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Abstract
Stochastic hybrid systems (SHSs) are a modelling framework for a cyber-physical
system (CPS), used to simulate, validate, and verify safety critical controllers
under uncertainty. Popular simulation tools can miss detecting discontinuities when
simulating SHS, thereby producing incorrect outputs during simulation. We pro-
pose a novel adaptive step size simulation/integration technique for a subset of
SHS—stochastic differential equations (SDEs) with discontinuous drift and diffusion
coefficients. Each integration step, of the Euler-Maruyama numerical solution of the
SDEs, is made dependent upon the values of the continuous variables inducing the
discontinuity. This in turn guarantees convergence of the system trajectory towards
the discontinuity without missing it. A thorough analysis and extensive benchmark-
ing of the proposed integration technique shows the efficacy of the approach when
simulating complex SHSs.

Keywords Stochastic hybrid systems · Stochastic differential equations ·
Numerical integration algorithms · Convergence analysis

1 Introduction

Stochastic hybrid systems (SHSs) [1, 2] are a subset of cyber-physical systems [3]
where the physical plant, with uncertainty, is captured using stochastic differential
equations (SDEs), while control switches between different plant modes are captured
as instantaneous transitions. SHSs have been used to model air traffic control [4],
robust sliding mode control [5], communication networks [6], etc.
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Significant recent research literature exists elucidating the formal semantics [2,
7], and formal verification of SHS [8–10]. In contrast, very little research literature
exists for efficient (or even functionally correct) numerical simulation techniques
for SHS. The standard technique for numerical integration of SDEs is the Euler-
Maruyama [11] fixed step size integration. Euler-Maruyama technique combines
standard Euler technique for integrating ordinary differential equations (ODEs) with
Itô’ chain-rule [12] to compute the integral of a given SDE. Adaptive step size inte-
gration of SDEs, without discontinuities, has shown to perform efficiently compared
to fixed step size integration [13, 14]. However, to the best of our knowledge, there
exists no adaptive step size numerical integration/simulation algorithm for SHS,
where the drift and diffusion coefficients of the SDE change with changing plant
modes. In this paper, we remedy this situation: we first present the problem with fixed
step size numerical integration/simulation for SHS in the de facto, industry standard,
modelling tool Simulink® [15]. Next, we present an adaptive step size numerical
integration/simulation technique for SHS.

1.1 Running example and problem description

Figure 1 shows an example of simulating sliding mode control (SMC) for an
autonomous vehicle under uncertainty in Simulink®. Figure 1a shows the steering
wheel of a car. The continuous variable x(t) indicates the position of the steering
wheel at any given point in time t ∈ R

≥0. The steering wheel can move left or right
from the centre, marked with the up arrow. By convention, the centre position is con-
sidered to be π/2 radians. The aim of the SMC is to maintain the steering wheel in
the centre position, irrespective of the starting position (x(0) �= π/2), even in case of
uncertainty.

dx(t) = −sgn(x(t) − π/2)dt (1)

sgn(x(t)) =

⎧
⎪⎨

⎪⎩

1, x(t) > 0

−1, x(t) < 0

0, otherwise

(2)

d

dt
x(t) =

⎧
⎪⎨

⎪⎩

1, x(t) < π/2

−1, x(t) > π/2 + ε

0, π/2 ≤ x(t) ≤ π/2 + ε

(3)

dx(t) = −sgn(x(t) − π/2)dt + sgn(x(t) − π/2)dW(t) (4)

dx(t) =

⎧
⎪⎨

⎪⎩

(1) × dt + (−1) × dW(t), x(t) < π/2

(−1) × dt + (1) × dW(t), x(t) > π/2 + ε

0, π/2 ≤ x(t) ≤ π/2 + ε

(5)

Equation (1) shows the SMC model without uncertainty, where the idealised sgn

function is given in (2). A non-chattering implementation of the SMC is a hybrid
automaton (HA) [16], as shown in (3). This HA has three locations, with invariant
bounding x(t) on each location as specified in (3). In order to avoid chattering, the
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+ x(t)

π/ 2

− x(t)

(a) Steering wheel (b) SMC output without uncertainty

(c) Incorrect SHS output from Simulink (d) Correct SHS output from the proposed tech-

nique

Fig. 1 Sliding mode control for maintaining steering wheel position of an autonomous car under uncer-
tainty. a shows the steering wheel model. b shows the correct steering wheel position output, from
simulink, without uncertainty. c shows incorrect steering wheel position output, from simulink, under
uncertainty. d shows the correct steering wheel position output, from the proposed technique, under
uncertainty

continuous variable x(t) stops evolving once π/2 ≤ x(t) ≤ π/2 + ε, where ε ∈ R
>0

is an arbitrarily small value close to the sliding surface — point π/2.
Figure 1b shows the output from Simulink® when the HA in (3) is implemented

as Stateflow with x(0) = 0.5 radians and ε = 1e − 7. This simulation used the
well-known ODE45 solver, from Simulink®, with adaptive step size level crossing
detection. The output is as expected. The steering wheel position increases at a rate
of 1, until it reaches close to π/2 radians and then remains there forever. We cannot
see any chattering, since the Stateflow has entered the third location in (3).

Next, we add uncertainty to the SMC as shown in (4). Equation (4) states that x(t)

evolves stochastically, where W(t) is the standard Wiener process. The equivalent
stochastic hybrid automaton (SHA) [2] is shown in (5). Notice that the so-called drift
(dt) and diffusion (dW(t)) coefficients change in each of the three locations in (5).
Equation (5) is implemented as a Stateflow chart with x(0) = 0.5 and ε = 1e − 7
as before. The Stateflow chart is simulated using the fixed step Euler-Maruyama
technique with a step size of 1e − 7. The output is shown in Fig. 1c. The output is
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incorrect. Simulink has missed the level crossing (when π/2 ≤ x(t) ≤ π/2 + ε)
multiple times. Reducing the step size does not help.

To the best of our knowledge, no simulation tools such as Simulink® OpenModel-
ica [17] support adaptive step size simulation of SHS. The difficulty lies in correctly
implementing level crossing detection in the presence of Wiener processes. Level
crossing detection in numerical simulation tools works using variants of binary search
(e.g. bracketing in Simulink) as follows: 1© from any given point in time T ∈ R

≥0,
take an integration step δ ∈ R

>0. 2© Check if the level crossing guard shows a sign
change. For the running example, check if sgn(x(t) − π/2) changes sign. 3© If sign
change is not detected, then continue to take the next integration step δ′. 4© If sign
change is detected, then search for time τ ∈ [T , T + δ], where the sign change hap-
pened. There are two major problems with this level crossing detection approach:
1© using binary search between T and T + δ requires generating arbitrary Wiener
increments, which depend upon the step size taken. Levy construction of Wiener
increments for an arbitrary step size exists [13, 18]. However, this is a very inefficient
construction. 2© Furthermore, it is difficult to choose a value of ε, to enforce a non-
chattering implementation, in the presence of Wiener processes. This is because it is
impossible to distinguish between an integration step overshooting the level crossing
bounded by arbitrary ε and a random Wiener increment. Hence, we need an adaptive
step size simulation algorithm for SHS, which converges to the level crossing without
overshooting it.

We propose just such an adaptive step size simulation algorithm. The correct out-
put trace for the example in (4), generated from our simulation technique, is shown
in Fig. 1d. As we can see, the level crossing is correctly detected at x(0.2) = π/2.

1.2 Contribution

Our main contribution in this work is an adaptive step size integration/simulation
technique for stochastic hybrid systems. In particular:

1. Our integration/simulation technique guarantees, within floating point error
bounds, convergence to the guard inducing the level crossing.

2. Does not require specification of an arbitrary ε to avoid chattering.
3. Our integration technique is efficient since it does not require construction of

arbitrary Wiener increments.

The rest of the paper is arranged as follows: Section 2 gives the background infor-
mation needed to read the rest of the paper. Section 3 describes the formal syntax
and semantics of our construction of the SHS. Section 4 describes the main simula-
tion algorithm. The algorithmic properties are analysed in Section 5. Section 6 then
presents the experimental results. The presented work is placed in context with cur-
rent state-of-the-art in Section 7. Finally, we conclude and provide the future work
directions in Section 8.

2 Preliminaries

In this section, we give the preliminaries required to understand the rest of the paper.
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2.1 Wiener process

A Wiener process W(t) is a random variable that depends continuously on t ∈ [0, T ],
where T ∈ R

≥0 such that:

1. W(0) = 0, with probability 1.
2. W(t) − W(s) ∼ √

t − s × N (0, 1), where N (0, 1) is a sample from a normal
distribution with mean zero and variance one and t > s.

3. For 0 ≤ s < t < u < v ≤ T , increments W(t) − W(s) and W(v) − W(u) are
independent.

Dividing the interval [0, T ], into discrete steps of size δ, such that δ = T/N , for
some N ∈ N

≥1, we can define a discrete Wiener process as in Definition 1.

Definition 1 For some s, such that 0 < s ≤ T , and s = δ×j , where j ∈ {1, . . . ., N},
a discrete Wiener process W [s] is given in (6).

W [1] = W [0] + √
δ × N (0, 1), from (2) above

∴ W [s] = W [0] +
j∑

i=1

(
√

δ × Ni (0, 1)), from (3) above

∴ W [s] = √
δ ×

j∑

i=1

(Ni (0, 1)), from (1) above (6)

Given 0 < s < T and s < s+Δ ≤ T , where s = M×δ and s+Δ = (M+R)×δ,
M, R ∈ N

≥1. We can define W [s + Δ] − W [s] as shown in (7).

from (6) we have

W [s + Δ] − W [s] = (
√

δ

M+R∑

i=1

Ni (0, 1)) − (
√

δ

M∑

i=1

Ni (0, 1))

∴ W [s + Δ] − W [s] = √
δ × (

M+R∑

i=M

Ni (0, 1)),

∴ W [s + Δ] − W [s] = √
δ × (

R∑

i=1

Ni (0, 1)) (7)

2.2 Fixed step Euler-Maruyama solution to SDE

A scalar, autonomous SDE is shown in (8) and its solution in (9), where f (x(t))—
called the drift coefficient, is the slope of the continuous variable x(t) changing with
time t . Slope g(x(t))—called the diffusion coefficient, on the other hand shows the
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change in the continuous variable with the change in the one-dimensional Wiener
process W(t). If g(x(t)) = 0, then (8) is an ODE.

dx(t) = f (x(t)) dt + g(x(t)) dW(t) (8)

∴ x(t) = x(0) +
∫ t

0
f (x(s)) ds +

∫ t

0
g(x(s)) dW(s),∀t ∈ [0, T ] (9)

The numerical Euler-Maruyama solution [11] to (9), at time T , with x(0) as the
initial value, is given in (10). In (10), Δ is the fixed step size such that T/Y = Δ,
Y ∈ N

≥1. If g(x[j − 1]) is 0 then (10) devolves to standard forward Euler solution
of an ODE.

x[T ] = x(0) +
Y∑

j=1

(f (x[j − 1])Δ + g(x[j − 1])(W [s + Δ] − W [s]))

from (7) we have for Δ = δ × R

∴ x[T ] = x(0) +
Y∑

j=1

(f (x[j − 1])Δ + g(x[j − 1])(√δ

R∑

i=1

Ni (0, 1))) (10)

3 Formal syntax and semantics

Stochastic hybrid systems (SHSs) can capture stochastic behaviour in a plethora of
different ways [2]. The most common option is using piecewise stochastic differen-
tial equations (SDEs). However, Poisson processes are another technique to capture
stochasticity. In this section, we formally describe the syntax, well-formed criteria,
and semantics of the subset of SHS that we simulate.

3.1 Syntax

This paper describes the adaptive step size simulation algorithm for SHS expressed as
SDEs with discontinuous drift and diffusion coefficients as defined in Definition 2.

Definition 2 A stochastic hybrid system (SHS) is defined in (11).

(11)

In (11), x(t) ∈ R
n is a vector of continuous variables, Aq ∈ R

n×n is a matrix,
and Bq, B ′

q ∈ R
n are vectors. θq ⊂ R

n indicates the invariants for each location
q ∈ {1, . . . , L}, and is the unit vector. If B ′

q is a zero vector, then (11) becomes a
hybrid automaton. Furthermore, SDEs in each location are linear and time-invariant,
and consequently locally Lipschitz continuous.

Remark 1 SHS defined as (11) is well formed if:
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1.
⋃L

q=1 θq = R
n and

⋂L
q=1 θq = ∅. Informally, the location invariants cover all

scenarios and are disjoint for each continuous variable x(t) in vector x(t).
2. Given a location invariant of the form l  θq  u for some location q, and for

some variable x(t) in vector x(t). With ∈ {<,≤}, and l, u ∈ R \ {−∞, +∞}.
Then, the drift coefficients ((Aqx(t) + Bq)) of the SDE in location q evolve the
continuous variable x towards l or u.

(12)

The stochastic sliding mode control (SMC) running example in (4) can be
expressed within our definition of SHS (Definition 2) as shown in (12). There are
three locations q ∈ {1, 2, 3} in (12). The invariants on the three locations are
(−∞, π/2), (π/2, +∞), and [π/2, π/2], respectively. The matrix Aq = [0] in
all three locations. For the three locations, we also have B1 = [1], B ′

1 = [−1],
B2 = [−1], B ′

2 = [1], and B3 = B ′
3 = [0], respectively. Equation (12) satisfies the

well-formed criteria. The union of location invariants covers the entire real number
line and the intersection of the location invariants is empty, thereby satisfying the
first criteria. The second criteria is satisfied, because in all three locations, the SDEs
evolve x(t) to π/2. As long as x(t) ∈ (−∞, π/2), q remains as one, and the system
trajectory moves towards π/2. As soon as x(t) = π/2, q becomes three. Same when
x(t) ∈ (π/2, +∞) and q remains as two during this period. Notice that the behaviour
is the same as in (5). However, we do not specify the arbitrary ε to avoid chattering.

3.2 Semantics

Formally, a well-formed SHS in (11) follows the same stochastic execution as in [7].
The execution semantics of our SHS is given in Definition 3.

Definition 3 A well-formed SHS expressed as (11) has a stochastic execution
(x(t), q(t)) ∈ (Rn,N), iff, there exists a sequence of stop times τ0 = 0 ≤ τ1 ≤
τ2 . . . , τm, . . ., where τm ∈ R

≥0 such that:

– There exists exactly, one q(τ0) ∈ {1, . . . , L}, such that x(τ0) ∈ θq(τ0)

– In each interval t ∈ [τn, τn+1), q(t) = q(τn) remains constant and x(t) is the
solution to the SDE in (13).

dx(t) = (Aq(τn)x(t) + Bq(τn)) dt + B ′
q(τn) dW(t) (13)

– τn+1 = inf{t ≥ τn|x(t) /∈ θq(τn)}. Informally, a level crossing is made from
location q(τn) to q(τn+1) as soon as the location invariant is violated. At the
level crossing stop time τn+1, the SDE stops evolving, i.e. drift and diffusion
coefficients can be considered to be zero at instant τn+1.

– x(τn+1) = x(τ−
n+1), where x(τ−

n+1) denotes the left limit: limt↗τn+1 x(t). Infor-
mally, the value of the continuous variables are carried over into the new
location.
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The output trace generated from (12) with initial value x(0) = 0.5 until x(t) =
π/2 is shown in Fig. 1d.

4 Simulation algorithm

In this section, we describe the proposed SHS simulation algorithm in a top-down
manner. We first describe the overall algorithm for simulating a well-formed SHS
(Definition 2) and then describe the integration step size computation algorithm.
Before explaining any of the algorithms, we set up a few cursory variable definitions
with their constraints.

4.1 Definitions and constraints for each continuous variable in the system

For every x(t) in vector x(t), let x[T ], denote the value of the continuous variable, at
simulation time T ∈ [0, Tsim] where Tsim is the user specified simulation end time.
Moreover, τm ≤ Tsim is some stop time (Definition 3), such that x[τm] /∈ θq(τm−1), and
x[T ] ∈ θq(τm−1), where x[τm] is computed using Euler-Maruyama numerical solution.
Finally, let R ∈ N

≥1 be a user-specified constant, then we have the following:

Definition 4 Level crossing step: Δx
τm

=τm−T and Δx
τm

=δx
τm

×R, where δx
τm

∈ R
>0.

Definition 5 Error bounded step: Δx
ε = τ ′ − T for some T < τ ′ < τm and Δx

ε =
δx
ε × R, where δx

ε ∈ R
>0.

Definition 6 Random sample vector: dWt ∈ R
R is a vector of R samples from

N (0, 1).

Definition 7 Change satisfying level crossing: given l  θq(τm−1)  u, l, u ∈ R \
{−∞, +∞} and ∈ {<,≤}. We have γl = |l − x[T ]|, γu = |u − x[T ]| and γ ∈
{γl, γu}.

4.2 Adaptive step size simulation of a stochastic hybrid system

Figure 2 gives the key idea of our adaptive step size simulation technique. In
Fig. 2, we have a two continuous variable system with their initial values: x(0) =
[x1(0), x2(0)]. The x-axis shows progression of time and the y-axis shows the value
of the continuous variables. Values τ1, τ2, and τ3 in Fig. 2 show the stop times as
defined in Definition 3.

The algorithm, in the very first step, Sim step-0, computes integration steps Δx1
τ1

and Δx2
τ1

, such that numerical solutions x1[T +Δx1
τ1

] and x2[T +Δx2
τ1

] in a single step
violate their individual location invariants. During Sim step-0, T = 0 is the current
simulation time. In Fig. 2, variable x2(t) violates the location invariant before x1(t).
Next, the algorithm, in Sim step-0, also computes steps Δx1

ε and Δx2
ε such that the

outputs x1[T + Δx1
ε ] and x2[T + Δx2

ε ] are within some user-specified error bound
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Fig. 2 Key idea of the simulation algorithm

ε > R
>0 from the exact solutions. Finally, the algorithm commits the smallest from

amongst these computed step sizes as the integration step. Integration is carried out
using the Euler-Maruyama numerical solution. In the case of Fig. 2, the minimum
is Δx2

τ1
in Sim step-0. Hence, in Sim step-1, all computation starts from τ1. Again

the algorithm computes the four possible time steps in Sim step-1. In this simulation
step, the smallest step size is Δx1

ε and hence, in Sim step-2 all computation starts
from some time between τ1 and τ2. This process continues until the end of user-
specified simulation time.

Algorithm 1 shows the pseudo-code implementing the key idea. The algorithm
takes as input the well-formed SHS from Definition 2, e.g. the SHS in (12) and gives
the output trace—the values of continuous variables back. First, the timer T is ini-
tialised to zero (line 1) and the initial values of the continuous variables are stored
(line 2). For the running example, in (12), with x(0) = 0.5 this entails storing the
initial value 0.5. Next, lines 3–24 run the simulation until user-specified end time
Tsim. On line 5, the current location is obtained. For the running example, in (12), for
the very first time, q is one, because x(0) = 0.5 ∈ (−∞, π/2). Next, the algorithm
gets the potential step sizes to be committed, for each variable in x(t) (lines 8–20).
The running example, in (12), only has a single variable and hence, we compute
two possible time steps Δx

ε and Δx
τ1

, such that x[T + Δx
ε ] is bounded by the user

specified error bound ε and x[T + Δx
τ1

] is equal to π/2, thereby violating its loca-
tion invariant, respectively. Finally, lines 22 and 23 commit the integration step via
Euler-Maruyama numerical solution, using the minimum from amongst these time
steps in Δs (line 21) and increment the timer, respectively.
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The step function call on line 14 gives back the minimum from amongst Δx
τ and

Δx
ε for all x(t) in vector x(t). We describe this function in Algorithm 2.
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4.3 Computing the integration time steps

Algorithm 2 takes the current value of all the continuous variables in the system:
x[T ], the current continuous variable, x(t), whose integration step needs to be com-
puted, the current location q, the system matrices in the current location q: A, B, B ′,
the change satisfying the level crossing γ (Definition 7), and the dWt random sample
vector as inputs and returns the minimum from amongst the time steps Δx

τm
, Δx

ε .
The key idea is shown in Fig. 3. Algorithm 2 first computes the time step Δx

τm
,

such that the numerical solution violates the location invariant, and consequently the
level crossing is satisfied (line 7). Consider the running example in (12), with T = 0
and x[T ] = 0.5. Then, the call to Algorithm 3 on line 7 will return a time step Δx

τm
,

such that the location invariant θq(τm) /∈ (−∞, π/2). In fact, x[T + Δx
τm

] = π/2
meeting the level crossing.

Next, the algorithm gets the value for all continuous variables (x[T + Δx
τm

])
for the time step Δx

τm
by applying Euler-Maruyama numerical integration (lines 8–

11). Algorithm 2, then takes two half steps: first from T to Δx
τm

/2 computing
x′[T +Δx

τm
/2] and then from T +Δx

τm
/2 to T +Δx

τm
computing the vector x′[T +Δx

τm
]

(lines 12—19). Finally, the error function (lines 20–24 and (14)) checks if the dif-
ference between the two vectors, x[T + Δx

τm
] and x′[T + Δx

τm
], is bounded by some

user-specified ε ∈ R
>0. If the difference is bounded, then the step Δx

τm
is accepted

and returned (line 26). Else, γ is halved (line 21) and the process is iterated. The
next iteration will give a new time step Δx

ε < Δx
τm

, from Algorithm 3, which satis-
fies Definition 5. Algorithm 2 keeps on iterating, halving γ , until the error bound is
satisfied.

error(x[T + Δx], x′[T + Δx]) =
∑

∀x∈x
|(x′[T + Δx] − x[T + Δx])/x′[T + Δx]|, Δx ∈ {Δx

τm
, Δx

ε } (14)

Fig. 3 Computing the integration step size for each variable
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In the case of the running example, (12), with T = 0 and x[T ] = 0.5, Algorithm 2
calls Algorithm 3, the very first time with γ = |π/2 − 0.5|, following Definition 7.
The returned step size Δx

τ1
will be accepted if the value returned by (14) is bounded

by some user-specified ε. Else, Algorithm 3 will be called recursively, reducing γ by
half until the error is bounded and obtaining the step size Δx

ε .
From Definitions 4 and 5, Δx

τm
(respectively Δx

ε ) consists of constant R steps of
size δx

τm
(respectively δx

ε ). Solution x′[T + Δx
τm

] (respectively x′[T + Δx
ε ]), obtained

by taking two half steps, is considered the reference solution, which bounds the inte-
gration time step Δx

τm
(respectively Δx

ε ). For a large R, the reference solution can be
computed, in the worst case, by taking R steps of size δx

τm
(respectively δx

ε ). How-
ever, this can substantially increase the algorithm runtime. Experimental results show
that taking two half steps to compute the reference solution is enough to bound the
integration step, so that the final output is close to the reference solution taking R

individual steps of size δx
τm

(respectively δx
ε ).

Algorithm 3 forms the core of our level crossing detection algorithm. Let Δx ∈
{Δx

τm
, Δx

ε } be a time step returned back from Algorithm 3, depending upon the γ

value being input from Algorithm 2. Algorithm 3 works for a single continuous vari-
able and computes a single integration step size. Hence, (10) can be rewritten as
(15). In (15), μ and σ are the constant drift and diffusion coefficients, respectively,
at simulation time T . Moreover, R and δx ∈ {δx

τm
, δx

ε } are as defined in Section 4.1.

x[T + Δx] = x[T ] + f (x[T ])Δx + g(x[T ])(√δx

R∑

i=1

Ni (0, 1))

∴ x[T + Δx] = x[T ] + μ × Δx + σ × (
√

δx

R∑

i=1

Ni (0, 1))
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∴ x[T + Δx] = x[T ] + μ × Δx + √
δx × (σ

R∑

i=1

Ni (0, 1))

∴ x[T + Δx] = x[T ] + μ × Δx + √
δx × Γ

∴ x[T + Δx] − x[T ] = μ × Δx + √
Δx/R × Γ (15)

However, since |x[T + Δx] − x[T ]| is equal to γ , we have (16) and (17).

μ × Δx + √
Δx/R × Γ = ±γ

∴ μ × Δx + γ = −√
Δx/R × Γ (16)

μ × Δx − γ = −√
Δx/R × Γ (17)

Expanding (16) and (17), we get quadratics in (18) and (19) whose roots give us
values for Δx . The minimum of these values is the final value Δx that is returned.
The two (18) and (19) handle the separate case of the continuous variable with pos-
itive and negative drift coefficients. Algorithm 3 calculates the roots of these two
quadratics, within some floating point error bound, on lines 3–8, given the required
inputs. It returns the minimum amongst these roots on line 9.

Rμ2(Δx)2 + (2μγR − Γ 2)Δx + Rγ 2 = 0 (18)

Rμ2(Δx)2 − (2μγR + Γ 2)Δx + Rγ 2 = 0 (19)

5 Analysis of the algorithm

This section analyses the following properties: 1© existence of a real positive integra-
tion step guaranteeing that the algorithm always makes progress—called simulation
progress—and 2© the simulation algorithm should converge to the level crossing
without overshooting it. The strong convergence rate, of the proposed algorithm,
is the same as standard Euler-Maruyama fixed step technique—O(Δ1/2) [14, 19],
where Δ is the step size, because we use Euler-Maruyama numerical solution to solve
the SDEs at each integration step.

5.1 Simulation progress—existence of a real positive integration step

Algorithm 3 computes the roots of two quadratic equations. These roots are the pos-
sible simulation/integration steps. A quadratic equation, with real coefficients, might
have two complex roots, from the fundamental theorem of algebra, in which case
simulation progress will halt. Hence, we need to guarantee that we get real positive
roots when solving the quadratic equations. This guarantee is given by Theorem 1.
Lemma 1 is the supporting lemma for Theorem 1. It describes the conditions for a
real positive root for the quadratics ((18) and (19)) used in Algorithm 3.
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Lemma 1 There exists a γ ∈ R
>0 such that Rμ2(Δx)2 +(2μγR−Γ 2)Δx +Rγ 2 =

0 or Rμ2(Δx)2 − (2μγR + Γ 2)Δx + Rγ 2 = 0 has at least one real positive root.

Proof This lemma can be proven by first showing that there always exists a γ > R
>0

such that the discriminant is always non-negative. Considering the discriminants of
the two quadratics, we have (20) and (21).

γ ≤ Γ 2

4μR
(20)

γ ≥ −Γ 2

4μR
(21)

The two equations are real positive for μ > 0 and μ < 0, accounting for the
positive and negative drifts, respectively. Next, given the non-negative discriminant,
we can show that there is at least one real positive root for the quadratics. This can
be done by considering the general formula for solutions of quadratic equations, and
consider the two cases of the discriminant being equal to zero and greater than zero,
respectively.

Theorem 1 Algorithms 1, 2, and 3 together always get a real positive root, i.e. Δx ∈
R

>0 forRμ2(Δx)2+(2μγR−Γ 2)Δx+Rγ 2 = 0 orRμ2(Δx)2−(2μγR+Γ 2)Δx+
Rγ 2 = 0.

Proof γ ∈ {γl, γu} where γl, γu ∈ R
≥0 as defined in Definition 7. Algorithm 2 keeps

on halving γ until some error bound is satisfied. So, we need to show that there will
eventually be a γ , which satisfies the conditions in (20) or (21) and the real positive
root will follow from Lemma 1. Let γ ′ ∈ R

>0 be the value satisfying Lemma 1. We
consider different cases for γ and μ.

1. γ = 0 (equivalently γl = 0 or γu = 0), this means we are already at the level
crossing and μ = 0.

2. γ = γ ′ (equivalently γl = γ ′ or γu = γ ′ ), μ > 0 or μ < 0, either of (20)
or (21) are satisfied and we get a real positive root.

3. γ < γ ′ (equivalently γl < γ ′ or γu < γ ′) and μ > 0, in this case (20) will be
satisfied so we will get a real positive root.

4. γ > γ ′ (equivalently γl > γ ′ or γu > γ ′) and μ < 0, in this case (21) will be
satisfied, so we will get a real positive root.

5. γ < γ ′ and μ < 0. Here we have three cases:

(a) γl < γ ′, but γu > γ ′, μ < 0. In this case, (21) will be satisfied by evolving
the continuous variable towards the right bound of the location invariant.

(b) γu < γ ′, but γl > γ ′, μ < 0. In this case, (21) will be satisfied by evolving
the continuous variable towards the left bound of the location invariant.
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(c) γu < γ ′, and γl < γ ′, μ < 0. In this case since μ < 0, it implies (21), (19),
and (17) need to be satisfied. Thus, we are considering the case of |γ | = γ .
From Definition 7, then lower bound of current location invariant l > x[T ],
which cannot happen. In the case of the upper bound of the current location
invariant, u > x[T ]. However, since the level crossing u is greater than
current value x[T ] and the continuous variable x is evolving away from the
level crossing, because μ < 0. This is not a well-formed SHS according to
Remark 1.

6. Finally, case γ > γ ′ and μ > 0 is the dual of the one above.

5.2 Convergence to level crossing

In Theorem 2, we show that the proposed numerical simulation technique forces
the numerical solutions to converge to the level crossing, within floating point error
bound, without overshooting it.

Lemma 2 LetΔx be the real positive root ofRμ2(Δx)2+(2μγR−Γ 2)Δx +Rγ 2 =
0 or Rμ2(Δx)2 − (2μγR + Γ 2)Δx + Rγ 2 = 0 for some value γ . Then, ∀γ ′ < γ ,
root Δ′ < Δx .

Proof Considering Rμ2(Δx)2 + (2μγR − Γ 2)Δx + Rγ 2 = 0. Let a = Rμ2, b =
(2μγR − Γ 2), and c = Rγ 2. Then from Lemma 1, we have Δx = −b±

√
b2−4ac

2a
with possibly the discriminant of zero. The value of Δx only varies with γ , since μ,
R, and Γ are constants. Moreover, a is independent of γ . Hence, reducing γ reduces
Δx . Same for the other quadratic equation.

Theorem 2 For a given SHS S, defined in (11), there exists a stop time τm ∈ R
>0,

such that ∀T ∈ [τm−1, τm), x[T ] ∈ θq(τm−1). Then,
∫ T +Δ

T
(Aq(τm−1) • x(τ ) +

Bq(τm−1))dτ

+ ∫ T +Δ

T
B ′

q(τm−1)
dW(τ) /∈ θq(τm−1), i.e. our simulation technique can take an

integration step Δ, such that the level crossing is satisfied and T + Δ = τm.

Proof From Remark 1, drift coefficients evolve the continuous variables towards the
level crossing. Hence, there exists a step Δ such that level crossing is satisfied. Δ =
min{{Δx1

τm, . . . Δ
xn
τm} ∪ {Δx1

ε , . . . , Δ
xn
ε }}, where for any xn(t) ∈ x(t), Δ

xn
τm and Δ

xn
ε are

the roots of (18) or (19). Base step: if Δ = Δ
xn
τm , then by (16) or (17), and Definition 7,

level crossing is satisfied and T + Δ
xn
τm = τm. Recursive step: Δ = Δ

xn
ε , then by

Lemma 2 and (Algorithm 2, line 21), we have Δ
xn
ε < Δ

xn
τm and the level crossing is not

satisfied at time T +Δ
xn
ε ∈ [τm−1, τm). By setting T = T +Δ

xn
ε , we need to show that

there exists a step Δ,
∫ T +Δ

T
(Aq(τm−1) •x(τ )+Bq(τm−1))dτ +∫ T +Δ

T
B ′

q(τm−1)
dW(τ) /∈

θq(τm−1). However, this is the statement of the theorem itself.
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6 Experimental results

In this section, we simulate a number of different examples to show the efficacy
of the proposed simulation algorithm. Section 6.1 describes the benchmarks used.
Section 6.2 describes the experimental setup and the comparison metrics. Finally,
Section 6.3 presents the results along with the output traces.

6.1 Benchmark description

We select four different benchmarks from embedded control.

1. Steering wheel (SW): This is the running example as defined in (12). It has three
locations and a single continuous variable x(t). The objective is to maintain the
steering wheel position at the stable point π/2.

2. Twisting controller (TC): A TC is a higher order sliding mode control (SMC)
technique [20], which is a very popular control technique used in robotics [21],
drug delivery systems [22], etc. The stochastic version of the TC is given in (22)
and (23), where b > s > 0 are constants.

dy(t) = (
−(b + s)

2
sgn(x(t)) − b − s

2
sgn(y(t)))dt + dW(t) (22)

dx(t) = y(t)dt + dW(t) (23)

Rewriting (22) and (23) into the form defined in (11) gives 9 locations, with
two continuous variables x(t) and y(t). Note that derivative of x(t) is equal to
y(t) ((23)), while the derivative of y(t) changes signs ((22)). Hence, overall the
second derivative of x(t) changes signs. Thus, the name higher order sliding
mode control. The objective is to twist to the stable point (0, 0).

3. Steering wheel with continuous diffusion (SWD): This is a modified version of
the running example, where the diffusion coefficient is never zero. It is defined
in (24).

(24)

There are three locations. In the third location, the diffusion coefficient is non-
zero, in contrast to SW. The objective is to maintain the steering wheel position
at π/2 (Fig. 1a), while there is continuous disturbance.

4. Coupled dynamical system (CDS): This is a sliding mode control example, with
continuous variables evolving with coupled SDEs. The benchmark is shown in
(25). There are 9 locations, and in (25), x(t) = [x1(t), x2(t)]T . The aim of this
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benchmark is to drive the two variables onto the stable point (5, 0), irrespective
of the starting values and under disturbance.

(25)

6.2 Experimental setup

We show two different measures of accuracy of strong convergence, following [18,
23] given in (26) and (27), respectively, comparing the numerical solution with a
reference solution.

e = (E|(x(Tsim) − x[Tsim])|)

e1 =
√
√
√
√1/M ×

M∑

m=1

(
∑

∀x∈x
(x(Tsim) − x[Tsim])2) (26)

e2 = 100/M × (

M∑

m=1

(
∑

∀x∈x
|(x(Tsim) − x[Tsim])/x(Tsim)|)) (27)

Equation (26) computes the expected value (E) of the error between the numerical
solution (x[Tsim]) and the reference solution (x(Tsim)) as the root mean square error
(RMSE). Equation (27) on the other hand computes the error as the mean absolute
percentage error (MAPE). Both these error metrics are computed over M Monte
Carlo runs.

In the general case, there is no analytical solution for a SHS. Hence, the reference
solution x(Tsim) is also computed numerically. In our case, the simulation time Tsim

is divided into Y steps, such that Tsim = ∑Y
s=1 Δs = ∑Y

s=1 δs × R, where simu-
lation/integration step Δs—either the level crossing step Δx

τm
or an error bound step

Δx
ε —is computed dynamically by Algorithm 1 (line 21). Each step Δs is divided into

finer steps of size δs , such that Δs = δs × R as defined in Section 4.1. For each inte-
gration step Δs , x[T + Δs] is computed by Algorithm 1, line 23 as shown in (28),
where T ∈ [0, Tsim). We have an equivalent reference solution, computing x(T +Δs)
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using a finer time step δs , on the same Wiener path, as shown in (29). Hence, the
reference solution x(Tsim) = x(T + Δs), when s = Y .

x[T + Δs] = x[T ] + (Aq(T )
• x[T ] + Bq(T )

) × Δs

+B ′
q(T )

× √
δs × (

R∑

i=1

Ni (0, 1)) (28)

x(T + Δs) = x(T ) +
R∑

i=1

(Aq(T )
• x(T ) + Bq(T )

)δs

+B ′
q(T )

× √
δs × Ni(0, 1) (29)

6.3 Results

All experiments were carried out on Intel® Core i5 2.9GHz CPU with 8GB RAM,
running OSX 10.11.6. For all experiments, we set Tsim = 1 s and M = 1000
Monte Carlo runs. The Python implementation of the solver and the benchmarks are
available from [24].

We vary R ∈ {2, 4, 8} and ε ∈ {1e − 4, 1e − 8}, which controls each dynamic step
size (Algorithm 2, lines 20–24). The RMSE and MAPE errors computed using (26)
and (27), respectively, between the output from the proposed algorithm and the ref-
erence trace are listed in Table 1. For SW and SWD benchmarks, RMSE and MAPE
are almost zero (in the order 10−14) in all cases. For the TC example, the maximum
error is 0.035% between the numerical and the reference solution. However, this error
decreases to the order of 10−6 when ε = 1e − 8. Similar results are seen for the CDS
example. Overall, for all our benchmarks, the numerical solution performs well with
the expected error never exceeding 0.2% for 1000 Monte Carlo runs.

The output trace, for one Monte Carlo run, for the running example (SW) has been
shown previously in Fig. 1d. The output traces, for one of the Monte Carlo run, for
the rest of the benchmarks is shown in Fig. 4. Figure 4a shows the TC benchmark
twisting towards the (0, 0) stable point. Unlike the SW benchmark, the SWD bench-
mark (Fig. 4b) reaches the π/2 position, but is then pushed away from this position,
because the diffusion coefficient is 1 in the third location of (24). Hence, in Fig. 4b,
we see the SMC trying to bring the position of the steering wheel back to π/2 con-
tinuously. Figure 4d and c show two unique solutions for the CDS benchmark. The
objective of the CDS benchmark is to guide x1(t) and x2(t) to the stable point (5, 0).
In Fig. 4c, x1(t) reaches point 5, earlier than x2(t) reaches 0. Hence, the system
starts sliding on the line 5 ± dW(t) × x2(t) until x2(t) becomes 0 and the system
reaches the stable point. Figure 4d is the dual of Fig. 4c, where x1(t) reaches 0 before
x2(t) reaches 5 and we see the expected sliding behaviour adhering to the dynamics
described in (25).
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Table 1 RMSE and MAPE
errors for generated output vs.
reference output with varying R

and ε

(a) RMSE and MAPE for SW

1e-4 1e-8

e1 e2 e1 e2

2 8.8e-14 5.6e-14 2.2e-16 1.4e-14

4 1.7e-15 1.1e-14 4.4e-16 2.8e-14

8 1.1e-15 7.1e-14 2.2e-15 1.4e-13

(b) RMSE and MAPE for TC

1e-4 1e-8

e1 e2 e1 e2

2 1.3e-4 2.2e-3 1.5e-7 4.8e-6

4 3.9e-4 0.01 1.3e-7 4.2e-6

8 2.6e-3 0.035 2e-7 6.6e-6

(c) RMSE and MAPE for SWD

1e-4 1e-8

e1 e2 e1 e2

2 6e-16 5e-14 2.4e-16 1.5e-14

4 1.3e-15 8.7e-14 1.1e-15 3e-14

8 1.1e-15 6.9e-14 4.4e-16 1.6e-14

(d) RMSE and MAPE for CDS

1e-4 1e-8

e1 e2 e1 e2

2 5e-2 3.5e-2 5.9e-5 1.1e-5

4 1.4e-2 0.11 3.4e-7 4.1e-5

8 4.8e-3 0.1 4e-7 7e-5

7 Discussion and related work

The numerical analysis community has developed adaptive step size numerical inte-
gration techniques for SDEs without discontinuities [13, 18, 25, 26]. Many of these
techniques require a higher order numerical integration technique, e.g. Heun’s or
Milstein’s method embedded with Itô’ Taylor expansion [12] to compute solutions to
SDEs at each integration step. Recent work on strong convergence analysis of SDEs
with discontinuities [19, 23, 27] shows that higher order numerical integration tech-
niques do not work when considering SDEs with discontinuities. Furthermore, strong
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(a) Trace for TC, y(0) = 2, x(0) = 3, b = 3 , s = 1. (b) Trace for SWD, x(0) = 0 .5.

(c) First trace for CDS, x1(0) = − 0.5, x2(0) =

5.4

(d) Second trace for CDS, x1(0) = − 0.5,

x2(0) = 5.4

Fig. 4 Example traces for various benchmarks. Tsim = 1 s, R = 4, and ε = 1e − 4

convergence guarantees can only be given, for SDEs with discontinuities, if they are
piecewise Lipschitz continuous. The subset of the SHS that we handle (see (11)), in
this work, are linear and time-invariant SDEs in each location of the SHS. The lin-
ear and time-invariant construction in (11) guarantees local Lipschitz continuity and
hence, a strong unique solution for each location.

The SDEs in (11) have constant diffusion coefficients. Given a SDE with single-
dimensional state-dependent diffusion coefficients, the Lamperti transformation [28,
29] can be used to transform state-dependent diffusion coefficients to constant or unit
diffusion coefficients. The resultant SDE can be integrated using the proposed tech-
nique. Furthermore, the original Lamperti transform in [28] is extended to work with
a subset of SDEs with multi-dimensional1 diffusion coefficients in [29]. In particular,
applying the Lamperti transform from Theorems 4 and 5 in [29] makes each contin-
uous variable dependent only upon an individual Wiener process with unit diffusion
coefficient. The resultant SDEs can then be integrated using the proposed technique.
The only change required is updating Definition 6. Instead of a random sample vec-
tor, we need a random sample matrix, with each row being the R dimensional random
sample vector for each Wiener process.

1More than one Wiener process.
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The proposed numerical integration technique computes each integration step such
that the difference between the current value of the continuous variables and the
values satisfying the discontinuity reduces by some quantum at each step. This is sim-
ilar to quantised state system (QSS) integration [30] techniques used for simulating
HA [31] and standard ODEs. In contrast to the proposed numerical integration tech-
nique that handles SDEs with discontinuous drift and diffusion, the recent numerical
integration technique in [27] handles SDEs with discontinuous drifts, but continu-
ous diffusion. Moreover, the work in [27] does not describe an explicit algorithm to
compute the integration step. It is rather geared towards computing the asymptotic
complexity of convergence for given integration step size(s).

The CPS community has developed different variants of SHS [2]. Of particu-
lar interest have been SHSs which allow spontaneous jumps, from a location, via
Poisson process and SDE with single-dimensional Wiener process [2, 32]. The CPS
community has also developed formal semantics based on continuous and discrete
time Markov processes for model checking SHS [10, 33, 34]. The proposed work
on numerical simulation of SHS can be considered orthogonal to verification and
model checking techniques in the CPS community. Many of the model checking tech-
niques internally use Euler-Maruyama numerical solution for solving SDEs in each
location and hence, we expect that the proposed work would benefit the verification
community in the future.

8 Conclusion and future work

This work presents an adaptive step size simulation/integration technique for stochas-
tic differential equations (SDEs) with discontinuous drift and diffusion coefficients.
Convergence to the discontinuity is achieved by making each integration step depen-
dent upon the value of the continuous variables inducing the discontinuity. At any
given integration step, the Euler-Maruyama numerical solution is set less than or
equal to the value of the continuous variable inducing the discontinuity, and then
taking the root of the resultant polynomial as the integration step size. Analysis and
extensive benchmarking shows the efficacy of the proposed integration technique in
correctly simulating complex stochastic hybrid systems (SHSs).

The current approach is restricted to a subset of SHSs, where SDEs, in each
location of the SHS, are linear and time-invariant. Furthermore, discontinuities are
also explicitly defined. Many open questions about handling transcendental guards,
non-linear SDEs, and SHSs with Poisson processes remain to be explored in the
future.
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