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Abstract
For solving a class of complex symmetric system of linear equations, we apply the
minimum residual technique to the modified Hermitian and skew-Hermitian splitting
(MHSS) iteration scheme and propose an iteration method referred to as minimum
residual MHSS (MRMHSS) iteration method. Compared with the classical MHSS
method, the MRMHSS method has two more iteration parameters, which can be
automatically and easily computed. Then, some properties of the MRMHSS iteration
method are carefully studied. Finally, we use four examples to test the performance
of the MRMHSS iteration method by comparing its numerical results with three other
iteration methods.

Keywords Complex symmetric matrix · Modified Hermitian and skew-Hermitian
splitting iteration method · Minimum residual technique · Convergence property ·
Iteration parameter
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1 Introduction

We consider the following systems of linear equations

Ax = b, A ∈ C
n×n, x,b ∈ C

n, (1)
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where A is a complex symmetric matrix of the form

A = W + ıT , (2)

and ı = √−1 denotes the imaginary unit, W, T ∈ R
n×n are both real symmetric

matrices with at least one of them being positive definite. Hereafter, without loss of
generality, we suppose that W is positive definite and T �= 0 is positive semi-definite.
This kind of complex symmetric linear systems can be found in many scientific prob-
lems, such as fast Fourier transform-based (FFT) solution of certain time-dependent
partial differential equations [9], diffuse optical tomography [1], quantum mechanics
[20], molecular scattering [17], and structural dynamics [13]. For more applications
of this kind of complex symmetric systems, we refer to [8] and the references therein.

Let A = H(A) + S(A) be the Hermitian and skew-Hermitian splitting (HSS) of
coefficient matrix A, where

H(A) = 1

2
(A + A∗) = W, and S(A) = 1

2
(A − A∗) = ıT

are the Hermitian and the skew-Hermitian parts of matrix A, respectively. Here A∗
denotes the conjugate transpose of matrix A. Since A is a non-Hermitian and posi-
tive definite matrix, one can straightforwardly employ the HSS iteration method [6]
to solve the above complex symmetric system of linear equation (1). Nevertheless,
as is known that there is a potential difficulty with the HSS iteration method since a
shifted skew-Hermitian system of linear equations should be solved at each iteration
step, which is time-consuming. To avoid this shortcoming, a modified HSS (MHSS)
iteration method was presented lately [3] for solving this kind of complex symmet-
ric systems of linear equations, in which the solution of the shifted skew-Hermitian
linear system was replaced by solving a real symmetric positive definite systems of
linear equations. The iterative scheme of MHSS iteration method can be written as{

(αI + W)x(k+ 1
2 ) = (αI − ıT )x(k) + b,

(αI + T )x(k+1) = (αI + ıW)x(k+ 1
2 ) − ıb,

(3)

where α is a given positive constant and I is the identity matrix, k = 0, 1, 2, . . . and
x(0) is an initial guess.

The MHSS method is very effective and reliable, thus has been extended and
developed to many new variants, such as preconditioned MHSS (PMHSS) iteration
method [4, 5], generalized PMHSS [12, 22], lopsided PMHSS [16] and so on. In
addition, the MHSS iteration method and its variants have been used to solve com-
plex symmetric nonlinear equations [24], complex singular linear systems [10, 25],
and also been used as the smoother of the multigrid methods [15].

Recently, in another point of view, Yang, Cao and Wu [23] proposed a minimum
residual HSS (MRHSS) iteration method to improve the efficiency of the HSS iter-
ation method by making use of the minimum residual technique on HSS iteration
scheme. Numerical results show that the MRHSS method is much more effective
than the HSS iteration method. However, when we use it to solve complex symmetric
system of linear (1), a shifted skew-Hermitian system of linear equations still needs
to be solved in each step of the MRHSS method. In order to avoid this problem, we
further use the minimum residual technique to the MHSS iteration scheme. Then, a

Numerical Algorithms (2021) 86:1543–15591544



new method named as minimum residual MHSS (MRMHSS) iteration method is pro-
posed in this work. In the implementation of this method, the shifted skew-Hermitian
system of linear equations need to be solved is replaced by a symmetric positive def-
inite systems of linear equations. Thus, we may expect that the MRMHSS iteration
method outperforms the MRHSS iteration method.

Throughout this paper, we denote by (x, y) = y∗x the Euclidean inner product for
any complex vectors x, y ∈ C

n, and denote by ‖x‖ = √
(x, x) the Euclidean norm

for any complex vector x ∈ C
n. For an arbitrary matrix X ∈ C

n×n, ‖X‖ denotes the
spectral norm of X, which is actually induced by the Euclidean vector norms. The
remainder of this work is organized as follows. In Section 2, based on the residual
form of the MHSS method, we first construct the MRMHSS iteration method. Some
essential properties of the involved parameters and the convergence property of the
MRMHSS method are discussed in Section 3. Numerical experiments are presented
in Section 4 to test the efficiency and robustness of the MRMHSS iteration method.
Finally, in Section 5, we draw a brief conclusion for this work.

2 TheMRMHSS iterationmethod

In this section, we first rewrite the MHSS method into an equivalent form, and
thereafter introduce the MRMHSS iteration method by using the minimum residual
technique onto the new form of the MHSS method.

Note that (αI +W)−1(αI −ıT ) = I −(αI +W)−1A and (αI +T )−1(αI +ıW) =
I + ı(αI + T )−1A, and denote r(k) = b − Ax(k) and r(k+ 1

2 ) = b − Ax(k+ 1
2 ), the

MHSS iteration scheme (3) can be rewritten as{
x(k+ 1

2 ) = x(k) + (αI + W)−1r(k),

x(k+1) = x(k+ 1
2 ) − ı(αI + T )−1r(k+ 1

2 ),
(4)

which is mathematically equivalent to the direct-splitting scheme (3). However, the
numerical behaviors of (3) and (4) are different and the latter generally performs
more efficient than the former; See details in [7].

Now, denote

d(k) = (αI + W)−1r(k) and d(k+ 1
2 ) = (αI + T )−1r(k+ 1

2 ), (5)

(4) can be rewritten as

x(k+ 1
2 ) = x(k) + d(k), x(k+1) = x(k+ 1

2 ) − ıd(k+ 1
2 ).

It is obvious that the search distances along the two updating directions d(k) and

d(k+ 1
2 ) are both unitary. Naturally, we can multiply two generalized parameters

λk, θk ∈ C in front of the updating directions d(k) and d(k+ 1
2 ) to expect them work

well to improve the convergence rates, which is similar with some other accelerat-
ing techniques too, such as the minimum residual smoothing [14, 21, 26]. Then, an
improved iteration scheme is derived as

x(k+ 1
2 ) = x(k) + λkd(k), x(k+1) = x(k+ 1

2 ) − ıθkd(k+ 1
2 ). (6)
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For the reason of clearness in the narrative, we define two notations

G1 := A(αI + W)−1 and G2 := A(αI + T )−1, (7)

then the residual form of the iteration scheme (6) can be written as

r(k+ 1
2 ) = r(k) − λkG1r(k) and r(k+1) = r(k+ 1

2 ) + ıθkG2r(k+ 1
2 ). (8)

Now our task is to determine proper values of the parameters λk and θk on minimiz-

ing the residual norms ‖r(k+ 1
2 )‖ and ‖r(k+1)‖ at each iteration step, respectively. By

straightforwardly calculating, they can be formulated as

‖r(k+ 1
2 )‖2 = ‖r(k)‖2 − 2Re(λk)(H (G1)r(k), r(k))

− 2Im(λk)(ıS (G1)r(k), r(k)) + (Re(λk)
2 + Im(λk)

2)‖G1r(k)‖2

(9)
and

‖r(k+1)‖2 =‖r(k+ 1
2 )‖2 − 2Im(θk)(H (G2)r(k+ 1

2 ), r(k+ 1
2 ))

+2Re(θk)(ıS (G2)r(k+ 1
2 ), r(k+ 1

2 ))+(Re(θk)
2+Im(θk)

2)‖G2r(k+ 1
2 )‖2,

(10)
where Re(·) and Im(·) represent the real and the imaginary parts of a complex num-
ber, H (·) and S (·) denote the Hermitian and the skew-Hermitian parts of a matrix,
respectively. It is easily observed that these two norms can be viewed as two real
valued convex functions of two variables Re(λk) and Im(λk), Re(θk) and Im(θk),
respectively. Then, the minimum point of each functions can be directly derived as

Re(λk) = (H (G1)r(k), r(k))

‖G1r(k)‖2
, Im(λk) = (ıS (G1)r(k), r(k))

‖G1r(k)‖2
(11)

and

Re(θk) = − (ıS (G2)r(k+ 1
2 ), r(k+ 1

2 ))

‖G2r(k+ 1
2 )‖2

, Im(θk) = (H (G2)r(k+ 1
2 ), r(k+ 1

2 ))

‖G2r(k+ 1
2 )‖2

. (12)

It is certainly true that we get the formulas of two introduced parameters,
however, we can hardly compute them by (11) and (12) in actual implementa-
tions because of the difficulty involved in calculating the matrix vector products

H (G1)r(k), S (G1)r(k), H (G2)r(k+ 1
2 ) and S (G2)r(k+ 1

2 ), for given vectors r(k) and

r(k+ 1
2 ). Thus, we ought to find a practical manner for computing these parameters.

Fortunately, they can be reformulated to easier forms in the following

λk = Re(λk)+ıIm(λk)= (H (G1)r(k), r(k))

‖G1r(k)‖2
+ı

(ıS (G1)r(k), r(k))

‖G1r(k)‖2
= (r(k), G1r(k))

‖G1r(k)‖2

(13)
and

θk = Re(θk) + ıIm(θk) = − (ıS (G2)r
(k+ 1

2 )
,r(k+ 1

2 )
)

‖G2r
(k+ 1

2 )‖2
+ ı

(H (G2)r
(k+ 1

2 )
,r(k+ 1

2 )
)

‖G2r
(k+ 1

2 )‖2

= ı(r(k+ 1
2 )

,G2r
(k+ 1

2 )
)

‖G2r
(k+ 1

2 )‖2
.

(14)
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Using (7) and (5), the computing formulas (13) and (14) can be further rewritten as

λk = (r(k), Ad(k))

‖Ad(k)‖2
, θk = ı

(r(k+ 1
2 ), Ad(k+ 1

2 ))

‖Ad(k+ 1
2 )‖2

. (15)

On the basis of previous analyses of iteration parameters λk and θk of the residual
updating iteration scheme (6), the MRMHSS iteration method can be formulated as
follows.

Method 1 (The MRMHSS iteration method) Given an initial guess x(0) ∈ C
n,

compute r(0) = b − Ax(0). For k = 0, 1, 2, . . ., until {x(k)} converges
1. calculate x(k+ 1

2 ) from the iteration formula x(k+ 1
2 ) = x(k) + λkd(k), where

d(k) = (αI + W)−1r(k), λk = (r(k), Ad(k))

‖Ad(k)‖2
;

2. calculate x(k+1) from the iteration formula x(k+1) = x(k+ 1
2 ) − ıθkd(k+ 1

2 ), where

d(k+ 1
2 ) = (αI + T )−1r(k+ 1

2 ), θk = ı
(r(k+ 1

2 ), Ad(k+ 1
2 ))

‖Ad(k+ 1
2 )‖2

,

where α is a given positive constant and I is the identity matrix.

Remark 1 When we choose λk = θk ≡ 1 at each iteration step of Method 1, then
the MRMHSS iteration method immediately reduces to the classical MHSS iteration
method.

It is evident that there are only two real and symmetric linear subsystems need to
be solved at each step of the MRMHSS iteration method, whose coefficient matrices
are completely same as those in the MHSS. Moreover, since W ∈ R

n×n is symmetric
positive definite, T ∈ R

n×n is symmetric positive semi-definite, and α is positive
real scalar, we know that both matrices αI + W and αI + T are symmetric positive
definite. Thus, the two linear subsystems involved in each step of the MRMHSS
iteration can be solved effectively using Cholesky factorization or (preconditioned)
conjugate gradient (CG) method.

Remark 2 The MRMHSS iteration method is also applicable to the case where matrix
W is symmetric positive semi-definite and T is symmetric positive definite. More
generally, if there exist real numbers β and δ such that both matrices W̃ := βW +δT

and T̃ := δT − βW are symmetric positive semi-definite with at least one of them
being positive definite, we can first multiply the complex symmetric system (1) by
the complex number β − ıδ to obtain the equivalent system

(W̃ + ıT̃ )x = b̃, with b̃ := (β − ıδ)b, (16)

and then employ the MRMHSS iteration method to solve (16) approximately.
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3 The convergence property of theMRMHSS iterationmethod

As we know, the iteration parameters λk and θk involved in the MRMHSS iter-

ation method are chosen to minimize the corresponding residual norms ‖r(k+ 1
2 )‖

and‖r(k+1)‖, respectively. In this section, we will show a closer relationship between
λk, θk and ‖r(k+1)‖. Furthermore, the convergence property of the MRMHSS itera-
tion method will also be discussed.

To do so, we firstly present an important lemma.

Lemma 1 (See [23]) Let C = (cij ) ∈ C
n×n be a Hermitian matrix. For any vector

z ∈ C
n, we have

∂(Cz, z)
∂(‖z‖2)

= 1

‖z‖2
(Cz, z),

where ∂ is the symbol of partial derivatives.

Now, by making use of the above lemma, we can obtain the following property of
the iteration parameters λk and θk .

Theorem 1 The quadruple (Re(λk), Im(λk), Re(θk), Im(θk)) determined by (11)
and (12) is the minimum point of the function ‖r(k+1)‖, which implies that the values
of λk and θk defined by (13) and (14) are optimal in the complex field C.

Proof From (8) and (10), the residual norm ‖r(k+1)‖2 can be viewed as a real valued
function of the complex variables λk and θk , or equivalently, of the real variables
Re(λk), Im(λk), Re(θk) and Im(θk). Let r̃(ξ1, ξ2) := r(k) − (ξ1 + ıξ2)G1r(k), and
define a function φ as

φ(r̃(ξ1, ξ2), η1, η2) := ‖r̃‖2 − 2η2(H (G2)r̃, r̃)

+ 2η1(ıS (G2)r̃, r̃) + (η2
1 + η2

2)‖G2r̃‖2. (17)

Because of ‖G2r̃‖2 = (G∗
2G2r̃, r̃), thus using (17) and Lemma 1, we have

∂φ

∂(‖r̃‖2)
= ‖r̃‖2

‖r̃‖2
− 2η2

‖r̃‖2
(H (G2)r̃, r̃)

+ 2η1

‖r̃‖2
(ıS (G2)r̃, r̃) + η2

1 + η2
2

‖r̃‖2
‖G2r̃‖2

= 1

‖r̃‖2
φ.

(18)

Denote by

ϕ(ξ1, ξ2, η1, η2) := φ(r̃(ξ1, ξ2), η1, η2). (19)
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Then, the four first-order partial derivatives of ϕ(ξ1, ξ2, η1, η2) can be calculated,
which are

∂ϕ

∂ξ1
= ∂φ

∂(‖r̃‖2)

∂(‖r̃‖2)

∂ξ1
= 2φ

‖r̃‖2

(
ξ1‖G1r(k)‖2 − (H (G1)r(k), r(k))

)
,

∂ϕ

∂ξ2
= ∂φ

∂(‖r̃‖2)

∂(‖r̃‖2)

∂ξ2
= 2φ

‖r̃‖2

(
ξ2‖G1r(k)‖2 − (ıS (G1)r(k), r(k))

)
,

∂ϕ

∂η1
= 2

(
η1‖G2r̃‖2 + (ıS (G2)r̃, r̃)

)
,

∂ϕ

∂η2
= 2

(
η2‖G2r̃‖2 − (H (G2)r̃, r̃)

)
.

It is easy to see, from (11) and (12), that the quadruple (Re(λk), Im(λk), Re(θk),

Im(θk)) is the unique stationary point of the function ϕ defined by (19). Furthermore,
in order to verify the quadruple is the minimum point of the function ϕ, its second-
order partial derivatives are required. For the convenience of representation, we firstly
define four notations as follows:

�1(ξ1) := ξ1‖G1r(k)‖2 − (H (G1)r(k), r(k)),

�2(ξ2) := ξ2‖G1r(k)‖2 − (ıS (G1)r(k), r(k)),

�3(ξ1, ξ2, η1) := η1‖G2r̃‖2 + (ıS (G2)r̃, r̃),

�4(ξ1, ξ2, η2) := η2‖G2r̃‖2 − (H (G2)r̃, r̃).

Then, the second-order partial derivatives of ϕ(ξ1, ξ2, η1, η2) read

∂2ϕ

∂ξ2
1

= �1(ξ1)
∂

∂ξ1

(
2φ

‖r̃‖2

)
+ 2φ

‖r̃‖2
‖G1r(k)‖2,

∂2ϕ

∂ξ1∂ξ2
= �1(ξ1)

∂

∂ξ2

(
2φ

‖r̃‖2

)
,

∂2ϕ

∂ξ2
2

= �2(ξ2)
∂

∂ξ2

(
2φ

‖r̃‖2

)
+ 2φ

‖r̃‖2
‖G1r(k)‖2,

∂2ϕ

∂ξ2∂ξ1
= �2(ξ2)

∂

∂ξ1

(
2φ

‖r̃‖2

)
,

∂2ϕ

∂η1∂ξ1
= 4�3(ξ1, ξ2, η1)

�1(ξ1)

‖r̃‖2
,

∂2ϕ

∂η1∂ξ2
= 4�3(ξ1, ξ2, η1)

�2(ξ2)

‖r̃‖2
,

∂2ϕ

∂η2∂ξ1
= 4�4(ξ1, ξ2, η2)

�1(ξ1)

‖r̃‖2
,

∂2ϕ

∂η2∂ξ2
= 4�4(ξ1, ξ2, η2)

�2(ξ2)

‖r̃‖2
,

∂2ϕ

∂ξ1∂η1
= �1(ξ1)

∂

∂η1

(
2φ

‖r̃‖2

)
,

∂2ϕ

∂ξ1∂η2
= �1(ξ1)

∂

∂η2

(
2φ

‖r̃‖2

)
,

∂2ϕ

∂ξ2∂η1
= �2(ξ2)

∂

∂η1

(
2φ

‖r̃‖2

)
,

∂2ϕ

∂ξ2∂η2
= �2(ξ2)

∂

∂η2

(
2φ

‖r̃‖2

)
,

∂2ϕ

∂η1
2

= ∂2ϕ

∂η2
2

= 2‖G2r̃‖2,
∂2ϕ

∂η1∂η2
= ∂2ϕ

∂η2∂η1
= 0.

Meanwhile, it is easy to see that �1(Re(λk)) = �2(Im(λk)) = 0 and

�3(Re(λk), Im(λk), Re(θk)) = �4(Re(λk), Im(λk), Im(θk)) = 0.
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Hence, the Hessian matrix of the function ϕ at the unique stationary point (Re(λk),

Im(λk), Re(θk), Im(θk)) reads

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

2‖r(k+1)‖2‖G1r(k)‖2

‖r(k+ 1
2 )‖2

0 0 0

0 2‖r(k+1)‖2‖G1r(k)‖2

‖r(k+ 1
2 )‖2

0 0

0 0 2‖G2r(k+ 1
2 )‖2 0

0 0 0 2‖G2r(k+ 1
2 )‖2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which is a Hermitian and positive definite matrix.
Therefore, the quadruple (Re(λk), Im(λk), Re(θk), Im(θk)) determined by (11)

and (12) is the minimum point of the residual norm ‖r(k+1)‖.

Now, we study the convergence property of the MRMHSS iteration method.
Denote by F (M) the field values of the complex matrix M ∈ C

n×n, i.e.,

F (M) = {(My, y)/(y, y) : 0 �= y ∈ C
n},

where (·, ·) represents the Euclidean inner product of two vectors in C
n.

Theorem 2 The MRMHSS iteration method used for solving the complex symmetric
system of linear (1) is convergent for any initial guess x(0) ∈ C

n if and only if

0 /∈ F (A(αI + W)−1) ∩ F (A(αI + T )−1). (20)

Furthermore, when (20) holds, the residuals satisfy

‖r(k+1)‖ ≤
√

‖A(αI + W)−1‖2 − δ2
1

‖A(αI + W)−1‖

√
‖A(αI + T )−1‖2 − δ2

2

‖A(αI + T )−1‖ · ‖r(k)‖ (21)

for any nonnegative integer k, where δ1 and δ2 represent the distances from the origin
to F (A(αI + W)−1) and F (A(αI + T )−1), respectively.

Proof Denote by R(·) and superscript ⊥ the range space of a given matrix and the
orthogonal complement of a vector space contained in C

n, respectively. From the
construction of MRMHSS iteration method in Section 2, we can find that each step

of MRMHSS method contains two residual projection procedures, i.e., r(k+ 1
2 ) and

r(k+1) are the projections of r(k) and r(k+ 1
2 ) onto the subspaces R(A(αI + W)−1)⊥

and R(A(αI + T )−1)⊥, respectively. Hence, ‖r(k+ 1
2 )‖ ≤ ‖r(k)‖ with equality if and

only if r(k) is already orthogonal to A(αI + W)−1r(k), i.e.,

(r(k), A(αI + W)−1r(k)) = 0.

This implies ‖r(k+ 1
2 )‖ < ‖r(k)‖ if and only if 0 /∈ F ((αI + W)−∗A∗). Because,

for any matrix M ∈ C
n×n, the field of values of M∗ is no other than the complex

conjugate of the field of values of M , so

‖r(k+ 1
2 )‖ < ‖r(k)‖ if and only if 0 /∈ F (A(αI + W)−1).
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Similarly, we can obtain that

‖r(k+1)‖ < ‖r(k+ 1
2 )‖ if and only if 0 /∈ F (A(αI + T )−1).

Therefore, we can finally obtain that ‖r(k+1)‖ < ‖r(k)‖ if and only if

0 /∈ F (A(αI + W)−1) ∩ F (A(αI + T )−1). (22)

Recalling that the field of values is a closed set, the distances of F (A(αI +W)−1)

and F (A(αI + T )−1) from the origin can be, respectively, written as

δ1 = min
0�=y∈Cn

∣∣∣∣ (A(αI + W)−1y, y)

(y, y)
−0

∣∣∣∣ and δ2 = min
0�=y∈Cn

∣∣∣∣ (A(αI + T )−1y, y)

(y, y)
−0

∣∣∣∣.
Substituting (11) and (12), respectively, into (9) and (10), we obtain

‖r(k+ 1
2 )‖2 = ‖r(k)‖2 − |(A(αI + W)−1r(k), r(k))|2

‖A(αI + W)−1r(k)‖2

= ‖r(k)‖2

⎛
⎝1 −

∣∣∣∣∣ (A(αI + W)−1r(k), r(k))

(r(k), r(k))

∣∣∣∣∣
2 ‖r(k)‖2

‖A(αI + W)−1r(k)‖2

⎞
⎠

≤ ‖r(k)‖2

(
1 − δ2

1

‖A(αI + W)−1‖2

)

and

‖r(k+1)‖2 ≤ ‖r(k+ 1
2 )‖2

(
1 − δ2

2

‖A(αI + T )−1‖2

)
.

Combining the above two inequalities, the result (21) is obtained, which completes
the proof of the theorem.

Based on the above theorem, we in the following show a specific criterion for
guaranteeing the convergence of Method 1. To this end, we firstly give an useful
lemma.

Lemma 2 [18, Proposition 1.18] Let M ∈ C
n×n. Then the field of values of M is a

convex set which contains the convex hull of its spectrum. It is equal to the convex hull
of its spectrum when M is normal, i.e., F (M) = Co(σ(M)), where Co(·) denotes
the convex hull of a given set and σ(·) indicates the spectrum of a matrix.

Corollary 1 Assume that the matrix A = W + ıT is normal, then the MRMHSS
iteration method used for solving the complex symmetric system of linear equations
(1) is convergent for any initial guess x(0) ∈ C

n.

Proof Because A = W + ıT ∈ C
n×n is normal, by straightforward computations we

find that the real symmetric matrices W and T are communicative, i.e., it holds that
WT = T W . Thus, we can easily verify that both the matrices A(αI + W)−1 and
A(αI + T )−1 are normal. From Lemma 2, it follows

F (A(αI + W)−1) = Co(σ(A(αI + W)−1))
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and
F (A(αI + T )−1) = Co(σ(A(αI + T )−1)).

Hence, (20) reduces to

0 /∈ Co(σ(A(αI + W)−1)) ∩ Co(σ(A(αI + T )−1)),

while this is automatically valid since in this situation the spectrum of both the matri-
ces A(αI + W)−1 and A(αI + T )−1 are located in the right half plane of complex
field. Therefore, the MRMHSS iteration method used for solving the complex sym-
metric system of linear equations (1) is convergent for any initial guess x(0) ∈ C

n

when the system matrix A is normal.

Corollary 2 Assume that the matrix A = W + ıT is normal, then we have an upper
bound of the convergence rate presented in (21), which is followed by

‖r(k+1)‖ ≤
√

κ2 − 1

κ
‖r(k)‖, (23)

where κ1 and κ2 are the condition numbers of matrices A(αI + W)−1 and A(αI +
T )−1, respectively, κ = min(κ1, κ2).

Proof Since A = W + ıT is normal, it holds that WT = T W . Hence, there exists an
orthogonal matrix Q ∈ R

n×n can be viewed as the eigenvector matrices of matrices
W and T ,

W = QDQT and T = Q�QT ,

where
D = diag(ξ1, ξ2, . . . , ξn) and � = diag(γ1, γ2, . . . , γn)

are diagonal matrices and λj > 0, γj ≥ 0, j = 1, 2, . . . , n. It follows that

A(αI + W)−1 = Q(D + ı�)(αI + D)−1QT

let ỹ = QT y = (ỹ1, ỹ2, . . . , ỹn), it yields that

(A(αI + W)−1y, y)
(y, y)

= ((D + ı�)(αI + D)−1ỹ, ỹ)
(ỹ, ỹ)

=
n∑

j=1

μjβj

where μj = (ξj + ıγj )(α + ξj )
−1 and βj = ỹ2

j /
∑n

j=1 ỹ2
j , j = 1, 2, . . . , n. By

straightforward computations, we have

|
n∑

j=1

μjβj | ≥ min
j

{|μj |} =: μmin, for any βj ∈ [0, 1].

Thus, we can obtain δ1 ≥ μmin, and then it follows that√
‖A(αI + W)−1‖2 − δ2

1

‖A(αI + W)−1‖ ≤
√

μ2
max − μ2

min

μmax

=
√

κ2
1 − 1

κ1
,

where μmax := max
j

{|μj |} is equal to the 2-norm of matrix A(αI + W)−1 and

κ1 = μmax

μmin
denotes the condition number of matrix A(αI + W)−1.
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Similarly we can obtain an estimate of the second term in the right-hand side of
(21), denoting by κ2 the condition number of matrix A(αI + T )−1, we have

‖r(k+1)‖ ≤
√

κ2
1 − 1

κ1

√
κ2

2 − 1

κ2
· ‖r(k)‖.

Furthermore, both (κ2
1 − 1)1/2/κ1 and (κ2

2 − 1)1/2/κ2 are less than unity; thus, the
inequality of (23) can be obtained. The proof is completed.

4 Numerical experiments

In this section, we use four examples to illustrate the feasibility and effectiveness of
the MRMHSS iteration method.

We will compare the numerical results including numbers of iteration steps
(denoted as IT) and elapsed CPU times (in seconds, denoted as CPU) of the
MRMHSS iteration method with those of the MHSS, the generalized successive over-
relaxation (GSOR) [19], the precondtioned MHSS (PMHSS) [4] and the MRHSS
methods. In the tests, the MRMHSS, the MRHSS, the PMHSS and the MHSS iter-
ation methods are used to solve the original complex system (1), while the GSOR
method being used to solve the equivalent real system of linear equations. For more
details about the equivalent real system, one can refer to [2, 11, 19] and the references
therein.

The subsystems of linear equations with the coefficient matrices αI + W and
αI + ıT in each step of the MRHSS iteration method are solved directly by using the
Cholesky factorization and the LU decomposition, respectively. The subsystems of
linear equations of the MHSS, GSOR, PMHSS and MRMHSS iteration methods are
solved directly by using the Cholesky factorization since their coefficient matrices are
symmetric positive definite. It is noteworthy to mention that the symmetric approx-
imate minimum degree (SYMAMD) reordering [18] is used before the Cholesky or
the LU decomposition.

In actual implementations, we choose the initial guess as zero vector and all the
computing processes are terminated once the current iterate x(k) satisfies the stopping
criterion

‖b − Ax(k)‖
‖b‖ ≤ 10−6, (24)

or the number of iteration steps exceeds kmax = 1000. In addition, all the numerical
experiments are computed in MATLAB [version 9.1.0.441655 (R2016b)] in double
precision on a personal laptop, with 2.53GHz central processing unit (Intel® Core™
i3 M380), 4.87 G memory and Windows 10 operating system.

For the choice of the parameter values of the MHSS, the MRHSS and the
MRMHSS methods, we use the experimentally found optimal ones, which lead to
the least number of iteration steps. If the optimal parameter values form an interval,
then we use the one that belongs to this interval and leads to the least CPU time.
While, for the GSOR method, the optimal iteration parameter values are chosen as
presented in [19], and for the PMHSS method, those are chosen as presented in [4]
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except for Example 4 and for the cases of m = 512 in Examples 1, 2 and 3, which
are determined as above-mentioned manner used for the MHSS, the MRHSS and the
MRMHSS methods.

Example 1 Consider the complex symmetric linear systems of the form (1) as below
(cf. [3]) [(

K + 3 − √
3

τ
I

)
+ ı

(
K + 3 + √

3

τ
I

)]
x = b, (25)

where τ is the time step-size and K is the matrix of a standard five point centered dif-
ference formula, approximating the negative Laplacian operator with homogeneous
Dirichlet boundary conditions on an uniform mesh in the two dimensional unit square
[0, 1] × [0, 1], and we set h = 1/(m + 1), τ = h, where m is a number of inner
grid-points in one direction. Then, we can know that the matrix K ∈ R

n×n is with the
tensor product form K = Vm ⊗ I + I ⊗ Vm, with Vm = h−2tridiag(−1, 2, −1) ∈
R

m×m. What’s more, it is obvious that K is an n × n block tridiagonal matrix and
n = m2. In our tests, we take

W = K + 3 − √
3

τ
I and T = K + 3 + √

3

τ
I,

and the right-hand side vector b with the j -th entry bj being the form as follows

bj = (1 − ı)j

τ (j + 1)2
, j = 1, 2, . . . , n.

In addition, we normalize the system by multiplying two sides by h2. And for other
details, we can refer to [3].

Example 2 Consider the complex symmetric linear systems of the form (1) as below
(cf. [3])

[(−ω2M + K) + ı(ωCV + CH )]x = b, (26)

where M is the inertia matrix, which is typically real symmetric, possibly singular
and we take M = I , K is the (real symmetric) stiffness matrix, CV is the viscous
damping matrix (real, diagonal, “highly singular” and possibly zero) and we choose
CV = 10I , CH is the hysteretic damping matrix (also real symmetric) and we here
take CH = εK , with ε is a damping coefficient, ω is the circular frequency. Besides,
we assume that K is the five-point centered difference matrix approximating the
negative Laplacian operator with homogeneous Dirichlet boundary conditions on a
uniform mesh in the unit square [0, 1] × [0, 1] whose mesh-size is h = 1/(m + 1).
Then, we can know that the matrix K ∈ R

n×n possesses the tensor product form K =
Vm⊗I +I ⊗Vm, where Vm = h−2tridiag(−1, 2, −1) ∈ R

m×m and I is the identical
matrix in R

m×m. Thus, K is an n × n block tridiagonal matrix, n = m2. Moreover,
we take ω = π, ε = 0.02, and the right-hand side vector b as b = (1 + ı)A1, where
1 being the vector whose all entries equal to one. Furthermore, we normalize the (26)
by multiplying both sides by h2. For more details, we refer to [3].
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Example 3 The system of linear equations (1) is of the form (W + ıT )x = b, where
(cf. [3])

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ Vc + Vc ⊗ I ) + 9(e1eT
m + emeT

1 ) ⊗ I

with V = tridiag(−1, 2, −1) ∈ R
m×m, Vc = V − e1eT

m − emeT
1 ∈ R

m×m, and e1
and em are the first and the last unit vectors in R

m, respectively. We take the right-
hand side vector b to be b = (1 + ı)A1, with 1 being the vector of all entries equal
to one.

Here T and W correspond to the five-point centered difference matrices approx-
imating the negative Laplacian operator with homogeneous Dirichlet boundary
conditions and periodic boundary conditions, respectively, on a uniform mesh in the
unit squares [0, 1] × [0, 1] with the mesh-size h = 1/(m + 1).

Example 4 We consider the complex Helmholtz equation (cf. [9])

−�u + σ1u + ıσ2u = f,

where σ1 and σ2 are real coefficient functions, u satisfies Dirichlet boundary condi-
tions in D = [0, 1] × [0, 1]. We discretize the problem with finite differences on a
m×m grid with mesh-size h = 1/(m+1). This leads to a system of linear equations

((K + σ1I ) + ıσ2I )x = b,

where K = I ⊗ Vm + Vm ⊗ I is the discretization of −� by means of centered
differences, wherein Vm = h−2tridiag(−1, 2, −1) ∈ R

m×m. The right-hand side
vector b is taken to be b = (1 + ı)A1, with 1 being the the vector of all entries equal
to one. Furthermore, before solving the system we normalize the coefficient matrix
and the right-hand side vector by multiplying both by h2. For the numerical tests we
set σ1 = σ2 = 100.

The experimentally found optimal iteration parameters αexp of the MHSS, GSOR,
PMHSS, MRHSS and MRMHSS iteration methods for all the numerical examples
with different mesh numbers are listed in Table 1. We observe that, for all the iteration
methods and all the numerical examples except for the PMHSS iteration method, the
optimal parameters αexp decrease as the mesh number increasing. In addition, almost
for all the numerical examples with different mesh numbers, the optimal parameter
values of the MRHSS and the MRMHSS iteration methods are much smaller than
those of the MHSS, the PMHSS and the GSOR iteration methods.

In Table 2, we list numerical results of the four tested iteration methods for all
the four examples. From the numerical results, we see that all the tested iteration
methods are convergent within kmax iteration steps for all the four examples with
different mesh numbers m. For Examples 1, 2 and 4, the GSOR and the MRHSS
iteration methods perform much better than the MHSS iteration method no matter
in iteration number or in computing time. However, among the PMHSS, the GSOR
and the MRHSS iteration methods, the MRHSS becomes the worst one for Example
3 when mesh number is large. Meanwhile, the PMHSS costs more computing time
than the MHSS for Example 4 since in this example the matrix W is more compli-
cated to decompose than the matrix T . Finally, we should note that the MRMHSS
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Table 1 The optimal parameters αexp for the MHSS, GSOR, MRHSS and MRMHSS methods

Grid

Example Method 64 × 64 128 × 128 256 × 256 512 × 512

No. 1 MHSS 0.33 0.25 0.18 0.16

GSOR 0.457 0.432 0.428 0.412

PMHSS 1.35 1.05 1.44 1.154

MRHSS 0.05 0.02 0.01 0.002

MRMHSS 0.05 0.02 0.01 0.005

No. 2 MHSS 0.024 0.006 0.0015 0.0004

GSOR 0.455 0.455 0.455 0.457

PMHSS 0.93 1.10 0.97 0.91

MRHSS 0.0064 0.001 0.0005 0.0001

MRMHSS 0.0048 0.0005 0.0005 0.0001

No. 3 MHSS 0.415 0.166 0.07 0.054

GSOR 0.566 0.353 0.199 0.105

PMHSS 0.57 0.78 0.73 0.73

MRHSS 0.19 0.082 0.05 0.034

MRMHSS 0.165 0.145 0.105 0.065

No. 4 MHSS 0.03 0.005 0.002 0.0004

GSOR 0.862 0.862 0.862 0.862

PMHSS 0.93 0.93 0.94 0.86

MRHSS 0.03 0.005 0.002 0.0002

MRMHSS 0.02 0.005 0.002 0.0002

iteration method discussed in this work is always the most efficient one for all the
four tested examples, since it costs the least computing time and the number of iter-
ation steps to achieve convergence. Moreover, for Examples 1, 2 and 4, the number
of iteration steps of the MRMHSS, the MRHSS and the PMHSS methods are nearly
h-independent.

In Fig. 1, we draw the curves of the computing times of the three iteration methods,
i.e., MHSS, MRHSS and MRMHSS, with respect to the values of iteration param-
eter α when m = 128. The curves vividly illustrate that the MRMHSS iteration
method always takes much less computing times than the MHSS and the MRHSS
iteration methods in all tested cases. In addition, compared with the MHSS method,
the MRMHSS and the MRHSS methods are not very sensitive to the value of parame-
ter α. The MRMHSS iteration method always achieves its minimum computing time
when α becomes very small, which is similar to the MRHSS iteration method.

Therefore, we can conclude that the MRMHSS iteration method discussed in this
work is very efficient and robust when applied to solve the complex symmetric
systems of linear equations (1).
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Table 2 The numerical results of the tested iteration methods with respective optimal parameters

Grid

Example Method 64 × 64 128 × 128 256 × 256 512 × 512

No. 1 MHSS IT 134 172 222 332

CPU 0.7134 5.6440 34.3782 356.7656

GSOR IT 23 25 46 26

CPU 0.2162 1.2450 9.7464 30.2256

PMHSS IT 21 22 21 21

CPU 0.1337 0.6093 3.1509 20.2668

MRHSS IT 7 6 6 5

CPU 0.0544 0.3705 0.8704 4.5600

MRMHSS IT 5 5 5 4

CPU 0.0499 0.2331 0.7859 4.4229

No. 2 MHSS IT 110 99 88 77

CPU 0.6464 3.0333 14.0404 85.0229

GSOR IT 22 22 22 22

CPU 0.2025 1.0749 4.1669 32.0400

PMHSS IT 40 40 40 40

CPU 0.2140 1.1011 5.7979 40.9831

MRHSS IT 20 21 21 19

CPU 0.1196 0.5336 2.9660 19.9335

MRMHSS IT 15 14 16 14

CPU 0.0949 0.4640 2.6106 14.8514

No. 3 MHSS IT 58 84 106 254

CPU 0.3372 3.2627 22.4705 448.6054

GSOR IT 19 34 70 130

CPU 0.1511 1.5697 19.6162 260.1505

PMHSS IT 32 32 35 36

CPU 0.2399 1.5121 9.0656 59.8396

MRHSS IT 25 60 176 526

CPU 0.1354 1.8167 27.1334 696.2792

MRMHSS IT 26 45 91 251

CPU 0.0988 1.04584 11.4727 257.3556

No. 4 MHSS IT 37 40 41 40

CPU 0.0929 0.9415 3.3191 29.3439

GSOR IT 7 7 7 6

CPU 0.0490 0.2499 0.9761 7.5036

PMHSS IT 39 40 40 40

CPU 0.1505 1.1340 6.0465 40.6596

MRHSS IT 12 12 13 11

CPU 0.0375 0.2139 1.0963 8.0725

MRMHSS IT 10 10 11 8

CPU 0.0313 0.1772 0.8975 5.6121

Numerical Algorithms (2021) 86:1543–1559 1557



0 0.5 1
0

5

10

15

20

C
P
U

MHSS
MRHSS
MRMHSS

0 0.01 0.02 0.03
0

5

10

C
P
U

MHSS
MRHSS
MRMHSS

0 0.2 0.4
0

5

10

15

C
P
U

MHSS
MRHSS
MRMHSS

0 0.05 0.1
0

0.5

1

1.5

2

C
P
U

MHSS
MRHSS
MRMHSS

Fig. 1 Computing times vs iteration parameter α for the MHSS, MRHSS and MRMHSS methods of four
tested examples; top-left: Example 1, top-right: Example 2, down-left: Example 3, down-right: Example 4

5 Conclusions

For the large sparse complex symmetric system of linear equations (1), we proposed
an efficient iteration method named as minimum residual MHSS (MRMHSS) iter-
ation method, by applying the minimum residual technique to the MHSS iteration
scheme. Although the MRMHSS method involves two more iteration parameters than
the classical MHSS iteration scheme, they can be computed easily and automatically.
The convergence property of the MRMHSS iteration method was carefully studied,
and the numerical results illustrated that the MRMHSS is very robust and powerful.
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