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Abstract
In this paper, we establish unconditionally optimal error estimates for linearized
backward Euler Galerkin finite element methods (FEMs) applied to nonlinear
Schrödinger-Helmholtz equations. By using the temporal-spatial error splitting tech-
niques, we split the error between the exact solution and the numerical solution into
two parts which are called the temporal error and the spatial error. First, by intro-
ducing a time-discrete system, we prove the uniform boundedness for the solution
of this time-discrete system in some strong norms and derive error estimates in tem-
poral direction. Second, by the above achievements, we obtain the boundedness of
the numerical solution in -norm. Then, the optimal 2 error estimates for -order
FEMs are derived without any restriction on the time step size. Numerical results
in both two- and three-dimensional spaces are provided to illustrate the theoretical
predictions and demonstrate the efficiency of the methods.
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1 Introduction

In this paper, we focus on error estimates for linearized backward Euler Galerkin
FEMs applied to the generalized nonlinear Schrödinger-Helmholtz equations defined
by

i 0 (1)

β2 2 (2)

for and 0 , where is a bounded and convex (or smooth) domain in
2 3 . The initial and boundary conditions are taken to be

0 0 for
0 for 0 .

(3)

Here i 1, , are real nonnegative constants with 0, and
and 0 are given functions. The complex-valued function stands
for the single particle wave function, is a real-valued function which denotes
the potential. The above system may describe many different physical phenomena
in optics, quantum mechanics, and plasma physics. The system (1)–(3) defines the
Schrödinger-Poisson model [7, 18, 22, 27, 28, 30] when 0. When 0, the
system (1)–(3) reduces to a generalized nonlinear Schrödinger (GNLS) equation [3,
33, 34]. The other Schrödinger system such as the Schrödinger-Poisson-Slater model
can found in [5, 37, 44].

In the past several decades, there are numerous works devoted to the theoretical
analysis for various Schrödinger type equations (see, e.g., [6, 38] and the references
therein). We refer to [30, 37] for the existence and uniqueness of solutions of the
Schrödinger-Poisson type equations in 2 3 . In [11], Cao et al. proved the
local and global existence of a unique solution of the Schrödinger-Helmholtz equa-
tions. Numerical methods and analysis for the nonlinear Schrödinger type equations
can be found in [4, 9, 29, 35, 40] for finite difference methods, in [2, 7, 36, 45]
for FEMs, and in [8, 12] for spectral methods. In [2], Akrivis obtained optimal 2

error estimates of the Crank-Nicolson Galerkin FEMs for the GNLS equation by a
classical energy method. But this optimal 2 error estimates required the time step
condition 4 2 3 for both linearized and nonlinear schemes, where
and denote the time step size and the mesh width, respectively, and represents

the dimension of space. In [42], Tourigny obtained optimal 1 error estimates of the
implicit backward Euler and Crank-Nicolson Galerkin finite element schemes for the
GNLS equation by using a nonlinear stability theory, which required the time step
conditions 2 and 4 ( 1 2 3) for the two schemes, respec-
tively. In addition, optimal error estimates of finite difference schemes under certain
time step conditions can be found in [5, 36]. In [39], Sun and Wang established two
linearized Crank-Nicolson finite difference schemes for coupled cubic Schrödinger
equation in three-dimensional space, and derived optimal 2 error estimates of the
schemes unconditionally.

In the practical computations of solving nonlinear partial differential equations,
linearized schemes are usually more efficient since at each time step, the schemes
only require solving a linear system. However, they typically suffer from the time
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step restriction conditions. In order to derive the optimal error estimates of linearized
backward Euler Galerkin FEMs, one usually needs to prove the boundedness of
numerical solutions in -norm. For this purpose, by using the induction method
with an inverse inequality, one has

2 2 2

2 2 1

where and are the numerical solution and the exact solution, respectively;
is a Ritz projection operator; is the degree of the Galerkin FEMs; and is a

generic positive constant. However, the above inequality leads to a time step con-

dition 2 (see [13, 14, 19, 31] for more details). This condition may lead
to the use of an unnecessarily small time steps and make the computations much
more time-consuming in practice. Recently, a new method was proposed by Li and
Sun [23, 24] to derive unconditional stability and convergence of a linearized back-
ward Euler Galerkin FEM for the time-dependent Joule heating equations. Moreover,
this method was used in [25] for a nonlinear equation from incompressible misci-
ble flows in porous media, in [16] for the Landau-Lifshitz equation, in [17] for the
time-dependent Ginzburg-Landau equations, and in [43] for the generalized nonlin-
ear Schrödinger equation. This new method is based upon an error splitting technique
by introducing a corresponding time-discrete system. After deriving a priori estimates
for the solution of the time-discrete system, one has

2 2

2 2

where is the solution of the time-discrete system. Therefore, the boundedness of
in -norm can be obtained without time step restriction.
In this paper, applying the error splitting technique proposed in [23–26], we study

two linearized backward Euler schemes with -order Galerkin FEMs ( 1) for
the time-dependent nonlinear Schrödinger-Helmholtz equations (1)–(3). The first
scheme is semi-decoupled, and at each time step, one needs to solve for 1 firstly,
and then to solve for 1. The second scheme is fully decoupled, which is pre-
sented in numerical experiments. At each time step, it allows us to solve for 1

and 1 in parallel. We only consider the theoretical analysis of the first scheme
since it can be easily extended to the second one. However, the efficiency of the sec-
ond method is verified in numerical experiments. In our analysis, by introducing a
corresponding iterated time-discrete system, we prove the uniform boundedness for
the solution of this system in some strong norms and derive error estimates in tem-
poral direction. Next, we split the finite element error into two parts, the error in
the temporal direction plus the error in the spatial direction, and derive the bound-
edness of the numerical solution in -norm. Then, the optimal 2 error estimates

Numerical Algorithms (2021) 86:1495–1522 1497



for -order FEMs ( 1) are derived without any restriction on the time step size.
Numerical results in both two- and three-dimensional space are presented to illustrate
the theoretical predictions and demonstrate the efficiency of the method.

The rest of the paper is organized as follows. In Section 2, a linearized backward
Euler Galerkin FEM for the nonlinear Schrödinger-Helmholtz equations (1)–(3) is
presented. We split the error function as a temporal error function and a spatial error
function by introducing a corresponding time-discrete system. Section 3 provides a
priori estimates for the temporal error and suitable regularity for the solution of the
time-discrete system. In Section 4, we obtain the -independent spatial error esti-
mates in 2-norm. In Section 5, we derive the uniform boundedness of numerical
solutions in -norm and establish unconditional optimal 2 error estimates of the
-order ( 1) Galerkin FEMs. In Section 6, we present the fully decoupled lin-
earized backward Euler Galerkin FEM and provide some numerical examples for
both two- and three-dimensional models to illustrate our theoretical analysis. Finally,
conclusions are given in Section 7.

2 Preliminaries

Before presenting the schemes, we introduce some notations, definitions, and pre-
liminary lemmas which will be used in the analysis. Let be an open, bounded
convex polygonal domain in 2 or polyhedral domain in 3 with Lipschitz continu-
ous boundary . Let 1 denote the standard Sobolev
space equipped with the norm [1]. The space is the standard Hilber-
tian Sobolev space of order with norm [1]. All other norms will be clearly
labeled.

Following the classical finite element theory [10], we define to be a
quasi-uniform partition of into triangular (in 2) or tetrahedral (in 3), let
max diam and 0 1. For every and a nonnegative integer
, is the space of the th-order polynomial on . With these notations, we

introduce the following finite element space

and 0 on

where 1 is a fixed integer. Let 0 0 1 be a uniform partition
of the time interval 0 with time step size , and ,

for 0 . For any sequence of functions 0, we define

1
1

for 0 1 2 1.

For any two complex functions 2 , the 2 inner product is defined as
follows:

where denotes the complex conjugate of .
Let 1

0 be a Ritz projection operator defined by

0 for .
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By the classical finite element theory [10, 41], we know

2 2 (4)

and
1 1 1 (5)

for any 1
0 , 1 1.

With above notations, a linearized backward Euler Galerkin FEM is to find
1 1 such that

i 1 1 1 1 0 (6)

1 2 1 2 (7)

with the initial value 0
0 and 0 satisfies

0 2 0
0 0

2 . (8)

Multiplying (6) by 1 and integrating it over to get

i
1 2

2 i 1 1 2
2

1 1 2
2 0.

Taking the imaginary parts of the above equation yields
1 2

2 Re 1
2

1
2

and then, we have
1

2
0

2 for 0 1 1. (9)

For analyzing the linearized scheme (6)–(7), we introduce a time-discrete system
corresponding it as follows:

i 1 1 1 1 0 (10)
1 2 1 2 (11)

with the initial and boundary conditions
0

0 in
1 0 1 0 on

(12)

for 0 1 1, where 0 0 satisfies (2) at 0. The homogeneous
Dirichlet boundary condition 0 is imposed on ; thus, the classical regularity
theory of PDEs [15] shows the boundedness of 0

2 . In addition, it is easy to see
that 1 satisfies the following estimate

1
2

0
2 0 2 for 0 1. (13)

The main idea to our proof in this paper is the error splitting technique proposed
in [23–26]; by this technique, we separate the errors into the temporal error and the
spatial error as

1 1
2

1 1
2

1 1
2

1 1
2

1 1
2

1 1
2 .
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With the splitting, we can prove that the temporal error is and the spatial error
is 2 , from which and the inverse inequality, we can obtain the uniform bound-
edness of numerical solutions 1 and 1 in -norm. Then, the optimal error
estimates can be easily obtained.

In the remaining of this paper, we assume that 0 1 are locally
Lipschitz continuous, i.e., for any 1 2 ,

1 2 1 2 (14)

where is the Lipschitz constant depended on and denotes the th-order
derivative of . We also assume that the solution to the initial and boundary value
problem (1)–(3) exists and satisfies

0 1 0 1 0 1

2 0 1 0 1 .
(15)

The discrete Gronwall’s lemma plays an important role in the analysis; we recall
from [21] as follows:

Lemma 1 (Discrete Gronwall’s inequality) Let and (for inte-
gers 0) be nonnegative numbers such that

0 0 0

for

Suppose that 1, for all , and set 1 1, then

0

exp
0 0

for .

Remark 1 If the first sum on the right-hand side of (1) extends only up to 1, then
estimate (1) holds for all 0 with 1.

In our analysis, we need the following lemma and we refer to [15] for the details
of the proof.

Lemma 2 Let be a nonnegative integer, and assume and is 2.
Suppose that 1

0 is the unique solution of the boundary value problem

2 in
0 on .

Then 2 and the following estimate holds

2

where depending on , and .

Remark 2 Lemma 2 is also valid for convex domains when 0.
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We recall the Gagliardo-Nirenberg inequality [1, 32] in the following lemma
which will be frequently used in our proofs.

Lemma 3 (Gagliardo-Nirenberg inequality) Let be a function defined on and
be any partial derivative of of order , then

1

for 0 and 1 with

1 1
1

1

except 1 and is a non-negative integer, in which case the above

estimate holds for 1.

Since the triangulations is assumed to be regular, for each , the
following inverse inequality holds [10]:

2 2 for 2 3. (16)

For the simplicity of notations, we denote by 0 a constant dependent upon
, and given in (15). We denote by a generic positive constant involved in

some classical inequalities, such as the Gagliardo-Nirenberg inequality and inequal-
ities for Ritz projection, which depend upon the domain and the shape regularity
parameter of the mesh. Also we denote by a generic positive constant indepen-
dent of , , and and can absorb the constants 0 and , which could be taken
different values in different places.

3 Temporal error estimates

In this section, we will estimate the error functions 1 1 and 1 1

and establish the boundedness of the time-discrete solutions in some norms.
Under the regularity assumption (15), we define

0 max
0

1 1

which is a positive constant dependent on and independent of , , and . Let
1 1 1 1 1 1.

The system (1)–(2) at 1 can be rewritten as

i 1 1 1 1 1 (17)

1 2 1 2 1 (18)

where
1 i 1 i 1

1 1 1 1 1

1 1 1 2 2.
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Subtracting (10)–(11) from (17)–(18) leads to

i 1 1 1
1

1 (19)

1 2 1 1
1

1 (20)

where
1

1
1 1 1 1

1
1

2 2.

By Taylor formulation, (14), and the regularity assumption (15), it is easy to see
that

1
2

1

0

1 2
2

1
2

0 . (21)

Theorem 1 Suppose that the system (1)–(3) has a unique solution satisfying
(15). Then, there exists positive constants 0 such that when 0 , the time-discrete
system (10)–(12) has unique solutions 1 1, 0 1 1, and there
holds

1
2

1
2

1
1

1
2 1

2
1

2 0 (22)

1
2

1
3

1

0

1 2
2

1
2

0 (23)

where 0 0 are two positive constants dependent on and independent of
.

Proof System (10)–(12) are linear elliptic equations, and following the classical the-
ory of elliptic PDEs and the bound (13), we can find the solution of system (10)–(12)
exists and is unique. Before proving (22) and (23), we use mathematical induction to
prove the following estimate

1
0 for 0 1 1. (24)

We first prove that the above estimate holds for 0. Choosing 0 in (19), we
have

i 1 1 1
1

1 (25)
1 2 1 1. (26)

From (11) and Lemma 2, we have
1

2 0 0
2

2 0 0
2
4 .

By the embedding 2 , we have
1 1

2 . (27)

From (26), (21), and Lemma 2, we have
1

2
1

2
1

2 0 . (28)
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Noticing that
1
1

1
0

1 1
0

1 1
0

1 1
0

1

and using (27) and (28), we have
1
1 2

1
0

1
2

1
0

1
2

0
1

2 0
1 1

2

1
2

1
2

1
2 . (29)

Testing (25) by 1 and taking the imaginary part of the resulting equation to get
1 2

2 Im 1
1

1 Im 1 1

1
1 2

1
2

1
2

1
2 .

By (29) and (21), we get
1

2 (30)

when 1 min 1
2 0

2 . From (25), (29), and (30), we know

1
2

1
2 1

1 2
1

2 0
1
2 3 (31)

when 1. Next, we estimate 1 1
4 for 3 and 2, respec-

tively. For 3, by the Gagliardo-Nirenberg inequality in Lemma 3, (30), and (31),
we have

1 1
3
4
2

1
1
4
2

1
2

1
4 . (32)

Similarly, for 2, we know

1 1
1
2
2

1
1
2
2

1
2

1
2

1
4 . (33)

Therefore,
1 1 1

1 1
4

0

when 2
1

4 . Thus, (24) holds for 0. Now, by mathematical
induction, we assume (24) holds for 1. Then, from (11), we have

1
2

2
2

0
2
4 0

2 . (34)

Noticing that
1

1
2

we have
1

1 2
2

2 2

2 (35)
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here, (14), (15), and the induction assumption are used.
From (20), (21), (35), and Lemma 2, we know that

1
2

1
2

1
1 2

1
2

2 . (36)

We rewrite 1
1 as

1
1

1 1 1 1 1 1

(37)
and then we have

1
1 2

1 1
2

1 1
2

1 1
2

1
2

1
2 2

1
2 2 (38)

here, (34) and (36) are used.
Next, we prove that (24) holds for . Testing (19) by 1 and taking the

imaginary part of the resulting equation to derive

1

2
1 2

2
2
2 Im 1

1
1 Im 1 1

1
1 2

1
2

1
2

1
2

1 2
2

2
2

2 1 2
2

where (38) is used. Summing up the above inequality and using the discrete
Gronwall’s inequality and (21), we know that there exists 3 0 such that

1
2 (39)

when 3. The above estimate shows that
1

2

with which and (19) and (21), we have
1

2
1

2
1

1 2
1

2

0
1
2 3 (40)

when 1. By the same techniques used in the proof of estimates (32) and (33),
one has

1 1
4 .

Thus, we have
1 1 1

1 1
4

0 (41)

when 2. Thus, (24) holds for . The induction is completed.
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From (36) and (39), we can easily obtain

1
2

1
2

1
2 0 . (42)

From (34) and (40), we have

1
2 0

1
2

1
2

1
2

1
2

1
2 0 .

(43)

Furthermore, by (43), (11), and Lemma 2, we arrive at

1
3

2
1

2
2 2 2

0 2
2

0 2

. (44)

Testing (19) by 1 and taking the real parts of the resulting equation lead to

1 2
2 Re 1

1
1 Re 1 1

1
1 2

1
2

1
2

1
2

1

2
1 2

2
1

1
2
2

1 2
2

which shows that

1 2
2 2 1

1
2
2

1 2
2 .

Summing the above inequality from 0 to 1 and using (21), (38), and
(39), we have

1

0

1 2
2 2

1

0

1
1

2
2 2

1

0

1 2
2

2.

From above inequality, we can easily get

1

0

1 2
2

1

0

1 2
2

1

0

1 2
2

1

0

1 2
2 2

1

0

1 2
2

. (45)

For proving the remaining estimates, we need to bound 1
1 1 . From (37),

one has

1
1 1

1 1
1

1 1
1

1 1
1

1 2 3 (46)
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where

1
1 1

2
1 1

2

1 1
2

1
2

3
1 1

2
1 1

2

1 1
2

0
1

3
1

6 0
1

3
1

6

0
1 1

2

1
2

2
1 1

2

1 1
2

1 1
2

1
2

2
2

3
2

here,

1
2 0

1 1
2

0
1

3 6
1

0
1

2 2
1

2

2

2
2

1 1
2

1 1
2

0
1 1

2 0
1 1

2

2

3
2 2 .

Combining estimates 1, 2, and 3 into (46), and using (42), we have

1
1 1

1
2 2 . (47)

Testing (19) by 1 leads to

i 1 2
2

1 1 1
1

1 1 1

(48)
Taking the real parts of above inequality, we have

1
2

1 2
2

2
2 Re 1

1
1 Re 1 1

(49)
Testing (19) by 1

1 and taking the imaginary parts of the resulting equation, we
have

Re 1 1
1 Im 1 1

1 Im 1 1
1 . (50)
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By (38), (39), (47), and the Young’s inequality, we obtain

Re 1 1
1 Im 1 1

1 Im 1 1
1

1
2

1
1 2

1
2

1
1 2

1

2
1 2

2

1

2
1

1
2
2

1

2
1 2

2

1

2
1

1
2
2

1 2
2

2
2

1

2
1 2

2
2. (51)

Meanwhile, we write the second term on the right-hand side of inequality (49) as

Re 1 1

Re i 1 i 1
1 1

1 1 1 1

1
1

1 1 1

1 1 1 1 (52)

Testing (19) by 1
1 leads to

i 1 1
1

1 1
1

1
1

1
1

1 1
1 .

By (38), (39), and the Young’s inequality, we can obtain

1 1
1

1

2
1 2

2

1

2
1

1
2

1

1
1

2
2

1

2
1

1
2
2

1

2
1 2

2

1

2
1 2

2
1

1
2

1

1

2
1 2

2
2. (53)

Testing (19) by 1 1 1 1 1 yields

i 1 1 1 1 1 1

1 1 1 1 1 1

1
1

1 1 1 1 1

1 1 1 1 1 1 .

Thanks to the above equation, (38), (39), (14), and (15), we have

1 1 1 1 1 1

1

2
1 2

2
1 2

1

1

2
1

1
2
2

1

2
1 2

2

1

2
1 2

2

1

2
1 2

2
2. (54)
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Combining estimates (51), (52), (53), and (54) into (49), we have

1 2
2

2
2

1
2 2 3 1 2

2

1
1

2
1

2.

Summing the above inequality up and applying the discrete Gronwall’s inequality,
(15) and (21), we know that there exists 4 0 such that

1
2 (55)

when 4. Testing (19) by 1 and taking the real parts to arrive at

1 2
2

1
Im 1 Re 1

1
1 Re 1 1

1

2
1 2

2
2
2

1

2
1 2

2
1

1
2
2

1 2
2 . (56)

Thanks to (21), (47), (39), and (55), we have

1
2

1
2 . (57)

Taking 0 min 1 2 3 4 , and combining (42), (55), (57), (45), (43), and (44),
the proof of Theorem 1 is completed.

4 Spatial error estimates

In this section, we will derive the -independent estimates for 1 1 and
1 1 in 2-norm.

By Sobolev embedding inequalities and (5), we know

1 6 1 6 2 0 1 .

Similarly, 2 0 1 . With these estimates, we can
define

1 max0 1
1 0 1

2 max0 1
1 0 1

where 1 and 2 are two positive constants dependent on and independent on ,
, and .
Let 1 1 1 1 1 1. From the full discrete

scheme (6)–(7) and the time-discrete scheme (10)–(11), we have the following error
equations:

i 1 1 1
2 i 1 1

(58)

1 2 1 1
2

1 1

2 1 1 (59)
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where
1

2
1 1 1 1

1
2

2 2.

Theorem 2 Assume that the unique solution of system (1)–(3) satisfies (15).
Then the full discrete system (6)–(7) has unique solution 1 1, 0 1

1, and there exists 0 0, 0 0 such that when 0, 0,

1
2

1
2 0

2 (60)

1
2

1
2 0 (61)

where 0 is a positive constant dependent on 0 0 , , and independent of
.

Proof The existence and uniqueness of solution of (6) follows the uniform bound (9).
Since the coefficient matrix of (7) is symmetric and positive definite, thus the exis-
tence and uniqueness of solution of (7) is ensured. Now, we prove the error estimate
(60) by mathematical induction. Since 0

0, by using (4) and (15), we obtain

0
2

0 0
2

0
0 2

0
0 2

2
0 2

2.
(62)

From (8) and (2) at 0, we have
0 0 2 0 0 0 . (63)

When 0, from (4), (15), and (63), we obtain
0 0

2
0 0

2
2 0

2
2. (64)

When 0, from (4), (15), and (63), we have
0 0

2 . (65)

For deriving the estimate 0 0
2 , we will use the Aubin-Nitsche techniques.

Let 2 , take 2 1
0 as the solution of

2 in with 0 on .

From Lemma 2, we know 2 2 . Choosing 0 0, one has

0 0 2
2

0 0 2 0 0

2 0 0
2 2

0 0
2 2

2 0 0 2
2

0 0
2

0 0
2 .

Where is the elliptic projection of . Choosing 1 2
1
2 , when 1,

the above estimate along with (4) and (65) implies that
0 0

2
2 (66)

with which and (4) shows that
0 0

2
0 0

2
0 0

2
2. (67)
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Combining estimates (62), (64), and (67), and applying the inverse inequality (16),
we have

0 0 0 0 0 2 2
1

0 0 0 0 0 2 2
2

when 2
2

4 . We rewrite 1
2 as

1
2

0 0 2 0 0 0 0 0

and then we have
1
2 2 0

0 0
2

0 2
0

0 0 0 0
2

0 0
2

2.
(68)

When 0, from (59), it is obvious to see that

1 1
2

0
2

2 2. (69)

When 0, after choosing 1 and 0 in (59), and using (4), we have

1 1
2

0
2 . (70)

Subtracting (7) from (11) with 0, we obtain

1 1 2 1 1 1
2 .

Now, we use the Aubin-Nitsche techniques again. Choosing 1 1 in (4), we
find

1 1 2
2

1 1 2 1 1

1
2

1
2

2 1 1
2 2

1 1
2 2

2 1
2 2 2

1
2 2 2

2 1 1 2
2

1 1
2

1 1
2

1
2 2 .

where 1, and by (68) and (70), we have

1 1
2

2. (71)

Combining (69) and (71), and using the inverse inequality and (4), we have

1 1 1 1

1 2 1 1
2

1 2 2 2

when 2
2

4 . Noticing that

1
2

1 1 0 1 1 0 0 1 1 0 1 1

Numerical Algorithms (2021) 86:1495–15221510



and from (4), (62), and (71), we have
1
2 2 0

1 1
2

1
2 0

1 0 0
2

1

0
1 1 1

2

1 1
2

1
2

2

1
2

2 . (72)

We choose 1 and 0 in (58)

i 1 2
2

0 2
2

1 0 2
2 2 1 2

2 2 1
2

1

2i 1 1 1 2i 0 0 1 .

Taking the imaginary parts of the above equation and applying (4) and (72), one has
1 2

2

0 2
2 2 Im 1

2
1 2 Re 1 1 1 2Re 0 0 1

0 2
2 2 1

2 2
1

2 2 1 1
2

1
2 2 0 0

2
1

2

4 2 1
2

2 1
2

1

2
1 2

2 4 1 1 2
2

4 0 0 2
2

4 7

8
1 2

2

when 5
1

8 . Then, combining (69), (71), and (4), we find

1
2

1
2

2

which shows that (60) holds for 0.
We assume that

1
2 0

2 (73)

holds for 1. By the inverse inequality (16) and the induction assumption
(73), we can obtain

1 1 1 1

1 2 1 1
2

1
0

2 2 1

for 1, and 2 0

2
4 . By the same techniques used in the proof

of estimates (69) and (71), we can obtain
1 1

2 2
2

0
2 (74)

from which and the inverse inequality (16), we can derive that
1 1 1 1

1 2 1 1
2

1
0

2 2 2
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when 3 0

2
4 . Noticing that

1
2

1 1 1 1 1

1 1 1

and from (74), we have
1

2 2
1 1

2
1

2
2

1
2

2 .
(75)

Next, we will prove that (60) also holds for . Choosing 1 in (58) and
taking the imaginary parts of the resulting equation yield

1
2

1 2
2

2
2

1 2
2 Im 1

2
1

Re 1 1 1 .

Summing up the above equation and applying (4), (75), and the induction assumption
(73), we have

1 2
2

0

1 2
2

0

1 1
2

1
2

4

0

1 2
2

0

1 1 2
2

0

1 2
2

4

0

1 2
2

0

4 1 2
2

4.

By the discrete Gronwall’s inequality and Theorem 1, there exists 6 0, such that
1

2
2

with which and (4) and (74), we have
1

2
1

2 0
2.

Thus, (60) holds for . Since the -independent property of estimates in (60),
we can obtain the 1 error estimate by the inverse inequality:

1
2

1 1
2

1
2

1 1
2 .

Thus, taking 0 min 0 5 6 , 0 min 1 2 3 , we complete the proof of
this theorem.

5 L2 optimal error estimates

In this section, we will derive 2 optimal error estimates for the -order ( 1)
Galerkin FEM by using the results in the above sections.

From (4), (22), and (60)–(61), we have optimal error estimates for the linear
Galerkin FEM ( 1) as follows.
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Corollary 1 Under the assumptions of Theorem 2, the full discrete system (6)–(7)
has unique solution 1 1, 0 1 1, and there exists 0 0,

0 0 such that when 0, 0,

1 1
2

1 1
2 1

2 (76)

1 1
2

1 1
2 1 (77)

where 1 is a positive constant dependent on 0 0 , 0, , and independent of
.

For 1, the above estimates are not optimal for the -order Galerkin FEM.
However, we can derive the uniform bounds of the numerical solutions in -norm
from Theorem 2 as:

1 2 1 1
2 1 (78)

1 1 2 1 1
2 2 (79)

for 0 1 1 when 0, 0. By the above uniform bounds, we can
obtain optimal 2 error estimates given in the following theorem.

Theorem 3 Assume that the system (1)–(3) has a unique solution satisfying
(15). Then the full discrete system (6)–(7) has unique solution 1 1,
0 1 1, and there exists 0 0, 0 0 such that when 0 , 0,

1 1
2

1 1
2

1 (80)

where is a positive constant dependent on 0 0 , 0, 1, , and independent
of .

Proof The exact solutions and at 1 satisfy

i 1
1 1 1 1 0 (81)

1 2 1 1 1 2 . (82)

Subtracting (6)–(7) from the two above equations, the error functions 1 1

1, 1 1 1 satisfy

i 1 1 1
3 i 1

1
(83)

1 2 1 1
3

1 1

2 1 1 (84)

where
1

3
1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1
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1
3

1 1 2 2

1 1 2 1 1

2 .

By (4), (14), (15), and (78), we can derive

1
3 2

1
2 2

1
2 .

By the same techniques used in the proof of estimates (69) and (71), we can obtain

1 1
2 2

1 (85)

from which and (79), we find

1
3 2

1
2 2

1 . (86)

Thanks to (4) and (15), one has

0
2

0
0 2

0
0 2 0 0 2

1
0 1

1 (87)

and

0

1
1

2
2

2
0

1 1 2
2 2

0

1
1

2
2

2 1

0

1 2
1 2 2 2

2 0 2

2 2 1 . (88)

Choosing 1 in (83) and taking the imaginary parts of the resulting equation
to arrive at

1

2
1 2

2
2
2

1 2
2 Im 1

3
1

Re 1
1

1 .
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Summing up the above equation and using the Cauchy-Schwarz inequality, (86), (87),
and (88) lead to

1 2
2

0 2
2 2

0

1
3 2

1
2

2
0

1
1 2

1
2

0 2
2

0

1 2
2

0

1
3

2
2

0

1
1

2
2

0

1 2
2

2 2 1 .

By the discrete Gronwall’s inequality, there exists 7 0, such that

1
2

1

when 7, with which and (4) and (85), one has

1 1
2

1 1
2

1 .

Let 0 min 7 0 and 0, we finish the proof of Theorem 3.

6 Numerical experiments

In this section, we provide numerical experiments to illustrate our theoretical anal-
ysis in the previous sections. All computations are performed with the public finite
element software package Freefem++ [20]. In our tests, we choose the unit square

0 1 2 as a two-dimensional domain, and the unit cube 0 1 3 as a three-
dimensional domain. For the unit square, a uniform triangular partition with 1

nodes in both horizontal and vertical directions is made and the mesh width 2 .
For the unit cube, a uniform tetrahedra partition with 1 nodes is used in each

direction, where the mesh width 3 .
We also test the fully decoupled linearized backward Euler Galerkin FEM,

which is under an explicit treatment of the nonlinear terms, the scheme is to seek
1 1 such that

i 1 1 1 0 (89)

1 2 1 2 (90)

with the initial value 0
0 and 0 satisfies (8).

The scheme (6)–(7) can be seen as a semi-decoupled scheme. At each time step,
we need to solve (7) for 1 firstly, and then to solve (6) for 1. However, the
second scheme (89)–(90) is fully decoupled. At each time step, we only need to
solve the two systems for 1 and 1 in parallel. In this paper, we only give
out error estimates for the linearized scheme (6)–(7). The analysis presented in this
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paper can be easily extended to the second linearized scheme (89)–(90), which will
be confirmed numerically in this section.

Example 6.1 Firstly, we consider the following Schrödinger-Helmholtz equation

i 1 in 0
2 2

2 in 0
0 0 in

0 on 0

(91)

where 0 1 2. In our computations, the right-hand side functions 1 and 2 and
the initial condition 0 are determined by the following analytical solution

e 1 sin sin sin sin
e 1 1 sin sin .

Choosing 1, we solve system (91) by the linearized backward Euler
scheme (6)–(7) and the full decoupled scheme (89)–(90) with a linear finite element
approximation and a quadratic finite element approximation, respectively. To con-
firm the optimal convergence rate in the 2-norm, we choose 2 for the linear
finite element approximation and 3 for the quadratic finite element approx-
imation, respectively. We present numerical results in Tables 1, 2, 3, and 4 at time

0.5 1 and 2. From Tables 1, 2, 3, and 4, we can see that the errors in 2-norm
are proportional to 1 1 2, which agrees with the theoretical analysis and
indicates that both schemes are optimal convergence in 2-norm.

In Theorem 3, we obtain the optimal 2 error estimate 1 uncondition-
ally for 1. In order to show the unconditional stability of the linearized backward
Euler schemes (6)–(7) and (89)–(90), respectively, we solve problem (91) by using
linear and quadratic FEMs with four different time step size 0.2 0.1 0.05 0.01
on gradually refined meshes with 10 1 2 10. The 2-norm errors
at 1 are presented in Figs. 1 and 3 for the linear FEM and in Figs. 2 and 4 for
the quadratic FEM. From Figs. 1–4, we can observe that for a fixed , the 2-norm
errors converge to a small constant when the mesh refine gradually, which shows that
the two proposed schemes are unconditionally stable and the time step restriction is
unnecessary.

Table 1 2 errors and convergence rates of scheme (6)–(7) for the linear FEM with 2 (Example 6.1)

2 2

0.5 1.0 2.0 0.5 1.0 2.0

5 0.0273794 0.0444186 0.12359 0.0164891 0.0271717 0.0806786
10 0.00748559 0.0123097 0.034446 0.00439038 0.00741496 0.0224784
15 0.00189676 0.00315147 0.00887508 0.00112123 0.00189579 0.00578652
20 0.000457536 0.000772402 0.00222922 0.000281548 0.000476131 0.00145742

Order 1.9677 1.9486 1.9310 1.9573 1.9449 1.9302
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Table 2 2 errors and convergence rates of scheme (6)–(7) for the quadratic FEM with 3 (Example
6.1)

2 2

0.5 1.0 2.0 0.5 1.0 2.0

5 0.00154718 0.00254359 0.00695364 0.00073431 0.00122696 0.00367027

10 0.000191754 0.000317961 0.000867978 8.82192e 005 0.00014703 0.000427802

15 2.41982e 005 3.99274e 005 0.000108698 1.08854e 005 1.80736e 005 5.17009e 005

20 3.03817e 006 5.00694e 006 1.36122e 005 1.35488e 006 2.24561e 006 6.36941e 006

Order 2.9936 2.9962 2.9989 3.0274 3.0313 3.0568

Table 3 2 errors and convergence rates of scheme (89)–(90) for the linear FEM with 2 (Example
6.1)

2 2

0.5 1.0 2.0 0.5 1.0 2.0

5 0.027412 0.0445033 0.12423 0.01649 0.0271753 0.0807532

10 0.00750842 0.0123248 0.034678 0.0043911 0.0074156 0.0225129

20 0.00190664 0.00314295 0.00894202 0.0011216 0.00189508 0.00579642

40 0.000460519 0.000768194 0.00224572 0.00028166 0.000475817 0.00145967

Order 1.9651 1.9521 1.9299 1.9572 1.9452 1.9299

Table 4 2 errors and convergence rates of scheme (89)–(90) for the quadratic FEM with 3

(Example 6.1)

2 2

0.5 1.0 2.0 0.5 1.0 2.0

5 0.00155008 0.00255114 0.0070211 0.000734449 0.00122758 0.00368969

10 0.000192266 0.000318406 0.000874192 8.826e 005 0.000146908 0.000429441

20 2.42213e 005 4.00706e 005 0.000109631 1.08891e 005 1.806e 005 5.19031e 005

40 3.03873e 006 5.02906e 006 1.37123e 005 1.35524e 006 2.24423e 006 6.39408e 006

Order 2.9982 2.9955 3.0000 3.0273 3.0318 3.0575
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Fig. 1 2-norm errors for the linear FEM computed by scheme (6)–(7) (Example 6.1)
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Fig. 2 2-norm errors for the quadratic FEM computed by scheme (6)–(7) (Example 6.1)
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Fig. 3 2-norm errors for the linear FEM computed by scheme (89)–(90) (Example 6.1)
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Fig. 4 2-norm errors for the quadratic FEM computed by scheme (89)–(90) (Example 6.1)

Example 6.2 Next, we consider the following high order Schrödinger-Poisson-Slater
system

i 4
1 in 0

2
2 in 0

0 0 in
0 on 0

(92)

where 0 1 2. The exact solutions and of above system are given as follows:

2e 5 1 5 3 1 1
5 1 3 2 sin sin 2 sin 2 1 1

and the right-hand side functions 1 and 2 and the initial condition 0 are determined
by the exact solution and system (92).

To show the unconditional stability (convergence) of the linearized backward
Euler scheme (6)–(7), we solve problem (92) by using linear and quadratic FEMs
with four different time step size 0.2 0.1 0.05 0.01 on gradually refined meshes
with 10 1 2 10. The numerical results at 1 are presented
in Fig. 5 for the linear FEM and in Fig. 6 for the quadratic FEM. We can observe
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Fig. 5 2-norm errors for the linear FEM computed by scheme (6)–(7) (Example 6.2)
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Fig. 6 2-norm errors for the quadratic FEM computed by scheme (6)–(7) (Example 6.2)

that for a fixed , 2-norm errors converge to a small constant when the mesh refine
gradually, which also shows the unconditional stability of the proposed schemes.

Example 6.3 Finally, we consider the high order Schrödinger-Poisson-Slater system
(92) in three-dimensional (3D) space with 0 1 3. The exact solutions are given
as follows:

10e 5 1 5 3 1 1 1
10 1 3 2 sin sin 2 sin 2 sin 2 1 1 1 .

We solve the high-order Schrödinger-Poisson-Slater system (92) in 3D by the lin-
earized backward Euler scheme (6)–(7) with a linear FEM. We present the numerical
results at 1 in Fig. 7, which are obtained with four different time step size

0.2 0.1 0.05 0.01 on gradually refined meshes with 4 1 2 7.
Although some previous works give that the error estimates in 3D often required
stronger time stepsize conditions than that in 2D, the results in Fig. 7 illustrate that
the scheme (6)–(7) is unconditionally convergence for the 3D model.
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Fig. 7 2-norm errors for the linear FEM computed by scheme (6)–(7) (Example 6.3)
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7 Conclusions and future works

In this paper, we have proved unconditionally optimal error estimates of the lin-
earized backward Euler FEMs for the generalized nonlinear Schrödinger-Helmholtz
equations. This optimal error estimate has no restriction on the time and spatial steps.
Numerical results in both two- and three-dimensional space are presented to confirm
the theoretical predictions and demonstrate clearly the unconditional stability of the
proposed schemes. The analytic method in this paper can be considered to analyze
other nonlinear physical models in future works.
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