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Abstract

The aim of this work is to analyze the mean-square convergence rates of numeri-
cal schemes for random ordinary differential equations (RODEs). First, a relation
between the global and local mean-square convergence order of one-step explicit
approximations is established. Then, the global mean-square convergence rates are
investigated for RODE-Taylor schemes for general RODEs, Affine-RODE-Taylor
schemes for RODEs with affine noise, and It6-Taylor schemes for RODEs with 1t
noise, respectively. The theoretical convergence results are demonstrated through
numerical experiments.
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1 Introduction

Random ordinary differential equations (RODESs) are ordinary differential equations
(ODEs) that include a stochastic process in their vector field. More precisely, let
(£2, F,P) be a probability space and let n : [0, T] x £2 — R™ be an R"-valued
stochastic process with Holder continuous sample paths. A RODE in R¢

dy

= =f0m@), yeR! 1
is essentially a nonautonomous ODE:

dy

o Jo(y, 1) = f(y, n:(@)) 2

for almost all realizations w € §2. Therefore, RODEs can be analyzed pathwise with
deterministic calculus, but require further treatment beyond that of classical ordi-
nary differential equation (ODE) theory. While the rules of deterministic calculus
apply pathwise to RODE:s for a fixed sample path, the vector field function in (2) is
not smooth in its temperal variable. In fact, it is at most Holder continuous in time
when the driving stochastic process 7, is Holder continuous and thus lacks sufficient
smoothness needed to justify the usual Taylor expansions and the error analysis of
traditional numerical methods for ODEs. Such methods can still be used (see, e.g.,
[5, 11]), but will attain at best a fractional low convergence order.

Similar to stochastic ordinary differential equations (SODEs), higher order numer-
ical schemes for RODEs can be developed using Taylor-like expansions derived by
iterated applications of the proper chain rule in the integral form (see e.g., [1-4,
8-12]). The mean-square convergence of numerical solutions of ODEs with a ran-
dom initial value is discussed in [7]. The mean-square order for a class of backward
stochastic differential equations was investigated in [6]. The pathwise convergence of
numerical schemes for RODEs has received much attention (see, e.g., [3, 9, 10, 12]),
as the numerical calculations of the approximating random variables are carried out
path by path. However, there is no existing result on the mean-square convergence of
numerical schemes for RODE:s. In fact, the pathwise convergence rate does not imply
the same mean-square convergence rate in general.

The goal of this work is to investigate the mean-square convergence rates of
numerical schemes for various types of RODEs with different structures and noise.
The mean-square order of convergence, also referred to as the strong order, is an
important convergence index for numerical schemes of stochastic systems. A key cri-
terion to estimate the mean-square convergence order of numerical approximations
for SODEs was presented in (p. 12 [14]), where a fundamental convergence theorem
was established for the mean-square convergence order of a method resting on prop-
erties of its one-step approximation. Here, we follow a similar idea to that used in
(p. 12 [14]), and establish a general mean-square convergence theorem for numerical
solutions of the RODE (1). In particular, we develop the relation between the local
mean-square convergence order and the global mean-square convergence order of a
general one-step approximation for the RODE (1) (see Theorem 1 below).

The paper is organized as follows. First, a generic theorem on the mean-square
convergence order of one-step approximations for RODEs is presented Section 2.
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The theorem is then applied to establish the global mean-square convergence order of
various numerical schemes for RODEs. In particular, the global mean-square conver-
gence orders of RODE-Taylor schemes for general RODE:s are discussed in Section 3;
and the global mean-square convergence orders of affine-RODE-Taylor schemes for
RODE:s with affine noise are discussed in Section 4. Numerical experiments are car-
ried out in Section 6 to demonstrate the theoretical convergence results and some
closing remarks are provided in Section 7.

2 The mean-square convergence of a generic numerical
approximation for RODEs

When the vector field function f of the RODE (1) is continuous in both of its vari-
ables and the sample paths of the noise process n; are also continuous, the vector
field function f,, in the corresponding nonautonomous ODE (2) is continuous in both
of its variables for each fixed w € §2. Therefore, classical existence and uniqueness
theorems for ODEs can be applied pathwise.

Throughout this paper, it is assumed that:

(A1) The vector field function f : RY x R” — R? is at least continuously differ-
entiable in both of its variables and satisfies a one-sided Lipschitz condition,
i.e., there exists a constant L € R such that:

(frow) = fow),x—y) < Llx =y, Vx,yeR!, weR"
(A2) There exist constants a, b € R and p € N such that:
|f I’ <alwl” +bly>,  VyeR!, weR™

(A3) The noise process 7; is Holder continuous with finite pth moments; i.e., there
exists M,y = M,(T) > O such that E[|,|”] < M), forall ¢ € [0, T].

Here and in the rest of the paper, | - | denotes the Euclidean norm of a vector or a
matrix and (-, -) denotes the dot product on R¢.

Given any initial condition y(f9) = yo € £>(£2), Assumption (A1) ensures the
existence of a unique solution y(¢; tg, yo) of (1) for all future time ¢t > fg (see, e.g.,
[4, 16]). More generally, for any s > #g and & € R4, let y(t; s, &) be the solution for
(1) satisfying y(s) = &.

We consider a general numerical method to approximate the exact solution
y(t; to, yo) of (1). To start with, we assume a uniform partition on [#9, T] with

partition size h = T;,to , and denote:

thy1=t,+h or t,=to+nh for n=0,1,---,N.

Let ™ be a one-step numerical scheme with step size # and forn =0, 1,--- N — 1
let y,+1 be the one-step approximation of y(t,; to, y0):

Y1 = D1y, yu). A3)

@ Springer



302 Numerical Algorithms (2021) 87:299-333

Denote by E the expectation with respect to the probability measure P. Then, the
local mean-square error (MSE) for the approximation (3) reads:

L 5 1/2
&g = (Elyn+1 — Y(tut1; tus Yn)l ) , n=0,1,---,N—1,

and the global MSE for the approximation (3) reads:

G 5\ 172
Eiyl = (E|y,,+1 — Y(tn+1; t0, Yo)| ) , n=0,1,---,N—1.

The main goal of this section is to establish the relation between 5}?4—1 and EnL 1
In particular, we show that Elﬁr] is one order (of the step size &) lower than &£ L

n+1°
presented in the following theorem.

Theorem 1 Assume that the assumptions (A1)—(A3) hold, and let h € (0, 1]. If for
some C > 0 and y > 0, the local MSE satisfies the estimation:

12
5L+1SC(1+E|yn|2) R n=0,1,-- N —1, @

n

then for sufficiently small h, there exists positive constant K (independent of h) such
that the global MSE satisfies the estimation:
G 2\!/?
€0 = K (1+Eol?) “h, n=0,1,--- N 1.

Remark 1 Theorem 1 states that the global mean-square convergence rate of any
one-step approximation for RODE:s is one order less than the local mean-square con-
vergence rate. This result is consistent with the pathwise convergence rate for RODEs
[9]. The local MSE condition (4) is parallel to those used in Milstein’s convergence

theorem for SODEs [14, p. 12] and our result generalizes the deterministic case
(ODE?) to the pathwise random case (RODEjs).

The proof of Theorem 1 is based on a sequence of lemmas stated below. In par-
ticular, Lemma 1 provides a sequence of mean-square estimates of the true solution
V(th+1; ta, &) given y(t,; to, yo) = &, Lemma 2 presents a Gronwall type of iter-
ative difference inequalities, and Lemma 3 provides a mean-square upper bound
for the numerical solution y,. In the sequel, K represents a generic constant that
may depend on a, b, L, and My, but not on A, that may change from line to
line.

Lemma 1 For any ¢ € L*(2), ¢ € L*(2) and h < 1, there exists K =
K(a,b,My) > 0 such that the following inequalities hold for every n =
0,1,---,N:

D Ely(nsis . §FF < K1+ EIEP);

() Ely(ri:tn. §) —§* < K(1+EI§[*)h*;

(i) Byt s €)Yty . &) — )] < K1+ EIE[P)h:

) Ely(ness tn, §) = y(uris tn, I < HEJE - ¢
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Proof (i) First, note that solutions to (1) satisfy the integral equation:

(ii)

(iii)

t
y(@) = y(tn) +/ F(y(s), ns)ds
n

on every subinterval [#,, t,,41]. Thus,

Int+1

Yni1itn, §) =& + FO(s5tn, §), ng)ds. (&)

tn
Writing f(y(s; t,, &), ns) as f(y(s), ny) in short, taking the mean-square of
both sides of (5), and using the relationship (a 4+ b)*> < 2a* + 2b?, we have:
2
E|y(tnt1; 1, §)1* < 2E[E* + 2E

In+1
/ F (), ns)ds
In

Then using the Cauchy-Schwarz inequality and assumptions (A2)-(A3), we
obtain:

2 Iny1 2
2E|E]° + 2h Elf(y(s), ns)|“ds
1

n

Ely(tut1; tns )1

IA

IA

Ing1
2E|§|2+2aM,,h2+2bh/ E|y(s)|*ds.
th

Applying Gronwall’s inequality to the above inequality gives:

2
Ely (13 1, ) = 2627 (aMyh? + Elg ) < 262 max{aMy, 1) - (1 + Elg). (6)

Using the (5), the Cauchy-Schwarz inequality and Assumptions (A2)-(A3),
we have:

Ely(tut1; tn, &) — £

IA

In+1
" / E| £ (y(s), 1) Pds
th

IA

Int1
atyf i [ (Bly) - £ + Bl as
1)

n

IA

In+1
(aM,, +E|g|Hh? + bhf Ely(s) — £|ds.
In

Applying Gronwall’s Lemma to the above inequality gives:

ElY(tni1; tn, €) — E* < (aMy, + BIE)R%?” < max{aM,, 1}e” - (1 + EIg[P)h%. (7)

Using Jensen’s inequality, Holder’s inequality, and inequalities (6) and (7), we
obtain:

[E(y (tns15 0, §)s Y(tut1; tn, §) — &)

IA

Elynt15 10, 8)s y(tnt1s tn, ) — §)

12
(Bl 0 OP) - (Bl a1 0, ©) — 612)
< V2632 max{aM,, 1} - (1 + E[£]})h.

172

IA
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@iv) For any &€,¢ € L2(92), let y(t; ty, &) and y(t; t,, ¢) be the two solutions
to (1) with initial conditions y(¢,) = & and y(¢,) = ¢, respectively. Then, it
follows directly from (1) that:

d
T O, 8) =yt 0, 0) = fOE e, 8)om) — FOE s, 8y M)

Taking the dot product of the above equation with y(¢; t,, §) — y(¢; t,, {) gives:
d
37 Y@ 8) = y(Es OF =2(f 3 10, §), 1) = F G 10y 0, 00), Y(E5 1, )= y(E5 10, 0))

Then, by Assumption (A1),

d
3 @06 =y 0, OF < 2L 1@ 0,8 = y@ 6, OF . (8)
Integrating (8) from #, to #,41, we obtain:

1Yt 15 1 €) = Y(tag1; 1y O < 2| — ]2,

which implies immediately
E|y(tns13 1, §) = Y15 1, P < SHEJE — ¢

The proof is complete.

Lemma 2 [15, p. 7] Suppose that for an arbitrary N € N, we have:
upiy < (1 +vh)u, +8h", n=0,1,---,N
wherev > 0,8 > 0,7 > 1, u, > 0foralln =0,1,---, N. Then

8 -
Mn+1 E el)NhuO + _(eUNh _ l)hr 1'
v

Lemma 3 Let assumptions (A1)—(A3) and the local mean-square error estimate (4)
hold. Then, there exists K = K(a, b, L, My, T) > 0 such that:

Elyal> < KA +Elyol), n=0,1,--- N. ©)
Proof First notice that E|y,|?> < oo foreveryn = 1,2, ---, N, provided E|yp|?> <
oo. In fact, assuming that E|y;|> < oo for every k = 0, --- , n, then by the local

MSE estimate (4) and Lemma 1-(i):

Elynt11? < 2Elynt1 — Yttt fn, Y)I* + 2By (tns 15 1, y) |
e (1 + Elyn|2> B F2 4 2K (14 Ely,|?) < 0.

IA

It then follows from induction that |y, |2 <ooforalln =0, ---,N.

It is straightforward to check that the assertion (9) holds for n = 0. To estimate
E|y,|? forn > 1, we split y, as:

Yu = On — Y ta—1, Yn-1)) + s ta—1, Yn—1) — Yn—1) + Yn—1. (10)
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For simplicity, here we write y(#,; t,—1, yu—1) = Y(#;) when there is no confusion.

Then, taking the dot product of (10) with y, gives:

> = D1l + Iyn = Y@+ 13() = Yuo1 * + 2000 — (), Y1)
+2(yn—1, Y(tn) — Yn—1) + 2{yn — y(tn), y(tn) — Yn—1)- (11)

We next estimate the expectation of the terms on the right-hand side of the above

equation.
By the local MSE estimation (4), one has:

[Yn

Ely, = y(@) = €2 (14 Elyy1 ) 1742, (12)
From Lemma 1-(ii),we have that:
Ely(t) = ya—1* < K(1 +Ely,—1])h*. (13)
The Holder inequality and the local MSE estimation (4) lead to:

B — 36, 1) = (Blyu — yanP) " (Blyai?) " = K (14 By w74,

By Lemma 1-(iii), we have that:

E(ynfh y(tn) - Ynfl) = _E’b’nfl - y(tn)|2 + E(Y(ln), y(tn) - yn71>
< K(+Elyu1h.

Finally, using the Holder inequality and the estimations (12) and (13) above, we
obtain:

1/2
E{yn — y(t), y(tn) — yn—-1) < (Elyn - y(tn)lz) (EIy(tn) — Yn—1 |2>
K(1+Ely,—11*)h" 2. (14)

1/2

A

IA

Collecting estimations (11)—(14) and inserting into the expectation of (10), we
have that:

Elyal* < Elyu—1 + K1+ Elyu1)(h + h* + 071 4 1n27+2)
< Elyu—1> + K(1 + Elyu-11h = (1 + KDEly,—1 > + Kh,
in which K is independent of /. Taking into account Lemma 2, we obtain:
Elyal* < fTElyol* + X" =1 < KA +Elyl»), n=0,---,N,
where K depends on T, a, b, My, but is independent of /. The proof is complete. []

We are now ready to prove Theorem 1 as follows.

Proof of Theorem 1 First, we split the difference between y,+1 = yu41(t:, Y») and
Y(tn+1; fo, yo) as:

Y1 = Y(tat15 10, Y0) = Ynr1 — Y(Ent15 tay Yn) + Y(Ent1i ta, Yo) — Y(tus1i 10, o). (15)

Noticing that y(#,41; to, Y0) = Y(tut1; th, Y(tas to, Y0)), (15) then becomes:
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Y1 = Y1510, Y0) = Ynt1 — Y(Eut1i tay Yn) + Yt 15 tns Yu) — Y(tug1s Iy Y (tas To, Y0))-

Taking the dot product of the above equation with y,4+1 — y(#,+1; to, yo) and then
taking the expectation of the resulting relation gives:

2
(811G+1) =E |:|yn+l - Y(fn+1; In, yn)lz + ‘y(thrl; [ yn) - y(thrl; In, y(ln; to, yO))|2
F20nt1 = Yttt tus Yn)s Y{Eng 15 Ins Yn) = Y(nt1s ts (s 0. Y0))) ]
< E‘)’nJrl - y(tn+l; In, yn)‘z + E‘y(thrl; ty, yn) - y(tn+1§ ty, y(tn; 1o, yo))|2
Fh ™ Elyng1 — YCagt: tas Y[+ REIY g1 fns Yn) — Y(ng1s fus Yt f0, o)), (16)

By the local MSE assumption (4) and Lemma 3:
. 2 2\ 2y +2 2\ 12y +2
Elynst = ¥ttt 3) = K (14+Elya2) 2742 < K (1+ElyoP) 742 (17)
By Lemma 1-(iv),
2
ELY (15 b Vo) = Y1 s Yt 10, 30D = 2By, = y(aas 10, y0) P = 2 (£9) . (18)

Inserting inequalities (17)—(18) into (16), we obtain:

2 2
(£81)" = K (1+Elyol?) (a4 4+ h241) + 2P 41y (£6)
For sufficiently small £, there exists a positive constant v > 0 such that
"1+ h) < 1+ vh,

we then obtain
2 2
(8%1)" =10+ b (87) + K (1 + Byl

It then follows directly from Lemma 2 that

(T—10) _ 1

2 e
(£91)" = K +Elyo)————h*

3

which implies that

&% < K(L+Elyo»'/?h7,

where K is constant depending on #y, 7, L and the distribution of 7,, but not /4. The
proof is complete. O

2.1 Applications

As an introductory example, we first consider the explicit Euler scheme for the RODE

(1):
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Yn+1 = Yn +hf(yn7 nln)5 n=0719". 7N_17 (19)
where 7; is assumed to be a fractional Brownian motion (fBm).

Theorem 2 Let Assumptions (A2)—-(A3) hold and in addition replace Assumption
(A1) by

(A1)  the function f is globally Lipschitz in both of its variables.

Then, the mean-square convergence order of the Euler scheme (19) for (1) is H,
where H is the Hurst parameter of the fBm ;.

Proof We first estimate the local mean-square error of the scheme (19). Using the
integral representation of the solution (5), we have:

<€:1L+1)2 =E

=E

2

tn+1
Yn +/ SFGssta, yu)y ns)ds — yu — f (Y, 0i,)h
In

2

Int1
/ (f()’(S;tna Yn)> Ns) — f Ons ntn))ds
In

Then by Cauchy-Schwarz inequality and Fubini’s Theorem, we have:

2 ds. (20)

L 2 th+1
() < hf E| £ (53t ). 18) = £ G )
In

Write y(s; #,, y») as y(s) in short when there is no confusion. To estimate the
expectation inside the integral in the above inequality, write:

FOE),n9) = fOnni,) = FOG6),05) = FOns 0s) + Fns1s) — fFOns 01,)-
Then, by Holder’s inequality and (20):

2 Tht1
(850) =20 [ (BIFOO. ) = FOn )P+ B|70en) = £ ) as. 1)
In

Due to Assumption (A1), there exist positive constants M s such that:

[f (), ns) — f(nsms)l < Myply(s) — yul, (22)
| FOnans) = FOna )| < My |ns — s, | - (23)

Following (22), we have:
E1f((8),n5) = f G, 1> < MFE |y(s) =yl (24)

Furthermore, by the interpolation approximation y; = y, + (s — t;) f (yn, 1,) and
Assumptions (A2) and (A3) we obtain:

Ely@ =l = 2 (Ely) = 3P +Elys = 3al?) =2 (€5 + HELf G, mi,) )

2 ((55)2 e (aIEln,n ” 4 bJE|yn|2)) < 2(EL? + KR2(1 + Ely, ),
(25)

IA
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where EF = (E|y(s; ta, yn) — yn|2)]/2 for s € (ty, tyy1), and K is independent of
h. Then, it follows from (23) that:

2

2

E | f G 1) = £ Gns 0i,)| ™ < MFE |ns = m, (26)

Collecting estimates (24)—(26) and inserting into (21) give:

(5L+1>2 - 2hM2- /ln+1 (2 (ng)z n Kh2 (1 +E|Vn|2) +Elns — |2) ds
n = f o S 2 n
In 2 In
— KM (1 +IE|M2> +4hM}/’ ! (sf) ds +2hM}// " Elns — n, [2ds.

27

Since n; is a fractional Brownian motion with Hurst parameter H € (0, 1], then
Elny — Tlt,,|2 = K|s — t,|*" and thus:

Tnt1 E 2d K In+1 2Hd 1 hZH-‘rl
- = —t =— :
/tn Ins — ng,|°ds /t (s —tn)""ds HT1
Also, because H < 1, the inequality (27) implies:
2 nt1 2 2M>
L 2 L 274 2 S 2H+2
(sk1) = 4nm? /t (£F) ds + K M3 (1+Elya| )+mh
Int1 2
< 4hM,%/ (55) ds + Kh2H+2 (1 —HElynlz),
S
and by Gronwall’s inequality again, we obtain:
2
(sE1) = K (14 B, 2) 242,
Theorem 1 then implies that Efﬂ ~ O(h?) where y = H. O

Remark 2 The assumption (A1’) is imposed for convenience for exposition and may
be stronger than needed. In fact, our numerical experiments (see, e.g., Example 15)
indicate that the results of the theorem are still valid under conditions weaker than
(A1).

Remark 3 The convergence order established in Theorem 2 is the slowest possible
rate for the whole class of equations. One can always obtain better convergence with
some special equations such as linear RODEs or RODEs with simple noise processes.
For example, when 7; is a Brownian motion, the Euler scheme (19) can achieve a
convergence order of 1, or even higher for special function f. This does not contradict
with the result proved in Theorem 2.

In the following sections, we apply Theorem 1 to estimate the global mean-square
convergence rate for various schemes for a class of general RODEs, and for the spe-
cial classes of Affine-RODEs with affine noises and [t6-RODEs with It6 diffusion
noise.
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3 RODE-Taylor schemes for general RODEs

In this section, we first introduce the general framework of RODE-Taylor schemes
for the RODE (1), based on RODE-Taylor approximations, then investigate the order
of mean-square convergence for RODE-Taylor schemes. Here, we adopt the same
set of notations as those in [9] and [10] with slight modifications. For the reader’s
convenience, we summarize the necessary preliminaries below.

3.1 Preliminaries

For any nonempty set A and any , k € N, denote by A’ X'k the set of all / x k matrices
with entries in A. In particular, for i > 1 denote by N/ ' the set of all m x i matrices

with nonnegative integers. In addition, write Ngxo = Ng := {#}. Consider an ele-
menta = (ar, -+ ,a;) € Ng* withaj = (a1, - ,a;,) eNflforj=1,---,i
represented as:
a1 -0 i1
a=(ap,---,0)=
Arm - Qim
For such an a € N}, define ((a) := i.

Denote the set of all the above matrix-valued multi-indices by 2, := U;’iONg’Xi.
Then, for any a € 2, \{@} with ((a) =i > 1, we define:

al i=ap!cap,! g an!
lal == a1+ +am+-+ain+ A+ i
In particular, for a = (4, define:
(@) =0, gr.=1, |4] := 0.

Given such a matrix valued index a with («(a) = { > 1 and an m-dimensional
stochastic process n;, = (ntl, -+, ") with mutually independent component
processes, define:

m m

. i a .
A?’]taézl_[(Arh’g)akal=l_[<n§—r’[]) k,, k:l,-..,l

j=1 j=1

and the iterated integrals:

s s Si—1
17 ::/ / / (Anfs, - An)ds; - - dsy, Itff’s =1.  (28)
t t t

Then, 1% is a random variable for every ¢, s € R.
To derive an integral equation expansion of the solutions to the RODE (1), we
introduce the vector spaces over R of all smooth functions from R x R™*? to R?:

H; = CP(R? x R™* RY), Ho := C®R?, RY).
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Given a matrix multi-index a € 2l,,, with «(a) =i > 1 and a function ¢ € H,; of the
element (y, w) € R x R”*! with the components:

1
y wi,1 - Wi
y=1\ - and w= (wy, -, w;) = ' S
y Wim - Wim

define the linear differential operators ®; : H; — Hit1 by

Dip(y, wi, -+, wig1) 1= 0yQ(y, wi, -+, w;) - f(y, wir1),
and the a-derivative of ¢ with respect to w as
0% = uyy - il By B, - (29)

Let H := (J;2, Hi, then the differential operator ®; can be generalized to D :
H — Hby D¢ :=2;¢if ¢ € H; for somei € Ny. In addition, define the iterated
differential operator defined by:

D/ =Doo--0D. (30)
Jj times

Foreach p € Nand 9 <t < s < T, the integral equation expansion of the
solution to the RODE (1) reads [9, 10]:

p s St Sj—1 )
]:1 t t t

+/ts / f OPH Y (y(sp 1) Mo+ 2 NSt <+ dst, (B1)
where x : RY — R is the identity function defined by
XM=y, VyeR".
3.2 y-RODE-Taylor schemes

Assume that the driving stochastic process n; = (n,l, --+, ") in the RODE (1) has
Holder continuous sample paths. More specifically, assume that:

(A4) Foreach j = 1,---m, there exists b; € (0,1] and M; > 0 such that the
driving stochastic process n; satisfies:

E(m’—n!) SMth—slquf, g=12,---

Remark 4 Due to the Kolmogorov Continuity Theorem, Assumption (A4) implies
that ] has B-Hélder continuous paths for 8 € (0, b j)- In particular, b; = % when 7]

is a Brownian motion and b; = H if n] is a fractional Brownian motion with Hurst
parameter H.
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Define b := (b1, ..., b,)" € (0, 11™. Then, for any a € 2, with «(a) > 1, we
have:

al.lbl+ +al,mbm
= e RYZ,, R'Z"O::{(xl ..... xm) €R" 1x; >0,j=1,---,m},
a1 b1+ e +ai,mbm

a'b

and
laTblly :=bi(ar +---+ai) +-+ bp(arm+ -+ aim).
In particular, for a = ¢, define ||# T b|; := 0.
Consider specific subsets of matrix multi-indices of the form:

A = {aeQLm:L(a)—i—IlaTle <y+1}, y > 0.

Use the abbreviation: .
fa=— (009 x) € Huqw, (32)
al
where 9 and ©(® are defined acco;ding to (29) and (30), respectively.
Approximating D7/ x : R? x R"* — R in the integral equation expansion (31)
by a Taylor expansion in its first m x i variables, the RODE-Taylor schemes for the
RODE (1) can be constructed to be:

Yt = O y) = Y falmang L, (33)

ae},

where I8, is defined by (28), fq is defined by (32), and n,;"‘“ is the m x 1(a)
matrix:
gl

xu(a)
tn =

rh;ln “ e nz;l
3.3 Convergence analysis

In this subsection, we analyze the mean-square convergence rate of the general
RODE-Taylor scheme (33). Here, it is assumed that all components of the driving
stochastic process n; = (ntl, .-+, n") are mutually independent.

Theorem 3 Assume that assumptions (A1)—-(A4) hold. In addition, assume that:

(AS) f is infinitely often continuously differentiable in its variables and all partial
derivatives of f are bounded on [ty, T].

Then, given any y > 0, the global mean-square error of the RODE-Taylor scheme
(33) satisfies:

G N\ 1/2 )
Ey1 = (Ely(tn+1; 10, Y0) — Yn+1l ) < Kh?,

where K is a constant depending on ty, T, y, b, My, but independent of h.
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Proof The proof is based on the proof of Theorem 5.1 [10], but in the mean-square
sense with different details. For completeness, we provide all necessary details below.

Let r = [y] be the smallest positive number that is larger than or equal to y,
and write y(t,+1; tn, yn) as y(t,4+1) when there is no confusion. Then, the integral
expansion (31) gives:

" Int1 81 Si-1
Y(tnt1) = yn+2/ f / D' X (Vs Nsys* o+ > Ny )dsi -+ - dsy
i=1 In ty In

th41 51 Sr
+/ / / ©r+1X()7(Sr+l)» Msps s Ny )ASr41 -+ - dsy.
In In In

(34
Given w € £2 define the mapping G : [0, 1] — R by:
G() = D' (yn (@), 11, (@) + LAy, 4 (@), -, 1y, (@) + 2 Ay, (@)
Let b := min{by, ---, by}, and set k; := ’VV_TW-I — 1. Then, applying a Taylor
expansion of order k; to the function G gives:
, G(Ki)(()) 1 G+1) (1 =)k
GH)=GO)+GO)+---+ + [ GYTU () ————d.
K,’! 0 K,’!
It follows directly from the above equality that:
DA G Moo s) = D Falns 1) (Atggy )™ - (A, )%
lal<w;
aeNg ™!
+ ) (G D@ng ) (A, )™
|Cl|=l(,'—|l—l
aeNg ™!
1
/0 fa (Yn» Ny, + )LAUt,l,sla s, Ny, )LAnt,l,s[) 1 - )L)K[ dk) .
(335)
Inserting (35) into (34) results in
r
YD) =ya+ ) Y faGun DI+ Ri+ Ry, (36)
=l al <«
aeNg ™!
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where

Int1 S Sr 1
Ry = / / / "t X(y(sr+1),m1,-~- 777s,+1)d5r+1"'d517

Int1 @
R=y ¥ [ [ s e

=1 |a|=k;+1 "
aeNg>!

1
: (f fa (yn, Nty + AAN, 510+ 3 N, + )"Ant,l,si) (1- )M)K"d)x) ds; - - - dsi.
0

Now, notice that since |alb < ||a’ 81, we have:
A = [a € Wy i (@) +laT Bl <y + 1} clae,:lal <)
and thus (36) can be rewritten as:
Y(tns1) = DY (tn, yu) + R + Ra + Rs, (37)
with

,
= Z Z FaQne D - Iis -

= af<kg
aeNy > \AY,
Therefore, taking the dot product of (37) with itself then taking the expectation of
the resulting relation gives:

2 2
(5nL+1) =E ‘y(tn+l; fns Yn) — @}(/h)(tn’ Yn)
= EIRi|* + E[R2|” + E|Rs” + 2E ((R1, R2) + (R1, R3) + (R2, R3))
< 3E|R;|? + 3E|R2|)* + 3E|R3)>. (38)
We next estimate E|R;|%, E|R2|* and E|R3|>. Again, we denote by K a generic

constant that may change from line to line.
First, since all partial derivatives of f are bounded, there exists K > 0 such that:

2

hr+l
EIRI]” <K : (39)
(r+ D!
Second, due to Assumption (A4) and the independence among n,j , for every k =

1,--+,t(a) and s € [ty, th+1], We have:

m

2a i m .

E[an, ] = HE [(% %) } < K [Jsx —m)>0itr < Ki?himoests,
j=1

and therefore:
t(a) t(a)

[T [an® ] < & [Treeests = wie7n, 40)
k=1
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Fora € 2, and i = ((a) > 1, define the random variable:

Ry := sup [ fau, wi, ..., w)l,
[wil, -+, [wil <Moo
[u]=|yloo

where

1
oo == sup ((77})2+~-~+(n§”)2)2
telty,T]

Moo == sup (010?44 040?)

1€lto,T]

Then, there exists K > 0 such that:

r Sie L(CL)
ER)> <KY ), [/ / / HAn,n o Rads; - -~ ds }
i=1 |a|=K,‘—|'—1 fn
aeNg ™
r E[R In+1 sizp Y@ 2a
<kY ) / / / HIE [ Jdsi - dsy.
i=1 |u|=;q—H In
aeNg ™!
It then follows immediately from (40) that:
r
E[R 1 T
2 2|la b\||+21
E|Rof* < KZ > " (41)
= al=x;+1
aeNy™!
Following similar calculations, we can obtain:
r
ERP<KY. Y E[RZ] ojaTop 421 “2)

< (i)
= al=x

aeNg>h\21,
Collecting (39), (41), and (42) into (38) and putting i = ¢(a) results in:

2
(5 +1)2 _x Z E[Ra] |\ 2@ +1aTol)
n [(L(Cl)!]2
aeA,, \2},

(@)=<[yl+1
lal<[y/b]

Noticing that «(a) + [[ab]; = y + 1 for a € 2,,\}, and assuming that & < 1
we then obtain:

EF < K(y. b, f. Mph' T,

n
where K depends on y, the Holder property of 1, and smoothness of f, but
independent of 4.
The desired global mean-square error estimate then follows from the Lipschitz
estimate for CD,(,h) (see Lemma 10.4 [10]) and Theorem 1. L]
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3.4 Applications

Here, we present some explicit RODE-Taylor schemes for scalar RODEs (d = 1)
with Brownian motion or fractional Brownian motion.

Example 5 Scalar RODEs with scalar Brownian motions.
We have m = 1, b = () and

1 1 3 5
N _N = 01 ) 11 ) 25 P .
0+ 3% { 2272 }

The multi-index set for a y -RODE-Taylor scheme is:
v 1
A =qae 3L(ﬂ)+§||ﬂ||1 <y+1;.
In particular consider y = % 1, % 2 with:

1
A2 = {4, (0}, A =1{0,0), D)}, A =1{2,(0), (1), (2),(0,0)],
A3 = {0, (0), (1), (2), 3), (0,0), (0, 1), (1, 0)} .

The corresponding RODE-Taylor schemes are:

yurt = @ =y, + hf 43)
’ trl+l
yur1 = @ =y, +hf + £ / Any, 5ds, (44)
. 21 h?
et = O =t 4D Gl + S @
P

3 2
h Ui h 1,0 0.1
yiet = @37 =yt B DS L S S fas P Sy
i=1 "

(46)
where /; | are defined by (28), and f and all partial derivatives of f are evaluated
at (Yu, 1, )-

The above schemes (43)—(46) have global mean-square convergence rates of 1, 1,
%, and 2, respectively (see Examples 14-(i) and 15-(i) in Section 6).

Remark 6 The Euler scheme (43) achieves a convergence order 1 instead of % due
to the special noise process of Brownian motion. This will be further explained in
Example 12 and Remark 13 in Section 5. Note this does not contradict the result in
Theorem 3, as stated in Remark 3.

Example 7 Scalar RODEs with scalar fractional Brownian motion with Hurst
parameter H.
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Wehavem = 1,b = (H) and
{0,H,1,2H, -}, He (3.1
No + HNp = |
{0,H,2H,---,1,---}, He (0,5

The multi-index set for a y -RODE-Taylor scheme is:
A ={aeA () + Hlall; <y +1}.

1. For H e (% l), we consider the particular case y = H, 1, 2H with

A =10}, A =1 0. D), W =00, 1), ©00).
The corresponding y-RODE-Taylor schemes read:

Yat1 = PW =y, + hf 47)
(h) tﬂ+l
ynit = @ =y, +hf + fy f Any, 5ds, (48)
tn

2
—, 49
> (49)
with global mean-square convergence rates of H, 1, and 2H, respectively (see
Examples 14-(ii)/(iii) and 15-(ii)/(iii) in Section 6).

To achieve a convergence rate of 2 as the scheme (46) does, we need more
information of H. For example, with H = %:

=M= h " A h
Yn+1 = Py =yn + f+fr) Nty,s s+fyf
n

3
A = {a €A (@) + llally < 3} = {4, (0), (1), (2), (0,0, (1, 0), (0, D}

and the corresponding 2-RODE-Taylor scheme reads:

2 2
1 . ; h
h 1,0 0.1
Yt = @3 = Ynthf+) i—,ai,flzg,)z,,ﬂ+fyf?+fn,yflti,tn)+1+fyfnlti,tn)+1'
i1’
(50)

2. For H € (O, %), we consider the particular case y = H, 2H with:
A =0, ), A7 =19, 0), (1), (0,0)}.
The corresponding y-RODE-Taylor schemes are the same as (47) and (49) with
global mean-square convergence rate of H and 2H, respectively (see Examples
14-(ii) and 15-(ii) in Section 6).
To achieve a convergence rate of 1 or 2 as above, we need more information
of H. For example, for H = %

1
Aj = {a €Ay (o) + 3llal < 2} = {4, 0), (D), @)},

#.(0), (1), (2), 3), 4, (5), (0,0),
0, 1),(0,2),(1,0),(1,1),(2,0) ’

and the corresponding 1- and 2-RODE-Taylor schemes read:

1
A2 = {ae?ll :c(a)+§||a||1 < 3} ={
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2
/ Loi G
w1 = O =y hf Y SO, (51)
i=1

S 2
Lo h 0.1 1,0
st B Y SO L S S S fali + Sy
i=1

h

Yn+1 = q)é )
11 1 0,2 1 2,0

Ly Fuliig 5 FoSun Ty + 5 Fony Flii (52)

The schemes (51) and (52) have mean-square convergence orders of 1 and 2,
respectively (see Examples 14-(iii) and 15-(iii) in Section 6).

Example 8 Notice that when m > 1, Assumption (A4) allows different components
of n; to have different Holder properties. In this example, we consider RODEs with a
2-dimensional stochastic process 1, = (77,1, 17t2)T where 77} is a Brownian motion and
71;2 is a fractional Brownian motion with Hurst paramet er H = %, ie,b = (%, %).
Then, we have:

o o+ o= o b 20,82 208,50,

and the multi-index set for a y-RODE-Taylor scheme is:

t(a) 3L(a)
Y _ .
A = aemz.t(a)+§;ak,1+zgak,2 <y+1

In particular, we consider y = %, 1, % with
1 0 0 0 1
7 1_
w={o(o)f = (0)-(7)- (o)}
15 0 0 1 1 2 00
=10 (5)- (1) (0)-(1): (3)-(50)}-

Hence, the corresponding %-, 1-, and 1.5-RODE-Taylor schemes are:

Vil = ‘”(;) = yo+hf, (53)

") Iyl | Iny1 2

Yar1 = " = v +hf + fy f An ds+ f2 / An? (ds (54)
th 1

2

7.

(55)

_ ) _ M KA 2 o Fatg [ N
Y+l = (D% = CDI + ‘fn],nz Ant,,,sAnt,,,sd‘s + > Ant,,,s ds+ fy f
I In

The global mean-square convergence orders for (53), (54), and (55) are %, 1, and
%, respectively (see Example 16 in Section 6).
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4 Affine-RODE-Taylor schemes for RODEs with affine noise

In this section, we consider a special type of RODES with affine noise [3, 9],
formulated as:

m
i—f =gt y)+ Y ojt, i, y(t) = yo. (56)
j=1

where y € RY and the noise process 7; = (ntl, -+, nf") takes values in R™.
Here, the sample paths of 7, are assumed to be continuous, and the coefficients o,
j =1,---,m are assumed to be sufficiently smooth real-valued functions satisfying
appropriate conditions to ensure the existence and uniqueness of solutions to (56) on
the whole time interval [7g, T].

When g(t,y) = g(y) and 0;(t, y) = 0;(y), the RODE-Taylor approximations
introduced in Section 3 can be applied to the vector field f(y,n;) = g(y) +
27:10 i (y)n to obtain RODE-Taylor schemes of various mean-square convergence
orders. Here, we introduce the affine-RODE-Taylor framework due to Asai and
Kloeden [3] that deals with nonautonomous affine RODEs (56) and may achieve a
different rate of convergence compared with RODE-Taylor schemes when g and o
do not depend on ¢. For readers’ convenience, the hierarchical sets and vector-valued
multi-index notations used in [3, 13] are summarized below.

4.1 Preliminaries

Let A, be the set of all /-dimensional vectors with components valued in the set
{0’ 17"' ’m}:

Ap = o=@, ap 0.1, m sl e No}, (57
where [ = £(«) is the length of vector «. In particular, £(¥) = 0. For any o =
(a1, -+, ) € Ay with £(a) =1 > 1, denote by -« and «- the multi-indices in A,
obtained by deleting the first and last components of «, respectively, i.e.:

-o = (0o, -+, qp), a-=(ay, -, 0-1).

Given y € N, let A};l be the hierarchical set of vector-valued multi-indices given
by:

Al i={a e Ay l(a) < y).
In addition, define the reminder set R(Al,) by:
R(AL) = {a € Ap\A} 1 -2 € AL}

Then, R(AL) consists of all the next following multi-indices with respect to the
hierarchical set A, that do not belong to .A},. Obviously, R(A},) = A,);H \Ap,.
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For any @ € A,, with £(«) = [ and an integrable function ¢ : [fy, T] — R, define
the multiple integral J[¢(-)]7 ; as:

¢ (s), =0

/ SJ[¢(~)]§’f;n?’dt, [>1 (58)
t

JPON, =
In particular, when ¢ = 1, write J[1] as Jf in short.
Denote by ¢* the k-th component of an R%-valued function ¢. For y =

(', ---y?) e R and the Rd-v_alued functions g and o; in (56), define the partial
differential operators D° and D/ by:

0 0 ; 0 .
D0=—+Zg’<7 Djzz%lfm, j=1,-,m. (59)
k k

Given a vector-valued multi-index o € A, and a sufficiently smooth function ¢ :
[to, T x RY — R, the coefficient function @y 1s defined recursively by:

e ta) =0,
b= DUg,, @) > 1

Then, the .A},-RODE-Taylor expansion of ¢(t, y(¢)) for a solution y(¢) of the RODE
(56) reads:

ety = Y gulto.y) L+ Y Tlgal YOI,
acAl, aeR(AL)

In particular, let ¢ = x, the identity function on R? with xX(y) = y* for k =
1,---d. Then, given any y(#,) = yy, the solution of the RODE (56) can be written
componentwise as:

O titnyn) = Y Dx v I+ D TIDXRCoy(DIE . (60)
acAl a€R(AL)

where J is defined as in (58) and DY = D*1'D% ... DY with D/ defined as in (59)
forj=0,1,---m.

Affine-RODE-Taylor schemes are constructed systematically using the affine-
RODE-Taylor expansions (60) on each finite subinterval [t,, t,+1], deleting the
remainder term on the right-hand side of (60). More specifically, the y-affine-RODE-
Taylor scheme is given componentwise by:

Ve =0 = Y DO I, k=1d (6])

ac Al
4.2 Convergence analysis
In this subsection, we analyze the mean-square convergence rate for the y-affine-
RODE-Taylor scheme. The analysis is based on Theorem 2 in [3], but in the mean-

square sense with different estimations. Here, all the stochastic processes n,l, el
are assumed to be mutually independent and satisfy:
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(A6) there exists C > 0 such that

sup E |/
telty,T]

2
‘ <C,  j=1,,m

Theorem 4 Let Assumptions (A1)—(A3) and (A6) hold, and assume that all deriva-
tives of g, 01, - - -, oy and all the multiple integrals of stochastic processes appearing
in (60) exist. Then, given any y > 0, the affine-RODE-Taylor scheme (61) has a
global mean-square convergence order of y.

Proof The local mean-square error for the k-th component of y -affine-RODE-Taylor
scheme (61) is given by:
1
2\ 2
el =Bl > I eyl |
aeR(A))

and satisfies

2
(g’f—‘;-kl) S K Z E ‘J[Daxk(’ y(.))]zatnﬁ—]
a€R(AL)

First, note that under standard assumptions, the RODE (61) has a unique solution
on the finite interval [#p, 7] with continuous path. Thus ,for any w € 2, there exists
R = R(T, w) such that |y(t, w)| < R(T, w) forall ¢ € [tg, T]. Moreover, there exists

C = C(D"x, ty, T) > 0 such that |D*x*(¢, y(1))| < C forall ¢ € [to, T] (see [3]).
Therefore:

T X Gy

Int1 SI 52 i o
= / / / DY x"(s1, y(s)mg,! -+ n5y Mg dsy -+ -dsy
tll tn tII

In+1 S 52 @
o] - o
. UIRRRY dsy ---dss
rn t’l fn

where [ = £(«). Then, by Holder’s inequality:

2 P 2 W12 a2
SCh/ / / - I Pl sy - - .
tn tn tn

Taking expectation of the above inequality and using Assumption (A6) and the

IA

C

)

TID* X oy,

independence among n/, we obtain:

2 ! g1 pSI s ! 2
§Ch/ / / [En ] dsi---ds
n In n i=1

In41 S1 52
Khl/ / / dsy ---ds; < Kh?.
tn t)l tn

E|J[D*x* (-, y()1Z

ty, tn-H

IA
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Sincey e N (o) =1 >y + 1forala € R(AL). Therefore, assuming h < 1
we obtain immediately that:

2
E[JID oy, [ = KROHD Vo e R(AY).

Iyl

2
which implies that (é’nL +kl> < Kh?7+D 1t then follows immediately that:

1

d 2
2
L L.k +1
gL, = <§ (&) ) < Kn'H,
k=1

and by Theorem 1 the y-affine-RODE-Taylor scheme (61) has a global mean-square
convergence order of y. O

Next, we present some explicit y -affine-RODE-Taylor schemes for scalar RODEs
with affine noise. In particular, for comparison purpose, we consider autonomous
examples with g(¢, y) = g(y) and 0 (t, y) = o;(y) for j =1, ---m. Then:

D% = g¢', D/¢p =0;¢', V¢ smooth.
Example 9 Consider the RODE (56) with d = m = 1. The hierarchical sets A’l/ for
y =1, 2, 3 are, respectively:
Aj = {0, 0), (D}, AT = {8, (0), (1), (0,0, 0, 1), (1,0), (1, D},

3= 12, 1), 0,0,0,1),(1,0), 1), (©,0,0), (0,0, ),
1'71(0,1,0),(0,1,1),(1,0,0), (1,0, 1), (1, 1,0), (1, 1, 1) '

Then, the corresponding 1-, 2-, 3-affine-RODE-Taylor schemes read:

) Iyl
Yn+1 = lp] =y +gh+ U/ nsds, (62)
h
1
vt =W = 0 4 2 gg 4 g0 0D + g T 4+ o0 S0, (63)
h h 1
Vgl = ‘1,3( ) — l]/z( )+ g [g(gg/)/h3 + (go/)/Jrio,O,l) + (Ug/)/Jrio,l,O) + (UU/)/«Irio'Ll):|

o [(g8) 1100 + (g 10D 4 (@) 0 4 00y gD,
(64)

where g, o, and their derivatives are evaluated at (#,, y,), and the integrals J* =
J [1];’;’ st The global mean-square convergence orders of (62), (63), and (64) are 1,
2, and 3, respectively (see Example 15 in Section 6).

Example 10 Consider the RODE (4.1) with d = 1 and m = 2. The hierarchical sets
.A; for y = 1, 2 are, respectively:

Ay = {9, 0), (1), @},
A3 = {2, (0), (1), (2), (0,0), 0, 1), (0,2), (1,0), (1, 1), (1,2), (2,0), 2, 1), (2, 2)} .
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Then, the corresponding 1-, 2-affine-RODE-Taylor schemes read:

(/‘l) Int1 1 Int1 2
Y1 =¥ = yn+gh +01/ nsds +02/ nyds, (65)
In th
1
=" = o 1 g [Eg’hz +o1 00 + 02’1,5“)} +o [g’J,ﬁ‘vO) + a{J,§1=‘)]

+010371? + oy [g/J,EZ'O) +0[J2D 1 o) J,ﬁm] , (66)

where g, o1, 02, and their derivatives are evaluated at (7, y,), and the integrals
JE=17 [1]‘;"1 T The global mean-square convergence orders of (65) and (66) are 1
and 2, respectively (see Example 16 in Section 6).

5 1t6-RODE-Taylor schemes for RODEs with It6 diffusion processes

In this section, we investigate mean-square convergence of RODEs driven by an Itd
diffusion process, i.e., the solution of an It6 SODE. In particular, consider a RODE
on R%1:

dy
prl Fun), o) = yo, (67)
where 7, is the solution of an Itd SODE in R%:
m
dn, = pu(n)de + ) pj(n)dw/ (68)
j=1
with m-independent scalar Wiener processes W,l, e, W

In this section, we again assume the standard assumption holds, i.e.:

(A7) All the coefficients u, p1, -+ pn and the vector field f are infinitely
often continuously differentiable in its variables and all partial derivatives are
bounded on [z, T']

It is straightforward to verify that under Assumption (A7), the solution n, =
-, nfz) of the SDE (68) satisfies:

Elg) —ni <Klt—sl% j=1,--,d, VYg=12,---.
Therefore, Assumption (A4) is satisfied with b; = % forall j = 1,---,d and all
the RODE-Taylor schemes introduced in Section 3 can be applied here with b =
( %, e %) and attain their orders as shown in Section 3.

On the other hand, the system (67)—(68) can also be simulated via stochastic ordi-
nary differential equations (see [1]). For comparison purpose, we also present the
convergence analysis for numerical schemes for the RODE (67) via SODEs. More
precisely, for y(¢) € R% in (67) and n; € R% in (68), let Y (1) = (y(t), ;)" . Then,
(67) and (68) can be formulated as an SODE in d = d| + d:

dY () = F(Y)dt + Y _ G,;(Y)dW/ (69)
j=1
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_ f(y’nt) . — O
Fm_( (i) ) G-’(Y)‘<p,-(m)>'

5.1 Preliminaries

with

Let A,, be defined as in (57) and define the hierarchical set of multi-indices:
1
Ay = {a € Ay () + n(a) <2y or £(a) = n(a) = y+§},
where £(«) is the length of o and n(«) is the number of zero components of «.

Given a multi-index o« = (aq,---, o) with £(«) = [ > 1, define the multiple
integrals:

Tnt1
/ f / AW dwy AW, with IV =1.  (70)

In addition, for any smooth enough scalar-valued function ¢ of ¢ and Y, define the
differential operators:

30 L 9
£0 — k Gk ,
¢ ot +}; ark ts Z Z faYkaYl

kll/l

1)

a¢p
k .
Li¢ = E GJB j=1--,m,

where the superscript k denotes the k-th component of a vector-valued function.
Moreover, L% := L% ... LY fora = (ay, -+ , o).
The y-1t6-Taylor scheme for the SDE (69) reads:

Yoy1 = Z ﬁaX(tns Yn)Ig,

0
aEAV

and has a mean-square convergence order of y [13]. In particular, the y-component
of the y-It6-Taylor scheme gives the y -1t6-RODE-Taylor scheme:

Vo1 =0t yn) = D LYK s yuo )Y k=12, . d),

aeA?/
where Z is defined as in (70) and

Ag ={a e A}, C Al :a =0 or £(a) > 1 with last component g = 0} .

Remark 11 The smaller set A?, is used because the coefficients corresponding to

A,,\Ag are annihilated as the diffusion coefficient component is 0 in the RODE
component of the system (69) (see [1]).
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5.2 Applications

Some explicit It6-RODE-Taylor schemes for scalar RODEs (d = 1) with scalar 1t6

diffusion processes are provided below.

Example 12 For y = 1, Ay = {#.(0). (1)} and AY = {#, (0)}. Thus the
2

corresponding %-It()-RODE-Taylor scheme reads:

Yot = Oty yu) = Yo + hf Gns 1), (71)
2

which is the Euler scheme.

Fory =1, A1 = {0, (0), (1), (1, 1)} and A? = {@, (0)}. The corresponding 1-
1t6-RODE-Taylor scheme y, 1 = ® l(h) (tn, yn) coincides with the Euler scheme (71).
Thus, the Euler scheme (71) has a mean-square convergence order of 1 (see Examples
14-(i) and 17 in Section 6).

Remark 13 The Euler scheme (71) can be derived from the %—RODE—Taylor scheme
@ in (43) and from 1-1t6-RODE-Taylor scheme ©'" in (71). It coincides with the
2 2

1-1t6-RODE-Taylor scheme and thus achieves a convergence order of 1 instead of %

w

For y = %, Az = {0, (0), (1), (0,0), (0, 1), (1,0), (1, 1), (1, 1, 1)} and

[N}

A% =1{0,(0), (0,0, (1,0)}.

The corresponding %-Itf)-RODE-Taylor scheme reads:

—_ oW _ h 7(1.0) lhz l 2 72
}’nJrl—O% (tn,}’n)—)’n"‘f +:0fn n +2 ffy+ﬂfn+2p f’]sﬂ ’ ( )

where f and all its partial derivatives are evaluated at (y,, 1;,), o and u are evaluated
at 7;,. The It6-RODE-Taylor scheme (72) has a global mean-square convergence
order of % (see Example 17 in Section 6).

For y = 2, Ay = A% U {©,1,D,(1,0,1),1,1,0),(1,1,1,1)} and

Ag = {0, (0),(0,0),(1,0),(1,1,0)}. The corresponding 2-1t6-RODE-Taylor
scheme reads:

1 1
h
et = 03"t yn) = o+ [+ T + 51 <ffy + iy + Epz.fn,n)
+ (00" fu + 02 fy) T, (73)
where f and all its partial derivatives are evaluated at (y,, 7y,), p, o', and u are evalu-

ated at 1;, . The It6-RODE-Taylor scheme (73) has a global mean-square convergence
order of 2 (see Example 17 in Section 6).
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6 Numerical experiments

In this section, we conduct numerical experiments to demonstrate the mean-square
orders of convergence for different schemes presented in Sections 3, 4, and 5. In
particular, we simulate:

(D A scalar RODE with scalar noise process being Brownian motion or fBm;
(I) ~ A scalar RODE with scalar affine noise being either Brownian motion or fBm;
(IIT) A scalar RODE with 2-dimensional affine noise consisting of one Brownian
motion and one fBm;
(IV) A scalar RODE with scalar It6 diffusion noise.

Let M be the sample size of the Monte Carlo simulation. Fori = 1,---, M,
denote by y ) the numerical approximation to the true solution y)(¢,; fo, yo) at the
time instant 7,. The mean-square error £ 1 1s simulated by:

12
n+l ( Z |y(l) (i)(tiz§ to, y0)|2)

to verify the mean-square convergence order of various numerical schemes. In all the
numerical experiments below, the sample size M is chosen to be 1000 and the “exact”
solutions are calculated numerically with high precision (the integral is evaluated as
a Riemann sum with 20,000 subintervals).

Example 14 Consider the scalar RODE:

d
d—f = —y+cosm.  y(0) = yo. (74)

For each realization n(i ) (74) has the explicit solution:

t
y (20, yo) = yoe ' + e_l/ e’ cos n‘g’)ds.
0
The initial valued is picked to be yg = 1 and the final time is picked tobe 7' = 1.

(1) Assume that n; is a Wiener process. The Euler scheme (43) of order 1, the
RODE-Taylor schemes (44) of order 1, (45) of order % and (46) of order 2 are
applied to simulate the RODE (74). The global mean-square errors S’?H versus
the time steps h = 271 i =3,4,56,7,8are plotted in Fig. 1. The two dashed
lines are reference lines with slopes 1 and 2, respectively

(ii)) Assume that nt is an fBm with Hurst parameter . The RODE-Taylor schemes
47) of order 3 7> (48) of order 1, (49) of order 2 5, and (50) of order 2 are applied
to simulate the RODE (74). The global mean-square errors 6’f+1 versus the
time steps h = 27 i =3,4,5,6,7,8 are plotted in Fig. 2. The two dashed
lines are reference lines with slopes 0.75 and 2, respectively.

(iii) Assume that 1, is an fBm with Hurst parameter ; The RODE-Taylor schemes
(51) of order 1 and (52) of order 2 are applied to simulate the RODE (74).
The global mean-square errors £ 1 versus the time steps & = 27 i =
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1 Brownian motion

G
ntl
|

(4]

S s i —©—— 1.0-RODE-Taylon:
Ciiiiiiiiii —A—— 1.5-RODE-Taylof’
oo = 2.0-RODE—-Taylorn"

10 107"
stepsize A

Fig. 1 RODE-Taylor schemes for (74) with Wiener process

3,4,5,6,7, 8 are plotted in Fig. 3. The two dashed lines are reference lines
with slopes 1 and 2, respectively.

Example 15 Consider the scalar RODE with affine noise:
dy —2y 1 —2y
ey L 0) = yo. 75
” e 7€ ul y(0) = yo (75)

For each realization n(i ) (75) has the explicit solution:

. 1 o
y (0, yo) = 3 In (ezyo +/O " — 2)dS> :

Pl . : ] —e— 0.75—RODE—_Taylod:

Sl : - : - —4—— 1.0-RODE-Taylor
——— 1.5—RODE—-Taylor
—<—— 2.0-RODE—-Taylor

3

10 10
stepsize A

Fig.2 RODE-Taylor schemes for (74) with fBm with Hurst parameter %
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fBm with = 1/3

.................................... 1.0_RODE—_Taylof’
—4—— 2.0-RODE-Taylo

10 107"
stepsize h

Fig.3 RODE-Taylor schemes for (74) with fBm with Hurst parameter %

The initial valued is picked to be yop = 1 and the final time is picked tobe 7 = 1.

(i) Assume that n; = sin W;, where W; is a Wiener process. The Euler scheme
(43) of order 1, the RODE-Taylor schemes (44) of order 1, (45) of order % and
(46) of order 2, and the affine-RODE-Taylor schemes (62) of order 1, (63) of
order 2, and (64) of order 3 are applied to simulate (75).

The global mean-square errors EnGH versus the time steps & = 27, i =
3,4,5,6,7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor
schemes are plotted in Figs. 4 and 5, respectively. The dashed reference lines
in Fig. 4 have slopes 1 and 2, respectively, and the dashed reference lines in
Fig. 5 have slopes 1 and 3, respectively.

- Brownian motion
T — —

—><—— Euler :
—o— 1.0—-RODE-Taylor|.
—4—— 1.5—-RODE—-Taylor
—F— 2.0—-RODE—-Taylor|

10 107"
stepsize h

Fig.4 RODE-Taylor schemes for (75) with Wiener process
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Brownian motion

10 F g547 i i{ —o— 1.0-Affine—_RODE—Taylo}3
: : | —&—— 2.0-Affine—_RODE—Taylof-
: —F—— 3.0—Affine—RODE—-Taylor-
1077 — —
10 10

stepsize h

Fig.5 Affine-RODE-Taylor schemes for (75) with Wiener process

(i) Assume that n; = sin B% (1), where B% (#) is an fBm with Hurst parameter %.

The RODE-Taylor schemes (47) of order %, (48) of order 1, (49) of order %,
and (50) of order 2, and the affine-RODE-Taylor schemes (62) of order 1, (63)
of order 2, and (64) of order 3 are applied to simulate (75).

The global mean-square errors EnGH versus the time steps h = 27, i
3,4,5,6,7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor
schemes are plotted in Figs. 4 and 5, respectively. The dashed reference lines
in Fig. 6 have slopes 0.75 and 2, respectively, and the dashed reference lines in
Fig. 7 have slopes 1 and 3, respectively.

fBm with H = 3/4

[ —e— 0.75—-RODE—Taylol:
1 —&— 1.0-RODE-Taylor

|1 —=— 1.5—RODE-Taylor

—<—— 2.0-RODE-Taylor

stepsize h

107"

Fig.6 RODE-Taylor schemes for (75) with fBm with Hurst parameter %
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fBm with H = 3/4

] —oe—— 1.0-Affine—RODE-—-Taylor]]
1 —=&— 2.0-Affine—RODE-Taylof*
1 —H=— 3.0—-Affine—RODE—-Taylofr-

10 107"
stepsize h

Fig.7 Affine-RODE-Taylor schemes for (75) with fBm with Hurst parameter %

(iii) Assume that n, = sin B%(t), where B%(t) is an fBm with Hurst parameter
%. The RODE-Taylor schemes (51) of order 1 and (52) of order 2 and affine-
RODE-Taylor schemes (62) of order 1, (63) of order 2, and (64) of order 3 are
applied to simulate (75).

The global mean-square errors Erﬁrl versus the time steps h = 277, i =
3,4,5,6,7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor
schemes are plotted in Figs. 8 and 9, respectively. The dashed reference lines
in Fig. 8 have slopes 1 and 2, respectively, and the dashed reference lines in
Fig. 9 have slopes 1 and 3, respectively.

fBm with 7 = 1/3

—&—— 1.0-RODE-Taylorn
—4A—— 2.0-RODE-Taylo

10 107"
stepsize h

Fig.8 RODE-Taylor schemes for (75) with fBm with Hurst parameter %
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Example 16 Consider the scalar RODE with 2-dimensional affine noise process
consisting of one Brownian motion and one fBm:

d
d—f = —cos? y+ (cos2 y)n,1 + 2(cos2 y)n,z. (76)

For each realization n® = (!,

t
y®(2;0,0) = tan™! (/ ()@ 42720 — l)ds) :
0

r],z(i)) (76) has the explicit solution:

The initial valued is picked to be yg = 1 and the final time is picked tobe 7' = 1.
3
Assume that n,l = sin W;, where W, is a Brownian motion and 77[2 = sin B;‘,
3

where B is an fBm with Hurst parameter %. The RODE-Taylor schemes (53) of
order %, (54) of order 1 and (55) of order 2, and the affine-RODE-Taylor schemes
(65) of order 1 and (66) or order 2, are applied to simulate (76).

The global mean-square errors éﬁrl versus the time steps h = 27/, i =
3,4,5,6,7, 8using the RODE-Taylor schemes and the affine-RODE-Taylor schemes
are plotted in Figs. 10 and 11, respectively. The dashed reference lines in Figs. 10
and 11 have slopes 1 and 2, respectively.

Example 17 Consider the scalar RODE with scalar 1t6 diffusion noise:

dy

PPl + cosny, y(©0) =1, (77)
1

dn, = —Eazn,dt +ay/1— n,de,, no = 1. (78)

fBm with #Z = 1/3

—6— 1.0—-Affine—RODE—-Taylorj

| —&— 2.0-Affine—RODE-Taylor:
1 —8— 3.0-Affine—RODE-Taylo

10 107"
stepsize h

Fig.9 Affine-RODE-Taylor schemes for (75) with fBm with Hurst parameter %
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Browmnian motion and fBm with H = 3/4

G
n+l

—S— 0.5—RODE-Taylor’
—&4—— 1.0-RODE-Taylor
—=— 1.5-RODE-Taylon]

10 107"
stepsize h

Fig. 10 RODE-Taylor schemes for (76) with Wiener process and fBm
For each realization Wt(i), the solution to (78) gives:
. . . n
r)t(’) = sin (aWt(l) + E>

and the explicit solution to (77) is then:
. t . T
vyt 0,1) =" + e’t/ é* cos (sin (aWS(’) + 5)) ds.
0

The initial valued is picked to be yo = 1 and 9 = 1, the final time is picked to be
T =1, and the parameter a = 1.

Brownian motion and fBm with H = 3/4

—o— 1.0-Affine—RODE—-Taylo
—4A—— 2.0-Affine—RODE—-Taylo

10 107"
stepsize h

Fig. 11 Affine-RODE-Taylor schemes for (76) with Wiener process and fBm
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Ito diffution noise

——— 1.0-It6-RODE-Taylor
—A—— 1.5-Ito-RODE-Taylor
—=— 2.0-It6-RODE-Taylor |.

10 107"

stepsize h

Fig. 12 It6-RODE-Taylor schemes for (77)—(78) with Itd diffusion noise

The 1t6-RODE-Taylor schemes (72) of order %, and (73) of order 2, are applied to
simulate solutions to (77)—(78). The global mean-square errors Erf; ’\1 versus the time
steps h =27',i = 3,4,5,6,7, 8 using the [t6-RODE-Taylor schemes are plotted in
Fig. 12, where the dashed reference lines have slopes 1 and 2, respectively.

7 Closing remarks

The pathwise convergence rates for RODE-Taylor schemes were studied by Jentzen
and Kloeden in [10], and the pathwise convergence rates for affine-RODE-Taylor
schemes were studied by Asai and Kloeden in [3]. In this work, we first establish a
generic theorem on the relation between local and global mean-square convergence
rates for RODEs. Then, we investigate the global mean-square convergence rate for
each of the RODE-Taylor, affine-RODE-Taylor, and 1t6-RODE-Taylor schemes. It
appears that the mean-square convergence rate is ¢ order higher than the pathwise
convergence rate (see, e.g., [9, 12]) for the same scheme.
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