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Abstract
We propose and study new projection-type algorithms for solving pseudomonotone
variational inequality problems in real Hilbert spaces without assuming Lipschitz
continuity of the cost operators. We prove weak and strong convergence theorems
for the sequences generated by these new methods. The numerical behavior of the
proposed algorithms when applied to several test problems is compared with that of
several previously known algorithms.
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1 Introduction

We consider the variational inequality problem (VI) [10, 11] of finding a point x∗ ∈
C such that

〈Fx∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1)
where C is a nonempty, closed, and convex subset of a real Hilbert space H , F :
H → H is a single-valued mapping, and 〈·, ·〉 and ‖ · ‖ are the inner product and
the induced norm on H , respectively. We denote by Sol(C, F ) the solution set of
problem (1). Variational inequality problems are fundamental in a broad range of
mathematical and applied sciences; the theoretical and algorithmic foundations, as
well as the applications of variational inequalities, have been extensively studied in
the literature and continue to attract intensive research. For a detailed exposition of
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the field in the finite-dimensional setting, see, for instance, [9] and the extensive list
of references therein.

Many authors have proposed and analyzed several iterative methods for solv-
ing the variational inequality (1). The simplest one is the following projection
method, which can be considered an extension of the projected gradient method for
optimization problems:

xn+1 = PC(xn − λFxn), (2)
for each n ≥ 1, where PC denotes the metric projection from H onto C. Convergence
results for this method require some monotonicity properties of F . This method con-
verges under quite strong hypotheses. If F is Lipschitz continuous with Lipschitz
constant L and α-strongly monotone, then the sequence generated by (2) converges

to an element of Sol(C, F ) for λ ∈
(

0, 2α

L2

)
.

In order to find an element of Sol(C, F ) under weaker hypotheses, Korpelevich
[21] (and, independently, Antipin [1]) proposed to replace method (2) by the extra-
gradient method in the finite-dimensional Euclidean space R

m for a monotone and
L-Lipschitz continuous operator F : Rm → R

m. Her algorithm is of the form

x0 ∈ C, yn = PC(xn − λFxn), xn+1 = PC(xn − λFyn), (3)

where λ ∈
(

0, 1
L

)
. The sequence {xn} generated by (3) converges to an element of

Sol(C, F ) provided that Sol(C, F ) is nonempty.
In recent years, the extragradient method has been extended to infinite-

dimensional spaces in various ways; see, for example, [3–6, 22, 25, 26, 30–32] and
the references cited therein.

We may observe that, when F is not Lipschitz continuous or the constant L is
very difficult to compute, Korpelevich’s method is not so practical because we cannot
determine the step size λ. To overcome this difficulty, Iusem [16] proposed in the
Euclidean space R

m the following iterative algorithm for solving Sol(C, F ):

yn = PC(xn − γnFxn), xn+1 = PC(xn − λnFyn), (4)

where γn > 0 is computed through an Armijo-type search and λn = 〈Fyn,xn−yn〉
‖Fyn‖2 .

This modification has allowed the author to establish convergence without assuming
Lipschitz continuity of the operator F .

In order to determine the step size γn in (4), we need to use a line search procedure
which contains one projection. So at iteration n, if this procedure requires mn steps
to arrive at the appropriate γn, then we need to evaluate mn projections.

To overcome this difficulty, Iusem and Svaiter [19] proposed a modified extragra-
dient method for solving monotone variational inequalities which only requires two
projections onto C at each iteration. A few years later, this method was improved
by Solodov and Svaiter [30]. They introduced an algorithm for solving (1) in finite-
dimensional spaces. As a matter of fact, their method applies to a more general case,
where F is merely continuous and satisfies the following condition:

〈Fx, x − x∗〉 ≥ 0 ∀x ∈ C and x∗ ∈ Sol(C, F ). (5)

Property (5) holds if F is monotone or, more generally, pseudomonotone on C in
the sense of Karamardian [20]. More precisely, Solodov and Svaiter proposed the
following algorithm:
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Vuong and Shehu [36] have recently modified the result of Solodov and Svaiter in
the spirit of Halpern [14], and obtained strong convergence in infinite-dimensional
real Hilbert spaces. Their algorithm is of the following form:
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Vuong and Shehu proved that if F : H → H is pseudomonotone, uniformly
continuous, and weakly sequentially continuous on bounded subsets of C, and the
sequence {αn} satisfies the conditions limn→∞ αn = 0 and

∑∞
n=1 αn = ∞, then the

sequence {xn} generated by Algorithm 2 converges strongly to p ∈ Sol(C, F ), where
p = PCx1.

Motivated and inspired by [30, 36], and by the ongoing research in these direc-
tions, in the present paper, we introduce new algorithms for solving variational
inequalities with uniformly continuous pseudomonotone operators. In particular, we
use a different Armijo-type line search in order to obtain a hyperplane which strictly
separates the current iterate from the solutions of the variational inequality under
consideration.

Our paper is organized as follows. We first recall in Section 2 some basic def-
initions and results. Our algorithms are presented and analyzed in Section 3. In
Section 4, we present several numerical experiments which illustrate the perfor-
mance of the algorithms. They also provide a preliminary computational overview
by comparing it with the performance of several related algorithms.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed, and convex subset of H .
The weak convergence of a sequence {xn}∞n=1 to x as n → ∞ is denoted by xn ⇀ x

while the strong convergence of {xn}∞n=1 to x as n → ∞ is denoted by xn → x. For
each x, y ∈ H , we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Definition 2.1 Let F : H → H be an operator. Then,

1. The operator F is called L-Lipschitz continuous with Lipschitz con-
stant L > 0 if

‖Fx − Fy‖ ≤ L‖x − y‖ ∀x, y ∈ H .

If L = 1, then the operator F is called nonexpansive and if L ∈ (0, 1), then
F is called a strict contraction.

2. F is called monotone if

〈Fx − Fy, x − y〉 ≥ 0 ∀x, y ∈ H .

3. F is called pseudomonotone if

〈Fx, y − x〉 ≥ 0 =⇒ 〈Fy, y − x〉 ≥ 0 ∀x, y ∈ H .
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4. F is called α-strongly monotone if there exists a constant α > 0 such that

〈Fx − Fy, x − y〉 ≥ α‖x − y‖2 ∀x, y ∈ H .

5. The operator F is called sequentially weakly continuous if the
weak convergence of a sequence {xn} to x implies that the sequence {Fxn}
converges weakly to Fx.

It is easy to see that every monotone operator is pseudomonotone, but the converse
is not true.

For each point x ∈ H , there exists a unique nearest point in C, denoted by PCx,

which satisfies ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. The mapping PC is called the metric
projection of H onto C. It is known that PC is nonexpansive.

Lemma 2.1 ([13]) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . If x ∈ H and z ∈ C, then z = PCx ⇐⇒ 〈x − z, z − y〉 ≥ 0 ∀y ∈ C.

Lemma 2.2 ([13]) Let C be a closed and convex subset of a real Hilbert space H

and let x ∈ H . Then,
i) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉 ∀y ∈ H ;
ii) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 ∀y ∈ C.

More properties of the metric projection can be found in Section 3 in [13].
The following lemmas are useful in the convergence analysis of our proposed

methods.

Lemma 2.3 ([17, 18]) Let H1 and H2 be two real Hilbert spaces. Suppose F : H1 →
H2 is uniformly continuous on bounded subsets of H1 and M is a bounded subset of
H1. Then, F(M) is bounded.

Lemma 2.4 ([7], Lemma 2.1) Let C be a nonempty, closed, and convex subset of a
real Hilbert space H , and let F : C → H be pseudomonotone and continuous. Then,
x∗ belongs to Sol(C, F ) if and only if

〈Fx, x − x∗〉 ≥ 0 ∀x ∈ C.

The following lemma can be found in [15].

Lemma 2.5 Let C be a nonempty, closed, and convex subset of a real Hilbert space
H . Let h be a real-valued function on H and define K := {x ∈ C : h(x) ≤ 0}. If K

is nonempty and h is Lipschitz continuous on C with modulus θ > 0, then

dist (x, K) ≥ θ−1 max{h(x), 0} ∀x ∈ C,

where dist (x, K) denotes the distance of x to K .
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Lemma 2.6 ([28]) Let C be a nonempty subset of H and let {xn} be a sequence in
H such that the following two conditions hold:

i) For every x ∈ C, limn→∞ ‖xn − x‖ exists;
ii) Every sequential weak cluster point of {xn} is in C.

Then, {xn} converges weakly to a point in C.

The next technical lemma is very useful and has been used by many authors; see,
for example, Liu [23] and Xu [37]. A variant of this lemma has already been used by
Reich in [29].

Lemma 2.7 Let {an} be sequence of non-negative real numbers such that:

an+1 ≤ (1 − αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a real sequence such that

a)
∑∞

n=0 αn = ∞;
b) lim supn→∞ bn ≤ 0.

Then, limn→∞ an = 0.

3 Main results

In this section, we introduce two new methods for solving (1). In the convergence
analysis of these algorithms, the following three conditions are assumed.

Condition 3.1 The feasible set C is a nonempty, closed, and convex subset of the
real Hilbert space H .

Condition 3.2 The operator F : C → H associated with the VI (1) is pseudomono-
tone and uniformly continuous on C.

Condition 3.3 The mapping F : H → H satisfies the following property:

whenever {xn} ⊂ C, xn ⇀ z, one has ‖F(z)‖ ≤ lim inf
n→∞ ‖Fxn‖.

Condition 3.4 The solution set of the VI (1) is nonempty, that is, Sol(C, F ) �= ∅.

3.1 Weak convergence

We begin by introducing a new projection-type algorithm.
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Lemma 3.1 Assume that Conditions 3.1–3.4 hold. Then, the Armijo-type search rule
(8) is well defined.

Proof Since l ∈ (0, 1) and the operator F is continuous on C, the sequence {〈Fxn −
F(xn− lj rλ(xn)), rλ(xn)〉} converges to zero as j tends to infinity. On the other hand,
as a consequence of Step 1, ‖rλ(xn)‖ > 0 (otherwise, the procedure would have
stopped). Therefore, there exists a non-negative integer jn satisfying (8).

Lemma 3.2 Assume that the sequence {xn} is generated by Algorithm 3. Then, we
have

〈Fxn, rλ(xn)〉 ≥ λ−1‖rλ(xn)‖2.

Proof Since PC is the metric projection, we know that ‖x−PCy‖2 ≤ 〈x−y, x−PCy〉
for all x ∈ C and y ∈ H . Let y = xn − λFxn, x = xn. Then,

‖xn − PC(xn − λFxn)‖2 ≤ λ〈Fxn, xn − PC(xn − λFxn)〉
and so

〈Fxn, rλ(xn)〉 ≥ λ−1‖rλ(xn)‖2.
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Lemma 3.3 Assume that Conditions 3.1–3.4 hold. Let x∗ be a solution of problem (1)
and let the function hn be defined by (9). Then, hn(xn) = τn

2λ
‖rλ(xn)‖2 and hn(x

∗) ≤
0. In particular, if rλ(xn) �= 0, then hn(xn) > 0.

Proof The first claim of Lemma 3.3 is obvious. In order to prove the second claim,
Let x∗ be a solution of problem (1) Then by Lemma 2.4, we have hn(x

∗) =
〈Fyn, yn − x∗〉 ≥ 0. We also have

hn(x
∗) = 〈Fyn, x

∗ − xn〉 + τn

2λ
‖rλ(xn)‖2

= −〈Fyn, xn − yn〉 − 〈Fyn, yn − x∗〉 + τn

2λ
‖rλ(xn)‖2

≤ −τn〈Fyn, rλ(xn)〉 + τn

2λ
‖rλ(xn)‖2. (10)

On the other hand, by (8) we have

〈Fxn − Fyn, rλ(xn)〉 ≤ μ

2
‖rλ(xn)‖2.

Thus,

〈Fyn, rλ(xn)〉 ≥ 〈Fxn, rλ(xn)〉 − μ

2
‖rλ(xn)‖2.

Using Lemma 3.2, we get

〈Fyn, rλ(xn)〉 ≥
(

1

λ
− μ

2

)
‖rλ(xn)‖2. (11)

Combining (10) and (11), we now see that

hn(x
∗) ≤ −τn

2

(
1

λ
− μ

)
‖rλ(xn)‖2.

Thus, hn(x
∗) ≤ 0, as asserted.

We adapt the technique developed in [35] to obtain the following result.

Lemma 3.4 Assume that Conditions 3.1–3.4 hold. Let {xn} be a sequence generated
by Algorithm 3. If there exists a subsequence {xnk

} of {xn} such that {xnk
} converges

weakly to z ∈ C and limk→∞ ‖xnk
− znk

‖ = 0, then z ∈ Sol(C, F ).

Proof Since znk
= PC(xnk

− λFnk
), we have

〈xnk
− λFxnk

− znk
, x − znk

〉 ≤ 0 ∀x ∈ C

or equivalently,

〈xnk
− znk

, x − znk
〉 ≤ 〈λFxnk

, x − znk
〉 ∀x ∈ C.

This implies that〈
xnk

− znk

λ
, x − znk

〉
+ 〈Fxnk

, znk
− xnk

〉 ≤ 〈Fxnk
, x − xnk

〉 ∀x ∈ C. (12)
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Since ‖xnk
− znk

‖ → 0 as k → ∞ and since the sequence {Fxnk
} is bounded, taking

k → ∞ in (12), we get

lim inf
k→∞ 〈Fxnk

, x − xnk
〉 ≥ 0. (13)

Next, to show that z ∈ Sol(C, F ), we first choose a decreasing sequence {εk} of
positive numbers which tends to 0. For each k, we denote by Nk the smallest positive
integer such that

〈Fxnj
, x − xnj

〉 + εk ≥ 0 ∀j ≥ Nk, (14)

where the existence of Nk follows from (13). Since the sequence {εk} is decreasing,
it is easy to see that the sequence {Nk} is increasing. Furthermore, for each k, since
{xNk

} ⊂ C, we have FxNk
�= 0 and setting

vNk
= FxNk

‖FxNk
‖2

,

we have 〈FxNk
, xNk

〉 = 1 for each k. Now, we can deduce from (14) that for each k,

〈FxNk
, x + εkvNk

− xNk
〉 ≥ 0.

Since the operator F is pseudomonotone, it follows that

〈F(x + εkvNk
), x + εkvNk

− xNk
〉 ≥ 0.

This implies that

〈Fx, x − xNk
〉 ≥ 〈Fx − F(x + εkvNk

), x + εkvNk
− xNk

〉 − εk〈Fx, vNk
〉. (15)

Next, we show that limk→∞ εkvNk
= 0. Indeed, we have xnk

⇀ z ∈ C as k → ∞.
Since F satisfies Condition 3.3, we have

0 < ‖Fz‖ ≤ lim inf
k→∞ ‖Fxnk

‖.

Since {xNk
} ⊂ {xnk

} and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkvNk
‖ = lim sup

k→∞

(
εk

‖Fxnk
‖
)

≤ lim supk→∞ εk

lim infk→∞ ‖Fxnk
‖ = 0,

which implies that limk→∞ εkvNk
= 0.

Now, letting k → ∞, we see the right-hand side of (15) tends to zero because
F is uniformly continuous, the sequences {xNk

} and {vNk
} are bounded, and

limk→∞ εkvNk
= 0. Thus, we get

lim inf
k→∞ 〈Fx, x − xNk

〉 ≥ 0.

Hence, for all x ∈ C, we have

〈Fx, x − z〉 = lim
k→∞〈Fx, x − xNk

〉 = lim inf
k→∞ 〈Fx, x − xNk

〉 ≥ 0.

Appealing to Lemma 2.4, we obtain that z ∈ Sol(C, F ) and the proof is complete.

Lemma 3.5 Assume that Conditions 3.1–3.3 hold. Let {xn} be a sequence generated
by Algorithm 3. If limn→∞ τn‖rλ(xn)‖2 = 0, then limn→∞ ‖xn − zn‖ = 0.

535Numerical Algorithms (2021) 87:527–549



Proof First we consider the case where lim infn→∞ τn > 0. In this case, there is a
constant τ > 0 such that τn ≥ τ > 0 for all n ∈ N. We then have

‖xn − zn‖2 = 1

τn

τn‖xn − zn‖2 ≤ 1

τ
.τn‖xn − zn‖2 = 1

τ
τn‖rλ(xn)‖2. (16)

Combining the assumption and (16), we see that

lim
n→∞ ‖xn − zn‖ = 0.

Second, we consider the case where lim infn→ τn = 0. In this case, we take a
subsequence {nk} of {n} such that

lim
k→∞ τnk

= 0

and
lim

k→∞ ‖xnk
− znk

‖ = a > 0. (17)

Let ynk
= 1

l
τnk

znk
+ (1 − 1

l
τnk

)xnk
. Since limn→∞ τn‖rλ(xn)‖2 = 0, we have

lim
k→∞ ‖ynk

− xnk
‖2 = lim

k→∞
1

l2
τnk

.τnk
‖xnk

− znk
‖2 = 0. (18)

From the step size rule (8) and the definition of yk , it follows that

〈Fxnk
− Fynk

, xnk
− znk

〉 >
μ

2
‖xnk

− znk
‖2. (19)

Since F is uniformly continuous on bounded subsets of C, (18) implies that

lim
k→∞ ‖Fxnk

− Fynk
‖ = 0. (20)

Combining now (19) and (20), we obtain

lim
k→∞ ‖xnk

− znk
‖ = 0.

This, however, is a contradiction to (17). It follows that limn→∞ ‖xn − zn‖ = 0 and
this completes the proof of the lemma.

Theorem 3.1 Assume that Conditions 3.1–3.4 hold. Then, any sequence {xn}
generated by Algorithm 3 converges weakly to an element of Sol(C, F ).

Proof Claim 1. We first prove that {xn} is a bounded sequence. Indeed, for p ∈
Sol(C, F ), we have

‖xn+1 − p‖2 = ‖PCnxn − p‖2 ≤ ‖xn − p‖2 − ‖PCnxn − xn‖2

= ‖xn − p‖2 − dist2(xn, Cn). (21)

This implies that
‖xn+1 − p‖ ≤ ‖xn − p‖.

and so limn→∞ ‖xn − p‖ exists. Thus, the sequence {xn} is bounded, and it also
follows that the sequences {yn} and {Fyn} are bounded too.
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Claim 2. We claim that[ τn

2λL
‖rλ(xn)‖2

]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 (22)

for some L > 0. Indeed, since the sequence {Fyn} is bounded, there exists L > 0
such that ‖Fyn‖ ≤ L for all n. Using this fact, we see that for all u, v ∈ Cn,

‖hn(u) − hn(v)‖ = ‖〈Fyn, u − v〉‖ ≤ ‖Fyn‖‖u − v‖ ≤ L‖u − v‖.

This implies that hn(·) is L-Lipschitz continuous on Cn. By Lemma 2.5, we obtain

dist (xn, Cn) ≥ 1

L
hn(xn),

which, when combined with Lemma 3.3, yields the inequality

dist (xn, Cn) ≥ τn

2λL
‖rλ(xn)‖2. (23)

Combining the proof of Claim 1 with (23), we obtain

‖xn+1 − p‖2 ≤ ‖xn − z‖2 −
[ τn

2λL
‖rλ(xn)‖2

]2
,

which implies, in its turn, Claim 2.
Claim 3. We claim that {xn} converges weakly to an element of Sol(C, F ). Indeed,

since {xn} is a bounded sequence, there exists a subsequence {xnk
} of {xn} such that

{xnk
} converges weakly to z ∈ C.

Appealing to Claim 2, we find that

lim
n→∞

τn

2λL
‖rλ(xn)‖2 = 0, that is , lim

n→∞ τn‖rλ(xn)‖2 = 0.

Thanks to Lemma 3.5 we also get

lim
n→∞ ‖xn − zn‖ = 0. (24)

Using Lemma 3.4 and (24), we may infer that z ∈ Sol(C, F ).
Thus, we have proved that

i) For every p ∈ Sol(C, F ), the limit limn→∞ ‖xn − p‖ exists;
ii) Every sequential weak cluster point of the sequence {xn} is in Sol(C, F ).

Lemma 2.6 now implies that the sequence {xn} converges weakly to an
element of Sol(C, F ).

Remark 3.1 1. When the operator F is monotone, it is not necessary to assume
Condition 3.3 (see, [8, 35]).

2. Note that in our work we use Condition 3.3, which is strictly weaker than the
sequential weak continuity of the operator F , an assumption which has frequently
been used in recent articles on pseudomonotone variaional inequality problems [12,
33–36]. Indeed, if F is sequentially weakly continuous, then Condition 3.3 is ful-
filled because the norm is weakly lower semicontinuous. On the other hand, it is not
difficult to see that the operator F : H → H , defined by F(x) := ‖x‖x, x ∈ H ,
satisfies condition 3.3, but is not sequentially weakly continuous.
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3.2 Strong convergence

In this section, we introduce an algorithm for solving variational inequalities which is
based on the viscosity method [27] and on Algorithm 3. We assume that f : C → C

is a contractive mapping with a coefficient ρ ∈ [0, 1) and that the following condition
is satisfied:

Condition 3.5 The real sequence {αn} is contained in (0, 1) and satisfies

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.

Theorem 3.2 Assume that Conditions 3.1–3.4 and 3.5 hold. Then, any sequence
{xn} generated by Algorithm 4 converges strongly to p ∈ Sol(C, F ), where p =
PSol(C,F ) ◦ f (p).

Proof Claim 1. We first prove that the sequence {xn} is bounded. To this end, let
wn = PCnxn. By (21) we have

‖wn − p‖2 ≤ ‖xn − p‖2 − dist2(xn, Cn).
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This implies that

‖wn − p‖ ≤ ‖xn − p‖. (25)

Using (25), we have

‖xn+1 − p‖ = ‖αnf (xn) + (1 − αn)wn − p‖
= ‖αn(f (xn) − p) + (1 − αn)(wn − p)‖
≤ αn‖f (xn) − p‖ + (1 − αn)‖wn − p‖
≤ αn‖f (xn) − f (p)‖ + αn‖f (p) − p‖ + (1 − αn)‖wn − p‖
≤ αnρ‖xn − p‖ + αn‖f (p) − p‖ + (1 − αn)‖xn − p‖
≤ [1 − αn(1 − ρ)]‖xn − p‖ + αn(1 − ρ)

‖f (p) − p‖
1 − ρ

≤ max

{
‖xn − p‖, ‖f (p) − p‖

1 − ρ

}

≤ ... ≤ max

{
‖x1 − p‖, ‖f (p) − p‖

1 − ρ

}
.

Thus, the sequence {xn} is indeed bounded. Consequently, the sequences {yn},
{f (xn)}, and {Fyn} are bounded too.

Claim 2. We claim that

‖wn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉.
To prove this, we first note that

‖xn+1 − p‖2 = ‖αn(f (xn) − p) + (1 − αn)(wn − p)‖2

≤ (1 − αn)‖wn − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉
≤ ‖wn − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉. (26)

On the other hand, we have

‖wn − p‖2 = ‖PCnxn − p‖2 ≤ ‖xn − p‖2 − ‖wn − xn‖2. (27)

Substituting (27) into (26), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ‖wn − xn‖2 + 2αn〈f (xn) − p, xn+1 − p〉.
This implies that

‖wn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉.
Claim 3. We claim that

[ τn

2λL
‖rλ(xn)‖2

]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖f (xn) − p‖2.

Indeed, according to (22), we get

‖wn − p‖2 ≤ ‖xn − p‖2 −
[ τn

2λL
‖rλ(xn)‖2

]2
. (28)
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It follows from the definition of the sequence {xn} and (28) that

‖xn+1 − p‖2 = ‖αn(f (xn) − p) + (1 − αn)(wn − p)‖2

= αn‖f (xn)−p‖2 + (1−αn)‖wn−p‖2− αn(1 − αn)‖f (xn) − wn‖2

≤ αn‖f (xn) − p‖2 + (1 − αn)‖wn − p‖2

≤ αn‖f (xn)−p‖2 + (1 − αn)‖xn−p‖2−(1− αn)
[ τn

2λL
‖rλ(xn)‖2

]2

≤ αn‖f (xn) − p‖2 + ‖xn − p‖2 − (1 − αn)
[ τn

2λL
‖rλ(xn)‖2

]2
.

This implies that

(1 − αn)
[ τn

2λL
‖rλ(xn)‖2

]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖f (xn) − p‖2.

Claim 4. We prove that

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn

2

1 − ρ
〈f (p) − p, xn+1 − p〉.

Indeed, we have

‖xn+1 − p‖2 = ‖αnf (xn) + (1 − αn)zn − p‖2

= ‖αn(f (xn) − f (p)) + (1 − αn)(zn − p) + αn(f (p) − p)‖2

≤ ‖αn(f (xn) − f (p)) + (1 − αn)(zn − p)‖2 + 2αn〈f (p) − p, xn+1 − p〉
≤ αn‖f (xn) − f (p)‖2 + (1 − αn)‖zn − p‖2 + 2αn〈f (p) − p, xn+1 − p〉
≤ αnρ‖xn − p‖2 + (1 − αn)‖xn − p‖2 + 2αn〈f (p) − p, xn+1 − p〉
= (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn

2

1 − ρ
〈f (p) − p, xn+1 − p〉.

Claim 5. Now we intend to show that the sequence {‖xn −p‖2} converges to zero
by considering two possible cases.

Case 1: There exists an N ∈ N such that ‖xn+1 −p‖2 ≤ ‖xn −p‖2 for all n ≥ N .
This implies that limn→∞ ‖xn − p‖2 exists. It now follows from Claim 2 that

lim
n→∞ ‖xn − wn‖ = 0.

Since the sequence {xn} is bounded, there exists a subsequence {xnk
} of {xn} that

weakly converges to some point z ∈ C such that

lim sup
n→∞

〈f (p) − p, xn − p〉 = lim
k→∞〈f (p) − p, xnk

− p〉 = 〈f (p) − p, z − p〉.

Now, according to Claim 3 , we see that

lim
k→∞

[ τnk

2λL
‖rλ(xnk

)‖2
]2 = 0.

It follows that

lim
k→∞ τnk

‖rλ(xnk
)‖2 = lim

k→∞ τnk
‖xnk

− znk
‖2 = 0.
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Thanks to Lemma 3.5, we infer that

lim
k→∞ ‖xnk

− znk
‖ = 0. (29)

Using the fact that xnk
⇀ z, (29), and Lemma 3.4, we now conclude that z ∈

Sol(C, F ).
On the other hand,

‖xn+1 − wn‖ = αn‖f (xn) − wn‖ → 0 as n → ∞.

Thus,
‖xn+1 − xn‖ = ‖xn+1 − wn‖ + ‖xn − wn‖ → 0 as n → ∞.

Since p = PSol(C,F )f (p) and xnk
⇀ z ∈ Sol(C, F ), we get

lim sup
n→∞

〈f (p) − p, xn − p〉 = 〈f (p) − p, z − p〉 ≤ 0.

This implies that

lim sup
n→∞

〈f (p) − p, xn+1 − p〉 ≤ lim sup
n→∞

〈f (p) − p, xn+1 − xn〉
+ lim sup

n→∞
〈f (p) − p, xn − p〉 ≤ 0,

which, when combined with Claim 4 and Lemma 2.7, implies that

xn → p as n → ∞.

Case 2: Assume that there is no n0 ∈ N such that {‖xn−p‖}∞n=n0
is monotonically

decreasing. In this case, we adapt a technique of proof used in [24]. Set Γn = ‖xn −
p‖2 for all n ≥ 1 and let η : N → N be a mapping defined for all n ≥ n0 (for some
n0 large enough) by

η(n) := max{k ∈ N : k ≤ n, Γk ≤ Γk+1},
that is, η(n) is the largest number k in {1, ..., n} such that Γk increases at k = η(n);
note that, in view of Case 2, this η(n) is well defined for all sufficiently large n.
Clearly, η is an increasing sequence such that η(n) → ∞ as n → ∞ and

0 ≤ Γη(n) ≤ Γη(n)+1 ∀n ≥ n0.

According to Claim 2, we have

‖wη(n) − xη(n)‖2 ≤ ‖xη(n)−p‖2−‖xη(n)+1−p‖2 + 2αη(n)〈f (xη(n))−p, xη(n)+1−p〉.
≤ αη(n)〈f (xη(n)) − p, xη(n)+1 − p〉
≤ αη(n)‖f (xη(n)) − p‖|xη(n)+1 − p‖ → 0 as n → ∞.

From Claim 3, it follows that

(1−αη(n))
[τη(n)

2λL
‖rλ(xη(n))‖2

]2 ≤ ‖xη(n)−p‖2−‖xη(n)+1−p‖2 + αη(n)‖f (xη(n))−p‖2

≤ αη(n)‖f (xη(n)) − p‖2 → 0 as n → ∞.
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Using the same arguments as in the proof of Case 1, we obtain

lim
k→∞ ‖xη(n) − zη(n)‖ = 0, lim

k→∞ ‖xη(n)+1 − xη(n)‖ → 0

and
lim sup
n→∞

〈f (p) − p, xη(n)+1 − p〉 ≤ 0. (30)

Thanks to Claim 4 we get

‖xη(n)+1 − p‖2 ≤ (1 − αη(n)(1−ρ))‖xη(n)−p‖2 + 2αη(n)〈f (p) − p, xη(n)+1 − p〉
≤ (1−αη(n)(1−ρ))‖xη(n)+1−p‖2 +2αη(n)〈f (p)−p, xη(n)+1−p〉.

Thus,
(1 − ρ)‖xη(n)+1 − p‖2 ≤ 2〈f (p) − p, xη(n)+1 − p〉,

which, when combined with (30), implies that lim supn→∞ ‖xη(n)+1 − p‖2 ≤ 0, that
is, limn→∞ ‖xη(n)+1 − p‖ = 0.

Next, we show that for all sufficiently large n, we have

0 ≤ Γn ≤ Γη(n)+1. (31)

Indeed, for n ≥ n0, it is not difficult to observe that η(n) ≤ n for n ≥ n0. Now
consider the following three cases: η(n) = n, η(n) = n − 1, and η(n) < n − 1.
In the first and second cases, it is obvious that Γn ≤ Γη(n)+1 for n ≥ n0. In the
third case, η(n) ≤ n − 2, we infer from the definition of η(n) that for any integer
n ≥ n0, Γj ≥ Γj+1 for η(n) + 1 ≤ j ≤ n − 1. Thus, Γη(n)+1 ≥ Γη(n)+2 ≥
· · · ≥ Γn−1 ≥ Γn. As a consequence, we obtain inequality (31). Now, using (31) and
limn→∞ ‖xη(n)+1 − p‖ = 0, we conclude that xn → p as n → ∞.

Applying Algorithm 3 with f (x) := x1 for all x ∈ C, we obtain the following
corollary.

Corollary 3.1 Given μ > 0, l ∈ (0, 1), and λ ∈ (0, 1
μ
), let x1 ∈ C be arbitrary.

Compute
zn = PC(xn − λFxn)

and rλ(xn) := xn − zn. If rλ(xn) = 0, then stop; xn is a solution of Sol(C, F ).
Otherwise,

Compute
yn = xn − τnrλ(xn),

where τn := ljn and jn is the smallest non-negative integer j satisfying

〈Fxn − F(xn − lj rλ(xn)), rλ(xn)〉 ≤ μ

2
‖rλ(xn)‖2.

Compute
xn+1 = αnx1 + (1 − αn)PCn(xn),

where

Cn := {x ∈ C : hn(xn) ≤ 0} and hn(x) = 〈Fyn, x − xn〉 + τn

2λ
‖r(xn)‖2.

Assume that Conditions 3.1–3.4 hold. Then, the sequence {xn} converges strongly to
a point p ∈ Sol(C, F ), where p = PSol(C,F )x1.
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4 Numerical illustrations

In this section, we provide several numerical examples regarding our proposed algo-
rithms. We compare Algorithm 3 (also called Proposed Alg. 3.3 or TD Agl) with
Algorithm 1 (Solodov and Svaiter, Alg. 1.1) and Algorithm 2 (Vuong and Shehu,
Alg. 1.2) in Examples 1 and 2. In Example 3, we compare Algorithm 4 (also called
Algorithm 3.4) with Algorithm 2 (also called Algorithm 1.2). All the numerical
experiments were performed on an HP laptop with Intel(R) Core(TM)i5-6200U CPU
2.3GHz with 4 GB RAM. All the programs were written in Matlab2015a.

Example 1 We first consider a classical example for which the usual gradient method
does not converge to a solution of the variational inequality. The feasible set is C :=
R

m (for some positive even integer m) and F := (aij )1≤i,j≤m is the m × m square
matrix the terms of which are given by

aij =

⎧⎪⎨
⎪⎩

−1 if j = m + 1 − i > i,

1 if j = m + 1 − i < i,

0 otherwise.

It is clear that the zero vector x� = (0, ..., 0) is the solution of this test example. We
take αn = 1

n
and the starting point is x1 = (1, 1, ..., 1)T ∈ R

m. We terminate the
iterations if ‖xn − x�‖ ≤ ε with ε = 10−4 or if the number of iterations ≥ 1000. The
results are presented in Table 1 and in Figs. 1 and 2 below.

Example 2 Assume that F : R
m → R

m is defined by F(x) := Mx + q with
M = NNT + S + D, N is an m × m matrix, S is an m × m skew-symmetric matrix,
D is an m×m diagonal matrix, whose diagonal entries are positive (so M is positive
definite), q is a vector in R

m, and

C := {x ∈ R
m : −5 ≤ xi ≤ 5, i = 1, · · · , m}.

It is clear that F is monotone and Lipschitz continuous with a Lipschitz constant
L = ‖M‖. Thus, F is a uniformly continuous pseudomonotone operator. For q = 0,
the unique solution of the corresponding variational inequality is {0}.

Table 1 Numerical results obtained by the algorithms with λ = 1.8, μ = 0.5, and l = 0.5

Methods m = 100 m = 200 m = 500

Sec. Iter. Sec. Iter. Sec. Iter

Solodov and Svaiter Alg. 1.1 0.23991 105 0.97432 108 6.7691 112

Vuong and Shehu Alg. 1.2 2.3978 1000 8.6678 1000 64.63 1000

Proposed Alg. 3.3 0.20413 53 0.64506 55 3.8467 57
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Fig. 1 Comparison of all the algorithms with m = 200

In our experiments, all the entries of N , S, and D are generated randomly in the
interval (−2, 2) and those of D are in the interval (0,1). The starting point is x1 =
(1, 1, ..., 1)T ∈ R

m and αn = 1√
n

. We use the stopping rule ‖xn − x�‖ ≤ 10−4 and

we also stop if the number of iteration ≥ 1000 for all the algorithms. The numerical
results are presented in Table 2 and in Figs. 3 and 4.

Example 3 Consider C := {x ∈ H : ‖x‖ ≤ 2}. Let g : C → R be defined
by g(u) := 1

1+‖u‖2 . Observe that g is Lg-Lipchitz continuous with Lg = 16
25 and

Fig. 2 Comparison of all the algorithms with m = 500
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Table 2 Numerical results obtained by the algorithms with λ = 1.8, μ = 0.5, and l = 0.5

Methods m = 10 m = 50 m = 100

Sec. Iter. Sec. Iter. Sec. Iter

Solodov and Svaiter Alg. 1.1 0.16551 506 0.419 1000 0.50847 1000

Vuong and Shehu Alg. 1.2 0.17286 1000 0.2 1000 0.24625 1000

Proposed Alg. 3.3 0.012714 64 0.035282 125 0.062133 152

Fig. 3 Comparison of all the algorithms with m = 50

Fig. 4 Comparison of all the algorithms with m = 100
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Fig. 5 Comparison of Algorithm 4 and Algorithm 2 in Example 3

1
5 ≤ g(u) ≤ 1, ∀u ∈ C. Define the Volterra integral operator A : L2([0, 1]) →
L2([0, 1]) by

A(u)(t) :=
∫ t

0
u(s)ds, ∀u ∈ L2([0, 1]), t ∈ [0, 1].

The operator A is bounded and linear monotone (see Exercise 20.12 of [2]) and
‖A‖ = 2

π
. Next, define F : C → L2([0, 1]) by F(u)(t) := g(u)A(u)(t), ∀u ∈

C, t ∈ [0, 1]. Then, F is pseudomonotone and LF -Lipschitz-continuous with
LF = 82

π
.

Take μ = 0.3, l = 0.9, and αn = 1
n

in Algorithm 4 and Algorithm 2. Choose
λ = 0.9

μ
and f (x) := x1 in Algorithm 4. Let the initial point be x0 = sin(2πt2).

We compared Algorithm 4 with Algorithm 2. The numerical results are pre-
sented in Fig. 5. It shows that the performance of Algorithm 4 is better than that of
Algorithm 2.

5 Conclusions

In this paper, we have proposed new projection-type algorithms for solving vari-
ational inequalities in real Hilbert spaces. We have established weak and strong
convergence theorems for these algorithms under a pseudomonotonicity assumption
imposed on the cost operator, which is not assumed to be Lipschitz continuous. More-
over, our algorithms require the calculation of only two projections onto the feasible
set per each iteration. These two properties bring out the advantages of our proposed
algorithms over several existing algorithms which have recently been proposed in
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the literature. Numerical experiments in both finite- and infinite-dimensional spaces
illustrate the good performance of our new schemes.
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