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Abstract
The aim of this work is to analyze the mean-square convergence rates of numeri-
cal schemes for random ordinary differential equations (RODEs). First, a relation
between the global and local mean-square convergence order of one-step explicit
approximations is established. Then, the global mean-square convergence rates are
investigated for RODE-Taylor schemes for general RODEs, Affine-RODE-Taylor
schemes for RODEs with affine noise, and Itô-Taylor schemes for RODEs with Itô
noise, respectively. The theoretical convergence results are demonstrated through
numerical experiments.
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1 Introduction

Random ordinary differential equations (RODEs) are ordinary differential equations
(ODEs) that include a stochastic process in their vector field. More precisely, let
(Ω,F,P) be a probability space and let η : [0, T ] × Ω → R

m be an R
m-valued

stochastic process with Hölder continuous sample paths. A RODE in Rd

dy

dt
= f (y, ηt (ω)), y ∈ R

d (1)

is essentially a nonautonomous ODE:

dy

dt
= fω(y, t) := f (y, ηt (ω)) (2)

for almost all realizations ω ∈ Ω . Therefore, RODEs can be analyzed pathwise with
deterministic calculus, but require further treatment beyond that of classical ordi-
nary differential equation (ODE) theory. While the rules of deterministic calculus
apply pathwise to RODEs for a fixed sample path, the vector field function in (2) is
not smooth in its temperal variable. In fact, it is at most Hölder continuous in time
when the driving stochastic process ηt is Hölder continuous and thus lacks sufficient
smoothness needed to justify the usual Taylor expansions and the error analysis of
traditional numerical methods for ODEs. Such methods can still be used (see, e.g.,
[5, 11]), but will attain at best a fractional low convergence order.

Similar to stochastic ordinary differential equations (SODEs), higher order numer-
ical schemes for RODEs can be developed using Taylor-like expansions derived by
iterated applications of the proper chain rule in the integral form (see e.g., [1–4,
8–12]). The mean-square convergence of numerical solutions of ODEs with a ran-
dom initial value is discussed in [7]. The mean-square order for a class of backward
stochastic differential equations was investigated in [6]. The pathwise convergence of
numerical schemes for RODEs has received much attention (see, e.g., [3, 9, 10, 12]),
as the numerical calculations of the approximating random variables are carried out
path by path. However, there is no existing result on the mean-square convergence of
numerical schemes for RODEs. In fact, the pathwise convergence rate does not imply
the same mean-square convergence rate in general.

The goal of this work is to investigate the mean-square convergence rates of
numerical schemes for various types of RODEs with different structures and noise.
The mean-square order of convergence, also referred to as the strong order, is an
important convergence index for numerical schemes of stochastic systems. A key cri-
terion to estimate the mean-square convergence order of numerical approximations
for SODEs was presented in (p. 12 [14]), where a fundamental convergence theorem
was established for the mean-square convergence order of a method resting on prop-
erties of its one-step approximation. Here, we follow a similar idea to that used in
(p. 12 [14]), and establish a general mean-square convergence theorem for numerical
solutions of the RODE (1). In particular, we develop the relation between the local
mean-square convergence order and the global mean-square convergence order of a
general one-step approximation for the RODE (1) (see Theorem 1 below).

The paper is organized as follows. First, a generic theorem on the mean-square
convergence order of one-step approximations for RODEs is presented Section 2.
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The theorem is then applied to establish the global mean-square convergence order of
various numerical schemes for RODEs. In particular, the global mean-square conver-
gence orders of RODE-Taylor schemes for general RODEs are discussed in Section 3;
and the global mean-square convergence orders of affine-RODE-Taylor schemes for
RODEs with affine noise are discussed in Section 4. Numerical experiments are car-
ried out in Section 6 to demonstrate the theoretical convergence results and some
closing remarks are provided in Section 7.

2 Themean-square convergence of a generic numerical
approximation for RODEs

When the vector field function f of the RODE (1) is continuous in both of its vari-
ables and the sample paths of the noise process ηt are also continuous, the vector
field function fω in the corresponding nonautonomous ODE (2) is continuous in both
of its variables for each fixed ω ∈ Ω . Therefore, classical existence and uniqueness
theorems for ODEs can be applied pathwise.

Throughout this paper, it is assumed that:

(A1) The vector field function f : Rd × R
m → R

d is at least continuously differ-
entiable in both of its variables and satisfies a one-sided Lipschitz condition,
i.e., there exists a constant L ∈ R such that:

〈f (x, w) − f (y, w), x − y〉 ≤ L|x − y|2, ∀ x, y ∈ R
d , w ∈ R

m;
(A2) There exist constants a, b ∈ R and p ∈ N such that:

|f (y, w)|2 ≤ a|w|p + b|y|2, ∀ y ∈ R
d , w ∈ R

m;
(A3) The noise process ηt is Hölder continuous with finite pth moments; i.e., there

exists Mη = Mη(T ) > 0 such that E[|ηt |p] < Mη for all t ∈ [0, T ].
Here and in the rest of the paper, | · | denotes the Euclidean norm of a vector or a
matrix and 〈·, ·〉 denotes the dot product on Rd .

Given any initial condition y(t0) = y0 ∈ L2(Ω), Assumption (A1) ensures the
existence of a unique solution y(t; t0, y0) of (1) for all future time t ≥ t0 (see, e.g.,
[4, 16]). More generally, for any s ≥ t0 and ξ ∈ R

d , let y(t; s, ξ) be the solution for
(1) satisfying y(s) = ξ .

We consider a general numerical method to approximate the exact solution
y(t; t0, y0) of (1). To start with, we assume a uniform partition on [t0, T ] with
partition size h = T −t0

N
, and denote:

tn+1 = tn + h or tn = t0 + nh for n = 0, 1, · · · , N .

Let Φ(h) be a one-step numerical scheme with step size h and for n = 0, 1, · · ·N − 1
let yn+1 be the one-step approximation of y(tn; t0, y0):

yn+1 = Φ(h)(tn, yn). (3)
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Denote by E the expectation with respect to the probability measure P. Then, the
local mean-square error (MSE) for the approximation (3) reads:

EL
n+1 :=

(
E|yn+1 − y(tn+1; tn, yn)|2

)1/2
, n = 0, 1, · · · , N − 1,

and the global MSE for the approximation (3) reads:

EG
n+1 :=

(
E|yn+1 − y(tn+1; t0, y0)|2

)1/2
, n = 0, 1, · · · , N − 1.

The main goal of this section is to establish the relation between EG
n+1 and EL

n+1.
In particular, we show that EG

n+1 is one order (of the step size h) lower than EL
n+1,

presented in the following theorem.

Theorem 1 Assume that the assumptions (A1)–(A3) hold, and let h ∈ (0, 1]. If for
some C > 0 and γ > 0, the local MSE satisfies the estimation:

EL
n+1 ≤ C

(
1 + E|yn|2

)1/2
hγ+1, n = 0, 1, · · · , N − 1, (4)

then for sufficiently small h, there exists positive constant K (independent of h) such
that the global MSE satisfies the estimation:

EG
n+1 ≤ K

(
1 + E|y0|2

)1/2
hγ , n = 0, 1, · · · , N − 1.

Remark 1 Theorem 1 states that the global mean-square convergence rate of any
one-step approximation for RODEs is one order less than the local mean-square con-
vergence rate. This result is consistent with the pathwise convergence rate for RODEs
[9]. The local MSE condition (4) is parallel to those used in Milstein’s convergence
theorem for SODEs [14, p. 12] and our result generalizes the deterministic case
(ODEs) to the pathwise random case (RODEs).

The proof of Theorem 1 is based on a sequence of lemmas stated below. In par-
ticular, Lemma 1 provides a sequence of mean-square estimates of the true solution
y(tn+1; tn, ξ) given y(tn; t0, y0) = ξ , Lemma 2 presents a Gronwall type of iter-
ative difference inequalities, and Lemma 3 provides a mean-square upper bound
for the numerical solution yn. In the sequel, K represents a generic constant that
may depend on a, b, L, and Mη, but not on h, that may change from line to
line.

Lemma 1 For any ξ ∈ L2(Ω), ζ ∈ L2(Ω) and h < 1, there exists K =
K(a, b, Mη) > 0 such that the following inequalities hold for every n =
0, 1, · · · , N:

(i) E|y(tn+1; tn, ξ)|2 ≤ K(1 + E|ξ |2);
(ii) E|y(tn+1; tn, ξ) − ξ |2 ≤ K(1 + E|ξ |2)h2;
(iii) |E〈y(tn+1; tn, ξ), y(tn+1; tn, ξ) − ξ〉| ≤ K(1 + E|ξ |2)h;
(iv) E|y(tn+1; tn, ξ) − y(tn+1; tn, ζ )|2 ≤ e2Lh

E|ξ − ζ |2.
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Proof (i) First, note that solutions to (1) satisfy the integral equation:

y(t) = y(tn) +
∫ t

tn

f (y(s), ηs)ds

on every subinterval [tn, tn+1]. Thus,

y(tn+1; tn, ξ) = ξ +
∫ tn+1

tn

f (y(s; tn, ξ), ηs)ds. (5)

Writing f (y(s; tn, ξ), ηs) as f (y(s), ηs) in short, taking the mean-square of
both sides of (5), and using the relationship (a + b)2 ≤ 2a2 + 2b2, we have:

E|y(tn+1; tn, ξ)|2 ≤ 2E|ξ |2 + 2E

∣∣∣∣
∫ tn+1

tn

f (y(s), ηs)ds

∣∣∣∣
2

.

Then using the Cauchy-Schwarz inequality and assumptions (A2)–(A3), we
obtain:

E|y(tn+1; tn, ξ)|2 ≤ 2E|ξ |2 + 2h
∫ tn+1

tn

E|f (y(s), ηs)|2ds

≤ 2E|ξ |2 + 2aMηh
2 + 2bh

∫ tn+1

tn

E|y(s)|2ds.

Applying Gronwall’s inequality to the above inequality gives:

E|y(tn+1; tn, ξ)|2 ≤ 2e2bh2
(
aMηh

2 + E|ξ |2
)

≤ 2e2b max{aMη, 1} · (1 + E|ξ |2). (6)

(ii) Using the (5), the Cauchy-Schwarz inequality and Assumptions (A2)–(A3),
we have:

E|y(tn+1; tn, ξ) − ξ |2 ≤ h

∫ tn+1

tn

E|f (y(s), ηs)|2ds

≤ aMηh
2 + bh

∫ tn+1

tn

(
E|y(s) − ξ |2 + E|ξ |2

)
ds

≤ (aMη + E|ξ |2)h2 + bh

∫ tn+1

tn

E|y(s) − ξ |2ds.

Applying Gronwall’s Lemma to the above inequality gives:

E|y(tn+1; tn, ξ) − ξ |2 ≤ (aMη +E|ξ |2)h2ebh2 ≤ max{aMη, 1}eb · (1+E|ξ |2)h2. (7)

(iii) Using Jensen’s inequality, Hölder’s inequality, and inequalities (6) and (7), we
obtain:

|E〈y(tn+1; tn, ξ), y(tn+1; tn, ξ) − ξ〉| ≤ E|〈y(tn+1; tn, ξ), y(tn+1; tn, ξ) − ξ〉|
≤
(
E|y(tn+1; tn, ξ)|2

)1/2 ·
(
E|y(tn+1; tn, ξ) − ξ |2

)1/2

≤ √
2e3b/2 max{aMη, 1} · (1 + E|ξ |2)h.
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(iv) For any ξ, ζ ∈ L2(Ω), let y(t; tn, ξ) and y(t; tn, ζ ) be the two solutions
to (1) with initial conditions y(tn) = ξ and y(tn) = ζ , respectively. Then, it
follows directly from (1) that:

d

dt
(y(t; tn, ξ) − y(t; tn, ζ )) = f (y(t; tn, ξ), ηt ) − f (y(t; tn, ζ ), ηt ).

Taking the dot product of the above equation with y(t; tn, ξ)−y(t; tn, ζ ) gives:

d

dt
|y(t; tn, ξ) − y(t; tn, ζ )|2 = 2〈f (y(t; tn, ξ), ηt )−f (y(t; tn, ζ ), ηt ), y(t; tn, ξ)−y(t; tn, ζ )〉

Then, by Assumption (A1),

d

dt
|y(t; tn, ξ) − y(t; tn, ζ )|2 ≤ 2L |y(t; tn, ξ) − y(t; tn, ζ )|2 . (8)

Integrating (8) from tn to tn+1, we obtain:

|y(tn+1; tn, ξ) − y(tn+1; tn, ζ )|2 ≤ e2Lh |ξ − ζ |2 ,

which implies immediately

E |y(tn+1; tn, ξ) − y(tn+1; tn, ζ )|2 ≤ e2Lh
E |ξ − ζ |2 .

The proof is complete.

Lemma 2 [15, p. 7] Suppose that for an arbitrary N ∈ N, we have:

un+1 ≤ (1 + νh)un + δhr , n = 0, 1, · · · , N

where ν > 0, δ ≥ 0, r ≥ 1, un ≥ 0 for all n = 0, 1, · · · , N . Then

un+1 ≤ eνNhu0 + δ

ν
(eνNh − 1)hr−1.

Lemma 3 Let assumptions (A1)–(A3) and the local mean-square error estimate (4)
hold. Then, there exists K = K(a, b, L, Mη, T ) > 0 such that:

E|yn|2 ≤ K(1 + E|y0|2), n = 0, 1, · · · , N . (9)

Proof First notice that E|yn|2 < ∞ for every n = 1, 2, · · · , N , provided E|y0|2 <

∞. In fact, assuming that E|yk|2 < ∞ for every k = 0, · · · , n, then by the local
MSE estimate (4) and Lemma 1-(i):

E|yn+1|2 ≤ 2E|yn+1 − y(tn+1; tn, yn)|2 + 2E|y(tn+1; tn, yn)|2
≤ 2C2

(
1 + E|yn|2

)
h2γ+2 + 2K(1 + E|yn|2) < ∞.

It then follows from induction that E|yn|2 < ∞ for all n = 0, · · · , N .
It is straightforward to check that the assertion (9) holds for n = 0. To estimate

E|yn|2 for n ≥ 1, we split yn as:

yn = (yn − y(tn; tn−1, yn−1)) + (y(tn; tn−1, yn−1) − yn−1) + yn−1. (10)
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For simplicity, here we write y(tn; tn−1, yn−1) = y(tn) when there is no confusion.
Then, taking the dot product of (10) with yn gives:

|yn|2 = |yn−1|2 + |yn − y(tn)|2 + |y(tn) − yn−1|2 + 2〈yn − y(tn), yn−1〉
+2〈yn−1, y(tn) − yn−1〉 + 2〈yn − y(tn), y(tn) − yn−1〉. (11)

We next estimate the expectation of the terms on the right-hand side of the above
equation.

By the local MSE estimation (4), one has:

E|yn − y(tn)|2 ≤ C2
(
1 + E|yn−1|2

)
h2γ+2. (12)

From Lemma 1-(ii),we have that:

E|y(tn) − yn−1|2 ≤ K(1 + E|yn−1|2)h2. (13)

The Hölder inequality and the local MSE estimation (4) lead to:

E〈yn − y(tn), yn−1〉 ≤
(
E|yn − y(tn)|2

)1/2 (
E|yn−1|2

)1/2 ≤ K
(
1 + E|yn−1|2

)
hγ+1.

By Lemma 1-(iii), we have that:

E〈yn−1, y(tn) − yn−1〉 = −E|yn−1 − y(tn)|2 + E〈y(tn), y(tn) − yn−1〉
≤ K(1 + E|yn−1|2)h.

Finally, using the Hölder inequality and the estimations (12) and (13) above, we
obtain:

E〈yn − y(tn), y(tn) − yn−1〉 ≤
(
E|yn − y(tn)|2

)1/2 (
E|y(tn) − yn−1|2

)1/2

≤ K(1 + E|yn−1|2)hγ+2. (14)

Collecting estimations (11)–(14) and inserting into the expectation of (10), we
have that:

E|yn|2 ≤ E|yn−1|2 + K(1 + E|yn−1|2)(h + h2 + hγ+1 + h2γ+2)

≤ E|yn−1|2 + K(1 + E|yn−1|2)h = (1 + Kh)E|yn−1|2 + Kh,

in which K is independent of h. Taking into account Lemma 2, we obtain:

E|yn|2 ≤ eKT
E|y0|2 + eKT − 1 ≤ K(1 + E|y0|2), n = 0, · · · , N,

where K depends on T , a, b, Mη, but is independent of h. The proof is complete.

We are now ready to prove Theorem 1 as follows.

Proof of Theorem 1 First, we split the difference between yn+1 = yn+1(tn, yn) and
y(tn+1; t0, y0) as:

yn+1 − y(tn+1; t0, y0) = yn+1 − y(tn+1; tn, yn) + y(tn+1; tn, yn) − y(tn+1; t0, y0). (15)

Noticing that y(tn+1; t0, y0) = y(tn+1; tn, y(tn; t0, y0)), (15) then becomes:
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yn+1 − y(tn+1; t0, y0) = yn+1 − y(tn+1; tn, yn) + y(tn+1; tn, yn) − y(tn+1; tn, y(tn; t0, y0)).

Taking the dot product of the above equation with yn+1 − y(tn+1; t0, y0) and then
taking the expectation of the resulting relation gives:

(
EG

n+1

)2 = E

[
|yn+1 − y(tn+1; tn, yn)|2 + |y(tn+1; tn, yn) − y(tn+1; tn, y(tn; t0, y0))|2

+2〈yn+1 − y(tn+1; tn, yn), y(tn+1; tn, yn) − y(tn+1; tn, y(tn; t0, y0))〉
]

� E|yn+1 − y(tn+1; tn, yn)|2 + E|y(tn+1; tn, yn) − y(tn+1; tn, y(tn; t0, y0))|2
+h−1

E|yn+1 − y(tn+1; tn, yn)|2 + hE|y(tn+1; tn, yn) − y(tn+1; tn, y(tn; t0, y0))|2. (16)

By the local MSE assumption (4) and Lemma 3:

E|yn+1 − y(tn+1; tn, yn)|2 ≤ K
(
1 + E|yn|2

)
h2γ+2 ≤ K

(
1 + E|y0|2

)
h2γ+2. (17)

By Lemma 1-(iv),

E|y(tn+1; tn, yn)−y(tn+1; tn, y(tn; t0, y0))|2 ≤ e2Lh
E|yn −y(tn; t0, y0)|2 = e2Lh

(
EG

n

)2
. (18)

Inserting inequalities (17)–(18) into (16), we obtain:
(
EG

n+1

)2 ≤ K
(
1 + E|y0|2

) (
h2γ+2 + h2γ+1

)
+ e2Lh(1 + h)

(
EG

n

)2
.

For sufficiently small h, there exists a positive constant ν > 0 such that

e2Lh(1 + h) < 1 + νh,

we then obtain
(
EG

n+1

)2 ≤ [1 + νh]
(
EG

n

)2 + K(1 + E|y0|2)h2γ+1.

It then follows directly from Lemma 2 that

(
EG

n+1

)2 ≤ K(1 + E|y0|2)e
(T −t0) − 1

ν
h2γ ,

which implies that

EG
n+1 ≤ K(1 + E|y0|2)1/2hγ ,

where K is constant depending on t0, T , L and the distribution of ηt , but not h. The
proof is complete.

2.1 Applications

As an introductory example, we first consider the explicit Euler scheme for the RODE
(1):
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yn+1 = yn + hf (yn, ηtn), n = 0, 1, · · · , N − 1, (19)

where ηt is assumed to be a fractional Brownian motion (fBm).

Theorem 2 Let Assumptions (A2)–(A3) hold and in addition replace Assumption
(A1) by

(A1′) the function f is globally Lipschitz in both of its variables.

Then, the mean-square convergence order of the Euler scheme (19) for (1) is H ,
where H is the Hurst parameter of the fBm ηt .

Proof We first estimate the local mean-square error of the scheme (19). Using the
integral representation of the solution (5), we have:

(
EL

n+1

)2 = E

∣∣∣∣yn +
∫ tn+1

tn

f (y(s; tn, yn), ηs)ds − yn − f (yn, ηtn)h

∣∣∣∣
2

= E

∣∣∣∣
∫ tn+1

tn

(
f (y(s; tn, yn), ηs) − f (yn, ηtn)

)
ds

∣∣∣∣
2

.

Then by Cauchy-Schwarz inequality and Fubini’s Theorem, we have:
(
EL

n+1

)2 ≤ h

∫ tn+1

tn

E
∣∣f (y(s; tn, yn), ηs) − f (yn, ηtn)

∣∣2 ds. (20)

Write y(s; tn, yn) as y(s) in short when there is no confusion. To estimate the
expectation inside the integral in the above inequality, write:

f (y(s), ηs) − f (yn, ηtn) = f (y(s), ηs) − f (yn, ηs) + f (yn, ηs) − f (yn, ηtn).

Then, by Hölder’s inequality and (20):

(
EL

n+1

)2 ≤ 2h
∫ tn+1

tn

(
E |f (y(s), ηs) − f (yn, ηs)|2 + E

∣∣f (yn, ηs) − f (yn, ηtn )
∣∣2) ds. (21)

Due to Assumption (A1′), there exist positive constants Mf such that:

|f (y(s), ηs) − f (yn, ηs)| ≤ Mf |y(s) − yn|, (22)∣∣f (yn, ηs) − f (yn, ηtn)
∣∣ ≤ Mf

∣∣ηs − ηtn

∣∣ . (23)

Following (22), we have:

E |f (y(s), ηs) − f (yn, ηs)|2 ≤ M2
fE |y(s) − yn|2 . (24)

Furthermore, by the interpolation approximation ys = yn + (s − tn)f (yn, ηtn) and
Assumptions (A2) and (A3) we obtain:

E |y(s) − yn|2 ≤ 2
(
E|y(s) − ys |2 + E|ys − yn|2

)
≤ 2

(
(EL

s )2 + h2E|f (yn, ηtn )|2
)

≤ 2
(
(EL

s )2 + h2
(
aE|ηtn |p + bE|yn|2

))
≤ 2(EL

s )2 + Kh2(1 + E|yn|2),
(25)
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where EL
s = (

E|y(s; tn, yn) − yn|2
)1/2

for s ∈ (tn, tn+1), and K is independent of
h. Then, it follows from (23) that:

E
∣∣f (yn, ηs) − f (yn, ηtn)

∣∣2 ≤ M2
fE

∣∣ηs − ηtn

∣∣2 . (26)

Collecting estimates (24)–(26) and inserting into (21) give:

(
EL

n+1

)2 ≤ 2hM2
f

∫ tn+1

tn

(
2
(
EL

s

)2 + Kh2
(
1 + E|yn|2

)
+ E|ηs − ηtn |2

)
ds

= KM2
f h4

(
1 + E|yn|2

)
+ 4hM2

f

∫ tn+1

tn

(
EL

s

)2
ds + 2hM2

f

∫ tn+1

tn

E|ηs − ηtn |2ds.
(27)

Since ηt is a fractional Brownian motion with Hurst parameter H ∈ (0, 1], then
E|ηs − ηtn |2 = K|s − tn|2H and thus:

∫ tn+1

tn

E|ηs − ηtn |2ds = K

∫ tn+1

tn

(s − tn)
2Hds = 1

2H + 1
h2H+1.

Also, because H ≤ 1, the inequality (27) implies:

(
EL

n+1

)2 ≤ 4hM2
f

∫ tn+1

tn

(
EL

s

)2
ds + KM2

f h4
(
1 + E|yn|2

)
+ 2M2

f

2H + 1
h2H+2

≤ 4hM2
f

∫ tn+1

tn

(
EL

s

)2
ds + Kh2H+2

(
1 + E|yn|2

)
,

and by Gronwall’s inequality again, we obtain:
(
EL

n+1

)2 ≤ K
(
1 + E|yn|2

)
h2H+2.

Theorem 1 then implies that EG
n+1 ∼ O(hγ ) where γ = H .

Remark 2 The assumption (A1′) is imposed for convenience for exposition and may
be stronger than needed. In fact, our numerical experiments (see, e.g., Example 15)
indicate that the results of the theorem are still valid under conditions weaker than
(A1′).

Remark 3 The convergence order established in Theorem 2 is the slowest possible
rate for the whole class of equations. One can always obtain better convergence with
some special equations such as linear RODEs or RODEs with simple noise processes.
For example, when ηt is a Brownian motion, the Euler scheme (19) can achieve a
convergence order of 1, or even higher for special function f . This does not contradict
with the result proved in Theorem 2.

In the following sections, we apply Theorem 1 to estimate the global mean-square
convergence rate for various schemes for a class of general RODEs, and for the spe-
cial classes of Affine-RODEs with affine noises and Itô-RODEs with Itô diffusion
noise.
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3 RODE-Taylor schemes for general RODEs

In this section, we first introduce the general framework of RODE-Taylor schemes
for the RODE (1), based on RODE-Taylor approximations, then investigate the order
of mean-square convergence for RODE-Taylor schemes. Here, we adopt the same
set of notations as those in [9] and [10] with slight modifications. For the reader’s
convenience, we summarize the necessary preliminaries below.

3.1 Preliminaries

For any nonempty set A and any l, k ∈ N, denote by Al×k the set of all l ×k matrices
with entries in A. In particular, for i ≥ 1 denote by Nm×i

0 the set of all m× i matrices
with nonnegative integers. In addition, write N

m×0
0 = N

0
0 := {∅}. Consider an ele-

ment a = (a1, · · · , ai ) ∈ N
m×i
0 with aj = (aj,1, · · · , aj,m)� ∈ N

m
0 for j = 1, · · · , i

represented as:

a = (a1, · · · , ai ) =
⎛
⎜⎝

a1,1 · · · ai,1
...

...
a1,m · · · ai,m

⎞
⎟⎠ .

For such an a ∈ N
m×i
0 , define ι(a) := i.

Denote the set of all the above matrix-valued multi-indices by Am := ∪∞
i=0N

m×i
0 .

Then, for any a ∈ Am\{∅} with ι(a) = i ≥ 1, we define:

a! := a1,1! · · · a1,m! · · · ai,1! · · · ai,m!
|a| := a1,1 + · · · + a1,m + · · · + ai,1 + · · · + ai,m.

In particular, for a = ∅, define:
ι(∅) := 0, ∅! := 1, |∅| := 0.

Given such a matrix valued index a with ι(a) = i ≥ 1 and an m-dimensional
stochastic process ηt = (η1t , · · · , ηm

t ) with mutually independent component
processes, define:

Δη
ak
t,s =

m∏
j=1

(
Δηt,s

)ak,j =
m∏

j=1

(
η

j
s − η

j
t

)ak,j

, k = 1, · · · , i

and the iterated integrals:

Iat,s :=
∫ s

t

∫ s1

t

· · ·
∫ si−1

t

(
Δη

a1
t,s1

· · · Δη
ai
t,si

)
dsi · · · ds1, I∅

t,s := 1. (28)

Then, Iat,s is a random variable for every t, s ∈ R.
To derive an integral equation expansion of the solutions to the RODE (1), we

introduce the vector spaces over R of all smooth functions from R
d × R

m×i to R
d :

Hi := C∞(Rd × R
m×i ,Rd), H0 := C∞(Rd ,Rd).
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Given a matrix multi-index a ∈ Am with ι(a) = i ≥ 1 and a function φ ∈ Hi of the
element (y, w) ∈ R

d × R
m×i with the components:

y =

⎛
⎜⎜⎜⎜⎝

y1

·
·
·

yd

⎞
⎟⎟⎟⎟⎠

and w = (w1, · · · , wi) =

⎛
⎜⎜⎜⎜⎝

w1,1 · · · wi,1
· ·
· ·
· ·

w1,m · · · wi,m

⎞
⎟⎟⎟⎟⎠

,

define the linear differential operatorsDi : Hi → Hi+1 by

Diφ(y, w1, · · · , wi+1) := ∂yφ(y, w1, · · · , wi) · f (y, wi+1),

and the a-derivative of φ with respect to w as

∂aφ := ∂
a1,1
w1,1 · · · ∂a1,mw1,m · · · ∂ai,1

wi,1 · · · ∂ai,m
wi,m

φ. (29)

Let H := ⋃∞
i=0Hi , then the differential operator Di can be generalized to D :

H → H by Dφ := Diφ if φ ∈ Hi for some i ∈ N0. In addition, define the iterated
differential operator defined by:

Dj := D ◦ ◦ · · · ◦ D︸ ︷︷ ︸
j times

. (30)

For each p ∈ N and t0 ≤ t ≤ s ≤ T , the integral equation expansion of the
solution to the RODE (1) reads [9, 10]:

y(s) = y(t) +
p∑

j=1

∫ s

t

∫ s1

t

· · ·
∫ sj−1

t

Djχ(y(t), ηs1 , · · · , ηsj )dsj · · · ds1

+
∫ s

t

∫ s1

t

· · ·
∫ sp

t

Dp+1χ(y(sp+1), ηs1 , · · · , ηsp+1)dsp+1 · · · ds1, (31)

where χ : Rd → R
d is the identity function defined by

χ(y) = y, ∀ y ∈ R
d .

3.2 γ -RODE-Taylor schemes

Assume that the driving stochastic process ηt = (η1t , · · · , ηm
t ) in the RODE (1) has

Hölder continuous sample paths. More specifically, assume that:

(A4) For each j = 1, · · · m, there exists bj ∈ (0, 1] and Mq > 0 such that the

driving stochastic process η
j
t satisfies:

E

(
η

j
t − η

j
s

)2q ≤ Mq |t − s|2qbj , q = 1, 2, · · · .

Remark 4 Due to the Kolmogorov Continuity Theorem, Assumption (A4) implies
that ηj

t has β-Hölder continuous paths for β ∈ (0, bj ). In particular, bj = 1
2 when η

j
t

is a Brownian motion and bj = H if η
j
t is a fractional Brownian motion with Hurst

parameter H .
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Define b := (b1, . . . , bm)� ∈ (0, 1]m. Then, for any a ∈ Am with ι(a) ≥ 1, we
have:

a�b =
⎛
⎜⎝

a1,1b1+ · · · +a1,mbm

...
ai,1b1+ · · · +ai,mbm

⎞
⎟⎠ ∈ R

m
≥0, R

m
≥0 := {

(x1, . . . , xm) ∈ R
m : xj ≥ 0, j = 1, · · · ,m

}
,

and
‖a�b‖1 := b1(a1,1 + · · · + ai,1) + · · · + bm(a1,m + · · · + ai,m).

In particular, for a = ∅, define ‖∅�b‖1 := 0.
Consider specific subsets of matrix multi-indices of the form:

A
γ
m :=

{
a ∈ Am : ι(a) + ‖a�b‖1 < γ + 1

}
, γ > 0.

Use the abbreviation:

fa = 1

a!
(
∂aDι(a)χ

)
∈ Hι(a), (32)

where ∂a and Dι(a) are defined according to (29) and (30), respectively.
Approximating Djχ : Rd × R

m×i → R
d in the integral equation expansion (31)

by a Taylor expansion in its first m × i variables, the RODE-Taylor schemes for the
RODE (1) can be constructed to be:

yn+1 = Φ(h)
γ (tn, yn) =

∑

a∈Aγ
m

fa(yn, η
×ι(a)
tn

)Iatn,tn+1
, (33)

where Iatn,tn+1
is defined by (28), fa is defined by (32), and η

×ι(a)
tn

is the m × ι(a)

matrix:

η
×ι(a)
tn

=

⎛
⎜⎜⎜⎜⎝

η1tn · · · η1tn· · · · ·
· · · · ·
· · · · ·

ηtmn
· · · ηm

tn

⎞
⎟⎟⎟⎟⎠
.

3.3 Convergence analysis

In this subsection, we analyze the mean-square convergence rate of the general
RODE-Taylor scheme (33). Here, it is assumed that all components of the driving
stochastic process ηt = (η1t , · · · , ηm

t ) are mutually independent.

Theorem 3 Assume that assumptions (A1)–(A4) hold. In addition, assume that:

(A5) f is infinitely often continuously differentiable in its variables and all partial
derivatives of f are bounded on [t0, T ].

Then, given any γ > 0, the global mean-square error of the RODE-Taylor scheme
(33) satisfies:

EG
n+1 =

(
E |y(tn+1; t0, y0) − yn+1|2

)1/2 ≤ Khγ ,

where K is a constant depending on t0, T , γ , b, Mη, but independent of h.
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Proof The proof is based on the proof of Theorem 5.1 [10], but in the mean-square
sense with different details. For completeness, we provide all necessary details below.

Let r = �γ � be the smallest positive number that is larger than or equal to γ ,
and write y(tn+1; tn, yn) as y(tn+1) when there is no confusion. Then, the integral
expansion (31) gives:

y(tn+1) = yn +
r∑

i=1

∫ tn+1

tn

∫ s1

tn

· · ·
∫ si−1

tn

Diχ(yn, ηs1 , · · · , ηsi )dsi · · · ds1

+
∫ tn+1

tn

∫ s1

tn

· · ·
∫ sr

tn

Dr+1χ(y(sr+1), ηs1 , · · · , ηsr+1)dsr+1 · · · ds1.
(34)

Given ω ∈ Ω define the mapping G : [0, 1] → R
d by:

G(λ) = Diχ
(
yn(ω), ηtn(ω) + λΔηtn,s1(ω), . . . , ηtn(ω) + λΔηtn,si (ω)

)
.

Let b := min{b1, · · · , bm}, and set κi :=
⌈

γ−i+1
b

⌉
− 1. Then, applying a Taylor

expansion of order κi to the function G gives:

G(1) = G(0) + G′(0) + · · · + G(κi)(0)

κi ! +
∫ 1

0
G(κi+1)(λ)

(1 − λ)κi

κi ! dλ.

It follows directly from the above equality that:

Diχ(yn, ηs1 , . . . , ηsi ) =
∑

|a|≤κi

a∈Nm×i
0

fa(yn, η
×i
tn

)(Δηtn,s1)
a1 · · · (Δηtn,si )

ai

+
∑

|a|=κi+1
a∈Nm×i

0

(
(κi + 1)(Δηtn,s1 )

a1 · · · (Δηtn,si )
ai

·
∫ 1

0
fa
(
yn, ηtn + λΔηtn,s1 , · · · , ηtn + λΔηtn,si

)
(1 − λ)κidλ

)
.

(35)

Inserting (35) into (34) results in

y(tn+1) = yn +
r∑

i=1

∑

|a|≤κi

a∈Nm×i
0

fa(yn, η
×i
tn

)Iatn,tn+1
+ R1 + R2, (36)
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where

R1 =
∫ tn+1

tn

∫ s1

tn

· · ·
∫ sr

tn

Dr+1χ(y(sr+1), ηs1 , · · · , ηsr+1)dsr+1 · · · ds1,

R2 =
r∑

i=1

∑

|a|=κi+1
a∈Nm×i

0

∫ tn+1

tn

∫ s1

tn

· · ·
∫ si−1

tn

Δη
a1
tn,s1

· · · Δη
ai
tn,si

· (κi + 1)

·
(∫ 1

0
fa
(
yn, ηtn + λΔηtn,s1 , · · · , ηtn + λΔηtn,si

)
(1 − λ)κidλ

)
dsi · · · ds1.

Now, notice that since |a|b ≤ ‖a�β‖1, we have:
A

γ
m =

{
a ∈ Am : ι(a) + ‖a�β‖1 ≤ γ + 1

}
⊂ {

a ∈ Am : |a| ≤ κι(a)

}
,

and thus (36) can be rewritten as:

y(tn+1) = Φ(h)
γ (tn, yn) + R1 + R2 + R3, (37)

with

R3 =
r∑

i=1

∑

|a|≤κi

a∈Nm×i
0 \Aγ

m

fa(yn, η
×i
tn

) · Itan ,tn+1 .

Therefore, taking the dot product of (37) with itself then taking the expectation of
the resulting relation gives:
(
EL

n+1

)2 = E

∣∣∣y(tn+1; tn, yn) − Φ(h)
γ (tn, yn)

∣∣∣
2

= E|R1|2 + E|R2|2 + E|R3|2 + 2E (〈R1, R2〉 + 〈R1, R3〉 + 〈R2, R3〉)
≤ 3E|R1|2 + 3E|R2|2 + 3E|R3|2. (38)

We next estimate E|R1|2, E|R2|2 and E|R3|2. Again, we denote by K a generic
constant that may change from line to line.

First, since all partial derivatives of f are bounded, there exists K > 0 such that:

E|R1|2 ≤ K

(
hr+1

(r + 1)!
)2

. (39)

Second, due to Assumption (A4) and the independence among η
j
t , for every k =

1, · · · , ι(a) and sk ∈ [tn, tn+1], we have:

E

[
Δη

2ak
tn,sk

]
=

m∏
j=1

E

[(
Δη

j
tn,sk

)2ak,j
]

≤ K

m∏
j=1

(sk − tn)
2ak,j bj ≤ Kh

2
∑m

j=1ak,j bj ,

and therefore:
ι(a)∏
k=1

E

[
Δη

2ak
tn,sk

]
≤ K

ι(a)∏
k=1

h2ak,j bj = h2‖a�b‖1 . (40)
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For a ∈ Am and i = ι(a) ≥ 1, define the random variable:

Ra := sup
|w1|, · · · , |wi |≤|η|∞

|u|≤|y|∞

|fa(u, w1, . . . , wi)|,

where

|η|∞ := sup
t∈[t0,T ]

(
(η1t )

2 + · · · + (ηm
t )2

) 1
2
, |y|∞ := sup

t∈[t0,T ]

(
(y1(t))2 + · · · + (yd(t))2

) 1
2
.

Then, there exists K > 0 such that:

E|R2|2 ≤ K

r∑
i=1

∑

|a|=κi+1
a∈Nm×i

0

E

⎡
⎣
∫ tn+1

tn

∫ s1

tn

· · ·
∫ si−1

tn

ι(a)∏
k=1

Δη
ak
tn,sk

Radsi · · · ds1
⎤
⎦
2

≤ K

r∑
i=1

∑

|a|=κi+1
a∈Nm×i

0

E[R2
a]

i! hi

∫ tn+1

tn

∫ s1

tn

· · ·
∫ si−1

tn

ι(a)∏
k=1

E

[
Δη

2ak
tn,sk

]
dsi · · · ds1.

It then follows immediately from (40) that:

E|R2|2 ≤ K

r∑
i=1

∑

|a|=κi+1
a∈Nm×i

0

E[R2
a]

(i!)2 h2‖a�b‖1+2i . (41)

Following similar calculations, we can obtain:

E|R3|2 ≤ K

r∑
i=1

∑

|a|=κi

a∈Nm×i
0 \Aγ

m

E[R2
a]

(i!)2 h2‖a�b‖1+2i . (42)

Collecting (39), (41), and (42) into (38) and putting i = ι(a) results in:

(
EL

n+1

)2 ≤ K
∑

a∈Am\Aγ
m

ι(a)≤ �γ � +1
|a|≤ ⌈γ /b

⌉

E[R2
a]

[(ι(a)!]2 h2(ι(a)+‖a�b‖1).

Noticing that ι(a) + ‖a�b‖1 ≥ γ + 1 for a ∈ Am\Aγ
m and assuming that h ≤ 1

we then obtain:
EL

n+1 ≤ K(γ, b, f, Mη)h
γ+1,

where K depends on γ , the Hölder property of η, and smoothness of f , but
independent of h.

The desired global mean-square error estimate then follows from the Lipschitz
estimate for Φ

(h)
γ (see Lemma 10.4 [10]) and Theorem 1.
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3.4 Applications

Here, we present some explicit RODE-Taylor schemes for scalar RODEs (d = 1)
with Brownian motion or fractional Brownian motion.

Example 5 Scalar RODEs with scalar Brownian motions.
We have m = 1, b = ( 12 ) and

N0 + 1

2
N0 =

{
0,

1

2
, 1,

3

2
, 2,

5

2
, · · ·

}
.

The multi-index set for a γ -RODE-Taylor scheme is:

A
γ

1 =
{
a ∈ A1 : ι(a) + 1

2
‖a‖1 < γ + 1

}
.

In particular consider γ = 1
2 , 1,

3
2 , 2 with:

A
1
2
1 = {∅, (0)} , A1

1 = {∅, (0), (1)} , A1.5
1 = {∅, (0), (1), (2), (0, 0)} ,

A2
1 = {∅, (0), (1), (2), (3), (0, 0), (0, 1), (1, 0)} .

The corresponding RODE-Taylor schemes are:

yn+1 = Φ
(h)
1
2

= yn + hf (43)

yn+1 = Φ
(h)
1 = yn + hf + fη

∫ tn+1

tn

Δηtn,sds, (44)

yn+1 = Φ
(h)
1.5 = yn + hf +

2∑
i=1

1

i!∂
i
ηf I

(i)
tn,tn+1

+ fyf
h2

2
, (45)

yn+1 = Φ
(h)
2 = yn + hf +

3∑
i=1

1

i!∂
i
ηf I

(i)
tn,tn+1

+ fyf
h2

2
+ fη,yf I

(1,0)
tn,tn+1

+ fyfηI
(0,1)
tn,tn+1

.

(46)

where Iatn,tn+1
are defined by (28), and f and all partial derivatives of f are evaluated

at (yn, ηtn).
The above schemes (43)–(46) have global mean-square convergence rates of 1, 1,

3
2 , and 2, respectively (see Examples 14-(i) and 15-(i) in Section 6).

Remark 6 The Euler scheme (43) achieves a convergence order 1 instead of 1
2 due

to the special noise process of Brownian motion. This will be further explained in
Example 12 and Remark 13 in Section 5. Note this does not contradict the result in
Theorem 3, as stated in Remark 3.

Example 7 Scalar RODEs with scalar fractional Brownian motion with Hurst
parameter H .
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We have m = 1, b = (H) and

N0 + HN0 =
⎧⎨
⎩

{0, H, 1, 2H, · · · } , H ∈
(
1
2 , 1

)

{0, H, 2H, · · · , 1, · · · } , H ∈
(
0, 1

2

)

The multi-index set for a γ -RODE-Taylor scheme is:

A
γ

1 = {a ∈ A1 : ι(a) + H‖a‖1 < γ + 1} .
1. For H ∈

(
1
2 , 1

)
, we consider the particular case γ = H, 1, 2H with

AH
1 = {∅, (0)} , A1

1 = {∅, (0), (1)} , A2H
1 = {∅, (0), (1), (0, 0)} .

The corresponding γ -RODE-Taylor schemes read:

yn+1 = Φ
(h)
H = yn + hf (47)

yn+1 = Φ
(h)
1 = yn + hf + fη

∫ tn+1

tn

Δηtn,sds, (48)

yn+1 = Φ
(h)
2H = yn + hf + fη

∫ tn+1

tn

Δηtn,sds + fyf
h2

2
, (49)

with global mean-square convergence rates of H , 1, and 2H , respectively (see
Examples 14-(ii)/(iii) and 15-(ii)/(iii) in Section 6).

To achieve a convergence rate of 2 as the scheme (46) does, we need more
information of H . For example, with H = 3

4 :

A2
1 =

{
a ∈ A1 : ι(a) + 3

4
‖a‖1 < 3

}
= {∅, (0), (1), (2), (0, 0), (1, 0), (0, 1)}

and the corresponding 2-RODE-Taylor scheme reads:

yn+1 = Φ
(h)
2 = yn+hf +

2∑
i=1

1

i!∂
i
ηf I

(i)
tn,tn+1

+fyf
h2

2
+fη,yf I

(1,0)
tn,tn+1

+fyfηI
(0,1)
tn,tn+1

.

(50)

2. For H ∈
(
0, 1

2

)
, we consider the particular case γ = H, 2H with:

AH
1 = {∅, (0)} , A2H

1 = {∅, (0), (1), (0, 0)} .
The corresponding γ -RODE-Taylor schemes are the same as (47) and (49) with
global mean-square convergence rate of H and 2H , respectively (see Examples
14-(ii) and 15-(ii) in Section 6).

To achieve a convergence rate of 1 or 2 as above, we need more information
of H . For example, for H = 1

3 :

A1
1 =

{
a ∈ A1 : ι(a) + 1

3
‖a‖1 < 2

}
= {∅, (0), (1), (2)} ,

A2
1 =

{
a ∈ A1 : ι(a) + 1

3
‖a‖1 < 3

}
=
{ ∅, (0), (1), (2), (3), (4), (5), (0, 0),

(0, 1), (0, 2), (1, 0), (1, 1), (2, 0)

}
,

and the corresponding 1- and 2-RODE-Taylor schemes read:
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yn+1 = Φ
(h)
1 = yn + hf +

2∑
i=1

1

i!∂
i
ηf I

(i)
tn,tn+1

(51)

yn+1 = Φ
(h)
2 = yn + hf +

5∑
i=1

1

i!∂
i
ηf I

(i)
tn,tn+1

+ fyf
h2

2
+ fyfηI

(0,1)
tn,tn+1

+ fyfηI
(1,0)
tn,tn+1

+fη,yfηI
(1,1)
tn,tn+1

+ 1

2
fyfη,ηI

(0,2)
tn,tn+1

+ 1

2
fη,η,yfηI

(2,0)
tn,tn+1

. (52)

The schemes (51) and (52) have mean-square convergence orders of 1 and 2,
respectively (see Examples 14-(iii) and 15-(iii) in Section 6).

Example 8 Notice that when m > 1, Assumption (A4) allows different components
of ηt to have different Hölder properties. In this example, we consider RODEs with a
2-dimensional stochastic process ηt = (η1t , η

2
t )

� where η1t is a Brownian motion and
η2t is a fractional Brownian motion with Hurst paramet er H = 3

4 , i.e., b = ( 12 ,
3
4 ).

Then, we have:

N0 + 1

2
N0 + 3

4
N0 =

{
0,

1

2
,
3

4
, 1,

5

4
,
3

2
,
7

4
, 2,

9

4
,
5

2
, · · ·

}
,

and the multi-index set for a γ -RODE-Taylor scheme is:

A
γ

2 =
⎧⎨
⎩a ∈ A2 : ι(a) + 1

2

ι(a)∑
k=1

ak,1 + 3

4

ι(a)∑
k=1

ak,2 < γ + 1

⎫⎬
⎭ .

In particular, we consider γ = 1
2 , 1,

3
2 with

A
1
2
2 =

{
∅,

(
0
0

)}
, A1

2 =
{
∅,

(
0
0

)
,

(
0
1

)
,

(
1
0

)}
,

A1.5
2 =

{
∅,

(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
,

(
2
0

)
,

(
0 0
0 0

)}
.

Hence, the corresponding 1
2 -, 1-, and 1.5-RODE-Taylor schemes are:

yn+1 = Φ
(h)
1
2

= yn + hf, (53)

yn+1 = Φ
(h)
1 = yn + hf + fη1

∫ tn+1

tn

Δη1tn,sds + fη2

∫ tn+1

tn

Δη2tn,sds (54)

yn+1 = Φ
(h)
3
2

= Φ
(h)
1 + fη1,η2

∫ tn+1

tn

Δη1tn,sΔη2tn,sds + fη1,η1

2

∫ tn+1

tn

(
Δη1tn,s

)2
ds + fyf

h2

2
.

(55)

The global mean-square convergence orders for (53), (54), and (55) are 1
2 , 1, and

3
2 , respectively (see Example 16 in Section 6).
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4 Affine-RODE-Taylor schemes for RODEs with affine noise

In this section, we consider a special type of RODES with affine noise [3, 9],
formulated as:

dy

dt
= g(t, y) +

m∑
j=1

σj (t, y)η
j
t , y(t0) = y0, (56)

where y ∈ R
d and the noise process ηt = (η1t , · · · , ηm

t ) takes values in R
m.

Here, the sample paths of ηt are assumed to be continuous, and the coefficients σj ,
j = 1, · · · , m are assumed to be sufficiently smooth real-valued functions satisfying
appropriate conditions to ensure the existence and uniqueness of solutions to (56) on
the whole time interval [t0, T ].

When g(t, y) ≡ g(y) and σj (t, y) ≡ σj (y), the RODE-Taylor approximations
introduced in Section 3 can be applied to the vector field f (y, ηt ) := g(y) +∑m

j=1σj (y)η
j
t to obtain RODE-Taylor schemes of various mean-square convergence

orders. Here, we introduce the affine-RODE-Taylor framework due to Asai and
Kloeden [3] that deals with nonautonomous affine RODEs (56) and may achieve a
different rate of convergence compared with RODE-Taylor schemes when g and σj

do not depend on t . For readers’ convenience, the hierarchical sets and vector-valued
multi-index notations used in [3, 13] are summarized below.

4.1 Preliminaries

Let Am be the set of all l-dimensional vectors with components valued in the set
{0, 1, · · · , m}:

Am =
{
α = (α1, · · · , αl) ∈ {0, 1, · · · , m}l : l ∈ N0

}
, (57)

where l = �(α) is the length of vector α. In particular, �(∅) = 0. For any α =
(α1, · · · , αl) ∈ Am with �(α) = l ≥ 1, denote by -α and α- the multi-indices in Am

obtained by deleting the first and last components of α, respectively, i.e.:

-α = (α2, · · · , αl), α- = (α1, · · · , αl−1).

Given γ ∈ N, let Aγ
m be the hierarchical set of vector-valued multi-indices given

by:

Aγ
m := {α ∈ Am : �(α) ≤ γ } .

In addition, define the reminder set R(Aγ
m) by:

R(Aγ
m) := {

α ∈ Am\Aγ
m : -α ∈ Aγ

m

}
.

Then, R(Aγ
m) consists of all the next following multi-indices with respect to the

hierarchical set Aγ
m that do not belong to Aγ

m. Obviously,R(Aγ
m) = Aγ+1

m \Aγ
m.
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For any α ∈ Am with �(α) = l and an integrable function φ : [t0, T ] → R, define
the multiple integral J [φ(·)]αt,s as:

J [φ(·)]αt,s :=
⎧⎨
⎩

φ(s), l = 0∫

t

s

J [φ(·)]α-t,sη
αl
τ dτ, l ≥ 1

(58)

In particular, when φ ≡ 1, write J [1]αt,s as Jα
t,s in short.

Denote by φk the k-th component of an R
d -valued function φ. For y =

(y1, · · · yd) ∈ R
d and the R

d -valued functions g and σj in (56), define the partial
differential operators D0 and Dj by:

D0 = ∂

∂t
+

d∑
k=1

gk ∂

∂yk
, Dj =

d∑
k=1

σk
j

∂

∂yk
, j = 1, · · · , m. (59)

Given a vector-valued multi-index α ∈ Am and a sufficiently smooth function ϕ :
[t0, T ] × R

d → R, the coefficient function ϕα is defined recursively by:

ϕα :=
{

ϕ, �(α) = 0,
Dα1ϕ-α, �(α) ≥ 1

.

Then, theAγ
m-RODE-Taylor expansion of ϕ(t, y(t)) for a solution y(t) of the RODE

(56) reads:

ϕ(t, y(t)) =
∑

α∈Aγ
m

ϕα(t0, y0)J
α
t0,t

+
∑

α∈R(Aγ
m)

J [ϕα(·, y(·))]αt0,t .

In particular, let ϕ = χ , the identity function on R
d with χk(y) = yk for k =

1, · · · d . Then, given any y(tn) = yn, the solution of the RODE (56) can be written
componentwise as:

φk(t; tn, yn) =
∑

α∈Aγ
m

Dαχk(tn, yn)J
α
tn,t +

∑

α∈R(Aγ
m)

J [Dαχk(·, y(·))]αt0,t , (60)

where J is defined as in (58) and Dα = Dα1Dα2 · · ·Dαl with Dj defined as in (59)
for j = 0, 1, · · ·m.

Affine-RODE-Taylor schemes are constructed systematically using the affine-
RODE-Taylor expansions (60) on each finite subinterval [tn, tn+1], deleting the
remainder term on the right-hand side of (60). More specifically, the γ -affine-RODE-
Taylor scheme is given componentwise by:

yk
n+1 = Ψ (h)

γ := yk
n +

∑

α∈Aγ
m

Dαχk(tn, yn)J
α
tn,tn+1

, k = 1, · · · d . (61)

4.2 Convergence analysis

In this subsection, we analyze the mean-square convergence rate for the γ -affine-
RODE-Taylor scheme. The analysis is based on Theorem 2 in [3], but in the mean-
square sense with different estimations. Here, all the stochastic processes η1t , · · · , ηm

t

are assumed to be mutually independent and satisfy:
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(A6) there exists C > 0 such that

sup
t∈[t0,T ]

E

∣∣∣ηj
t

∣∣∣
2 ≤ C, j = 1, · · · , m.

Theorem 4 Let Assumptions (A1)–(A3) and (A6) hold, and assume that all deriva-
tives of g, σ1, · · · , σm and all the multiple integrals of stochastic processes appearing
in (60) exist. Then, given any γ > 0, the affine-RODE-Taylor scheme (61) has a
global mean-square convergence order of γ .

Proof The local mean-square error for the k-th component of γ -affine-RODE-Taylor
scheme (61) is given by:

EL,k
n+1 =

⎛
⎜⎝E

∣∣∣∣∣∣
∑

α∈R(Aγ
m)

J [Dαχk(·, y(·))]αtn,tn+1

∣∣∣∣∣∣

2
⎞
⎟⎠

1
2

,

and satisfies
(
EL,k

n+1

)2 ≤ K
∑

α∈R(Aγ
m)

E

∣∣∣J [Dαχk(·, y(·))]αtn,tn+1

∣∣∣
2
.

First, note that under standard assumptions, the RODE (61) has a unique solution
on the finite interval [t0, T ] with continuous path. Thus ,for any ω ∈ Ω , there exists
R = R(T , ω) such that |y(t, ω)| ≤ R(T , ω) for all t ∈ [t0, T ]. Moreover, there exists
C = C(Dαχ, t0, T ) > 0 such that

∣∣Dαχk(t, y(t))
∣∣ ≤ C for all t ∈ [t0, T ] (see [3]).

Therefore:
∣∣∣J [Dαχk(·, y(·))]αtn,tn+1

∣∣∣ =
∣∣∣∣
∫ tn+1

tn

∫ sl

tn

· · ·
∫ s2

tn

Dαχk(s1, y(s1))η
α1
s1

· · · ηαl−1
sl−1 ηαl

sl
ds1 · · · dsl

∣∣∣∣

≤ C

∣∣∣∣
∫ tn+1

tn

∫ sl

tn

· · ·
∫ s2

tn

ηα1
s1

· · · ηαl−1
sl−1 ηαl

sl
ds1 · · · dsl

∣∣∣∣ ,

where l = �(α). Then, by Hölder’s inequality:

∣∣∣J [Dαχk(·, y(·))]αtn,tn+1

∣∣∣
2 ≤ Chl

∫ tn+1

tn

∫ sl

tn

· · ·
∫ s2

tn

|ηα1
s1

|2 · · · |ηαl−1
sl−1 |2|ηαl

sl
|2ds1 · · · dsl .

Taking expectation of the above inequality and using Assumption (A6) and the
independence among η

j
t , we obtain:

E

∣∣∣J [Dαχk(·, y(·))]αtn,tn+1

∣∣∣
2 ≤ Chl

∫ tn+1

tn

∫ sl

tn

· · ·
∫ s2

tn

l∏
i=1

E
∣∣ηαi

si

∣∣2 ds1 · · · dsl

≤ Khl

∫ tn+1

tn

∫ sl

tn

· · ·
∫ s2

tn

ds1 · · · dsl ≤ Kh2l .
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Since γ ∈ N, �(α) = l ≥ γ + 1 for all α ∈ R(Aγ
m). Therefore, assuming h ≤ 1

we obtain immediately that:

E

∣∣∣J [Dαχk(·, y(·))]αtn,tn+1

∣∣∣
2 ≤ Kh2(γ+1) ∀ α ∈ R(Aγ

m).

which implies that
(
EL,k

n+1

)2 ≤ Kh2(γ+1). It then follows immediately that:

EL
n+1 =

(
d∑

k=1

(
EL,k

n+1

)2)
1
2

≤ Khγ+1,

and by Theorem 1 the γ -affine-RODE-Taylor scheme (61) has a global mean-square
convergence order of γ .

Next, we present some explicit γ -affine-RODE-Taylor schemes for scalar RODEs
with affine noise. In particular, for comparison purpose, we consider autonomous
examples with g(t, y) = g(y) and σj (t, y) = σj (y) for j = 1, · · · m. Then:

D0φ = gφ′, Djφ = σjφ
′, ∀φ smooth.

Example 9 Consider the RODE (56) with d = m = 1. The hierarchical sets Aγ

1 for
γ = 1, 2, 3 are, respectively:

A1
1 = {∅, (0), (1)} , A2

1 = {∅, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1)} ,

A3
1 =

{ ∅, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1), (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)

}
.

Then, the corresponding 1-, 2-, 3-affine-RODE-Taylor schemes read:

yn+1 = Ψ
(h)
1 = yn + gh + σ

∫ tn+1

tn

ηsds, (62)

yn+1 = Ψ
(h)
2 = Ψ

(h)
1 + 1

2
gg′h2 + gσ ′J (0,1)

n + σg′J (1,0)
n + σσ ′J (1,1)

n , (63)

yn+1 = Ψ
(h)
3 = Ψ

(h)
2 + g

[
1

6
(gg′)′h3 + (gσ ′)′J (0,0,1)

n + (σg′)′J (0,1,0)
n + (σσ ′)′J (0,1,1)

n

]

+σ
[
(gg′)′J (1,0,0)

n + (gσ ′)′J (1,0,1)
n + (σg′)′J (1,1,0)

n + (σσ ′)′J (1,1,1)
n

]
,

(64)

where g, σ , and their derivatives are evaluated at (tn, yn), and the integrals Jα
n =

J [1]αtn,tn+1
. The global mean-square convergence orders of (62), (63), and (64) are 1,

2, and 3, respectively (see Example 15 in Section 6).

Example 10 Consider the RODE (4.1) with d = 1 and m = 2. The hierarchical sets
Aγ

2 for γ = 1, 2 are, respectively:

A1
2 = {∅, (0), (1), (2)} ,

A2
2 = {∅, (0), (1), (2), (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} .

321Numerical Algorithms (2021) 87:299–333



Then, the corresponding 1-, 2-affine-RODE-Taylor schemes read:

yn+1 = Ψ
(h)
1 = yn + gh + σ1

∫ tn+1

tn

η1s ds + σ2

∫ tn+1

tn

η2s ds, (65)

yn+1 = Ψ
(h)
2 = Ψ

(h)
1 + g

[
1

2
g′h2 + σ ′

1J
(0,1)
n + σ ′

2J
(0,2)
n

]
+ σ1

[
g′J (1,0)

n + σ ′
1J

(1,1)
n

]

+σ1σ
′
2J

(1,2)
n + σ2

[
g′J (2,0)

n + σ ′
1J

(2,1)
n + σ ′

2J
(2,2)
n

]
, (66)

where g, σ1, σ2, and their derivatives are evaluated at (tn, yn), and the integrals
Jα

n = J [1]αtn,tn+1
. The global mean-square convergence orders of (65) and (66) are 1

and 2, respectively (see Example 16 in Section 6).

5 Itô-RODE-Taylor schemes for RODEs with Itô diffusion processes

In this section, we investigate mean-square convergence of RODEs driven by an Itô
diffusion process, i.e., the solution of an Itô SODE. In particular, consider a RODE
on Rd1 :

dy

dt
= f (y, ηt ), y(t0) = y0, (67)

where ηt is the solution of an Itô SODE in Rd2 :

dηt = μ(ηt )dt +
m∑

j=1

ρj (ηt )dW
j
t (68)

with m-independent scalar Wiener processes W 1
t , · · · , Wm

t .
In this section, we again assume the standard assumption holds, i.e.:

(A7) All the coefficients μ, ρ1, · · · ρm and the vector field f are infinitely
often continuously differentiable in its variables and all partial derivatives are
bounded on [t0, T ]

It is straightforward to verify that under Assumption (A7), the solution ηt =
(η1t , · · · , η

d2
t ) of the SDE (68) satisfies:

E|ηj
t − η

j
s |2q ≤ K|t − s|q, j = 1, · · · , d2, ∀q = 1, 2, · · · .

Therefore, Assumption (A4) is satisfied with bj = 1
2 for all j = 1, · · · , d2 and all

the RODE-Taylor schemes introduced in Section 3 can be applied here with b =
( 12 , · · · , 1

2 ) and attain their orders as shown in Section 3.
On the other hand, the system (67)–(68) can also be simulated via stochastic ordi-

nary differential equations (see [1]). For comparison purpose, we also present the
convergence analysis for numerical schemes for the RODE (67) via SODEs. More
precisely, for y(t) ∈ R

d1 in (67) and ηt ∈ R
d2 in (68), let Y (t) = (y(t), ηt )

�. Then,
(67) and (68) can be formulated as an SODE in d = d1 + d2:

dY (t) = F(Y )dt +
m∑

j=1

Gj(Y )dWj
t , (69)
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with

F(Y ) =
(

f (y, ηt )

μ(ηt )

)
, Gj (Y ) =

(
0

ρj (ηt )

)
.

5.1 Preliminaries

Let Am be defined as in (57) and define the hierarchical set of multi-indices:

Λγ =
{
α ∈ Am : �(α) + n(α) ≤ 2γ or �(α) = n(α) = γ + 1

2

}
,

where �(α) is the length of α and n(α) is the number of zero components of α.
Given a multi-index α = (α1, · · · , αl) with �(α) = l ≥ 1, define the multiple

integrals:

Iα
n :=

∫ tn+1

tn

∫ sl

tn

· · ·
∫ s2

tn

dWα1
s1

· · · dWαl−1
sl−1 dW

αl
sl

, with I∅
n = 1. (70)

In addition, for any smooth enough scalar-valued function φ of t and Y , define the
differential operators:

L0φ = ∂φ

∂t
+

d∑
k=1

Fk ∂φ

∂Y k
+ 1

2

d∑
k,l=1

m∑
j=1

Gk
jG

l
j

∂2φ

∂Y k∂Y l
,

Ljφ =
d2∑

k=1

Gk
j

∂φ

∂Yk

, j = 1, · · · , m,

where the superscript k denotes the k-th component of a vector-valued function.
Moreover, Lα := Lα1 · · ·Lαl for α = (α1, · · · , αl).

The γ -Itô-Taylor scheme for the SDE (69) reads:

Yn+1 =
∑

α∈�0
γ

Lαχ(tn, Yn)Iα
n ,

and has a mean-square convergence order of γ [13]. In particular, the y-component
of the γ -Itô-Taylor scheme gives the γ -Itô-RODE-Taylor scheme:

yk
n+1 = Θ(h)

γ (tn, yn) :=
∑

α∈Λ0
γ

Lαχ(tn, yn, ηtn)Iα
n , k = 1, 2, · · · , d1,

where Iα
n is defined as in (70) and

Λ0
γ = {

α ∈ Λ
γ
m ⊂ A1 : α = ∅ or �(α) ≥ 1 with last component αl = 0

}
.

Remark 11 The smaller set Λ0
γ is used because the coefficients corresponding to

Λγ \Λ0
γ are annihilated as the diffusion coefficient component is 0 in the RODE

component of the system (69) (see [1]).
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5.2 Applications

Some explicit Itô-RODE-Taylor schemes for scalar RODEs (d = 1) with scalar Itô
diffusion processes are provided below.

Example 12 For γ = 1
2 , Λ 1

2
= {∅, (0), (1)} and Λ0

1
2

= {∅, (0)}. Thus the

corresponding 1
2 -Itô-RODE-Taylor scheme reads:

yn+1 = Θ
(h)
1
2

(tn, yn) = yn + hf (yn, ηtn), (71)

which is the Euler scheme.
For γ = 1, Λ1 = {∅, (0), (1), (1, 1)} and Λ0

1 = {∅, (0)}. The corresponding 1-

Itô-RODE-Taylor scheme yn+1 = Θ
(h)
1 (tn, yn) coincides with the Euler scheme (71).

Thus, the Euler scheme (71) has a mean-square convergence order of 1 (see Examples
14-(i) and 17 in Section 6).

Remark 13 The Euler scheme (71) can be derived from the 1
2 -RODE-Taylor scheme

Φ
(h)
1
2

in (43) and from 1
2 -Itô-RODE-Taylor scheme Θ

(h)
1
2

in (71). It coincides with the

1-Itô-RODE-Taylor scheme and thus achieves a convergence order of 1 instead of 1
2 .

For γ = 3
2 , Λ 3

2
= {∅, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1), (1, 1, 1)} and

Λ0
3
2

= {∅, (0), (0, 0), (1, 0)}.

The corresponding 3
2 -Itô-RODE-Taylor scheme reads:

yn+1 = Θ
(h)
3
2

(tn, yn) = yn+f h+ρfηI(1,0)
n + 1

2
h2
(

ffy + μfη + 1

2
ρ2fη,η

)
, (72)

where f and all its partial derivatives are evaluated at (yn, ηtn), ρ and μ are evaluated
at ηtn . The Itô-RODE-Taylor scheme (72) has a global mean-square convergence
order of 3

2 (see Example 17 in Section 6).
For γ = 2, Λ2 = Λ 3

2
∪ {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1, 1)} and

Λ0
2 = {∅, (0), (0, 0), (1, 0), (1, 1, 0)}. The corresponding 2-Itô-RODE-Taylor

scheme reads:

yn+1 = Θ
(h)
2 (tn, yn) = yn + f h + ρfηI(1,0)

n + 1

2
h2
(

ffy + μfη + 1

2
ρ2fη,η

)

+
(
ρρ′fη + ρ2fη,η

)
I(1,1,0)

n , (73)

where f and all its partial derivatives are evaluated at (yn, ηtn), ρ, ρ
′, andμ are evalu-

ated at ηtn . The Itô-RODE-Taylor scheme (73) has a global mean-square convergence
order of 2 (see Example 17 in Section 6).
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6 Numerical experiments

In this section, we conduct numerical experiments to demonstrate the mean-square
orders of convergence for different schemes presented in Sections 3, 4, and 5. In
particular, we simulate:

(I) A scalar RODE with scalar noise process being Brownian motion or fBm;
(II) A scalar RODE with scalar affine noise being either Brownian motion or fBm;
(III) A scalar RODE with 2-dimensional affine noise consisting of one Brownian

motion and one fBm;
(IV) A scalar RODE with scalar Itô diffusion noise.

Let M be the sample size of the Monte Carlo simulation. For i = 1, · · · , M ,
denote by y

(i)
n the numerical approximation to the true solution y(i)(tn; t0, y0) at the

time instant tn. The mean-square error EG
n+1 is simulated by:

EG
n+1 =

(
1

M

M∑
i=1

|y(i)
n − y(i)(tn; t0, y0)|2

)1/2

to verify the mean-square convergence order of various numerical schemes. In all the
numerical experiments below, the sample sizeM is chosen to be 1000 and the “exact”
solutions are calculated numerically with high precision (the integral is evaluated as
a Riemann sum with 20,000 subintervals).

Example 14 Consider the scalar RODE:

dy

dt
= −y + cos ηt , y(0) = y0. (74)

For each realization η(i) (74) has the explicit solution:

y(i)(t; 0, y0) = y0e
−t + e−t

∫ t

0
es cos η(i)

s ds.

The initial valued is picked to be y0 = 1 and the final time is picked to be T = 1.

(i) Assume that ηt is a Wiener process. The Euler scheme (43) of order 1, the
RODE-Taylor schemes (44) of order 1, (45) of order 3

2 and (46) of order 2 are
applied to simulate the RODE (74). The global mean-square errors EG

n+1 versus
the time steps h = 2−i , i = 3, 4, 5, 6, 7, 8 are plotted in Fig. 1. The two dashed
lines are reference lines with slopes 1 and 2, respectively.

(ii) Assume that ηt is an fBm with Hurst parameter 3
4 . The RODE-Taylor schemes

(47) of order 3
4 , (48) of order 1, (49) of order

3
2 , and (50) of order 2 are applied

to simulate the RODE (74). The global mean-square errors EG
n+1 versus the

time steps h = 2−i , i = 3, 4, 5, 6, 7, 8 are plotted in Fig. 2. The two dashed
lines are reference lines with slopes 0.75 and 2, respectively.

(iii) Assume that ηt is an fBm with Hurst parameter 1
3 . The RODE-Taylor schemes

(51) of order 1 and (52) of order 2 are applied to simulate the RODE (74).
The global mean-square errors EG

n+1 versus the time steps h = 2−i , i =
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Fig. 1 RODE-Taylor schemes for (74) with Wiener process

3, 4, 5, 6, 7, 8 are plotted in Fig. 3. The two dashed lines are reference lines
with slopes 1 and 2, respectively.

Example 15 Consider the scalar RODE with affine noise:

dy

dt
= −e−2y + 1

2
e−2y · ηt , y(0) = y0. (75)

For each realization η(i) (75) has the explicit solution:

y(i)(t; 0, y0) = 1

2
ln

(
e2y0 +

∫ t

0
(η(i)

s − 2)ds

)
.

Fig. 2 RODE-Taylor schemes for (74) with fBm with Hurst parameter 3
4
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Fig. 3 RODE-Taylor schemes for (74) with fBm with Hurst parameter 1
3

The initial valued is picked to be y0 = 1 and the final time is picked to be T = 1.

(i) Assume that ηt = sinWt , where Wt is a Wiener process. The Euler scheme
(43) of order 1, the RODE-Taylor schemes (44) of order 1, (45) of order 3

2 and
(46) of order 2, and the affine-RODE-Taylor schemes (62) of order 1, (63) of
order 2, and (64) of order 3 are applied to simulate (75).

The global mean-square errors EG
n+1 versus the time steps h = 2−i , i =

3, 4, 5, 6, 7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor
schemes are plotted in Figs. 4 and 5, respectively. The dashed reference lines
in Fig. 4 have slopes 1 and 2, respectively, and the dashed reference lines in
Fig. 5 have slopes 1 and 3, respectively.

Fig. 4 RODE-Taylor schemes for (75) with Wiener process
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Fig. 5 Affine-RODE-Taylor schemes for (75) with Wiener process

(ii) Assume that ηt = sinB
3
4 (t), where B

3
4 (t) is an fBm with Hurst parameter 3

4 .
The RODE-Taylor schemes (47) of order 3

4 , (48) of order 1, (49) of order
3
2 ,

and (50) of order 2, and the affine-RODE-Taylor schemes (62) of order 1, (63)
of order 2, and (64) of order 3 are applied to simulate (75).

The global mean-square errors EG
n+1 versus the time steps h = 2−i , i =

3, 4, 5, 6, 7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor
schemes are plotted in Figs. 4 and 5, respectively. The dashed reference lines
in Fig. 6 have slopes 0.75 and 2, respectively, and the dashed reference lines in
Fig. 7 have slopes 1 and 3, respectively.

Fig. 6 RODE-Taylor schemes for (75) with fBm with Hurst parameter 3
4
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Fig. 7 Affine-RODE-Taylor schemes for (75) with fBm with Hurst parameter 3
4

(iii) Assume that ηt = sinB
1
3 (t), where B

1
3 (t) is an fBm with Hurst parameter

1
3 . The RODE-Taylor schemes (51) of order 1 and (52) of order 2 and affine-
RODE-Taylor schemes (62) of order 1, (63) of order 2, and (64) of order 3 are
applied to simulate (75).

The global mean-square errors EG
n+1 versus the time steps h = 2−i , i =

3, 4, 5, 6, 7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor
schemes are plotted in Figs. 8 and 9, respectively. The dashed reference lines
in Fig. 8 have slopes 1 and 2, respectively, and the dashed reference lines in
Fig. 9 have slopes 1 and 3, respectively.

Fig. 8 RODE-Taylor schemes for (75) with fBm with Hurst parameter 1
3
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Example 16 Consider the scalar RODE with 2-dimensional affine noise process
consisting of one Brownian motion and one fBm:

dy

dt
= − cos2 y + (cos2 y)η1t + 2(cos2 y)η2t . (76)

For each realization η(i) = (η
1(i)
t , η

2(i)
t ) (76) has the explicit solution:

y(i)(t; 0, 0) = tan−1
(∫ t

0
(η1(i)s + 2η2(i)s − 1)ds

)
.

The initial valued is picked to be y0 = 1 and the final time is picked to be T = 1.

Assume that η1t = sinWt , where Wt is a Brownian motion and η2t = sinB
3
4
t ,

where B
3
4
t is an fBm with Hurst parameter 3

4 . The RODE-Taylor schemes (53) of
order 1

2 , (54) of order 1 and (55) of order 2, and the affine-RODE-Taylor schemes
(65) of order 1 and (66) or order 2, are applied to simulate (76).

The global mean-square errors EG
n+1 versus the time steps h = 2−i , i =

3, 4, 5, 6, 7, 8 using the RODE-Taylor schemes and the affine-RODE-Taylor schemes
are plotted in Figs. 10 and 11, respectively. The dashed reference lines in Figs. 10
and 11 have slopes 1 and 2, respectively.

Example 17 Consider the scalar RODE with scalar Itô diffusion noise:

dy

dt
= −y + cos ηt , y(0) = 1, (77)

dηt = −1

2
a2ηtdt + a

√
1 − η2t dWt, η0 = 1. (78)

Fig. 9 Affine-RODE-Taylor schemes for (75) with fBm with Hurst parameter 1
3
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Fig. 10 RODE-Taylor schemes for (76) with Wiener process and fBm

For each realization W
(i)
t , the solution to (78) gives:

η
(i)
t = sin

(
aW

(i)
t + π

2

)

and the explicit solution to (77) is then:

y(i)(t; 0, 1) = e−t + e−t

∫ t

0
es cos

(
sin
(
aW(i)

s + π

2

))
ds.

The initial valued is picked to be y0 = 1 and η0 = 1, the final time is picked to be
T = 1, and the parameter a = 1.

Fig. 11 Affine-RODE-Taylor schemes for (76) with Wiener process and fBm
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Fig. 12 Itô-RODE-Taylor schemes for (77)–(78) with Itô diffusion noise

The Itô-RODE-Taylor schemes (72) of order 3
2 , and (73) of order 2, are applied to

simulate solutions to (77)–(78). The global mean-square errors EG
n+1 versus the time

steps h = 2−i , i = 3, 4, 5, 6, 7, 8 using the Itô-RODE-Taylor schemes are plotted in
Fig. 12, where the dashed reference lines have slopes 1 and 2, respectively.

7 Closing remarks

The pathwise convergence rates for RODE-Taylor schemes were studied by Jentzen
and Kloeden in [10], and the pathwise convergence rates for affine-RODE-Taylor
schemes were studied by Asai and Kloeden in [3]. In this work, we first establish a
generic theorem on the relation between local and global mean-square convergence
rates for RODEs. Then, we investigate the global mean-square convergence rate for
each of the RODE-Taylor, affine-RODE-Taylor, and Itô-RODE-Taylor schemes. It
appears that the mean-square convergence rate is ε order higher than the pathwise
convergence rate (see, e.g., [9, 12]) for the same scheme.
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