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Abstract
In this paper, for solving horizontal linear complementarity problems, a two-step
modulus-based matrix splitting iteration method is established. The convergence
analysis of the proposed method is presented, including the case of accelerated over-
relaxation splitting. Numerical examples are reported to show the efficiency of the
proposed method.

Keywords Horizontal linear complementarity problem · Modulus-based method ·
H+-matrix

1 Introduction

Given A, B ∈ R
n×n and q ∈ R

n, the horizontal linear complementarity problem
(abbreviated as HLCP) is to find vectors z, r ∈ R

n such that

Az − Br + q = 0, z, r ≥ 0 and zT r = 0, (1)

where for two matrices F = (fij ), G = (gij ) ∈ R
m×n the order F ≥ (>)G means

fij ≥ (>)gij for any i and j .
Clearly, when either A or B is an n × n identity matrix, the HLCP reduces to the

well-known linear complementarity problem (abbreviated as LCP) [9]. On the other
hand, the HLCP can be viewed as the simplest case of the extended HLCP [8], and
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it has wide applications in the fields of control theory, hydrodynamic lubrication,
nonlinear networks (see [12–15, 26, 27] for details).

Recently, for solving HLCPs, some matrix splitting-based methods were intro-
duced. In particular, the projected splitting methods were introduced in [22], while
modulus-based matrix splitting (MMS) methods were introduced in [23]. Specially,
the MMS method was shown to be more efficient than the interior-point method [21]
and the projected splitting method with global convergence. Weaker assumptions and
larger convergence domain of the MMS method were given in [41] when the system
matrices are assumed to be H+-matrices. The convergence of modulus-based Jacobi
(MJ) and modulus-based Gauss-Seidel (MGS) methods was discussed in [25] for the
HLCP from hydrodynamic lubrication. The MMS technique had also been used as a
successful tool for LCPs [3–5, 10, 18–20, 30, 34, 39, 42], and some classes of nonlin-
ear complementarity problems (NCP) [17, 29, 32, 35, 36, 38, 40] in recent years. On
the other hand, without matrix splitting, the HLCP was solved by nonsmooth New-
ton’s method based on the equivalent modulus equation (see [24]). The technique
of nonsmooth Newton’s iteration had also been successfully used in LCPs [33] and
NCPs [37] with locally fast convergence rate.

In this paper, we aim at further accelerating of the MMS method for the HLCP.
To achieve higher computing efficiency, and to make full use of the information con-
tained in the system matrices, the technique of two-step splitting had been used for
LCPs and NCPs (see [30, 36, 39] for details). It is therefore interesting to study the
two-step MMS method for the HLCP as well. Thus, we first propose the two-step
MMS method for the HLCP by employing two-step matrix splittings in Section 2. In
Section 3, we present the convergence analysis for the proposed method. Specifically,
the accelerated overrelaxation (AOR) splitting is analyzed. The proposed method and
theorems are shown to generalized the existing theories of the MMS method. Next,
by numerical examples, we show that the proposed method is more efficient than the
MMS method in Section 4. Finally, Section 5 concludes this work.

Next, some needed notations, definitions and known results are given.
Let en be an n×1 vector whose elements are all equal to 1. Let A = (aij ) ∈ R

n×n

and A = DA − LA − UA = DA − CA, where DA, −LA, −UA and −CA denote
the diagonal, the strictly lower-triangular, the strictly upper-triangular and nondiag-
onal matrices of A, respectively. tridiag(a; b; c) denotes a tridiagonal matrix with
vectors a, b, c forming its subdiagonal, main diagonal and superdiagonal entries,
respectively, while blktridiag(A; B; C) denotes a block tridiagonal matrix with block
matrices I ⊗ A, I ⊗ B, I ⊗ C as its corresponding block entries, where“⊗” is the
Kronecker product and I is the identity matrix.

By |A| we denote |A| = (|aij |) and the comparison matrix of A is 〈A〉 = (〈aij 〉),
where 〈aij 〉 = |aij | if i = j and 〈aij 〉 = −|aij | if i �= j . A is called a Z-matrix
if aij ≤ 0 for any i �= j , a nonsingular M-matrix if it is a nonsingular Z-matrix
with A−1 ≥ 0, an H -matrix if 〈A〉 is a nonsingular M-matrix (e.g., see [6]). A is
called an H+-matrix if A is an H -matrix with aii > 0 for every i (e.g., see [2]). If
|aii | >

∑

j �=i

|aij | for all 1 ≤ i ≤ n, A is called a strictly diagonal dominant (s.d.d.)
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matrix. By ρ(A) we denote the spectral radius of A. A = M − N is called an H -
splitting if 〈M〉 − |N | is a nonsingular M-matrix; and an H -compatible splitting if
〈A〉 = 〈M〉 − |N | (e.g., see [31]).

2 Two-stepmethod

First, we introduce the MMS method for solving the HLCP.
Let A = MA − NA, B = MB − NB be two splittings of A and B, respectively.

Then, with z = 1
γ
(|x| + x) and r = 1

γ
�(|x| − x), the HLCP can be equivalently

transformed into a system of fixed-point equations

(MB� + MA)x = (NB� + NA)x + (B� − A)|x| − γ q, (2)

where � is a positive diagonal parameter matrix and γ is a positive constant (see [23]
for more details). Based on (2), the MMS method is presented as follows:

Method 1 [23] Let � ∈ R
n×n be a positive diagonal matrix, γ be a positive constant

and A = MA − NA, B = MB − NB be two splittings of the matrix A ∈ R
n×n and

B ∈ R
n×n, respectively. Given an initial vector x(0) ∈ R

n, compute x(k+1) ∈ R
n by

solving the linear system

(MB� + MA)x(k+1) = (NB� + NA)x(k) + (B� − A)|x(k)| − γ q.

Then set

z(k+1) = 1

γ
(|x(k+1)| + x(k+1)) and r(k+1) = 1

γ
�(|x(k+1)| − x(k+1))

for k = 0, 1, 2, . . ., until the iteration sequence {(z(k), r(k))}+∞
k=1 is convergent.

With the same idea used in LCPs and NCPs, in order to achieve high computing
efficiency, we consider making use of the information in the matrices A and B. The
two-step modulus-based matrix splitting (TMMS) iteration method for solving the
HLCP is presented as follows:

Method 2 Two-step modulus-based matrix splitting iteration method for the HLCP
For any given positive diagonal matrix � ∈ R

n×n and γ > 0, let A = MA1 − NA1 =
MA2 − NA2 be two splittings of the matrix A ∈ R

n×n, while B = MB1 − NB1 =
MB2 − NB2 be two splittings of the matrix B ∈ R

n×n. Given an initial vector x(0) ∈
R

n, compute x(k+1) ∈ R
n by solving the two linear systems

{
(MB1� + MA1)x

(k+ 1
2 ) = (NB1� + NA1)x

(k) + (B� − A)|x(k)| − γ q,

(MB2� + MA2)x
(k+1) = (NB2� + NA2)x

(k+ 1
2 ) + (B� − A)|x(k+ 1

2 )| − γ q.
(3)

Then set

z(k+1) = 1

γ
(|x(k+1)| + x(k+1)) and r(k+1) = 1

γ
�(|x(k+1)| − x(k+1))
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for k = 0, 1, 2, . . ., until the iteration sequence {(z(k), r(k))}+∞
k=1 is convergent.

Note that if we take MA1 = MA2 , NA1 = NA2 , MB1 = MB2 and NB1 = NB2 ,
Method 2 reduces to Method 1 by combining the two iterations in (3).

Furthermore, by the same definitions as those in [30] of two-step matrix splittings,
taking

{
MA1 = 1

α
(DA − βLA), MA2 = 1

α
(DA − βUA),

MB1 = 1
α
(DB − βLB), MB2 = 1

α
(DB − βUB).

(4)

we can obtain the two-step modulus-based accelerated overrelaxation (TMAOR) iter-
ation method. Taking α = β and α = β = 1, the TMAOR iteration method reduces
to the two-step modulus-based successive overrelaxation (TMSOR) iteration method
and the two-step modulus-based Gauss-Seidel (TMGS) iteration method, respec-
tively. Furthermore, to achieve fast convergence rate, one can generalize the MAOR
iteration method by setting more choices of the relaxation parameters than (4) in the
two-step matrix splittings, e.g.,

{
MA1 = 1

α1
(DA − β1LA), MA2 = 1

α1
(DA − β1UA),

MB1 = 1
α2

(DB − β2LB), MB2 = 1
α2

(DB − β2UB).
(5)

3 Convergence analysis

It is well known that the HLCP has a unique solution for any known vector q if
and only if {A, B} satisfies the W-property [28], i.e., if all column-representative
matrices of {A, B} have determinants that are either all positive or all negative. As
remarked in [23], that bothA andB areH+-matrices is in such cases. In the following
discussion, the convergence analysis of Method 2 is presented when the HLCP is
always assumed to have a unique solution with both A and B being H+-matrices.

We present some useful lemmas first.

Lemma 1 [11] Let A be an H -matrix. Then |A−1| ≤ 〈A〉−1.

Lemma 2 [16] Let B ∈ R
n×n be an s.d.d. matrix. Then, ∀C ∈ R

n×n, ||B−1C||∞ ≤
max
1≤i≤n

(|C|e)i
(〈B〉e)i holds.

Lemma 3 [6] Assume that A is a Z-matrix. Then the following statements are
equivalent:

– A is an M-matrix;
– There exists a positive diagonal matrix D, such that AD is an s.d.d. matrix with

positive diagonal entries;
– If A = M − N satisfies M−1 ≥ 0 and N ≥ 0, then ρ(M−1N) < 1.
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Let (z∗, r∗) be a solution of the HLCP. Then, by (2) and straightforward com-
putation, we can get that x∗ = γ

2 (z∗ − �−1r∗) satisfies the implicit fixed-point
equations

{
(MB1� + MA1)x

∗ = (NB1� + NA1)x
∗ + (B� − A)|x∗| − γ q,

(MB2� + MA2)x
∗ = (NB2� + NA2)x

∗ + (B� − A)|x∗| − γ q.
(6)

By subtracting (6) from (3), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(MB1� + MA1)(x
(k+ 1

2 ) − x∗) = (NB1� + NA1)(x
(k) − x∗)

+(B� − A)(|x(k)| − |x∗|)
(MB2� + MA2)(x

(k+1) − x∗) = (NB2� + NA2)(x
(k+ 1

2 ) − x∗)
+(B� − A)(|x(k+ 1

2 )| − |x∗|).
(7)

To prove lim
k→+∞ z(k) = z∗ and lim

k→+∞ r(k) = r∗, we need only to prove lim
k→+∞ x(k) =

x∗.

Theorem 1 Let � = (ωjj ) be an n × n positive diagonal matrix and A, B ∈ R
n×n

be two H+-matrices. Let D be a positive diagonal matrix such that 〈A〉D is an s.d.d.
matrix. Assume that:

(I) A = MA1 − NA1 = MA2 − NA2 and B = MB1 − NB1 = MB2 − NB2 are two
H -compatible splittings of A and B, respectively;

(II) |bij |ωjj ≤ |aij | (i �= j) and sign(bij ) = sign(aij ) (bij �= 0), for all i, j .

Then the iteration sequence {(z(k), r(k))}+∞
k=1 generated by Method 2 converges to

the unique solution (z∗, r∗) of the HLCP for any initial vector x(0) ∈ R
n provided

�e > D−1
B DAe − D−1

B D−1〈A〉De. (8)

Proof By the assumption (I), we have

〈MB1� + MA1〉De

≥ (〈MB1〉� + 〈MA1〉)De

= (〈A〉 + 〈B〉� + |NA1 | + |NB1 |�)De

≥ (DA + DB� − |CA| − |CB |�)De. (9)

On the other hand, assumption (II) implies that

|CA| ≥ |CB |�. (10)

If � ≥ D−1
B DA, by (9) and (10), we get

〈MB1� + MA1〉De ≥ 2(DA − |CA|)De = 2〈A〉De > 0. (11)
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If D−1
B DAe > �e > D−1

B DAe − D−1
B D−1〈A〉De holds, we have

DDB

[
� − (D−1

B DA − D−1
B D−1〈A〉D)

]
e > 0

⇒
[
DDB�D−1 − (DDAD−1 − 〈A〉)

]
De > 0

⇒ (
DB� − |CA|)De > 0. (12)

By (9), (10) and 12, we get

〈MB1� + MA1〉De ≥ (DA − |CB |�)De ≥ (DA − |CA|)De = 〈A〉De > 0. (13)

Thus, if (8) holds, by (11) and (13), we have that 〈MB1� + MA1〉D is an s.d.d.
matrix, which implies that MB1� + MA1 is an H -matrix. Then, by Lemma 1 and the
first equality of (7), we have

|x(k+ 1
2 ) − x∗|

=
∣
∣
∣(MB1� + MA1)

−1
[
(NB1� + NA1)(x

(k) − x∗) + (B� − A)(|x(k)| − |x∗|)
] ∣
∣
∣

≤ 〈MB1� + MA1〉−1(|NB1� + NA1 | + |B� − A|)|x(k) − x∗|
.= P1|x(k) − x∗|,

where

P1 = M−1
1 N1,M1 = 〈MB1� + MA1〉,N1 = |NB1� + NA1 | + |B� − A|.

By Lemma 2, we have

||D−1P1D||∞ = ||(M1D)−1(N1D)||∞ ≤ max
1≤i≤n

(N1De)i

(M1De)i
. (14)

If (8) holds, we obtain

M1De − N1De

= (〈MB1� + MA1〉 − |NB1� + NA1 | − |B� − A|)De

≥ (〈MB1�〉 + 〈MA1〉 − |NB1�| − |NA1 | − |DB� − DA| − |CA| + |CB�|)De

= (DB� + 〈A〉 − |CA| − |DB� − DA|)De

=
{
2〈A〉De, if � ≥ DAD−1

B ;
2
(
DB� − |CA|)De, if D−1

B DAe > �e > D−1
B DAe − D−1

B D−1〈A〉De.

Then by (11), (12) and (14), we have ||D−1P1D||∞ < 1.
Similarly, by the second equality of (7), we have

|x(k+1) − x∗| ≤ P2|x(k+ 1
2 ) − x∗|,

where

P2 = M−1
2 N2,M2 = 〈MB2� + MA2〉,N2 = |NB2� + NA2 | + |B� − A|.

Thus, we get

|x(k+1) − x∗| ≤ P2P1|x(k) − x∗|, (15)
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By proceeding the same deduction, we can get that 〈M2〉D is an s.d.d. matrix.
With the same discussion, if (8) holds, we have ||D−1P2D||∞ < 1, too. Hence, the
next inequality holds:

ρ(P2P1) = ρ(D−1P2P1D)

≤ ||D−1P2DD−1P1D||∞
≤ ||D−1P2D||∞||D−1P1D||∞ < 1,

which implies that lim
k→+∞ x(k) = x∗ by (15), proving the claim.

Next, we present the convergence results for the TMAOR.

Lemma 4 Let A, B be two H+-matrices. If 0 < α < 1
ρ[(DA+DB�)−1(DB�+|CA|)] ,

there exists a positive diagonal matrix D̄, such that
[
1 + α − |1 − α|

α
DA + 1 − α − |1 − α|

α
DB� − 2|CA|

]

D̄

is an s.d.d. matrix.

Proof SinceA is anH+-matrix, we have 〈A〉 = DA−|CA| = (DA+DB�)−|DB�+
CA| is an M-matrix. By Lemma 3, we can get ρ

[
(DA + DB�)−1(DB� + |CA|)] <

1.
If 0 < α ≤ 1, then we have 1+α−|1−α|

α
DA + 1−α−|1−α|

α
DB� − 2|CA| = 2〈A〉 is

an M-matrix.
If 1 < α < 1

ρ[(DA+DB�)−1(DB�+|CA|)] , then we have
1
α
I−(DA+DB�)−1(DB�+

|CA|) is an M-matrix, which implies that

1+α−|1−α|
α

DA + 1−α−|1−α|
α

DB� − 2|CA|
= 2(DA + DB�)

[
1
α
I − (DA + DB�)−1(DB� + |CA|)

]

is an M-matrix. Therefore, by Lemma 3, such D̄ in the conclusion exists.

Remark 1 For computing the positive diagonal matrix D̄ given in the assumption of
Lemma 4, readers can refer to [1, 7, 18].

Theorem 2 Let A, B ∈ R
n×n be two H+-matrices and � ∈ R

n×n be a positive
diagonal matrix satisfying � ≥ DAD−1

B . Furthermore, for i, j = 1, 2, . . . , n, let
|bij |ωjj ≤ |aij |(i �= j) and sign(bij ) = sign(aij )(bij �= 0). Then, the iteration
sequence (z(k), r(k))+∞

k=1 generated by the TMAOR method converges to the unique
solution (z∗, r∗) of (1) for any initial vector x(0) ∈ R

n provided

0 < β ≤ α <
1

ρ
[
(DA + DB�)−1(DB� + |CA|)] . (16)
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Proof With the same notations and discussion as the proof of Theorem 1, let D̄ be
the positive diagonal matrix given by Lemma 4. If � ≥ DAD−1

B , by Lemma 4 and
(16), we have

M1D̄e − N1D̄e

= [〈MA1 + MB1�〉 − |NA1 + NB1�| − |B� − A|] D̄e

=
[
1

α
(DA + DB�) − β

α
|LA + LB�| − |1 − α|

α
(DA + DB�) − |β − α|

α
|LA + LB�|

−|UA + UB�| − |DB� − DA| − |CB� − CA|] D̄e

=
[
1 + α − |1 − α|

α
DA + 1 − α − |1 − α|

α
DB� − |CB� + CA| − |CB� − CA|

]

D̄e

=
[
1 + α − |1 − α|

α
DA + 1 − α − |1 − α|

α
DB� − 2|CA|

]

D̄e

> 0.

HenceM1D̄ is an s.d.d. matrix. Then by Lemma 1, we have ||D̄−1P1D̄||∞ < 1. Fur-
thermore, by (4) and the same discussion as above, it is easy to get ||D̄−1P2D̄||∞ < 1
too. Therefore we have

ρ(P2P1) = ρ(V −1P2P1V )

≤ ||D̄−1P2D̄D̄−1P1D̄||∞
≤ ||D̄−1P2D̄||∞||D̄−1P1D̄||∞ < 1,

which implies the TMAOR method is convergent.

Note that, there is no assumption on the two-step splittings in Theorem 2 and its
proof. Thus, we have the next corollary.

Corollary 1 With the same notations and assumptions as Theorem 2, the MAOR
method is convergent.

Remark 2 It is well known that, when the systemmatrix is anH+-matrix,H -splitting
or H -compatible splitting, including the classic AOR splitting, is usually the suffi-
cient condition to guarantee the convergence of matrix splitting iteration methods
(see [6] for the linear equations and the references mentioned in Section 1 for LCPs
or NCPs). Note that Corollary 1 discusses the convergence conditions of the MAOR
method for the HLCP for the first time. Thus, Corollary 1 provides a more explicit
theoretical analysis of Method 1 than those given in [23] and [41].

Remark 3 In Theorems 3.1 and 3.2, the elements of A and B are linked by some rela-
tionship where the assumption (II) with DB� ≥ DA had been called “B is more or
equally diagonally dominant than A” in [23]. The condition even excludes the simple
case when A = I . However, if we denote the HLCP given in (1) by HLCP(A, B, q),
it is easy to see that (z, r) is a solution of HLCP(A, B, q) if and only if (r, z) is a solu-
tion of HLCP(B, A, −q). Therefore, for HLCP(B, A, −q), with the same discussion
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as that given in [23], the proposed method and convergence analysis can be reformu-
lated by replacing all A, B, q by B, A, −q, respectively. For example, the equivalent
modulus equation of HLCP(B, A, −q) is

(MB + MA�)x = (NB + NA�)x + (A� − B)|x| + γ q,

and the assumption (II) should be changed to “|aij |ωjj ≥ |bij | (i �= j) and
sign(bij ) = sign(aij ) (aij �= 0)”.

4 Numerical examples

In this section, numerical examples are given to show the efficiency of the pro-
posed method. The computations were run on an Intel® Core™, where the CPU is
2.50 GHz and the memory is 4.00 GB.

Let In be the identity matrix of order n. Consider the following three examples.

Example 1 [23, 41] Let n = m2, A = Â + μIn, B = B̂ + νIn and q = Az∗ − Bw∗,
where μ, ν are real parameters, Â = blktridiag(−Im, S, −Im), B̂ = Im ⊗ S and
S = tridiag(−em; 4em; −em) ∈ R

m×m.

Example 1 can come from the discretization of a 2-D boundary problem like

�z + ∂2r

∂2u
+ μz + νr − q = 0, z ≥ 0, r ≥ 0 and zT r = 0.

by five-point difference scheme with suitable boundary conditions, where
z(u, v), r(u, v) and q(u, v) are three 2-D mapings. The similar examples had been
analyzed in [4] and [17] for the LCP and the NCP, respectively. It is easy to see that
both A and B are symmetric positive definite matrices.

Example 2 [23, 41] Let n = m2, A = Â + μIn, B = B̂ + νIn and q = Az∗ − Bw∗,
where μ, ν are real parameters, Â = blktridiag(−1.5Im; S; −0.5Im), B̂ = Im ⊗ S

and S = tridiag(−1.5em; 4em; −0.5em) ∈ R
m×m.

Note that the systemmatricesA andB in Example 2 belong to asymmetric positive
definite cases.

Example 3 Consider Problem 1 in the numerical experiments of [21], where the
HLCP is from the discretization of the Reynolds equation [15], which models a 1-D
test problem in hydrodynamic lubrication with Convergent-Divergent profile.

For this example, it is shown by [25] that the assumption (II) of Theorem 1 cannot
be satisfied. Although the convergence of the MJ and MGS methods had been proved
by another way in [25], it is difficult to prove the convergence of the MSOR method
or the MAOR method. Nevertheless, we still show the numerical results of Method 2
based on the MJ and MGS methods for Example 3.
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Table 1 Abbreviations of testing methods

Examples 1 and 2 Example 3

(α, β) Method 1 AMMS Method 2 (α1, β1, α2, β2) Method 2

(1.2,1.2) MSOR1 AMSOR1 TMSOR1 (1.0,0.0,0.9,0.9) TMJSOR1

(1.0,1.0) MSOR2 AMSOR2 TMSOR2 (1.0,0.0,1.0,1.0) TMJSOR2

(0.8,0.8) MSOR3 AMSOR3 TMSOR3 (1.0,0.0,1.1,1.1) TMJSOR3

(1.3,1.1) MAOR1 AMAOR1 TMAOR1 (1.0,0.0,1.2,1.2) TMJSOR4

(1.1,0.9) MAOR2 AMAOR2 TMAOR2 (1.0,1.0,1.0,0.0) TMGSJ

(0.9,0.7) MAOR3 AMAOR3 TMAOR3 (1.0,1.0,0.9,0.9) TMGSSOR1

(1.0,1.0,1.1,1.1) TMGSSOR2

(1.0,1.0,1.2,1.2) TMGSSOR3

Besides Method 1, the accelerated modulus-based matrix splitting method
(AMMS) is also included in the numerical experiments to compare with Method 2.
By utilizing a pair of suitable matrix splitting to the matrices A and B in (2), the
AMMS method was proposed in [23] and shown to converge faster than the MMS
method. Specially, let A = MA1 − NA1 = MA2 − NA2 and B = MB1 − NB1 =
MB2 − NB2 be two pairs of matrix splittings of A and B, respectively, where

{
MA1 = 1

α
(DA − βLA), MB1 = 1

α
(DB − βLB),

MA2 = DA − UA, MB2 = DB − UB .

The accelerated modulus-based accelerated overrelaxation (AMAOR) iteration
method is based on solving the next equation in the kth iteration:

(MB1�+MA1 )x
(k+1) + (NB2�−NA2 )|x(k+1)|=(NB1�+NA1 )x

(k) + (MB2�−MA2 )|x(k)|−γ q.

In the following, we first compare the TMAOR method with the MAOR method
and the AMAOR method with different pairs of relaxation parameters for Example 1

Table 2 Upper bounds of α in (16)

m � = τDAD−1
B Example 1 Example 1 Example 2

(μ = ν = 4) (μ = ν = 0) (μ = ν = 4)

128 τ = 1.20 1.29 1.00 1.34

τ = 1.00 1.33 1.00 1.39

256 τ = 1.20 1.29 1.00 1.34

τ = 1.00 1.33 1.00 1.39

512 τ = 1.20 1.29 1.00 1.34

τ = 1.00 1.33 1.00 1.39
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and Example 2. On the other hand, besides the TMAOR method, more choices of the
two-step matrix splittings in the TMMS method given by (5) are tested for Example
3. The abbreviations of the corresponding terminologies are shown in Table 1. Note
that the AOR splitting reduces to the SOR splitting when α = β, and to Gauss-
Seidel splitting (the MSOR2, the AMSOR2 and the TMSOR2) when α = β = 1,
respectively. Let γ = 1 and � = τDAD−1

B , where τ = 0.8, 1.0, 1.2. All initial
iteration vectors are chosen to be x(0) = en, the tolerance is set at 10−10 and the
maximum iteration step is 30,000.

In order to compare with the theoretical result, the upper bounds of α in (16) are
presented in Table 2 for Example 1 and Example 2, while the ones of Example 3
are not presented because the assumption of Theorem 1 is not satisfied. Note that
� ≥ DAD−1

B is one assumption of Theorem 2. Thus, we only show the upper bounds
of α for the cases of τ = 1 and τ = 1.2. It is remarked that, although the upper bounds
of Example 1 with μ = ν = 0 listed in Table 2 are all equal to 1 with 2 decimal digit
accuracy, the exact bounds are all larger than 1, which is also guaranteed by the proof
of Lemma 4.

Numerical results are reported in Tables 3, 4, 5, and 6, where “IT” and “CPU”
denote the number of iteration steps and the elapsed CPU time in seconds, respec-
tively.

For Example 1 and Example 2, it is shown by Tables 3, 4, and 5 that all methods
are convergent. In each comparison, the number of iteration steps of the MAOR is
nearly twice as long as that of the TMAOR. This fact is due to the two linear systems
solved in each iteration of the TMAOR. For the efficiency, we notice that the TMAOR
always converges faster than the MAOR. On the other hand, the TMAOR converges
faster than the AMAOR in most cases, except the TMAOR1 with τ = 0.8, μ = ν =
0 for Example 1 and the TMAOR2 with τ = 0.8, 1.2 for Example 2. Pass to the
relaxation parameters (α, β). By the results in Table 2, (16) can be satisfied with the
choices of (α, β) in Table 1 both for the two examples when μ = ν = 4. On the
other hand, for Example 1 with μ = ν = 0, (16) cannot be satisfied when α > 1.
Meanwhile, when τ = 0.8, the assumption � ≥ DAD−1

B in Theorem 2 does not
hold. However, the TMAOR still converges and also performs better than the MAOR
in these cases.

For Example 3, focus on Table 6, where the iteration steps of some cases of the MJ
and the AMJ exceed 30,000, denoted by “–” with their CPU time. One can see that
theMJ and theMGS perform better than the AMJ and the AMGS, respectively. Based
on the first step iteration of Jacobi splittings, by introducing another pair of matrix
splittings as the second step iteration, all the five methods (the TMJ, the TMJSOR1,
the TMJSOR2, the TMJSOR3, and the TMJSOR4) converge faster than the MJ. On
the other hand, for the cases of the first step iteration being Gauss-Seidel splittings,
the TMGSJ, the TMGSSOR1 and the TMGS take more CPU time than the MGS,
while as the relaxation parameters in the matrix splittings of the second step iteration
being larger than 1, the TMGSSOR2 and the TMGSSOR3 converge faster than the
MGS. Thus, the numerical results in Table 6 show that Method 2 can also accelerate
Method 1 by suitable choices of the two-step matrix splittings.
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Table 6 Numerical results of Example 3

n = 100 n = 200 n = 300

Method IT CPU IT CPU IT CPU

MJ 6905 0.2522 25904 1.3130 – –

AMJ – – – – – –

TMJ 3453 0.1694 12952 0.9408 28482 2.1462

TMJSOR1 2575 0.1295 9228 0.5945 19628 1.5372

TMJSOR2 2384 0.1239 8545 0.5433 18178 1.3622

TMJSOR3 2206 0.1133 7917 0.5116 16846 1.3299

TMJSOR4 2035 0.1062 7327 0.4914 15605 1.3059

MGS 1344 0.0765 4907 0.2558 10495 0.6254

AMGS 2782 0.1203 9967 0.5221 21202 1.3199

TMGSJ 1095 0.0815 3950 0.2707 8425 0.6677

TMGSSOR1 1065 0.0802 3831 0.2665 8166 0.7578

TMGS 1033 0.0780 3710 0.2612 7906 0.6394

TMGSSOR2 1001 0.0753 3589 0.2490 7645 0.6186

TMGSSOR3 968 0.0719 3467 0.2457 7385 0.6092

5 Conclusions

By employing two-step matrix splittings, we have constructed the two-step MMS
method for the HLCP. The proposed method extends the MMS method in [23]. We
also give the convergence theorems, which include and generalize some existing
results. Specially, the convergence analysis of the TMAOR method is given, which
enriches the theory of the MMS method. Finally, the effectiveness of the proposed
method is shown by numerical examples. Note that by the numerical results in the
previous section, in Theorem 1, the assumption (II) may be weakened and the con-
vergence range of α may be enlarged. How to improve the convergence theorems is
worth studying in the future.
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