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Abstract
A linear two-dimensional singularly perturbed convection-diffusion boundary-value
problem is considered. The problem is discretized by the upwind finite-difference
method. The analysis of this method on Shishkin-type meshes has been well-
established, but the discretization mesh in this paper is the original Bakhvalov mesh,
introduced in 1969 as the first layer-adapted mesh. We analyze the error of the numer-
ical solution in the maximum norm and prove first-order pointwise accuracy, uniform
in the perturbation parameter. This is the first complete analysis of this kind for two-
dimensional convection-diffusion problems discretized on the Bakhvalov mesh. Our
numerical experiments validate the theoretical analysis.
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� Thái Anh Nhan
nhan@hnu.edu

Relja Vulanović
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1 Introduction and themodel problem

In this paper, we consider the two-dimensional singularly perturbed convection-
diffusion problem

−ε�u − b1(x, y)ux − b2(x, y)uy + c(x, y) u = f (x, y) on Ω = (0, 1)2,
u = 0 on Γ = ∂Ω,

(1)
where ε is the perturbation parameter such that 0 < ε ≤ ε∗ � 1, b1, b2, c and f are
sufficiently smooth functions, and b1(x, y) > β1 > 0, b2(x, y) > β2 > 0, c(x, y) ≥
0 for all (x, y) ∈ Ω̄ . We refer the reader to [9, 20] (see also [22, Theorem 7.17]) for a
detailed exposition of the compatibility conditions guaranteeing that the problem (1)
has a unique solution u in some suitable normed space. In general, the solution u of
the problem (1) has exponential boundary layers along the edges x = 0 and y = 0.
As opposed to this, when setting b1(x, y) ≡ 0, b2(x, y) ≡ 0, and c(x, y) > 0 on
Ω in (1), one gets singularly perturbed reaction-diffusion problems whose solutions
typically have characteristic boundary layers along all four edges of the unit square.

Singularly perturbed differential equations arise in various practical applications
and mathematical models. For example, convection-diffusion problems are found in
many formulations of fluid flow problems (such as the linearization of the Navier-
Stokes equations and transport problems) and semi-conductor device simulation.
More details on these two significant applications can be found in [30, pp. 1–
4], whereas mathematical models involving systems of reaction-diffusion problems
appear, for example, in simulation of chemical reactions, wave-current interaction,
and biological applications [3, 6].

When solving singular perturbation problems such as (1) numerically, the goal is
to design numerical methods that yield solutions that converge to the corresponding
exact solutions uniformly in the perturbation parameter ε. This task is very challeng-
ing because the conventional numerical methods do not give satisfactory results when
applied to singular perturbation problems [8]. Therefore, special methods are devised
to achieve parameter-robust convergence. In the research literature, there are two
main approaches: the use of exponentially fitted finite-difference operators on uni-
formmeshes and the use of layer-adapted meshes with certain discretization methods.
The former is less popular in spite of the fact that fitted schemes, like the Il’in-
Allen-Southwell (I-A-S) scheme, work well when applied to the one-dimensional
analogue of (1). However, their extensions to 2D problems are difficult to analyze,
and even impossible in the case of reaction-diffusion equations [8, Example 2.2].
Indeed, a recent result due to Roos and Schopf [32] shows that one can achieve first-
order convergence with the I-A-S scheme on uniform meshes for two-dimensional
convection-dominated problems, but with restricted assumptions b1(x, y) ≡ b1(x)

and b2(x, y) ≡ b2(y). A similar result is obtained in [10] for exponentially fit-
ted Galerkin and Petrov-Galerkin methods. Another rare successful use of uniform
meshes in a very unique setting to obtain ε-uniform convergence for one-dimensional
quasilinear convection-diffusion problems is the inversion method introduced by
Vulanović and Nhan [37], but this special approach remains inapplicable to 2D
problems.
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As opposed to the fitted-operator approach, the use of layer-adapted meshes—
from their first appearance more than five decades ago—has attained much attention
of singular perturbation researchers. As early as in 1969, Bakhvalov [2] introduced
his phenomenal idea of the mesh construction for one- and two-dimensional reaction-
diffusion equations in such a way that the mesh is dense inside the boundary layers
and coarse outside the layers. Essentially, in the layers, the mesh points are gener-
ated by a function which corresponds to the inverse of the boundary layer function.
Moreover, the Bakhvalov mesh-generating function is continuously differentiable on
the whole interval of integration. The Bakhvalov-type meshes due to Vulanović [39]
generalize the Bakhvalov mesh still retaining the elegant smooth property of the
mesh-generating function. However, the smoothness of these Bakhvalov-type meshes
generally results in implicitly defined transition points between the fine and coarse
parts of the mesh. This makes the error analysis more complicated than in the case
of the meshes with predefined transition points, such as Shishkin-type meshes in the
sense of Roos and Linß [17, 29] (see also [27]). The Shishkin-type meshes modify
the original piecewise uniform Shishkin mesh [34] keeping its transition point. They
are distinct from the Bakhvalov-type meshes because their mesh-generating func-
tions are not smooth. For more detailed exposition of the layer-adapted mesh design,
we refer the reader to Roos’ most recent survey [33], as well as to the monographs [7,
22, 30, 36], where the analysis of numerical methods applied on these meshes can
also be found.

Reaction-diffusion problems are more easily solved and analyzed [31, Section 1.1]
than the convection-diffusion problem (1). For instance, when finite-difference meth-
ods are used for two-dimensional reaction-diffusion elliptic problems, the complete
analysis for Shishkin meshes is given in [5, 13], whereas a simpler unified analy-
sis for both Bakhvalov-type and Shishkin-type meshes can be found in [12]. On the
other hand, when a convection-dominated problem is discretized by finite-difference
methods on Bakhvalov-type meshes rather than Shishkin-type meshes, the analysis
becomes much more difficult and delicate [33, Section 1.2]. Indeed, the analysis of
Shishkin-type meshes for the problem (1) was accomplished in 1999 by Linß and
Stynes [18, 19] (see also their 2003 survey [17] and the error-expansion analysis
on the standard Shishkin mesh by Kopteva [16]). This happened even before the
first central finite-difference error analysis of reaction-diffusion problems obtained
in 2005 by Clavero et al. [5], and later in [4] for the use of a third-order HODIE finite-
difference scheme. However, for Bakhvalov-type meshes no similar result, even
for the standard upwind scheme, has been known for two decades (see [31, Ques-
tion 6]). The very first attempt to solve this important open problem is given in
a recent work by Nhan and Vulanović [28]. The main result in [28] is a com-
plete analysis of the one-dimensional analogue of (1) discretized on the simplest
Bakhvalov-type mesh from [39] for which the transition point can be written explic-
itly, but the authors also briefly outline an extended analysis for 2D problems. An
early use of this simplest Bakhvalov-type mesh for two-dimensional problems can
be found in [40], where a second-order hybrid finite-difference method is designed
and analyzed. However, the problem considered there is much simpler than (1)
(b2(x, y) ≡ 0 and b1(x, y) ≡ b1(x) are assumed) and ε-uniform convergence is
not proved.
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The purpose of the current paper is to provide for the first time a complete anal-
ysis of the original Bakhvalov mesh when it is employed to discretize the stationary
convection-diffusion problem (1) by the upwind scheme. Therefore, our result fills
a long-standing theoretical gap in the analysis of the Bakhvalov-type meshes for
higher-dimensional convection-diffusion problems. The analysis presented in this
paper is even more compelling because, in 1D, several special techniques have
been used to provide parameter-uniform convergence proofs for Bakhvalov-type
meshes, such as the use of the hybrid-stability inequality [1, 14, 15, 23, 29] and the
preconditioning-based analysis proposed recently in [24–26, 38], but none of them
has been extended to 2D problems (cf. [22, Remark 9.2] and [24]). On the other hand,
the truncation error and barrier function approach, which has been widely used in the
analysis of Shishkin-type meshes [11, 18, 19, 21, 35], has not been applied to any
Bakhvalov-type mesh even for 1D problems until the recent appearance of [28]. It
is the same truncation error and barrier function approach from [28] that we follow
here.

The paper is organized as follows. In the next section, we review some well-
known preliminary results regarding the behavior of the exact solution and we also
introduce the upwind difference discretization on an arbitrary mesh. This is followed
by Section 3, where we describe the Bakhvalov mesh for the convection-diffusion
problem (1) and established its important properties for the later analysis. A complete
truncation error analysis is given in Section 4, and then an appropriate barrier func-
tion is constructed in Section 5 and used to prove the parameter-uniform convergence.
Numerical results that support our theoretical findings are reported in Section 6.
Finally, a short concluding remark is presented in the last section.

2 Preliminaries and the upwind discretization

In accordance with the established practice, we use C to denote a generic posi-
tive constant independent of ε and the discretization parameter N . Let Cn(Ω̄) and
Cn,1(Ω̄) be the spaces of functions defined on Ω̄ whose derivatives up to the n-th
order are continuous and, respectively, Lipschitz-continuous. Let ‖ · ‖n denote the
L∞-type norm in Cn(Ω̄) and | · |n, | · |n,1 denote the L∞-type seminorms in Cn(Ω̄)

and Cn,1(Ω̄).

Lemma 1 (Shishkin-type decomposition) Suppose that f satisfies the compati-
bility conditions (see, for instance, [19, Theorem 2.1]). Then the boundary-value
problem (1) has a classical solution u ∈ C3,1

(
Ω̄

)
and this solution can be

decomposed as

u = S + E1 + E2 + E12,

where, for all (x, y) ∈ Ω̄ , we have

‖S‖2 + ε |S|2,1 ≤ C, (2)
∣
∣
∣∣
∂k+�E1

∂xk∂y�
(x, y)

∣
∣
∣∣ ≤ Cε−ke−β1x/ε, (3)
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∣
∣∣
∣
∂k+�E2

∂xk∂y�
(x, y)

∣
∣∣
∣ ≤ Cε−�e−β2y/ε, (4)

and ∣∣
∣
∣
∂k+�E12

∂xk∂y�
x, y)

∣∣
∣
∣ ≤ Cε−(k+�)e−(β1x+β2y)/ε, (5)

for 0 ≤ k + � ≤ 3. Furthermore,

|LE1(x, y)| ≤ Ce−β1x/ε, (6)

|LE2(x, y)| ≤ Ce−β2y/ε, (7)

and
|LE12(x, y)| ≤ Ce−(β1x+β2y)/ε. (8)

Let ΩN = {
(xi, yj ) : i, j = 0, 1, . . . , N

}
be the discretization mesh, where the

mesh point coordinates xi and yj satisfy

0 = x0 < x1 < · · · < xN = 1 and 0 = y0 < y1 < · · · < yN = 1.

We denote Γ N = Γ
⋂

ΩN , and also set hx,i = xi − xi−1, �x,i = (hx,i+1 + hx,i)/2
and hy,j = yj − yj−1, �y,j = (hy,j+1 + hy,j )/2. Given a mesh function {wN

ij } on
ΩN , we discretize the problem (1) by the standard upwind scheme as follows,

LNwN
ij :=

(
−ε(D2

x + D2
y) − b1,ijD

+
x − b2,ijD

+
y + cij

)
wN

ij = fij on ΩN\Γ N,

wN
ij = 0 on Γ N,

(9)
with

D2
xw

N
ij = 1

�x,i

(
D+

x wN
ij − D−

x wN
ij

)
, D2

yw
N
ij = 1

�y,j

(
D+

y wN
ij − D−

y wN
ij

)
,

D−
x wN

ij = wN
ij − wN

i−1,j

hx,i

, D+
x wN

ij = wN
i+1,j − wN

i,j

hx,i+1
,

D−
y wN

ij = wN
ij − wN

i,j−1

hy,j

, D+
y wN

ij = wN
i,j+1 − wN

i,j

hy,j+1
.

We split LN into LN
x + LN

y , where

LN
x wN

ij =
(
−εD2

x − b1,ijD
+
x + cij

)
wN

ij and LN
y wN

ij =
(
−εD2

y − b2,ijD
+
y

)
wN

ij .

The matrix associated with the discrete operator LN is an M-matrix. Therefore,
the following discrete comparison principle holds.

Lemma 2 The operator LN satisfies a discrete comparison principle, that is, if
{
vij

}

and
{
wij

}
are two mesh functions satisfying

∣∣vij

∣∣ ≤ wij on Γ N , and
∣∣LNvij

∣∣ ≤
LNwij on ΩN \ Γ N , then

∣
∣vij

∣
∣ ≤ wij on ΩN .

We also have the standard truncation error bounds for the discrete operator LN as
below.
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Lemma 3 (cf. Lemma 3.2 in [19] and Lemma 8 in [18]) Let g(x, y) be a smooth
function defined on Ω . Then the following estimates for the truncation error hold:

∣
∣∣LN

x gij − (Lxg)ij

∣
∣∣ ≤ C

(
hx,i + hx,i+1

)
(

bij

∣∣
∣
∣
∂2g

∂x2
(x, y)

∣∣
∣
∣
0
+ ε

∣∣
∣
∣
∂2g

∂x2
(x, y)

∣∣
∣
∣
0,1

)

,

(10)
and

∣∣
∣LN

x gij − (Lxg)ij

∣∣
∣ ≤ C

(
ε

∫ xi+1

xi−1

∣
∣
∣∣
∂3g

∂x3
(ζ, yj )

∣
∣
∣∣ dζ +

∫ xi

xi−1

∣
∣
∣∣
∂2g

∂x2
(ζ, yj )

∣
∣
∣∣ dζ

)
,

(11)

for 0 < i, j < N , with analogous estimates for
∣∣
∣LN

y gij − (
Lyg

)
ij

∣∣
∣.

3 The Bakhvalovmesh for convection-diffusion problems

The original Bakhvalov mesh is presented in [2] as a discretization mesh for the
reaction-dominated problems with characteristic boundary layers. In this section, we
adopt his idea and describe the version for the problem (1) with exponential layers.
Furthermore, a careful analysis of mesh properties that are needed for the later error
analysis is also given.

The coordinates of the mesh points, xi and yj , of the Bakhvalov mesh are gener-
ated by functions λ1(t) and λ2(t) with t ∈ [0, 1] in the sense that xi = λ1(ti) and
yi = λ2(ti), where ti = i/N for i = 0, 1, . . . , N . Then we form the mesh ΩN using
the Bakhvalov mesh points (xi, yj ). For simplicity, from now on, we only consider
identical mesh-generating functions λ1 and λ2, denoting them jointly by λ.

The mesh-generating function λ is defined as follows:

λ(t) =
{

ψ(t), t ∈ [0, α],
ψ(α) + ψ ′(α)(t − α), t ∈ [α, 1],

with ψ(t) = aεφ(t) and φ(t) := ln
q

q − t
for t ∈ [0, q), where a and q are fixed pos-

itive mesh parameters such that q ∈ (0, 1) and ψ ′(0) < 1, that is, aε∗ < q. Speaking
of the mesh points on either the x- or the y-axis, the value of ψ(α) represents the
transition point from the mesh graded in the layer to the uniform mesh outside the
layer. The transition point is defined implicitly via α, which is the solution of the
nonlinear equation

ψ(α) + ψ ′(α)(1 − α) = 1

(the part of λ on [α, 1] is the tangent line from the point (1, 1) to ψ , touching ψ at
(α, ψ(α)).

Remark 1 If we want the points xi and yi , i = 0, 1, . . . , N , to be generated by two
different respective functions λ1 and λ2, then each function has its own constants a

and q, and consequently, different values of α.
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Since we do not know the point α in general, we consider auxiliary points α1 and
α2 such that

ψ ′(α1) = 1

1 − q
and ψ ′(α2) = 1.

The line through the points (q, 0) and (1, 1) has the slope 1/(1 − q) and it is steeper
than the tangent line from (1, 1) to ψ(t), whose slope is ψ ′(α). Therefore, α <

α1 < q because ψ ′(t) is monotonically increasing on [0, q). Similarly, we also have
0 < α2 < α. Figure 1 illustrates this construction graphically.

We now prove some properties of the Bakhvalov mesh. We state them for hi ,
which stands for both hx,i and hy,i , i = 1, 2, . . . , N .

Lemma 4

hi−1 ≤ hi ≤ 1

(1 − q)N
, i = 2, 3, . . . , N, (12)

and
q − aε < α < q − a(1 − q)ε. (13)

Proof It is easy to see that φ′′(t) = 1

(q − t)2
> 0 for t ∈ [0, q), and

λ′(t) =
{

ψ ′(t), t ∈ [0, α],
ψ ′(α), t ∈ [α, 1]. (14)

Therefore, λ′(t) is non-decreasing and (12) follows from

hi−1 ≤ hi = ∫ ti
ti−1

λ′(s) ds ≤ N−1λ′(ti)
≤ N−1ψ ′(α) ≤ N−1ψ ′(α1) = 1

(1−q)N
, i = 2, . . . , N .

(15)

To show (13), use ψ ′(α1) = 1

1 − q
again to get

aεφ′(α1) = aε

q − α1
= 1

1 − q
.

Fig. 1 The Bakhvalov mesh-generating function, λ(t) on [0, 1] (left) and its zoomed-in portion (right) for
ε = 10−2, q = 1/2, and a = 2
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It follows that α1 = q − (1 − q)aε which yields the second inequality in (13). A
similar work with ψ ′(α2) = 1 yields the remaining estimate in (13).

The estimates (13) imply important lower and upper bounds for q − α, which are
occasionally used later in the error analysis:

a(1 − q)ε < q − α < aε. (16)

Let J be the index such that

tJ−1 < α ≤ tJ . (17)

The next lemma provides more estimates of the mesh width in the layer region.

Lemma 5 Let tJ ≤ q. Then we have
aε

q
N−1 ≤ hi ≤ aε, i = 1, 2, . . . , J − 1 (18)

Proof By (17), for i ≤ J − 1 we have

hi = aε
∫ ti
ti−1

φ′(s) ds ≥ aε
N

φ′(ti−1) ≥ aε
N

1
q−ti−1

≥ aε
q

N−1.

On the other hand,

hi = aε
∫ ti
ti−1

φ′(s) ds ≤ aε
N

φ′(ti) = aε
N

1
q−ti

≤ aε
N

1
(tJ −tJ−1)

≤ aε,

which completes the proof of (18).

Remark 2 Without the condition tJ ≤ q, the estimate in Lemma 5 are true for i ≤
J − 2.

We now consider step-size estimates for the case q < tJ . We also define

tJ−1/2 = tJ−1 + tJ

2
= J − 1/2

N
.

Lemma 6 Let q < tJ . Then the following estimates are satisfied:

– When α ≤ tJ−1/2, we have

hJ ≥ (2N)−1 . (19)

– When tJ−1/2 < α, we have
hJ−1 ≤ 2aε. (20)

Proof First, consider α ≤ tJ−1/2. In this case, hJ = xJ −xJ−1 = (xJ −xα)+ (xα −
xJ−1) with xα = ψ(α). It follows that

hJ ≥ xJ − xα = ψ ′(α)(tJ − α) = aεφ′(α)(tJ − α)

≥ aε
q−α

(tJ − α) ≥ aε
q−α

(
tJ − tJ−1/2

) ≥ 1
2N ,

where we used (16) in the last inequality.
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Second, for tJ−1/2 < α, because tJ−1 < tJ−1/2 < α < q, we have

hJ−1 = aε
∫ tJ−1
tJ−2

φ′(s) ds ≤ aε
N

φ′(tJ−1) ≤ aε
N

· 1
q−tJ−1

≤ aε
N

· 1
tJ−1/2−tJ−1

≤ 2aε,

which gives (20).

4 The truncation error analysis

The numerical solution wN
ij of the upwind finite-difference discretization is decom-

posed analogously to its continuous counterpart:

wN
ij = SN

ij + EN
1,ij + EN

2,ij + EN
12,ij ,

for which

LNSN
ij = (LS)ij , LNEN

1,ij = (LE1)ij , LNEN
2,ij = (LE2)ij , LNEN

12,ij = (LE12)ij on ΩN \ Γ N,

and

SN
ij = Sij , EN

1,ij = E1,ij , EN
2,ij = E2,ij , EN

12,ij = E12,ij on Γ N . (21)

Let

LN
(
uij

) − (Lu)ij = LN
(
uij − wN

ij

)
, 1 ≤ i, j ≤ N − 1,

be the truncation (consistency) error of the upwind discretization of the problem (1)
on the Bakhvalov mesh. We establish the upper bounds for the truncation error by
using

∣∣
∣LN

(
uij − wN

ij

)∣∣
∣ ≤

∣∣
∣LN

(
Sij − SN

ij

)∣∣
∣ +

∣∣
∣LN

(
E1,ij − EN

1,ij

)∣∣
∣

+
∣∣
∣LN

(
E2,ij − EN

2,ij

)∣∣
∣ +

∣∣
∣LN

(
E12,ij − EN

12,ij

)∣∣
∣

≤ τx
ij + τ

y
ij ,

(22)

where we set

τx
ij : =

∣
∣
∣LN

x

(
Sij − SN

ij

)∣
∣
∣ +

∣
∣
∣LN

x

(
E1,ij − EN

1,ij

)∣
∣
∣

+
∣
∣
∣LN

x

(
E2,ij − EN

2,ij

)∣
∣
∣ +

∣
∣
∣LN

x

(
E12,ij − EN

12,ij

)∣
∣
∣

and

τ
y
ij : =

∣
∣
∣LN

y

(
Sij − SN

ij

)∣
∣
∣ +

∣
∣
∣LN

y

(
E1,ij − EN

1,ij

)∣
∣
∣

+
∣
∣
∣LN

y

(
E2,ij − EN

2,ij

)∣
∣
∣ +

∣
∣
∣LN

y

(
E12,ij − EN

12,ij

)∣
∣
∣ .

We will bound each term of τx
ij and τ

y
ij separately. For the regular part S of the

solution, the standard argument (see also [19]) is applied by invoking Lemma 1 and
the first estimate in Lemma 3, as well as the mesh property (12) to obtain
∣
∣∣LN

x

(
Sij − SN

ij

)∣
∣∣≤ CN−1 and

∣
∣∣LN

y

(
Sij − SN

ij

)∣
∣∣ ≤ CN−1 for 1≤ i, j ≤ N−1.

(23)
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Let

Ēx
ij =

i∏

k=1

(
1 + β1hx,k

2ε

)−1

and let Ēy
ij be defined in the same way with β2 instead of β1.

In the next two lemmas we provide the truncation error estimate for the layer parts
E1 and E2, as well as for the corner part E12.

Lemma 7 Let aβ1 ≥ 2. Then, for any j = 1, 2, . . . , N − 1, the bound on∣
∣∣LN

x

(
E1,ij − EN

1,ij

)∣
∣∣ can be given as follows.

– For i ≥ J , ∣
∣
∣LN

x

(
E1,ij − EN

1,ij

)∣
∣
∣ ≤ CN−1. (24)

– For i ≤ J − 2,
∣
∣
∣LN

x

(
E1,ij − EN

1,ij

)∣
∣
∣ ≤ C

(
N−1 + ε−1Ēx

ijN
−1

)
. (25)

– For i = J − 1,

∣∣
∣LN

x

(
E1,ij − EN

1,ij

)∣∣
∣ ≤

⎧
⎨

⎩

C
(
N−1 + ε−1Ēx

ijN
−1

)
, if hx,i ≤ ε,

C
(
N−1 + h−1

x,i+1Ē
x
ijN

−1
)

, if hx,i > ε.
(26)

Also, ∣∣
∣LN

x

(
E2,ij − EN

2,ij

)∣∣
∣ ≤ CN−1. (27)

Proof Throughout the proof, let 1 ≤ j ≤ N−1. For the detail of this proof technique,
we refer the reader to [28, Lemma 3.1].

We begin by asserting (24) for i ≥ J + 1. We apply (11) to E1, use (3), and note
that in this case ti−1 ≥ tJ ≥ α. Then we have

∣∣∣LN
x

(
E1,ij − EN

1,ij

)∣∣∣ ≤ CN−1λ′(ti+1)ε
−2e−β1λ(ti−1)/ε ≤ CN−1ε−2e−aβ1φ(α)

≤ CN−1ε−2
(
e−φ(α)

)aβ1 ≤ CN−1ε−2
(

q − α

q

)aβ1

≤ CN−1,

where we have used (16) and aβ1 ≥ 2 in the last inequality.
To prove (24) for i = J , we consider two cases: ε ≤ N−1 and ε > N−1. First, for

i = J and ε ≤ N−1, our approach is
∣
∣∣LN

x

(
E1,ij − EN

1,ij

)∣
∣∣ ≤

∣
∣∣LN

x

(
E1,ij

)∣∣∣ + ∣
∣(LxE1)ij

∣
∣ (28)

and then we bound each term on the right-hand side separately. Using the estimate
(6) at i = J we get

∣∣(LxE1)ij
∣∣ ≤ Ce−β1xJ /ε ≤ C

(
e−φ(α)

)aβ1 ≤ C

(
q − α

q

)aβ1

≤ C(ε)aβ1 ≤ CN−1,

(29)
where we used (16).
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As for
∣
∣LN

x

(
E1,ij

)∣∣, we have
∣
∣
∣LN

x

(
E1,ij

)∣∣
∣ ≤ P x

ij + Qx
ij + Rx

ij , (30)

where P x
ij = ε

∣
∣
∣D

2

xE1,ij

∣
∣
∣ , Qx

ij = b1,ij
∣∣D+

x E1,ij
∣∣ , Rx

ij = cij

∣∣E1,ij
∣∣ , and

P x
J,j ≤ C�

−1
x,J e−β1xJ−1/ε ≤ CN

(
e−φ(tJ−1)

)aβ1 ≤ CN
(
ε + N−1

)aβ1 ≤ CN−1,

where we have used tJ−1 < α ≤ tJ and (16) again. The same argument is employed
to get Qx

J,j ≤ CN−1. For Rx
J,j , it is clear from (3) that

Rx
J,j ≤ Ce−β1xJ /ε ≤ CN−1,

because of the arguments used in (29).
Second, for i = J and ε > N−1, it follows that hx,J ≤ Cε because of (12).

Therefore, we use (11) to continue as follows:
∣
∣∣LN

x

(
E1,ij − EN

1,ij

)∣
∣∣ ≤ CN−1ε−2e−β1xJ−1/ε ≤ CN−1ε−2e−β1xJ /ε ≤ CN−1.

This completes the proof of (24).
We combine the estimates (25) and (26) and prove them together. We consider two

subcases:

1. when ti−1 ≤ q − 3/N , and
2. when q − 3/N < ti−1 < α.

Subcase 1. Note that, when ti−1 ≤ q − 3/N , we have ti+1 ≤ q − 1/N < q, so
λ′(ti+1) ≤ aεφ′(ti+1) due to (14). Hence,

∣∣
∣LN

x

(
E1,ij − EN

1,ij

)∣∣
∣ ≤ CN−1λ′(ti+1)ε

−2e−β1xi−1/ε

≤ Cε−1N−1
(

1
q−ti+1

) (
e−φ(ti−1)

)aβ1/2
e−β1xi−1/(2ε)

≤ Cε−1N−1Ēx
ij .

Here, for i = 1, 2, . . . , J −2, we used hx,i ≤ aε due to Remark 2, and for i = J −1,
the assumption hx,J−1 ≤ ε in (26).

Subcase 2. Note that in this case we have (q − ti−1) < 3N−1. Hence, we can
proceed as follows:
∣∣
∣LN

x

(
E1,ij − EN

1,ij

)∣∣
∣ ≤ Cε−1e−β1xi−1/2εe−β1xi−1/2ε

≤ Cε−1e−β1xi/(2ε)eβ1hx,i/(2ε)
(
e−φ(ti−1)

)aβ1/2

≤ Cε−1Ēx
ijN

−1.

This completes the proof of (25) and the first estimate in (26).

Lastly, we show the second estimate in (26), that is, when i = J − 1 and hx,i > ε,
by considering the following cases:

∣
∣∣LN

x

(
E1,ij − EN

1,ij

)∣
∣∣ ≤

⎧
⎪⎨

⎪⎩

Ch−1
x,i+1Ē

x
ijN

−1, tJ ≤ q

CN−1, q < tJ & α ≤ tJ−1/2,

Ch−1
x,i+1Ē

x
ijN

−1, q < tJ & α > tJ−1/2.

(31)
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First, when tJ ≤ q, due to (12), one gets ε ≤ CN−1. We again use the estimate in
the form of (28), invoking (16) and (6) to get
∣
∣(LE1)ij

∣
∣ ≤ Ce−β1xJ−1/ε ≤ Ch−1

x,J Ēx
J−1,j

(
e−φ(tJ−1)

)aβ1/2 ≤ Ch−1
x,J Ēx

J−1,jN
−1.
(32)

For P x
J−1,j (and analogously for Qx

J−1,j ), we use (16) and (18) again to obtain

P x
J−1,j ≤ C�

−1
x,J−1e

−β1xJ−2/ε ≤ Ch−1
x,J Ēx

J−1,j

[
ε + 2N−1

] ≤ Ch−1
x,J Ēx

J−1,jN
−1.
(33)

This implies that
∣
∣LN

x

(
E1,ij

)∣∣ ≤ Ch−1
x,J Ēx

J−1,jN
−1 and, together with (32), asserts

the first case of (31).
For hx,i > ε, i = J − 1, α ≤ tJ−1/2 and q < tJ , we use (19) to get

P x
J−1,j ≤ C�

−1
x,J−1e

−β1xJ−2/ε ≤ Ch−1
x,J

(
e−φ(tJ−2)

)aβ1 ≤ CN
(

q−tJ−2
q

)aβ1 ≤ CN−1

because tJ−1 < q < tJ . We apply a similar argument to Qx
J−1,j , and also

∣
∣(LE1)ij

∣
∣ ≤ Ce−β1xJ−1/ε ≤ C

(
e−φ(tJ−1)

)aβ1/2 ≤ C
(

q−tJ−1
q

)aβ1/2 ≤ CN−1.

This implies that
∣∣
∣LN

x

(
E1,ij − EN

1,ij

)∣∣
∣ ≤ CN−1, which is the second estimate

in (31).
For hx,i > ε (again, ε ≤ CN−1 by (12)), i = J − 1, α > tJ−1/2, and q < tJ ,

because of (20), we can bound P x
J−1,j and Qx

J−1,j as in (33), and
∣
∣(LE1)ij

∣
∣ as in

(32), which yields the last case of (31).

For
∣
∣
∣LN

x

(
E2,ij − EN

2,ij

)∣
∣
∣, because of (4) and (11), we can easily show that, with

arbitrary hy,j ,
∣
∣∣LN

x

(
E2,ij − EN

2,ij

)∣
∣∣ ≤ C

(
εhx,i+1 + hx,i

) ≤ CN−1, 1 ≤ i ≤ N − 1,

where we used the property hx,i ≤ CN−1, i = 1, 2, . . . , N . This completes the
proof.

Lemma 8 Let aβ1 ≥ 2. The upper bound on
∣
∣
∣LN

x

(
E12,ij − EN

12,ij

)∣
∣
∣, for any j =

1, 2, . . . , N − 1, satisfies the following.

– For i ≥ J , ∣
∣
∣LN

x

(
E12,ij − EN

12,ij

)∣
∣
∣ ≤ CN−1.

– For i ≤ J − 2,
∣
∣
∣LN

x

(
E12,ij − EN

12,ij

)∣
∣
∣ ≤ C

(
N−1 + ε−1Ēx

ijN
−1

)
.

– For i = J − 1,

∣
∣
∣LN

x

(
E12,ij − EN

12,ij

)∣
∣
∣ ≤

⎧
⎨

⎩

C
(
N−1 + ε−1Ēx

ijN
−1

)
if hx,i ≤ ε,

C
(
N−1 + h−1

x,i+1Ē
x
ijN

−1
)

if hx,i > ε.
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Proof We observe the following two key estimates that make the analysis in the proof
of Lemma 7 work for the E12 component. Lemma 1 implies

|LE12(x, y)| ≤ Ce−β1x/εe−β2y/ε ≤ Ce−β1x/ε,

and ∣
∣∣
∣
∂iE12

∂xi
(x, y)

∣
∣∣
∣ ≤ Cε−ie−β1x/εe−β2y/ε ≤ Cε−ie−β1x/ε.

Hence, arguments analogous to those in the proof of Lemma 7 can be applied to
prove the assertions.

Combining Lemmas 7 and 8 with (23) and invoking (22), we arrive at the main
result of this section, the truncation error estimate for the upwind discretization of
the problem (1) on the Bakhvalov mesh.

Theorem 1 Let aβ1 ≥ 2 and aβ2 ≥ 2. Then the truncation error of the upwind
discretization of the problem (1) on the Bakhvalov mesh satisfies

∣∣LN
(
uij

) − (Lu)ij
∣∣ ≤ τx

ij + τ
y
ij ,

where for τx
ij and any j = 1, 2, . . . , N − 1, we have,

– for i ≥ J ,
τx
ij ≤ CN−1, (34)

– for i ≤ J − 2,

τx
ij ≤ C

(
N−1 + ε−1Ēx

ijN
−1

)

– for i = J − 1,

τx
ij ≤

⎧
⎨

⎩

C
(
N−1 + ε−1Ēx

ijN
−1

)
if hx,i ≤ ε,

C
(
N−1 + h−1

x,i+1Ē
x
ijN

−1
)

if hx,i > ε,
(35)

whereas τ
y
ij , for any i = 1, 2, . . . , N − 1, can be bounded as follows:

– for j ≥ J ,
τ

y
ij ≤ CN−1,

– for j ≤ J − 2,

τ
y
ij ≤ C

(
N−1 + ε−1Ē

y
ijN

−1
)

– for j = J − 1,

τ
y
ij ≤

⎧
⎨

⎩

C
(
N−1 + ε−1Ē

y
ijN

−1
)

if hy,j ≤ ε,

C
(
N−1 + h−1

y,j+1Ē
y
ijN

−1
)

if hy,j > ε.

5 The barrier function and uniform convergence result

We now proceed to form a barrier function. Set

γij = γ x
ij + γ

y
ij , 1 ≤ i, j ≤ N − 1,
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with

γ x
ij = C1(1 − xi)N

−1 + C2Ē
x
ijN

−1 and γ
y
ij = C3(1 − yj )N

−1 + C4Ē
y
ijN

−1,

where Ck, k = 1, 2, 3, 4, are appropriately chosen positive constants independent of
both ε and N .

Lemma 9 Let aβ1 ≥ 2 and aβ2 ≥ 2. Then, there exist sufficiently large constants
Ck , k = 1, 2, 3, 4, such that

LNγij = LNγ x
ij + LNγ

y
ij ≥ κx

ij + κ
y
ij ≥ τx

ij + τ
y
ij , 1 ≤ i, j ≤ N − 1,

where
κx
ij = C1N

−1 + C2[max{ε, hx,i+1}]−1Ēx
ijN

−1,

and
κ

y
ij = C3N

−1 + C4[max{ε, hy,j+1}]−1Ē
y
ijN

−1.

Proof It is easy to verify that LN
x γij ≥ κx

ij and LN
y γij ≥ κ

y
ij , see, for instance, [11,

27, 35]. Therefore, using Theorem 1, we will show that

τx
ij ≤ κx

ij , 1 ≤ j ≤ N − 1,

for various values of the index i.
Let 1 ≤ j ≤ N − 1 throughout the proof again. It is clear from (34) that

τx
ij ≤ CN−1 ≤ C1N

−1 ≤ κx
ij , i = J, J + 1, . . . , N − 1.

It remains to prove that τx
ij ≤ κx

ij for i ≤ J − 1. If i ≤ J − 3, then hx,i+1 ≤ aε

because of Remark 2, in which the estimate (18) holds for i ≤ J − 2. Therefore,

τx
ij ≤ C

(
N−1 + ε−1Ēx

ijN
−1

)
≤ C1N

−1 + C2ε
−1Ēx

ijN
−1 ≤ κx

ij , for any i ≤ J − 3. (36)

Next, for i = J − 2, J − 1, we consider two cases: hx,i > ε and hx,i ≤ ε. First,
when hx,i > ε, it is clear that hx,i+1 ≥ hx,i which immediately yields τx

J−1,j ≤
κx
J−1,j because of (35).

For i = J − 2 and hx,J−2 > ε (which implies CN−1 > ε), we can also prove that

τx
J−1,j ≤ C(N−1 + h−1

x,J−1Ē
x
J−2,jN

−1),

by invoking (28), (30), hx,J−2 ≤ aε by Remark 2, while analogous arguments can
be used to obtain the bounds of Qx

J−2,j ,
∣∣(LE1)J−2,j

∣∣ , and
∣∣(LE12)J−2,j

∣∣.
Second, we consider hx,i ≤ ε and i = J − 2, J − 1. If hx,i+1 ≤ ε, we have

the same situation as in the estimate (36). On the other hand, when hx,i+1 > ε for
i = J − 2, J − 1, this implies that max{ε, hx,i+1} = hx,i+1 and ε ≤ CN−1, so, by
modifying the approach in (33), we can also show that

τx
ij ≤ C

(
N−1 + h−1

x,i+1Ē
x
ijN

−1
)
.

Similar arguments, when applied to Qx
ij ,

∣
∣(LxE1)ij

∣
∣ , and

∣
∣(LxE12)ij

∣
∣ give,

τx
ij ≤ Ch−1

x,i+1Ē
x
ijN

−1 ≤ κx
ij , i = J − 2, J − 1.
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Using analogous reasoning for τ
y
ij , we are done.

Theorem 2 Let aβ1 ≥ 2 and aβ2 ≥ 2. Then, for the upwind finite-difference method
applied on the Bakhvalov mesh to the convection-diffusion problem (1), the error
satisfies ∣

∣∣uij − wN
ij

∣
∣∣ ≤ CN−1, for 0 ≤ i, j ≤ N .

Proof It is straightforward from (21) that
∣
∣
∣uij − wN

ij

∣
∣
∣ = 0 ≤ γij on Γ N .

Furthermore, Lemma 9 gives
∣
∣∣LN

(
uij − wN

ij

)∣
∣∣ ≤ LNγij on ΩN \ Γ N .

Applying the discrete comparison principle, Lemma 2, we complete the proof.

Remark 3 The above ε-uniform convergence result is more robust than what can be
proved when the upwind scheme is used on the standard Shishkin mesh, in which
case lnN-factors occur in the error. Moreover, proofs of ε-uniform convergence on
Shishkin-type meshes usually invoke the assumption ε ≤ N−1 (see [18, Assumption
3] and [22, page 12], for instance), which our proof method does not require.

6 Numerical results

In this section, we illustrate the numerical performance of the Bakhvalov mesh
as the discretization mesh of the standard upwind difference scheme for the
two-dimensional convection-diffusion problems of type (1). We consider two test
problems. The first one is taken from [22, page 261],

−ε�u − (x + 2)ux − (y3 + 3)uy+ u = f (x, y) on Ω = (0, 1)2,
u = 0 on Γ = ∂Ω,

(37)

where f (x, y) is chosen so that

u(x, y) = cos
(πx

2

) (
1 − e−2x/ε

)
(1 − y)3

(
1 − e−3y/ε

)

is the exact solution. It is clear that the solution has exponential boundary layers along
the x = 0 and y = 0 edges. In this test problem, b1(x, y) ≥ 2 and b2(x, y) ≥ 3 for
(x, y) ∈ Ω̄ . Therefore, the choice of the Bakhvalov mesh parameter a = 2 satisfies
aβ1 ≥ 2 and aβ2 ≥ 2 as required by Theorem 2. We also choose q = 1/2.

The computed errors, denoted by EN , are shown in Table 1, together with the rate
of convergence ρ which is approximated numerically as

ρ ≈ lnEN − lnE2N

ln 2
.
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Table 1 Problem (37): errors and rates for the upwind discretization on the Bakhvalov mesh with a = 2
and q = 1/2

ε N = 26 N = 27 N = 28 N = 29 N = 210

10−1 2.406e−02 1.235e−02 6.259e−03 3.151e−03 1.581e−03 EN

0.96 0.98 0.99 1.00 – ρ

10−2 2.894e−02 1.448e−02 7.241e−03 3.618e−03 1.808e−03 EN

1.00 1.00 1.00 1.00 – ρ

10−3 2.998e−02 1.531e−02 7.769e−03 3.913e−03 1.965e−03 EN

0.97 0.98 0.99 0.99 – ρ

10−4 3.039e−02 1.566e−02 7.947e−03 4.002e−03 2.008e−03 EN

0.96 0.98 0.99 0.99 – ρ

10−5 3.058e−02 1.571e−02 7.971e−03 4.014e−03 2.014e−03 EN

0.96 0.98 0.99 1.00 – ρ

10−6 3.074e−02 1.574e−02 7.974e−03 4.015e−03 2.014e−03 EN

0.97 0.98 0.99 1.00 – ρ

10−7 3.084e−02 1.577e−02 7.981e−03 4.016e−03 2.015e−03 EN

0.97 0.98 0.99 1.00 – ρ

10−8 3.092e−02 1.580e−02 7.988e−03 4.018e−03 2.015e−03 EN

0.97 0.98 0.99 1.00 – ρ

10−9 3.098e−02 1.581e−02 7.993e−03 4.019e−03 2.015e−03 EN

0.97 0.98 0.99 1.00 – ρ

Table 9.1 in [22] shows the errors for the same test problem with ε = 10−8 when
the standard Shishkin mesh and the Bakhvalov-Shishkin mesh are used. We point out
that the errors in Table 1 are less.

Our second test problem is

−ε�u − [
x sin

(
π
4 y

) + 1
]
ux−

[
yex + 1

]
uy + [

x2 + e2y
]
u = 5y sin x cos

(πy
2

)

on Ω = (0, 1)2,
u = 0 on Γ = ∂Ω,

(38)
for which we do not know the exact solution. Therefore, we compute the errors by the
double-mesh principle [7]. We use the same mesh parameters like above, a = 2 (here
bk(x, y) ≥ 1 for k = 1, 2 and (x, y) ∈ Ω̄) and q = 1/2. The upwind approximations
and the rates of convergence are shown in Table 2. A computed solution whenN = 26

and ε = 10−3 is plotted in Fig. 2.

7 Conclusion

Motivated by a long-standing open question in [31], related to the finite-difference
analysis of convection-dominated problems, we generalized the new approach of
the truncation error and barrier function technique, recently introduced in [28],
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Table 2 Problem (38): errors and rates obtained by the double-mesh principle for the upwind discretization
on the Bakhvalov mesh with a = 2 and q = 1/2

ε N = 25 N = 26 N = 27 N = 28 N = 29

10−1 5.618e−03 2.985e−03 1.539e−03 7.819e−04 3.940e−044 EN

0.91 0.96 0.98 0.99 – ρ

10−2 1.602e−02 9.487e−03 5.241e−03 2.779e−03 1.436e−03 EN

0.76 0.86 0.92 0.95 – ρ

10−3 2.097e−02 1.277e−02 7.344e−03 4.038e−03 2.142e−03 EN

0.72 0.80 0.86 0.91 – ρ

10−4 2.197e−02 .343e−02 7.753e−03 .278e−03 2.276e−03 EN

0.71 0.79 0.86 0.91 – ρ

10−5 2.214e−02 1.353e−02 7.811e−03 .311e−03 2.294e−03 EN

0.71 0.79 0.86 0.91 – ρ

10−6 2.220e−02 1.355e−02 7.822e−03 4.316e−03 2.296e−03 EN

0.71 0.79 0.86 0.91 – ρ

10−7 2.223e−02 1.356e−02 7.826e−03 4.317e−03 2.297e−03 EN

0.71 0.79 0.86 0.91 – ρ

10−8 2.225e−02 1.357e−02 7.828e−03 4.318e−03 2.297e−03 EN

0.71 0.79 0.86 0.91 – ρ

10−9 2.227e−02 1.358e−02 7.830e−03 4.318e−03 2.297e−03 EN

0.71 0.79 0.86 0.91 – ρ

Fig. 2 The computed solution by double-mesh principle to the test problem (38)
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from one-dimensional problems to 2D problems. Moreover, one of the simplest
modifications of the Bakhvalov mesh was used in [28], whereas in the present
paper, we considered the original Bakhvalov discretization mesh. For the upwind
finite-difference scheme, we proved first-order convergence uniform in the per-
turbation parameter. We also confirmed the theoretical results experimentally. Our
novel technical approach opens the door to the analysis of other unanswered ques-
tions related to Bakhvalov-type meshes in conjunction with convection-diffusion
problems.
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