3.1 Let A, Ei ∈ R
n×n, i = 1 : k, and f : D ⊂ C → C be an analytic

function in an open subset D containing the spectrum of A. Assume further that f is
real-valued at real arguments. Let h be a sufficiently small real number such that the
spectrum of A + ihEk lies in D. Then we have

L
(k)
f (A, Ek) = Im

(
L

(k−1)
f (A + ihEk, Ek−1)

)

h
+ O(h2) (3.6)

L
(k−1)
f (A, Ek−1) = Re

(
L

(k−1)
f (A + ihEk, Ek−1)

) + O(h2) (3.7)

where Ek = (E1, E2, · · · , Ek).

Proof The analyticity of f on D implies that f has a power series expansion there.
Recall [6, Theorem. 3.1] and denote by E

(j)
k the j -tuple (Ek, Ek, · · · , Ek), so we

have

f (A + ihEk) =
∞∑

j=0

(ih)j

j ! L
(j)
f (A, Ek)

= f (A) + ihLf (A, Ek) − h2

2
L

(2)
f (A, E

(2)
k ) + O(h3). (3.8)

Since the power series converges uniformly on D, we can repeatedly Fréchet
differentiate the series (3.8) term by term in the directions E1, E2, . . . , Ek−1 and
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obtain

L
(k−1)
f (A + ihEk, Ek−1) = L

(k−1)
f (A, Ek−1) +

∞∑

j=1

(ih)j

j ! L
(j+k−1)
f (A, E

(j)
k , Ek−1)

= L
(k−1)
f (A, Ek−1) + ihL

(k)
f (A, Ek)

− h2

2
L

(k+1)
f (A, E

(2)
k−1, Ek−1) + O(h3).

Equations (3.6) and (3.7) follow immediately by equaling the imaginary and real
parts of the series, respectively.

The rate of convergence of the central finite difference approximation (3.3) can
now be shown from the expansion of L

(k−1)
f (A+ ihEk, Ek−1) above by replacing the

scalar h by ih and then by −ih. Subtracting the expansion of L
(k−1)
f (A − hEk, Ek−1)

from the expansion of L
(k−1)
f (A + hEk, Ek−1) and dividing through by 2h yield the

approximation in (3.3) and reveal its order, O(h2). The benefit of this analysis is
that when an algorithm is available to compute L

(k−1)
f (A, Ek−1), it can be used to

compute L
(k)
f (A, Ek). Thus, we can use the complex step approximation to com-

pute L
(k)
f (A, Ek) via Imf (Xk−1)/h with X0 = A + ihEk in (2.3). This leads to an

important result analogous to Theorem 2.1.

Theorem 3.2 Let A, Ei ∈ R
n×n, i = 1 : k, andD ⊂ C be an open subset containing

the spectrum of A. Let h be a sufficiently small real number such that the spectrum
of A + ihEk lies in D and pk be the size of the largest Jordan block of A + ihEk . Let
f : D → C be 2k−1pk − 1 times continuously differentiable on D. Assume further
that f is real-valued at real arguments. Then the kth Fréchet derivative exists and

L
(k)
f (A, Ek) = lim

h→0

Im[f (Xk−1)]1n

h
, (3.9)

where X0 = A + ihEk given in (2.3).

Proof In view of Theorem 2.1, The upper right n × n block of f (Xk−1), where X0 =
A + ihEk , is L

(k−1)
f (A + ihEk, Ek−1). By (3.6), L

(k)
f (A, Ek) is the upper right n × n

block of limh→0 Imf (Xk−1)/h.

The advantage of this approach is that the size of the matrix Xk−1 is half the size of
Xk , which could lead to a faster computation. On the assumption that the algorithm
for computing f (A) requires O(n3) operations, the computation of f (Xk) requires
O(8kn3) operations since the dimension of Xk is 2kn × 2kn [18]. However, the com-
putation of f (Xk−1) with X0 = A + ihEk requires O(4 · 8k−1n3), bearing in mind
that the computational cost of complex arithmetic is about four times the computa-
tional cost of real arithmetic. Thus, the cost of f (Xk−1) with complex arguments is
about half the cost of f (Xk) for real arguments. Our numerical experiments below
support this analysis.
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In fact, we can evaluate the kth Fréchet derivative using the block matrix Xk−2
instead of Xk . The idea is to use a mixed derivative scheme as shown below.

Lemma 3.1 Suppose f , A, and Ej , j = 1 : k, satisfy the assumptions of Theo-
rem 2.1. Let B = A + ih1Ek−1 then

L
(k)
f (A, Ek) = lim

(h1,h2)→(0,0)

Im
(
L

(k−2)
f (B + h2Ek, Ek−2) − L

(k−2)
f (B − h2Ek, Ek−2)

)

2h1h2
.

Proof Using (3.3) and (3.6), we obtain the mixed derivative

L
(k)
f (A,Ek) = L

(k−1)
f (A + h2Ek,Ek−1) − L

(k−1)
f (A − h2Ek,Ek−1)

2h2
+ O(h2

2)

=
(

Im
(
L

(k−2)
f (B + h2Ek,Ek−2)

)

2h1h2
− Im

(
L

(k−2)
f (B − h2Ek,Ek−2)

)

2h1h2
+ O(h2

1)

)
+ O(h2

2)

= lim
(h1,h2)→(0,0)

Im
(
L

(k−2)
f (B + h2Ek,Ek−2) − L

(k−2)
f (B − h2Ek,Ek−2)

)

2h1h2
.

Thus

L
(k)
f (A,Ek) ≈ Im

(
L

(k−2)
f (A + ih1Ek−1 + h2Ek,Ek−2) − L

(k−2)
f (A + ih1Ek−1 − h2Ek,Ek−2)

)

2h1h2
(3.10)

for sufficiently small real scalars h1 and h2.

We can take advantage of the scheme (3.10) to reduce the computational cost
for computing L

(k)
f (A, Ek), where k ≥ 3. Consider the recurrence (2.3) for X0 =

A + ih1Ek−1 + h2Ek and evaluate Xk−2, then set X0 = A + ih1Ek−1 − h2Ek and
denote the value of Xk−2 by Yk−2. Observe that the top right n × n blocks of f (Xk−2)

and f (Yk−2) are L
(k−2)
f (A + ih1Ek−1 + h2Ek, Ek−2) and L

(k−2)
f (A + ih1Ek−1 −

h2Ek, Ek−2), respectively. Therefore, we have

L
(k)
f (A, Ek) ≈ Im

[f (Xk−2)]1n − [f (Yk−2)]1n

2h1h2
. (3.11)

We will see in our numerical experiments that the parameter h1 can be chosen
as small as desired. However, the parameter h2 is a finite difference step and it has
to be chosen carefully. However, this approximation reduced the computational cost
significantly. It requires two matrix function evaluations at complex matrices of size
2k−2n × 2k−2n, so the cost is O(8 · 8k−2n3), which is about one-eighth the cost of
f (Xk). Our numerical experiment below reveals this factor.

3.3 Exploiting action of matrix functions

Some matrix functions have existing algorithms to compute their actions on thin
matrices without explicitly forming f (X), but rather computing f (X)B using the
matrix–matrix product of X and B. As examples, the matrix exponential has the
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algorithm [7, Alg. 3.2] by Al-Mohy and Higham to compute eXB. Recently, Al-
Mohy [3] and Higham and Kandolf [16] developed algorithms to compute the actions
of trigonometric and hyperbolic matrix functions. These Algorithms use truncated
Taylor series, so f (X)B is recovered via updating the matrix B of the product XB.
Krylov subspace methods can also be used to evaluate matrix function times vector
[15, Ch. 13].

As mentioned above, the kth Fréchet derivative is obtained by reading off the
upper right n × n block of the matrix f (Xk), where X0 = A. This is equivalent to
reading off the upper n × n block of the thin and tall matrix f (Xk)B, where

B = [0n, 0n, . . . , 0n, In]T ∈ R
2kn×n. (3.12)

The entries 0n and In are the zero and the identity matrices of size n × n, respectively.
The action of f (Xk) on B extracts the last block column of f (Xk). Thus,

L
(k)
f (A, Ek) = [f (Xk)B]11. (3.13)

The advantage of this approach is that we only compute the rightmost n columns of
the matrix f (Xk) instead of computing the whole matrix as the algorithm of Higham
and Relton does [18, Algorithm 3.6]. In addition, the matrix Xk has special structure,
so the best algorithm is the one that exploits the structure of the input matrix in an
optimal way. Such an algorithm is unavailable yet as per our knowledge. However,
evaluating f (Xk)B using the matrix multiplication XkB takes advantage of the spar-
sity of Xk . From (2.3) we count the nonzero elements of Xk , nnz(Xk), in terms of
nnz(A) and nnz(Ek). Thus, we have

nnz(Xk) = 2knnz(A) + 2k−1
k∑

i=1

nnz(Ei). (3.14)

Since nnz(A) and nnz(Ek) never exceed n2, the nonzero elements of Xk is bounded
above by 2k−1(k + 2)n2. To illustrate, for k = 6, nnz(Xk) represents about 6.25%
of the elements of Xk and this percentage drops down rapidly as k increases.

In the numerical experiment below, the methods that compute the kth Fréchet
derivative s via the action of matrix functions are significantly faster (as k increases)
than the methods that explicitly form the matrix f (Xk) and then extract the top right
n × n block.

Using the complex step approximation, we can reduce the size of the acting matrix
as shown in Theorem 3.1. Thus for X0 = A + ihEk and B is being reduced to size
2k−1n × n by deleting the first block, we have

L
(k)
f (A, Ek) = lim

h→0

Im[f (Xk−1)B]11

h
. (3.15)

We can go further and compute the action of the kth Fréchet derivative on a vec-
tor or more generally the action on a thin matrix b of size n × n0, where n0 �
n. Observe that we can compute L

(k)
f (A, Ek)b via (3.13) by multiplying its sides

from the right by b. However, this would not be an efficient approach. The most
efficient approach in this setting is to reconstruct the matrix B in (3.13) to be
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[0n×n0 , 0n×n0 , . . . , 0n×n0 , b]T =: Bb, which is of size 2kn × n0. Thus,

L
(k)
f (A, Ek)b = [f (Xk)Bb]11. (3.16)

By using the complex step for X0 = A+ ihEk and adjusting Bb to be of size 2k−1n×
n0 by deleting the top block, we obtain

L
(k)
f (A, Ek)b = lim

h→0

Im[f (Xk−1)Bb]11

h
. (3.17)

Kandolf and Relton [20] propose an algorithm for computing the action of the
first Fréchet derivative Lf (A, E)b. Their approach is a particular case of (3.16) for
k = 1; that is,

X1 =
[
A E

0 A

]
, f (X1)

[
0
b

]
=

[
Lf (A, E)b

f (A)b

]
.

In fact, the computation of Lf (A, E)b could be made more efficient if we use the
complex step approximation

Lf (A, E)b ≈ Imf (A + ihE)b/h,

which requires the action of n × n matrices instead of the action of 2n×2n matrices.
This approximation is a particular case of (3.17) with k = 1. In similar fashions,
we can implement (3.11) to reduce the size of the acting matrix to 2k−2n × 2k−2n

for k ≥ 3.

4 Numerical experiments

In this section, we give several numerical experiments to illustrate the advantage of
the use of the complex step approximation and the actions of matrix functions to
reduce the computational cost. We use MATLAB R2017a on a machine with Core i7.
For experiments where CPU time is important, we limit MATLAB to run on a single
processor.

Experiment 1 In this experiment we measure the execution time for computing
L

(k)
f (A, Ek), k ≥ 2, by the methods prescribed above. We denote by T

(j)
k the

execution time for L
(k)
f (A, Ek) using the method j . We specify f to the matrix

exponential function whose implementation in MATLAB is expm. This function is
based on the algorithm of Al-Mohy and Higham [5, Algorithm 5.1]. We take A =
gallery(’lesp’,5) and generate ten random matrices Ek , k = 1 : 10, of size
5 × 5. We use the algorithm of Higham and Relton [18, Algorithm 3.6] that forms
Xk in (2.3) with X0 = A, computes f (Xk), and extracts L

(k)
f (A, Ek) as [f (Xk)]1n.

The execution time for this method is denoted by T
(1)
k . Second, we run the algorithm

of Higham and Relton using the initial matrix X0 = A + ihE1 with h = 10−8, and
the direction matrices Ek for k = 2 : 10. The algorithm computes f (Xk−1), of which
L

(k)
f (A, Ek) ≈ Im[f (Xk−1)]1n/h as shown in (3.9). We denote the execution time

for this implementation by T
(2)
k . Third, we use (3.11) and invoke the algorithm of
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Higham and Relton for f (Xk−2) and f (Yk−2) in the directions Ek , k = 3 : 10, with
initial matrices X0 = A + ih1E1 + h2E2 and Y0 = A + ih1E1 − h2E2, respec-
tively. We take h2 = 10−6. We denote the execution time for this implementation by
T

(3)
k . Fourth, we evaluate L

(k)
f (A, Ek) via (3.13) using the algorithm of Al-Mohy and

Higham [7, Alg. 3.2], expmv, that computes the action eXkB, where Xk is given as
in (2.3) with X0 = A and B is defined as in (3.12). The code is available at https://
github.com/higham/expmv. We denote the running time for expmv by T

(4)
k . Fifth,

we use expmv with complex step to approximate L
(k)
f (A, Ek) via (3.15). The running

time for this implementation is denoted by T
(5)
k . Finally, we use (3.11) with expmv

and denote its execution time by T
(6)
k .

Table 1 presents T
(j)
k for k ≥ 2 and j = 1 : 6 and Fig. 1 plots the ratios T

(1)
k /T

(j)
k

and j = 2 : 6. We fix T
(1)
k as reference points to show how our approaches of using

the complex step and matrix function actions improve on the approach of Higham
and Relton. The results are as follows. We observe that the ratio T

(1)
k /T

(2)
k , k ≥ 2

asymptotically approaches 2 as k increases. This supports our cost analysis given
right after Theorem 3.2 that the use of the complex step approximation could save
about 50% of the computational cost of the Algorithm of Higham and Relton. A
superior computational saving is obtained when implementing the mixed derivatives.
The ratio T

(1)
k /T

(3)
k , k ≥ 3 approaches 8 as k increases, which also supports our cost

analysis presented right after Lemma 3.1. The ratios T
(1)
k /T

(j)
k for j = 4, 5, 6, where

that actions of the matrix exponential are used, grow up linearly by a factor of 4. The
implementation of expmv outperforms the direct use of expm for k ≥ 6 when the
dimensions of the input matrices start to grow up rapidly. expmv fully exploits the
sparsity of the matrix Xk whereas the algorithm of expm involves explicit matrix
powering and solves multiple right-hand sides linear systems, so the sparsity pattern
deteriorates significantly. In addition, most of the components of expm(Xk) are not
wanted. The three implementations of expmv behave in a similar manner with slight

Table 1 CPU time for computing L
(k)
f (A,Ek) , k = 2 : 10

k T
(1)
k T

(2)
k T

(3)
k T

(4)
k T

(5)
k T

(6)
k

2 8.79e−4 9.02e−4 — 8.77e−3 3.59e−3 —

3 1.44e−3 1.12e−3 1.37e−3 9.76e−3 9.32e−3 7.09e−3

4 3.32e−3 2.36e−3 2.19e−3 1.19e−2 1.07e−2 1.82e−2

5 1.26e−2 7.44e−3 4.53e−3 1.43e−2 1.35e−2 2.11e−2

6 8.20e−2 3.99e−2 1.46e−2 2.38e−2 1.94e−2 2.65e−2

7 6.15e−1 3.14e−1 8.63e−2 4.14e−2 3.67e−2 3.75e−2

8 4.69e0 2.40e0 6.27e−1 7.47e−2 6.67e−2 7.30e−2

9 3.68e1 1.85e1 4.81e0 1.42e−1 1.29e−1 1.34e−1

10 2.91e2 1.46e2 3.70e1 2.97e−1 2.61e−1 2.59e−1

For j = 1 : 3, T (j)
k is the running time for direct computation of f (Xk−j+1) whereas T

(j+3)
k is the running

time for computing the action of f (Xk−j+1) on B
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Fig. 1 The ratios T
(1)
k /T

(j)
k for k = 2 : 10 and j = 2 : 6 of the data in Fig. 1

better performance of method 5 and method 6 that implement the complex step and
the mixed derivative approximations, respectively.

We look at the accuracy of these methods. For each k we calculate 1-norm relative
errors for L

(k)
f (A, Ek) where the “exact” reference computation is considered to be

the output of the algorithm of Higham and Relton with expm. Figure 2 displays the
results.

Note that the relative errors for L
(k)
f (A, Ek) computed using the complex step

approximation (3.9) (err1), the formula of matrix function action (3.13) (err3), and

k
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Fig. 2 Relative errors for the methods prescribed in Experiment 1
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the complex step approximation with the matrix function action (3.15) (err4) yield
the highest accuracy whereas the use of the mixed derivative scheme (3.11) in both
implementations produces less accurate computations (err2 and err5).

The accuracy of the mixed derivative scheme is quit sensitive to changes in the
parameter h2. The scheme is prone to subtractive cancellation in floating point arith-
metic. Thus, h2 has to be chosen to balance truncation errors with errors due to
subtractive cancellation. Hence, the smallest relative error that could be obtained is
of order u1/2 , where u is the unit roundoff [15, Section 3.4]. However, the com-
plex step approximation does not involve subtraction. Thus, the parameter h1 can be
taken arbitrary small without effecting the obtained accuracy. The next experiment
illustrates these points.

Experiment 2 The purpose of this experiment is to shed light on the robustness of the
complex step approximation accuracy and some weakness on the mixed derivative
approach. We take the matrix A and Ek from the above experiment and f = cos ◦√ .
We use the algorithm of Al-Mohy [3, Algorithm 5.1] that computes the action of the
matrix function cos(

√
A) on a thin tall matrix B. The MATLAB code of this algo-

rithm is denoted by funmv and is available at https://github.com/aalmohy/funmv.
The algorithm is intended for half, single, and double precision arithmetics, but for
this experiment we choose double precision. We compute L := L

(10)
f (A, E10) using

(3.13) and consider it as a reference computation. Then, we compute L via complex
step approximation with steps h1 = 10−r , r = 1 : 50. The top part of Fig. 3 shows
the 1-norm relative errors for each h1. Note that the algorithm achieved the order of
machine precision for all r ≥ 6; this demonstrates the main advantage of complex
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Fig. 3 The change of the relative error in (3.11) with the choice of h1 and h2
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step approximations of derivatives. The bottom plot of Fig. 3 shows the sensitivity of
the mixed derivative scheme (3.11) to the difference step h2. We fixed h1 = 10−50

and take h2 = 10−r , r = 1 : 16. Notice that the relative error decreases and attains
its minimum at r = 4 then the accuracy deteriorates as r increases. The selection of
an optimal r is a delicate matter; it depends on the inputs and the method by which
f is computed.

5 Concluding remarks

The evaluation of a higher order Fréchet derivative of a matrix function is still a
challenging problem if the algorithm that computes the matrix function f produces
f (Xk) as a full matrix. The dimension of the matrix Xk , 2kn × 2kn, grows up expo-
nentially as k increases. The algorithm of Higham and Relton computes the kth
Fréchet derivative for general complex functions and matrices. However, it does not
exploit the special structure and sparsity pattern of the matrix Xk . We improve the
efficiency of the computation of the kth Fréchet derivative in two ways. We use the
complex step approximation to reduce the size of the problem and the action of matrix
functions to exploit the structure of the problem. The application of the complex step
approximation works for real-valued functions at real arguments. Our use of the com-
plex step approximation reduces the dimension of the input matrix by half. The use of
the mixed derivative scheme, however, reduces the dimension of the input matrix by
three quarters. These implementations lead to significant computational savings com-
pared to the direct use of Xk as proposed by Higham and Relton. Though the mixed
derivative approach proves computational efficiency, it has to be used with caution
since subtractive cancellation is likely to occur. The finite difference step has to be
chosen to balance truncation errors with rounding errors. The complex step approxi-
mation is a reliable approach as the accuracy is retained whenever the complex step
parameter becomes smaller.
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