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Abstract
The preconditioned modified Hermitian/skew-Hermitian splitting (PMHSS) iteration
method and the corresponding preconditioning technique can achieve satisfactory
results for solving optimal control problems governed by Poisson’s equation. We
explore the feasibility of such a method and preconditioner for solving optimization
problems constrained by the more complicated Stokes system. Theoretical results
demonstrate that the PMHSS iteration method is convergent because the spectral

radius of the iterative matrix is less than
√
2
2 . Additionally, the PMHSS preconditioner

still clusters eigenvalues on a unitary segment. It guarantees that the convergence
of the PMHSS iteration method and preconditioning is independent of not only
discretizing mesh size, but also of the Tikhonov regularization parameter. A more
effective preconditioner is proposed based on the PMHSS preconditioner. The pro-
posed preconditioner avoids the inner iterations when solving saddle point systems
appearing in the generalized residual equations. Furthermore, it is still convergent
and maintains its independence of parameter and mesh size.
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1 Introduction

Flow control has been widely used in the petroleum, chemical, and aeronautical
engineering fields, and has become a very active research area in scientific comput-
ing. It is clear that developing efficient numerical methods for flow control is one
of the keys to its successful application. In this paper, we consider numerical solu-
tions for Stokes control problems to prepare for more complicated fluid dynamic
problems, such as Navier-Stokes control problems. This study focuses on the solu-
tion of the multiple saddle point problems generated by the discretize-then-optimize
approach. Our goal is to construct iterative solvers that are independent of not only
the mesh size of the finite element discretization, but also of the regularization
parameters for optimization. Some successful solvers and preconditioners for Stokes
control optimization problems have been designed from different perspectives. Most
preconditioners have been designed according to the properties of saddle point matri-
ces. In [25], a parameter-robust block-diagonal preconditioner was derived from the
nonstandard norm argument. In [14], block-diagonal and block-triangular precon-
ditioners were generated based on a commutator argument [9]. Additionally, some
iteration methods and preconditioners have been designed for the following reduced
structured block 2 × 2 linear system:

Ax ≡
[
W −T
T W

] [
y
z

]
=

[
p
q

]
≡ g. (1.1)

In [2], the authors studied the properties and numerical behaviors of a preconditioned
square block (PRESB) preconditioner for solving (1.1). There have also been some
studies focusing on solutions for the equivalent formulation of (1.1) as a complex
symmetric indefinite linear system:

(W + iT)(y + iz) = p + iq.

Several complex arithmetic algorithms were proposed in [21, 22]. Several real arith-
metic algorithms were proposed in [13, 16] under the assumption that −T ≺ W ≺ T.
Additional iterative methods derived from different matrix splitting techniques were
studied in [17, 23, 24].

In this paper, we discuss the preconditioned modified Hermitian/skew-Hermitian
splitting (PMHSS) iteration method and a corresponding preconditioner for Stokes
control distributed problems. The PMHSS iteration method and preconditioner were
proposed in [4] for Poisson control optimization. The PMHSS preconditioner has
nearly the same workload as the PRESB preconditioner. However, it can be used in
the short-term recurrence iteration methods (e.g., minimal residual method (MIN-
RES) and Chebyshev semi-iteration method) [5, 18, 19]. The convergence of the
PMHSS iteration method is analyzed when W, T ∈ R

n×n are symmetric posi-
tive semidefinite matrices. When W or T are indefinite, the convergence rate of the
PMHSS method and the preconditioned eigenvalue distribution deteriorate. In this
study, we analyze the convergence of the PMHSS iteration method and the eigen-
value distribution of the PMHSS preconditioned matrix whenW and T are a positive
semidefinite matrix and a saddle point matrix, respectively. Similar to the PRESB
preconditioner, in every iteration the PMHSS preconditioner requires solutions of two
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saddle point linear systems. Saddle point problems can be solved utilizing inner itera-
tions, such as the Flexible GeneralizedMinimal Residual (GMRES) or parameterized
and preconditioned Uzawa iterations [6, 7, 10]. Alternatively, to save computing cost
and avoid decisions regarding inner tolerance, we propose a modified version of the
PMHSS preconditioner called the rotated block constraint (RBC) preconditioner. The
eigenvalue distribution of the corresponding preconditioned matrix is also analyzed.

The remainder of this paper is organized as follows. In Section 2, we describe the
PMHSS iteration method and preconditioner for solving the Stokes control optimiza-
tion problem. The convergence results and eigenvalue distribution are also derived. In
Section 3, we derive the RBC preconditioner and analyze the eigenvalue distribution
of the preconditioned matrix. In Section 4, we present existing feasible precondi-
tioners for solving the Stokes control problems and describe their implementations
in detail. In Section 5, the numerical performances of the introduced preconditioners
are compared via testing on model problems. Our final conclusions are summarized
in Section 6.

2 PMHSS iteration and preconditioner for optimality systems

We consider the following Stokes distributed control problem:

min
u,f

1

2
‖y − yd‖22 + 1

2
β‖u‖22,

subject to − ∇2y + ∇p = u in �,

∇ · y = 0 in �,

y = gD on ∂�,

(2.1)

where� is a domain inR2 orR3 and ∂� is the boundary of�. The desired state func-
tion yd and boundary value function gD are given. Because the Stokes equation is
self-adjoint, the discretize-then-optimize and optimize-then-discretize processes are
mathematically equivalent and lead to the same solution. In this section, we discuss
the algebraic systems that are obtained from the discretize-then-optimize approach.
The rectangular Taylor-Hood finite element method is then adopted because it is
inf-sup stable. Specifically, the velocity y and control u are approximated by linear
combinations of the Q2-basis functions {φj }, j = 1, · · · , nv , while the pres-
sure p is approximated by linear combinations of the Q1-basis functions {ψj },
k = 1, · · · , np. The first-order necessary optimality condition for the discretized
optimization problem then yields the following linear system:

AR

⎡
⎢⎢⎣

y
p
l
m

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

M 0 −FT −BT

0 0 −B 0
F BT M 0
B 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y
p
l
m

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
b
0
f
g

⎤
⎥⎥⎦ , (2.2)

367Numerical Algorithms (2021) 87:365–380



where

F = √
β

∫
�

∇φi : ∇φj , M =
∫

�

φiφj , B = −√
β

∫
�

ψk · ∇φj ,

b =
∫

�

ydφi −
ny+n∂∑

j=ny+1

∫
�

∇φi : ∇φj ,

fi = −√
β

ny+n∂∑
j=ny+1

yj

∫
�

∇φi : ∇φj , gi = √
β

ny+n∂∑
j=ny+1

yj

∫
�

ψi∇ · φj ,

f = [fi], g = [gi],
and l and m are scaled Lagrange multipliers corresponding to y and p, respectively.
The matrices M ∈ R

nν×nν and F ∈ R
nν×nν , which are referred to as the mass matrix

and scaled stiffness matrix, respectively, are symmetric positive definite. The matrix
B ∈ R

np×nν is of full row rank. We refer to [1, 11, 14] for the details of finite
element discretization. The 4 × 4 block matrix AR in (2.2) can be partitioned into
the following 2 × 2 block form:

AR :=
[
W −T
T W

]
, (2.3)

where

W =
[

M 0
0 0

]
and T =

[
F BT

B 0

]
(2.4)

are a symmetric positive semidefinite matrix and a non-singular saddle point matrix,
respectively. In [4], Bai et al. defined the PMHSS iteration method when W and
T were symmetric positive semidefinite matrices based on the following matrix
splitting:

AR = F − G,

where

F :=
[
I −I
I I

] [
W + T 0

0 W + T

]
, and G :=

[
T −W
W T

]
. (2.5)

The PMHSS iteration scheme for solving a 2 × 2 block system can be written as:

Fx(k+1) = Gx(k) + g.

The matrix F is referred to as the PMHSS preconditioner. The PMHSS iteration
method and preconditioner provide excellent results based on the clustered eigen-
value distributions and the fact that when W and T are symmetric positive definite
the eigenvectors form a normal matrix. In this study, we explored the performance of
the PMHSS iteration method and preconditioner for the linear system in (2.2).

Lemma 2.1 Let W and T be the matrices in (2.4), where M and F are symmetric
positive definite and B is of full row rank. Then, the eigenvalues of T−1W are all
nonnegative.

368 Numerical Algorithms (2021) 87:365–380



Proof Let τ and x = [x1; x2] be the eigenvalues and corresponding eigenvectors of
the following generalized eigenvalue problem:[

M 0
0 0

] [
x1
x2

]
= τ

[
F BT

B 0

] [
x1
x2

]
,

which can be rewritten as: {
τ(Fx1 + BT x2) = Mx1,

τBx1 = 0.
(2.6)

It is clear that τ = 0 is the eigenvalue with a multiplicity np because [0; x2] are the
corresponding eigenvectors for an arbitrary x2 ∈ R

np . In the case of τ �= 0, we have
Bx1 = 0. After multiplying by x∗

1 on both sides of the first equality in (2.6), we have:

τ(x∗
1Fx1 + x∗

1B
T x2) = x∗

1Mx1.

Therefore, it holds that:

τ = x∗
1Mx1

x∗
1Fx1

. (2.7)

Note that x1 �= 0 when τ �= 0. Otherwise, we have x2 = 0 and x is not an eigenvector.
Therefore, we have τ > 0 because F and M are symmetric positive definite. It
follows that:

x2 = 1

τ
(BBT )−1B(M − τF )x1

for any x1 ∈ null(B)/{0} and τ in (2.7).

Define E = (W + T)−1(W − T). It is trivial to verify that μ = τ − 1

τ + 1
are the

eigenvalues of E and −1 ≤ μ < 1. Furthermore, μ = −1 are eigenvalues with a
multiplicity at least np.

Theorem 2.1 Let μj and j = 1, · · · , nv + np be the eigenvalues of E. Then, the
eigenvalues of F−1AR are:

λ±
j = 1

2
(1 ± iμj ).

Proof The PMHSS preconditioned matrix is written as:

F−1AR = 1

2

[
W + T 0

0 W + T

]−1 [
I I

−I I

] [
W −T
T W

]

= 1

2

[
W + T 0

0 W + T

]−1 [
W + T W − T
T − W W + T

]

= 1

2

[
I (W + T)−1(W − T)

(W + T)−1(T − W) I

]

= 1

2

[
I E

−E I

]
.
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Let λj and wj = (uT
j , vT

j )T be the eigenvalues and eigenvectors of F−1AR ,
respectively. It holds that:

1

2

[
I E

−E I

] [
uj

vj

]
= λj

[
uj

vj

]
.

Consequently, we have:
E2vj = −(2λ − 1)2vj .

This indicates that −(2λj − 1)2 and vj are the eigenvalues and corresponding
eigenvectors of E2. Then, λ±

j = 1
2 (1 ± iμj ).

According to Theorem 2.1, the eigenvalues of preconditioned coefficient matrix
F−1AR are located on the unitary segment between 1

2 (1 + i) and 1
2 (1 − i). The

eigenvalues of the PMHSS iterative matrix:

L = F−1G = I − F−1AR

are 1 − λ±
j = 1

2 (1 ∓ iμj ). The PMHSS iteration method is convergent because the

spectral radius of the iterative matrix is not greater than 1√
2
.

When PMHSS preconditioning is used in Krylov subspace methods, the general-
ized residual equation Fr = z must be solved in every iteration. The main workload
lies in solving two linear saddle point problems with:

W + T =
[

F + M BT

B 0

]
(2.8)

in every iteration. These saddle point equations can be solved utilizing inner iteration
methods, as discussed in [1].

3 RBC preconditioner for optimality systems

In this section, we propose a new preconditioner to avoid solving saddle point
equations. We introduce the matrices:

W̃ =
[

M 0
0 S

]
and T̃ =

[
F BT

B −Ŝ

]
, (3.1)

where S = B(M +F)−1BT is the (negative) Schur complement of (2.8) and Ŝ serves
as a symmetric positive definite approximation of S. Therefore, the matrices W̃ and
T̃ are symmetric positive definite and symmetric indefinite, respectively. The RBC
preconditioner is defined as:

F̃ :=
[
I −I
I I

] [
W̃ + T̃ 0

0 W̃ + T̃

]
. (3.2)

The preconditioner F̃ does not need to be generated explicitly because:

W̃ + T̃ =
[

M + F BT

B S − Ŝ

]
=

[
I 0

B(M + F)−1 I

] [
M + F BT

0 −Ŝ

]
,

370 Numerical Algorithms (2021) 87:365–380



is the product of a block unit lower triangular matrix and block upper triangular
matrix. W̃+T̃ is considered as a constraint preconditioner for the saddle point matrix
W + T. The computing cost for solving the generalized residual equations:

F̃z = r,

includes two solutions with M + F and one solution with Ŝ. A reasonable Ŝ will
yield an effective and efficient preconditioner F̃. We discuss how the preconditioner
F̃ approximates AR in the following theorem.

Theorem 3.1 Let M ∈ R
nν×nν and F ∈ R

nν×nν be symmetric positive definite
matrices and let B ∈ R

np×nν be a full column rank. F̃ ∈ R
2n×2n, which is defined

in (3.2), is the RBC preconditioner for AR ∈ R
2n×2n in (2.2) with n = nν + np. Ŝ

serves as a symmetric positive definite approximation of S = B(M + F)−1BT . We
define 	S = S − Ŝ. The Jordan decomposition of F−1AR is:

F−1AR = QJQ−1, J =
⎡
⎢⎣

J1
. . .

Jk

⎤
⎥⎦ , (3.3)

where

Ji =

⎡
⎢⎢⎢⎢⎢⎣

λi 1
λi 1

. . .
. . .
λi 1

λi

⎤
⎥⎥⎥⎥⎥⎦

or Ji =

⎡
⎢⎢⎢⎢⎢⎣

λi

λi

. . .
λi

λi

⎤
⎥⎥⎥⎥⎥⎦

, i = 1, · · · , k

are the Jordan blocks in J and λi are the eigenvalues of F−1AR . If m is the order of
the largest Jordan block in J and

‖Ŝ−1	S‖ ≤
√
2

1 + √
2

1

m + 1

1

κ(Q)

1√
1 + ‖(M + F)−1BT ‖2 ,

then for any eigenvalue σ of F̃
−1AR , there is an eigenvalue λ of F−1AR such that

|σ − λ| ≤ m

m + 1
(m + 1)

1
m

(
1 +

√
2

2

) 1
m

κ(Q)
1
m

(√
1 + ‖(M + F)−1BT ‖2

) 1
m ‖Ŝ−1	S‖ 1

m ,

where κ(Q) = ‖Q−1‖‖Q‖. Furthermore, if m0 is the order of the largest Jordan
block to which λ belongs, then:

|σ −λ| ≤ m0

m0 + 1
(m0+1)

1
m0

(
1 +

√
2

2

) 1
m0

κ(Q)
1

m0

(√
1 + ‖(M + F)−1BT ‖2

) 1
m0 ‖Ŝ−1	S‖ 1

m0 .

Proof We denote:

D =
[
W + T 0

0 W + T

]
, D̃ =

[
W̃ + T̃ 0

0 W̃ + T̃

]
, and P =

[
I −I
I I

]
.
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Then, the preconditioned matrix can be expressed as:

F̃
−1AR = D̃

−1
P−1AR .

Note that
D̃

−1 = D−1 − D̃
−1

(D̃ − D)D−1

and we denote

δD = D̃ − D =

⎡
⎢⎢⎣
0 0
0 S − Ŝ

0 0
0 S − Ŝ

⎤
⎥⎥⎦ .

Therefore, we have:

F̃
−1AR = F−1AR − D̃

−1
δDF−1AR .

Let 	S = S − Ŝ. Then,∥∥∥D̃−1
δD

∥∥∥ = ‖(W̃ + T̃)−1(W̃ + T̃ − (W + T))‖ =
∥∥∥∥
[
0 (M + F)−1BT Ŝ−1	S

0 −Ŝ−1	S

]∥∥∥∥ .
It is clear that

∥∥∥D̃−1
δD

∥∥∥ is the square root of the maximum eigenvalue of
[
0 0
0 ((M + F)−1BT Ŝ−1	S)T ((M + F)−1BT Ŝ−1	S) + (Ŝ−1	S)T (Ŝ−1	S)

]
.

Note that

‖((M + F)−1BT Ŝ−1	S)T ((M + F)−1BT Ŝ−1	S) + (Ŝ−1	S)T (Ŝ−1	S)‖
≤ ‖((M + F)−1BT Ŝ−1	S)T ((M + F)−1BT Ŝ−1	S)‖ + ‖(Ŝ−1	S)T (Ŝ−1	S)‖
≤ ‖(M + F)−1BT Ŝ−1	S)‖2 + ‖Ŝ−1	S‖2
≤ (1 + ‖(M + F)−1BT ‖2)‖Ŝ−1	S‖2,
we have ∥∥∥D̃−1

δD

∥∥∥ ≤
√
1 + ∥∥(M + F)−1BT

∥∥2 ∥∥∥Ŝ−1	S

∥∥∥ .
Consider the eigenvalue distribution of F−1AR , we have ‖J‖ ≤ 1 +

√
2
2 . We derive

the estimates of σ as follows. When

‖Ŝ−1	S‖ ≤ 1√
1 + ‖(M + F)−1BT ‖2

1

‖Q−1‖‖Q‖

√
2

1 + √
2

1

m + 1
,

it is clear that

‖Q−1D̃
−1

δDF−1ARQ‖ = ‖Q−1D̃
−1

δDF−1ARQ‖
= ‖Q−1D̃

−1
δDQQ−1F−1ARQ‖

= ‖Q−1D̃
−1

δDQJ‖
≤ ‖Q−1D̃

−1
δDQ‖‖J‖

≤ 1

m + 1
.
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According to Theorem 2 in [12], for any eigenvalue σ of F̃
−1AR , there is an

eigenvalue λ of F−1AR such that:

|σ − λ| ≤ m

m + 1
(m + 1)

1
m ‖Q−1D̃

−1
δDQJ‖ 1

m

≤ m

m + 1
(m + 1)

1
m ‖Q−1‖ 1

m ‖Q‖ 1
m

∥∥∥D̃−1
δD

∥∥∥
1
m ‖J‖ 1

m

≤ m

m + 1
(m + 1)

1
m ‖Q−1‖ 1

m ‖Q‖ 1
m

(√
1 + ‖(M + F)−1BT ‖2

) 1
m ‖Ŝ−1	S‖ 1

m ‖J‖ 1
m

≤ m

m + 1
(m + 1)

1
m

(
1 +

√
2

2

) 1
m

‖Q−1‖ 1
m ‖Q‖ 1

m

(√
1 + ‖(M + F)−1BT ‖2

) 1
m ‖Ŝ−1	S‖ 1

m .

Furthermore, if m0 is the order of the largest Jordan block to which λ belongs, then:

|σ − λ| ≤ m0

m0 + 1
(m0 + 1)

1
m0 ‖Q−1D̃

−1
δDQJ‖ 1

m0

≤ m0

m0 + 1
(m0 + 1)

1
m0 ‖Q−1‖ 1

m0 ‖Q‖ 1
m0

∥∥∥D̃−1
δD

∥∥∥
1

m0 ‖J‖ 1
m0

≤ m0

m0 + 1
(m0 + 1)

1
m0

(
1 +

√
2

2

) 1
m0

‖Q−1‖ 1
m0 ‖Q‖ 1

m0

(√
1 + ‖(M + F)−1BT ‖2

) 1
m0 ‖Ŝ−1	S‖ 1

m0 .

It is clear that σ tends towards λ when 	S tends towards zero. Furthermore, it is
always true that |σ − λ| ≤ m

m+1 when the premise in Theorem 3.1 holds. A good
approximation of the Schur complement leads to a value of σi close to λi . For the

Stokes problem in a convex domain, Sp = β
(√

βM−1
p + F−1

p

)−1
is a well-known

approximation of S that was proposed in [9], where Mp and Fp are the mass matrix
and stiffness matrix of the pressure space, respectively. This approximation was also
adopted in [1, 14, 25].

4 Feasible preconditioners and computational implementations

We now discuss some effective preconditioners for the Stokes control problem and
their corresponding main workloads. In [25, 26], a preconditioner of the form:

Pnsn =

⎡
⎢⎢⎢⎢⎢⎣

M + F 0 0 0
0 1

β (M + F) 0 0

0 0
(
F−1

p + √
βM−1

p

)−1
0

0 0 0 β
(
F−1

p + √
βM−1

p

)−1

⎤
⎥⎥⎥⎥⎥⎦
(4.1)

was proposed for the linear system in (2.2), where Mp and Fp are the pressure mass
matrix and pressure stiffness matrix, respectively.
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In [14], a preconditioner of the form:

Pcta =

⎡
⎢⎢⎢⎣

M 0 0 0
0 1

β (F + M)M−1(F + M)T 0 0
0 0 Fp 0
0 0 0 (M−1

p FpM−1
p + 1

βF−1
p )−1

⎤
⎥⎥⎥⎦ (4.2)

was designed to approximate the reordered coefficient matrix:

A =

⎡
⎢⎢⎣

M F BT 0
F − 1

βM 0 BT

B 0 0 0
0 B 0 0

⎤
⎥⎥⎦ (4.3)

Utilizing an operator commutator argument. The preconditioners Pnsn and Pcta can
be utilized in the MINRES method because they are symmetric positive definite.
Numerical experiments verified that the convergence of preconditioned MINRES
methods is independent of the mesh size h of discretization. However, it does rely on
the regularization parameter β. The preconditioner:

Ppresb =

⎡
⎢⎢⎣

M 0 −F −BT

0 0 −B 0
F BT M + 2F 2BT

B 0 2B 0

⎤
⎥⎥⎦ (4.4)

was proposed in [1] and later referred to as the PRESB preconditioner in [3]. It was
proven that the condition number for the preconditioned system is no greater than 2
if the preconditioning is performed precisely. The performance of this preconditioner
is not only parameter independent, but also mesh size independent. In the imple-
mentation of PRESB, there are two subsystems with a saddle point matrix (2.8) that
must be solved in every iteration. Similarly, PMHSS must also solve two subsystems
with a matrix (2.8) in every iteration. However, these two subsystems can be solved
independently. For practical consideration, the linear saddle point systems should be
solved approximately utilizing inner iterations, such as Uzawa-type methods [6, 10]
or the flexible GMRES method with a block triangular preconditioner.

Ptri =
[

M + F

B −Ŝ

]
, (4.5)

where Ŝ serves as an approximation of the Schur complement of matrix (2.8). In
our numerical experiments, we set Ŝ = Sp. Table 1 lists the linear systems involved
in every iteration for different preconditions. The common workload of the precon-
ditioning processes is the solving of linear systems with Fp, Mp, M , and M + F .
As implemented in previous works [1, 14], the linear systems with Fp were solved
utilizing algebraic multigrid (AMG) methods. According to the eigenvalue distribu-
tion in [15, 20], linear systems with Mp can be solved in 20 steps using Chebyshev
semi-iteration with relaxed Jacobi iteration with a damping parameter of ω = 4/5.
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Table 1 Computational complexity of different preconditioners

Preconditioner Systems to be solved

Pnsn 2 × (M + F), 2 × Fp , 2 × Mp

Pcta 2 × (M + F), 2 × Fp , 2 × Mp , 1 × M

Ppresb 2 × [
M + F BT ;B 0

]
Inner iterations: {1 × (M + F), 1 × Fp , 1 × Mp}

Ppmhss 2 × [
M + F BT ;B 0

]
Inner iterations: {1 × (M + F), 1 × Fp , 1 × Mp}

Prbc 2 × (M + F), 2 × Fp , 2 × Mp

Similarly, linear systems with M can be solved in 20 steps utilizing Chebyshev semi-
iteration with relaxed Jacobi iteration with a damping parameter of ω = 32/29.
Linear systems with a coefficient matrix M + F are solved utilizing AMG methods.

5 Numerical results

In this section, we compare the numerical performances of the preconditioners dis-
cussed above by solving the Stokes control model (2.1) in � = [0, 1]2 with different
desired states yd and different boundary value conditions.

Example 5.1 y = yd on the boundary and yd(x1, x2) = (yd,1(x1, x2), yd,2(x1, x2)),

given by yd,1(x1, x2) = 10
∂

∂x2
(ϕ(x1)ϕ(x2)) and yd,2(x1, x2) =

−10
∂

∂x1
(ϕ(x1)ϕ(x2)) with ϕ(z) = (1 − cos(0.8πz))(1 − z)2.

Example 5.2 The desired state yd = x2i− x1j and let y = 0 on the boundary, except
for on x1 = 1, 0 ≤ x2 ≤ 1, where y = −j.

In our experiments, all systems with mass matrices M and Mp were solved uti-
lizing the Chebyshev semi-iteration method. The Chebyshev semi-iteration method
is performed for a maximum of 20 steps until the relative residual is reduced to
10−4. We employed an AMG routine called HSL MI20 from the Harwell Subrou-
tine Library [8]. This routine performs two V-cycles with two pre- and post-smooth
(symmetric Gauss-Seidel) steps to solve a linear system with Fp and M + F . Saddle
point subsystems withW+T are solved utilizing a flexible preconditioned GMRES
method with a preconditioner Ptri . The inner iterations are terminated once the rela-
tive residual is reduced to 10−4. The symmetric preconditioners Pnsn and Pcta from
(4.1) and (4.2), respectively, are utilized to precondition the MINRES method for
solving a linear system with the matrix in (4.3). The non-symmetric preconditioners
Ppresb, F, and F̃ from (4.4), (2.5) and, (3.2), respectively, are solved by a precon-
ditioned GMRES method. In our implementations, all iteration processes start from
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initial vectors containing zeros and terminate as soon as the relative residuals of (2.2)
are less than 10−6 or the maximum number of iterations ITmax = 500 is reached.
The number of iterations (denoted as IT) and CPU time in seconds (denoted as CPU)
are reported with respect to different mesh size h and regularization parameter β.
The numbers of degree of freedom (denoted as DOF) are reported also. For the
PMHSS preconditioned GMRES and PRESB preconditioned GMRES methods, the
average number of inner iterations (denoted as IT inner) for solving the saddle point
subsystems are listed in brackets. All tests are performed in Matlab 8.0.0 (64 bit).

In Table 2, we list the IT and CPU values of different preconditioned Krylov sub-
space methods for solving Example 5.1. As mentioned in previous studies, NSN
preconditioned MINRES and CTA preconditioned MINRES are mesh-independent
methods, but their convergence depends on a regularization parameter β. Both NSN
and CTA preconditioners perform better with smaller values of β.

When β = 10−2 and h = 2−7, the CTA preconditioned MINRES method abnor-
mally breaks down based on the inexact implementation of preconditioning. The data
in Table 2 reveals that similar to the PRESB preconditioned GMRES method, the
PMHSS and RBC preconditioned GMRES methods are not only mesh size inde-
pendent, but also parameter independent. Furthermore, the RBC preconditioner is
advantageous because it saves more than 50% of CPU time compared with the

Table 2 Problem 1: IT, IT inner (in brackets), and CPU of different Krylov subspace methods

DOF Method β = 10−2 β = 10−4 β = 10−6 β = 10−8 β = 10−10

PMHSS 10(10) 2.68e−1 13(9) 2.81e−1 13(6) 2.03e−1 10(5) 1.82e−1 6(5) 1.03e−1

1318 RBC 28 1.17e−1 29 1.30e−1 26 1.11e−1 20 1.28e−1 13 8.18e−2

h = 2−4 PRESB 6(11) 1.84e−1 8(8) 1.81e−1 7(6) 1.21e−1 5(6) 1.13e−1 3(6) 6.55e−2

NSN 71 2.48e−1 55 1.82e−1 38 1.37e−1 26 1.23e−1 18 8.39e−2

CTA 129 4.99e−1 77 2.98e−1 50 2.03e−1 24 1.19e−1 15 7.33e−2

PMHSS 10(11) 6.38e−1 13(10) 6.75e−1 13(7) 5.13e−1 11(6) 4.16e−1 6(5) 1.90e−1

4936 RBC 31 2.63e−1 29 2.75e−1 24 2.48e−1 19 2.41e−1 10 1.32e−1

h = 2−5 PRESB 6(12) 4.01e−1 8(9) 4.18e−1 7(7) 3.03e−1 5(6) 2.16e−1 3(6) 1.20e−1

NSN 81 5.33e−1 66 4.31e−1 42 3.11e−1 26 2.20e−1 18 1.48e−1

CTA 160 1.32 102 8.24e−1 62 5.50e−1 28 2.76e−1 13 1.24e−1

PMHSS 10(13) 2.10 13(10) 2.29 13(7) 1.53 11(6) 1.29 7(5) 6.55e−1

19078 RBC 33 1.05 29 8.12e−1 23 6.38e−1 16 6.22e−1 10 3.90e−1

h = 2−6 PRESB 6(13) 1.53 8(11) 1.61 7(7) 9.30e−1 5(6) 8.07e−1 3(6) 4.26e−1

NSN 89 1.92 74 1.60 46 1.01 26 7.08e−1 17 4.21e−1

CTA 206 5.18 130 3.25 78 1.98 33 9.86e−1 15 4.15e−1

PMHSS 10(14) 8.93 13(11) 9.77 12(8) 5.85 11(6) 6.06 8(5) 2.98

75014 RBC 34 3.76 29 3.09 23 2.42 16 3.08 10 1.33

h = 2−7 PRESB 6(14) 5.40 8(12) 6.34 7(8) 3.53 5(6) 3.30 4(6) 1.87

NSN 101 8.50 81 6.36 53 4.19 26 3.08 18 1.59

CTA — — 158 1.54e+1 92 9.25 40 5.84 18 2.19
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Table 3 Problem 2: IT, IT inner (in brackets), and CPU of different Krylov subspace methods

DOF Method β = 10−2 β = 10−4 β = 10−6 β = 10−8 β = 10−10

PMHSS 10(11) 2.88e−1 12(9) 2.99e−1 11(7) 2.05e−1 9(6) 1.97e−1 6(6) 1.28e−1

1318 RBC 26 9.61e−2 30 1.15e−1 28 1.18e−1 27 1.69e−1 21 1.32e−1

h = 2−4 PRESB 5(11) 1.46e−1 7(9) 1.66e−1 6(7) 1.17e−1 5(7) 1.18e−1 5(7) 1.34e−1

NSN 79 2.43e−1 49 1.50e−1 35 1.15e−1 27 1.19e−1 23 1.02e−1

CTA 117 4.44e−1 72 2.72e−1 46 1.85e−1 28 1.42e−1 22 1.11e−1

PMHSS 10(12) 6.71e−1 11(10) 6.36e−1 11(8) 5.21e−1 9(6) 3.96e−1 6(6) 2.43e−1

4936 RBC 26 2.30e−1 27 2.49e−1 25 2.55e−1 24 3.12e−1 21 2.63e−1

h = 2−5 PRESB 5(12) 3.41e−1 6(10) 3.18e−1 6(8) 2.95e−1 5(7) 2.29e−1 5(7) 2.35e−1

NSN 81 5.11e−1 55 3.47e−1 41 2.91e−1 29 2.45e−1 23 1.94e−1

CTA 139 1.14 89 7.31e−1 54 4.97e−1 32 3.28e−1 21 2.16e−1

PMHSS 8(12) 1.66 10(11) 1.87 10(9) 1.50 9(7) 1.39 7(6) 1.00

19078 RBC 26 7.60e−1 25 7.12e−1 20 5.62e−1 19 7.26e−1 18 6.32e−1

h = 2−6 PRESB 4(13) 9.15e−1 6(11) 1.10 5(9) 7.34e−1 5(7) 7.08e−1 4(6) 5.09e−1

NSN 83 1.66 57 1.13 45 8.79e−1 29 7.15e−1 19 4.51e−1

CTA 164 4.46 106 2.97 62 1.72 36 1.23 18 5.81e−1

PMHSS 8(12) 6.63 10(12) 8.03 9(9) 5.65 8(7) 5.82 7(6) 3.40

75014 RBC 25 2.68 23 2.41 17 1.90 14 2.58 12 1.58

h = 2−7 PRESB 4(14) 3.70 5(12) 3.82 5(10) 3.09 4(7) 2.93 4(6) 1.84

NSN 83 6.59 59 4.62 45 3.57 33 4.05 15 1.43

CTA 191 2.18e+1 123 1.35e+1 71 7.98 41 6.28 16 1.88

PMHSS preconditioner in cases with small mesh sizes. The RBC preconditioner out-
performs the other preconditioners, including the PRESB preconditioner, in terms
of CPU time in most cases. Regarding the number of iterations, the PRESB pre-
conditioned GMRES method outperforms the other iteration methods. However, it

Table 4 The cost functional of the distributed control problem 5.1

Method β IT ‖u‖2 ‖y − ŷ‖2 ‖y − ŷ‖2/‖ŷ‖2 J ‖b − Ax‖2/‖b‖2 time

10−2 33 6.96e+1 3.69e+1 9.66e−1 7.06e+2 8.54e−7 1.05

10−4 29 1.58e+3 8.91 2.33e−1 1.65e+2 7.66e−7 8.12e−1

RBC 10−6 23 2.13e+3 2.62e−1 6.85e−3 2.31 8.23e−7 6.38e−1

10−8 16 2.18e+3 1.22e−2 3.18e−4 2.39e−2 8.80e−7 6.22e−1

10−10 10 2.19e+3 4.99e−4 1.31e−5 2.39e−4 6.76e−7 3.90e−1

10−2 6 6.96e+1 3.69e+1 9.66e−1 7.06e+2 2.84e−7 1.53

10−4 8 1.58e+3 8.91 2.33e−1 1.65e+2 9.70e−7 1.61

PRESB 10−6 7 2.13e+3 2.62e−1 6.85e−3 2.31 6.77e−7 9.30e−1

10−8 5 2.18e+3 1.22e−2 3.18e−4 2.39e−2 5.02e−7 8.07e−1

10−10 3 2.19e+3 4.64e−4 1.21e−5 2.39e−4 3.11e−7 4.26e−1
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Fig. 1 Problem 1: State y, control u, and pressure p for h = 2−6 and β = 10−6

has to solve several saddle point problems utilizing inner loops. The same is true
for the PMHSS preconditioned GMRES method. The data in Table 3 support these
conclusions.

We report the cost functional J of distributed control problem in Example 5.1 for
h = 2−6 in Table 4. The results generated by the two methods have no inapparent
difference. With the decreasing of β, the cost functional decreases and the state y

goes close to the desired state ŷ. However, the control u becomes large. It indicates
that β = 10−10 is a proper regularization parameter for Example 5.1.

We plot the velocity, control, and pressure values for Examples 5.1 and 5.2 for
the cases of h = 2−6 and β = 10−6 based on data calculated utilizing the RBC
preconditioned GMRES method in Figs. 1 and 2. The maximum value of velocity
y in the 2-norm is 1.00 and the maximum value of control u in the 2-norm is 57.7.
These results are consistent with the results in [1, 25]. Additionally, the images of
pressure and velocity in Fig. 2 coincide with the results in [1].

6 Conclusion

In this paper, we study PMHSS-type iteration methods and corresponding precondi-
tioners for solving the Stokes control problems. By approximating the saddle point
matrix in the PMHSS preconditioner as a product of lower and upper matrices, a more
practical preconditioner was designed. This new preconditioner avoids solving sad-
dle point systems in every iteration. The eigenvalue distribution of the preconditioned
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Fig. 2 Problem 2: State y, control u, and pressure p for h = 2−6 and β = 10−6
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matrix is favorable and numerical experiments demonstrated that preconditioning
behaviour is independent of the mesh size of discretization, as well as of the regu-
larization parameter. The proposed preconditioning can also be extended to solving
more complicated Navier-Stokes control problems.
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