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Abstract
The ancient concept of circumcenter has recently given birth to the circumcentered-
reflection method (CRM). CRM was first employed to solve best approximation
problems involving affine subspaces. In this setting, it was shown to outperform the
most prestigious projection-based schemes, namely, the Douglas-Rachford method
(DRM) and the method of alternating projections (MAP). We now prove convergence
of CRM for finding a point in the intersection of a finite number of closed convex
sets. This striking result is derived under a suitable product space reformulation in
which a point in the intersection of a closed convex set with an affine subspace is
sought. It turns out that CRM skillfully tackles the reformulated problem. We also
show that for a point in the affine set the CRM iteration is always closer to the solu-
tion set than both the MAP and DRM iterations. Our theoretical results and numerical
experiments, showing outstanding performance, establish CRM as a powerful tool
for solving general convex feasibility problems.
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1 Introduction

We consider the important problem of finding a point in a nonempty set
given by the intersection of finitely many closed convex sets {Xi}mi=1, that is,

Find x∗ ∈ X :=
m⋂

i=1

Xi . (1)

We assume that for each i = 1, 2, . . . , m and any , the orthogonal projection
of z onto Xi , denoted by PXi

(z), is available.
It is well known that Problem (1) arises in many applications in science and

engineering and is often solved enforcing the Douglas-Rachford method (DRM) or
the method of alternating projections (MAP). The extensive literature on DRM and
MAP in various contexts of continuous optimization expresses their relevance in the
field (see, for instance, [4–6, 8–10, 26, 31, 33]). Notwithstanding, DRM and MAP
sequences may converge slowly due to spiraling and zigzag behavior, respectively,
even in the case where the Xi’s are affine subspaces. This was our main motivation
in [16] for the introduction of the circumcentered-reflection method (CRM).

The iterates of CRM are based on a generalization of the Euclidean concept of
circumcenter (the point in the plane equidistant to the vertices of a given triangle).
Successfully applied for projecting a given point onto the intersection of finitely
many affine subspaces (see [16–18]), CRM is in its original form likely to face issues
when dealing with general convex feasibility. Indeed, in the very first paper introduc-
ing CRM [16], it was pointed out that under non-affine structures, the method could
possibly diverge or simply be undefined. There is now an actual example featuring
two intersecting balls for which CRM stalls or diverges depending on the initial point
(see [3, Figure 10]). These apparent drawbacks are genuinely overcome in the present
work. The key is to reformulate the problem of finding a point in X. The product
space reformulation introduced by Pierra [32] will be considered.

Product space versions of Problem (1) have been considered for both DRM and
MAP [3, 6]. Although necessary for DRM to converge if m ≥ 3, the product space
approach does not lead to satisfactory performance in comparison with variants of
DRM (see, for instance, the cyclic Douglas-Rachford method (CyDRM) [21, 22] and
the cyclically anchored Douglas-Rachford algorithm (CADRA) [11]). On the other
hand, MAP converges with or without the product space reformulation, but tends to
get worse on complexity when applied to the reformulated problem. Nonetheless,
usually avoided for DRM and MAP, we will see that when suitably utilized, the prod-
uct space reformulation captures CRM’s essence and enables it to efficiently solve
Problem (1).

The main result in our work guaranties that, for any starting point, CRM con-
verges to a solution of Problem (1). This is one of the most impressive abilities of
CRM proven so far, although noticeable results have already been derived by various
authors. The history of circumcenters dates back to as early as 300 BC, when they

Numerical Algorithms (2021) 86:1475–14941476



were described in Euclid’s Elements [27, Book 4, Proposition 5]. More than two thou-
sand years later, in 2018, circumcenters were discovered to be a simple yet effective
way of accelerating the prominent Douglas-Rachford method [16]. In 2019, the paper
celebrating 60 years of DRM [28] mentions circumcenters as a natural way of deal-
ing with DRM’s spiraling characteristic. Also, CRM was employed for multi-affine
set problems in [17] and in a block-wise version in [18]. Along with these articles,
groups of researchers have been leading careful studies on properties, properness,
and calculations of circumcenters including a viewpoint of isometries (see [12–15,
30]). Very recently, a work on CRM for particular nonconvex wavelet problems was
carried out [24]. It seems that circumcenters are here to stay.

Before providing all the technical machinery of our approach, let us consider Fig. 1
as a synthesized preview of what is developed in the present work. Figure 1 illustrates
the problem of finding a point in the intersection of two given balls and displays
DRM, MAP, and CRM trajectories starting all from the common initial point x0 and
the number of iterations taken by them to track a solution up to a given accuracy.
A trajectory of CRM under the product space reformulation is exhibited as well and
labeled as CRM-prod. After the picture, the definitions of MAP, DRM, CRM, and
CRM-prod sequences are described. The particular intersection problem considered
in Fig. 1 is of special interest as for a different choice of starting point x0, CRM

Fig. 1 Geometric illustration of MAP, DRM, CRM, and CRM-prod
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might not be well-defined or worse, it may diverge. In this paper, these two issues are
overcome by CRM-prod.

Let us explain how the MAP, DRM, and CRM sequences are generated for the
two-set case, that is, the case in which a point common to two closed convex sets

is sought. For a current iterate , we move to zMAP, zDRM, and
zCRM using MAP, DRM, and CRM, respectively, where

zMAP := PX2PX1(z), zDRM := 1

2
(Id + RX2RX1)(z),

zCRM := circumcenter{z, RX1(z), RX2RX1(z)}.
Let Id denote the identity operator in and consider the notation for reflection
operators R� := 2P� − Id for a given nonempty, closed, and convex set .
Note that MAP employs a composition of projections and, not by chance, DRM
is also known as averaged reflection method, as it iterates by taking the mean of
the current iterate with a composition of reflections. As for CRM, it chooses the
Euclidean circumcenter of the triangle immersed in with vertices z, RX1(z),
and RX2RX1(z). The circumcenter zCRM is defined by satisfying two criteria: (i)
zCRM is equidistant to the three vertices, i.e., ‖z − zCRM‖ = ‖RX1(z) − zCRM‖ =
‖RX2RX1(z) − zCRM‖, with ‖ · ‖ representing the Euclidean norm; (ii) zCRM belongs
to the affine subspace determined by z, RX1(z) and RX2RX1(z), denoted here by
aff{z, RX1(z), RX2RX1(z)}.

In order to understand how CRM-prod works, we have to consider the product
space environment by Pierra [32]. Assume that our problem still consists of finding a
point in X1∩X2 and take into account now two new closed convex sets ,

where W := X1 × X2 and . Indeed, W and D are
closed, convex and actually it is straightforward to see that D is a subspace of .
Then, it obviously holds that

x∗ ∈ X1 ∩ X2 ⇔ (x∗, x∗) ∈ W ∩ D.

CRM-prod is ruled by zk+1 := circumcenter{zk, RW(zk), RDRW(zk)}. We antici-
pate that in our approach it will be key to initialize CRM-prod in D. Indeed, it will be
shown that if z0 ∈ D, then zk ∈ D for all k. This enables us to fully understand the
CRM-prod trajectory plotted in Fig. 1. We took the initial point
so that the CRM-prod sequence lies entirely in D, that is, each has the form
zk = (xk, xk). So, we plotted the xk part of the CRM-prod sequence in Fig. 1.

With all these basic notions having been introduced, we get a clear geometric
comprehension of the sequences illustrated in Fig. 1. Now, it is important to stress
that the intersection problem (1) whenm ≥ 3 can also be reformulated as the problem
of finding a point in the intersection of two closed convex sets, one of which being
a subspace (see Section 3). With that said, our investigation will focus on CRM for
finding a point in the intersection of a closed convex set K and an affine subspace U ,
a problem that is actually interesting and relevant on its own.

The ability of CRM for finding a point in the intersection of a closed convex set K
and an affine subspace U is simply impressive in comparison with the classical MAP
and DRM. Moreover, a CRM iteration is always better by means of distance to the
solution set than both DRM and MAP iterations taken at any point in U (see the last
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theorem in Section 2). Also, it has to be noted that the computational effort for calcu-
lating a CRM step is essentially the same as the one for computing a MAP or DRM
step. This is due to the fact that a circumcenter outcoming from a two-set intersec-
tion problem consists of solving a 2 × 2 linear system of equations. The outstanding
numerical performance of CRM over MAP and DRM recorded in our experiments
not only reveals a Newtonian flavor of CRM but it also opens opportunities for new
research. Moreover, an explicit connection with Newton-Raphson method was shown
in [24] for nonconvex problems, and used to prove quadratic convergence of a hybrid
circumcenter scheme.

Our paper is organized as follows. Section 2 is at the core of this work containing
our two most technical results, namely Theorems 1 and 2. Theorem 1 states conver-
gence of CRM when applied to finding a point common to an affine subspace and
a general closed convex set. Theorem 2 claims that CRM is better than both MAP
and DRM when computed at iterates belonging to the affine subspace. Also, Theo-
rem 1, together with the product space reformulation, leads to the main contribution
of the manuscript in Section 3, namely, the global convergence of CRM for solving
Problem (1). Numerical experiments are conducted in Section 4 concerning convex
inclusions such as polyhedral and second-order cone feasibility. The results show that
in all instances, CRM outperforms MAP and DRM. We close the article in Section 5
with a summary of our results together with perspectives for future work.

2 CRM for the intersection of a convex set and an affine subspace

In this section, the problem under consideration is given by

Find z∗ ∈ K ∩ U, (2)

with a closed convex set, an affine subspace and K ∩U nonempty.
We are going to prove that CRM solves problem (2) as long as the initial point lies

in U and the circumcenter iteration considers first a reflection onto K and then onto
U . This CRM scheme reads as

zk+1 := C(zk) = circumcenter{zk, RK(zk), RURK(zk)}, with zk ∈ U . (3)

It turns out that if z0 ∈ U , then the whole sequence generated upon (3)
remains in U and converges to a solution, that is, a point in K ∩ U . This result
lies at the core of our work. In order to establish it, we need to go through some
preliminaries. We start with a formal and general definition of circumcenter.

Definition 1 (circumcenter operator) Let B := (Y1, Y2, . . . , Yq) be a collection of
ordered nonempty closed convex sets in , where q ≥ 1 is a fixed integer. The cir-
cumcenter of B at the point is denoted byCB(z) and defined by the following
properties:

(i) ‖z − CB(z)‖ = ‖RY1(z) − CB(z)‖ = · · · = ‖RYq · · · RY2RY1(z) − CB(z)‖; and
(ii) CB(z) ∈ aff{z, RY1(z), RY2RY1(z), . . . , RYq · · · RY2RY1(z)}.
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For convenience, we sometimes also write CB(z) as

circumcenter{z, RY1(z), RY2RY1(z), . . . , RYq · · · RY2RY1(z)}.
Circumcenters, when well-defined, arise from the intersection of suitable bisectors

and their computation requires the resolution of a q × q linear system of equa-
tions [12], with q as in Definition 1. The good definition of circumcenters is not an
issue when the convex sets in question are intersecting affine subspaces (see [17]).
This might not be the case for general convex sets (see [16]). However, we are going
to see that for any point z ∈ U the circumcenter used in (3), namely C(z) = CB(z),
where B = (K, U), is well-defined.

We proceed now by listing and establishing results that are going to enable us to
indeed prove that C(z) is well-defined for all z ∈ U .

Lemma 1 (good definition and characterization of CRM for intersecting affine
subspaces) Consider a collection of affine subspaces B = (U1, U2, . . . , Uq) with

nonempty intersection UB := ⋂q

i=1 Ui . For any , CB(z) exists, is
unique and fulfills

(i) PUB (CB(z)) = PUB (z); and
(ii) for any s ∈ UB, we have CB(z) = PUz(s), where Uz :=

aff{z, RU1(z), RU2RU1(z), . . . , RUq · · · RU2RU1(z)}.

Proof See [17, Lemmas 3.1 and 3.2].

It is worth emphasizing that, whenever we deal with circumcenter operators
regarding two sets, many results can be carried out as if we were in since, in
this case, the circumcenter is a point sought in the affine subspace defined by three
points. So, this affine subspace has dimension of at most 2. Along the manuscript,
one is going to come across arguments based on this fact.

Lemma 2 (one step convergence of CRM for a hyperplane and an affine subspace)
Let be a hyperplane and an affine subspace, respectively. If H ∩ U is
nonempty, then

PH∩U(z) = circumcenter{z, RH (z), RURH (z)},
for any z ∈ U .

Proof Let z ∈ U . If z lies also in H , the result follows trivially. Therefore, assume
z /∈ H . For our analysis, it will be convenient to look at the point PURH (z). If
PURH (z) coincides with z, then aff{z, RH (z), RURH (z)} = aff{RH (z), RURH (z)},
because z = PURH (z) = 1

2 (RH (z) + RURH (z)). Also, the only point equidis-
tant to RH (z) and RURH (z) in aff{RH (z), RURH (z)} is PURH (z) = z. This
means that z = circumcenter{z, RH (z), RURH (z)} and, in particular, z = RH (z),
which implies that z ∈ H , a contradiction. So, we have that z and PURH (z)

are distinct and the line connecting these points, denoted here by Lz, is well-
defined. Moreover, Lz lies entirely in U and perpendicularly crosses the segment
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at its midpoint, namely PURH (z). So, Lz is a bisector of the segment
RH (z)RURH (z). Thus, z̃ := circumcenter{z, RH (z), RURH (z)} has to lie in Lz and
consequently in U .

Furthermore, z PH (z) ⊥ z̃ PH (z) because the circumcenter is the point where the
bisectors of the triangle of vertices z, RH (z) and RURH (z) intersect. Since H is a
hyperplane, the orthogonality between z PH (z) and z̃ PH (z) suffices to guaranty that
z̃ ∈ H . Thus, z̃ ∈ H ∩U . Finally, from Lemma 1, we have that PH∩U(z) = PH∩U(z̃).
Hence, PH∩U(z) = z̃, which completes the proof.

The next results concern the domain of the circumcenter operator for K and
U , namely . We
will see that U ⊂ dom(C) and C(z) ∈ U , whenever z ∈ U .

Lemma 3 (well-definedness and characterization of CRM for K and
U ) Let , where K is a closed convex set and U is an
affine subspace and assume K ∩ U to be nonempty. Then, for all
z ∈ U , C(z) := circumcenter{z, RK(z), RURK(z)} is well-defined
and we have C(z) ∈ U . Furthermore, C(z) = PHz∩U(z), where

if z /∈ K and Hz := K ,
otherwise.

Proof Let z ∈ U . If z ∈ K , the result is trivial. So assume that z belongs to U , but
not to K . Then, we have of course that PHz(z) = PK(z) and thus RHz(z) = RK(z).
Note that Hz ∩U 
= ∅. In fact, let y ∈ K ∩U . Thus, by y ∈ K and by the characteri-
zation of projection on nonempty closed convex set, (z − PK(z))T (y − PK(z)) ≤ 0.
Define . Then,
f (0) = (z − PK(z))T (y − PK(z)) ≤ 0 and f (1) = (z − PK(z))T (z − PK(z)) =
‖z − PK(z)‖2 > 0. Since f is continuous, there exists t̄ ∈ [0, 1[ such that f (t̄) =
(z − PK(z))T

(
t̄ z + (1 − t̄ )y − PK(z)

) = 0. Thus, t̄ z + (1− t̄ )y ∈ Hz. On the other
hand, as both z and y are in U , an affine subspace, we have t̄ z + (1 − t̄ )y ∈ U as
well. Altogether, t̄ z + (1 − t̄ )y ∈ Hz ∩ U .
Therefore,

C(z) = circumcenter{z, RK(z), RURK(z)}
= circumcenter{z, RHz(z), RURHz(z)}
= PHz∩U(z),

where the last equality follows by employing Lemma 2.

Below, in Fig. 2, we illustrate geometrically what has been established in
Lemma 3.

Let us characterize the fixed point set of the circumcenter operator.

Lemma 4 (fixed points of C) Assume as in Lemma 3 and consider
FixC := {z ∈ dom(C) | C(z) = z}. Then,
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Fig. 2 Illustration of CRM for the intersection between an affine U and a convex K

FixC = K ∩ U .

Proof Clearly if z ∈ K ∩ U then z ∈ FixC. Conversely, take z ∈ FixC, that is,
C(z) = z, or equivalently z = RK(z) = RURK(z). So, z ∈ K and then z = RU(z).
Hence, z ∈ U , proving the lemma.

Next, we derive a firmly nonexpansiveness property of the circumcenter operator
C restricted to U , known as firmly quasinonexpansiveness [7, Definition 4.1(iv)].

Lemma 5 (firmly quasinonexpansiveness of CRM) Assume as in
Lemma 3. Then, for any z ∈ U and s ∈ K ∩ U

‖C(z) − s‖2 ≤ ‖z − s‖2 − ‖z − C(z)‖2. (4)

Moreover,

dist2(C(z), K ∩ U) ≤ dist2(z, K ∩ U) − ‖z − C(z)‖2.

Proof Let z ∈ U . Define

and . It is clear that K ⊆
H+

z , and so K ∩U ⊆ H+
z ∩U . If z ∈ Hz, then z ∈ K ∩U and, in this case, C(z) = z,

in view of Lemma 4, and the claims follow easily.
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Let z /∈ Hz. We have that C(z) coincides with circumcenter{z, RHz(z), RU

RHz(z)}, since RK(z) = RHz(z). From Lemma 2, it follows that C(z) = PHz∩U(z) ∈
U . As consequence of z not being in Hz, we immediately get that z cannot be in
K . Also, it easily follows that z /∈ H+

z . This, combined with the fact that Hz is the
boundary of H+

z , gives us that PHz∩U(z) = PH+
z ∩U(z). Now, taking into account

that, for any s ∈ K ∩ U , PH+
z ∩U(s) = s, we have

‖C(z) − s‖2 = ‖PHz∩U(z) − s‖2
= ‖PH+

z ∩U(z) − PH+
z ∩U(s)‖2

≤ ‖z − s‖2 −
∥∥∥[z − PH+

z ∩U(z)] − [s − PH+
z ∩U(s)]

∥∥∥
2

= ‖z − s‖2 − ‖z − C(z)‖2,
where the inequality is due to the firmly nonexpansiveness propriety of the projec-
tion [7, Proposition 4.16]. To prove the last part of the lemma, fix s = z̄ := PK∩U(z)

and use (4) in order to get

dist2(C(z), K ∩ U) ≤ ‖C(z) − z̄‖2 ≤ ‖z − z̄‖2 − ‖z − C(z)‖2
= dist2(z, K ∩ U) − ‖z − C(z)‖2.

We arrive now at the key result of our study, which establishes CRM as a tool for
finding a point in K ∩ U whenever the initial point is chosen in U .

Theorem 1 (convergence of CRM) Assume as in Lemma 3 and let z ∈
U be given. Then, the CRM sequence is well-defined, contained in U

and converges to a point in K ∩ U .

Proof The well-definedness of as well as its pertinence to U are due
to Lemma 3. From Lemma 5, we have, for any z ∈ U , s ∈ K ∩ U and

‖z�+1 − s‖2 = ‖C�+1(z) − s‖2
= ‖C(C�(z)) − s‖2
≤ ‖C�(z) − s‖2 − ‖C�(z) − C(C�(z))‖2
= ‖C�(z) − s‖2 − ‖C�(z) − C�+1(z)‖2
= ‖z� − s‖2 − ‖z� − z�+1‖2.

Hence,

(5)

Summing from � = 0 to m, we have
m∑

�=0

‖z�−z�+1‖2≤
m∑

�=0

(‖z�−s‖2−‖z�+1−s‖2)=‖z0−s‖2−‖zm+1−s‖2 ≤ ‖z0−s‖2.

Taking limits as m → +∞, we get the summability of the associated series and
so, zk − zk+1 converges to 0 as k → +∞.
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Moreover, the sequence is bounded because of (4) in Lemma 5. That is,

‖zk − s‖ = ‖Ck(z) − s‖ ≤ ‖Ck−1(z) − s‖ ≤ · · · ≤ ‖z − s‖.
Let ẑ be any cluster point of the sequence and denote an associ-

ated convergent subsequence to ẑ. Note further that the fact zik − zik+1 → 0 implies

zik+1 → ẑ. We claim that ẑ ∈ K ∩ U . Since U is closed and is contained in
U , we must have ẑ ∈ U . By the definition of C, we have that

‖zik − zik+1‖ = ‖zik − C(zik )‖ = ‖C(zik ) − RK(zik )‖ = ‖zik+1 − RK(zik )‖.
So, zik+1 −RK(zik ) converges to 0. It follows from the continuity of the reflection

onto K and taking limits as k → +∞ in the last equality that ẑ = RK(ẑ). Hence,
ẑ ∈ K proving the claim.

Therefore, so far we have that is bounded, contained in U and all its
cluster points are in K ∩ U . We could now complete the proof using standard Fejér
monotonicity results (see [7, Theorem 5.5] or [6, Theorem 2.16(v)]). However, for
the sake of self-containment, we show that all these cluster points are equal and

hence converges to a point in K ∩ U . Let z̃, ẑ be two accumulation points

of and , be subsequences convergent to z̃, ẑ respectively.

The real sequence is convergent because it is bounded below by zero
and from (5) it is monotone non-increasing. Thus,

‖z̃ − ẑ‖ = lim
k→+∞ ‖zjk − ẑ‖ = lim

k→+∞ ‖zk − ẑ‖ = lim
k→+∞ ‖zik − ẑ‖ = 0,

establishing the desired result.

We present now a newsworthy nonconvex instance covered by Theorem 1.

Remark 1 (line-sphere intersection) A straightforward consequence of Theorem 1
is the convergence of CRM for finding a point in the intersection (when nonempty)
of a given closed ball and a line. Interestingly, this remark almost promptly gives a
convergence result for CRM applied to solving the nonconvex intersection problem
involving a line crossing a sphere. More precisely, for the latter, having an iterate on
the line, CRMmoves us out of the sphere and thereon CRM acts as if the sphere were
a ball and convergence is guaranteed. An exception for moving out of the sphere
occurs when the iterate is on the line and also happens to be the center of the sphere.
In this case, due to nonconvexity, the projection operator is set-valued but one only
needs to pick one of the two points in the direction of the line crossing the sphere as a
projection and then CRM converges in one single step. The relevance of this remark
relies on the fact that the definitive proof of DRM for this problem took three papers
to be completely derived [2, 19, 20].

A nice consequence of Theorem 1 regards convex intersection problems in which
one of the sets is affine.

Corollary 1 (serial composition of circumcenters) Let K := ⋂N
i=1 Ki , where Ki

is convex, for i = 1, . . . , N , and U be an affine subspace and suppose K ∩ U 
=
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∅. Then, for all z ∈ U , C̃(z) := C(KN,U) ◦ · · · ◦ C(K1,U)(z) is well-defined, with
C(Ki,U)(z) being circumcenter{z, RKi

(z), RURKi
(z)}, for i = 1, . . . , N . Moreover,

the CRM sequence is well-defined, contained in U and converges to a
point in K ∩ U .

Proof We present the proof for when N = 2 and an induction argument suffices for
the general case. Thus, consider C̃(z) := C(K2,U)◦C(K1,U)(z) and set C1 := C(K1,U),
C2 := C(K2,U). Note that we can essentially proceed as in the proof of Lemma 4 to
show that FixC̃ = K1 ∩ K2 ∩ U . In the following, we derive a similar inequality to
(4), given in Lemma 5. Let s ∈ K1 ∩ K2 ∩ U and z ∈ U . Then,

‖C̃(z) − s‖2 = ‖C2(C1(z)) − s‖2

≤ ‖C1(z) − s‖2 −
∥∥∥C1(z) − C̃(z)

∥∥∥
2

≤ ‖z − s‖2 − ‖z − C1(z)‖2 −
∥∥∥C1(z) − C̃(z)

∥∥∥
2

= ‖z − s‖2 − 2

[
1

2
‖z − C1(z)‖2 + 1

2

∥∥∥C1(z) − C̃(z)

∥∥∥
2
]

= ‖z − s‖2 − 2

[∥∥∥∥
1

2
(z − C1(z)) + 1

2

(
C1(z) − C̃(z)

)∥∥∥∥
2

+ 1

4
‖z − 2C1(z) + C̃(z)‖2

]

≤ ‖z − s‖2 − 2

∥∥∥∥
1

2
(z − C̃(z))

∥∥∥∥
2

= ‖z − s‖2 − 1

2
‖z − C̃(z)‖2,

where we used Lemma 5 for the first two inequalities and Corollary 2.15 by [7] for
the third equality. Now, by employing the same arguments of Theorem 1, we can

prove that the sequence is bounded and has an accumulation point in
FixC̃ and the converge is achieved upon Fejér monotonicity.

Remark 2 We can directly employ a similar argument of Corollary 4.48 in [7] to
get the same claim as in Corollary 1 replacing its serial composition by a convex
combination of circumcenter operators of the form Ĉ(z) := ∑N

i=1 ωiC(Ki,U)(z), with
ωi ∈]0, 1[, for i = 1, . . . , N and

∑N
i=1 ωi = 1.

We close this section with a theorem stating that for a given iterate in an affine
subspace U , CRM gets us closer to the solution set than both MAP and DRM.

Theorem 2 (comparing CRM with MAP and DRM) Assume as in
Lemma 3 and let z ∈ U be given. Also recall the notation zMAP := PUPK(z),
zDRM := 1

2 (Id + RURK)(z) and C(z) := circumcenter{z, RK(z), RURK(z)}. Then,
for any s ∈ K ∩ U we have
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(i) ‖C(z) − s‖ ≤ ‖zMAP − s‖ ≤ ‖zDRM − s‖,
(ii) dist(C(z), K ∩ U) ≤ dist(zMAP, K ∩ U) ≤ dist(zDRM, K ∩ U).

Proof Assume z ∈ U and s ∈ K ∩ U arbitrary but fixed. If z ∈ K , the result follows
trivially because then PUPK(z) = z, 1

2 (Id + RURK)(z) = z and C(z) = z due to
Lemma 4. So, let z ∈ U\K and also, in order to avoid translation formulas, let us
assume without loss of generality that U is a subspace. Recall that Lemma 3 charac-
terized C(z) as the projection of z onto the intersection of U and the hyperplane with
normal z−PK(z) passing through PK(z). Therefore, the triangle of vertices z, PK(z)

andC(z) has a right angle at PK(z) and the triangle of vertices z, PUPK(z) and PK(z)

has a right angle at PUPK(z) since U is a subspace. Considering these two triangles
and taking into account the fact that hypotenuses are larger than corresponding legs,
we conclude that

‖C(z) − z‖ ≥ ‖PK(z) − z‖ ≥ ‖PUPK(z) − z‖. (6)

Another property we have is that theMAP point PUPK(z) is a convex combination
of z and C(z). In order to deduce this, first note that these three points are collinear.
The collinearity follows because both PUPK(z) and C(z) lie in the semi-line starting
at z and passing through PURK(z) = 1

2 (RK(z) + RURK(z)). In fact, this semi-line
contains the circumcenter C(z) as it is a bisector of the isosceles triangle of vertices
z, RK(z) and RURK(z). Bearing in mind that PU is a linear operator [14, Proposition
2.10] and that z ∈ U , we get

zMAP = PUPK(z) = PU

(
1

2
(z + RK(z))

)
= 1

2
PU(z + RK(z))

= 1

2
(PU(z) + PURK(z)) = 1

2
(z + PURK(z)).

Hence, zMAP is a convex combination of z and PURK(z) with parameter 1
2 . There-

fore, we have more than just collinearity of z, C(z), and zMAP. Both C(z) and zMAP
lie on the semi-line starting at z and passing through PURK(z). In particular, this
means that z cannot lie betweenC(z) and zMAP. Thus, in view of (6), the only remain-
ing possibility is that zMAP is a convex combination of C(z) and z, that is, there exists
a parameter r ∈ [0, 1] such that

zMAP = rC(z) + (1 − r)z,

and

zMAP − C(z) = (1 − r)(z − C(z)) and z − zMAP = r(z − C(z)).

Moreover, the parameter r is strictly larger than zero because otherwise z would
be in K ∩ U . Hence,

zMAP − C(z) = 1 − r

r
(z − zMAP). (7)
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This equation will be properly combined with the following inner product
manipulations

(z − zMAP)
T (C(z) − s) = (z−PK(z))T (C(z)−s)+(PK(z)−zMAP)

T (C(z) − s)

= (z−PK(z))T (C(z)−PK(z))︸ ︷︷ ︸
=0

+ (z−PK(z))T (PK(z) − s)︸ ︷︷ ︸
≥0

= + (PK(z) − zMAP)
T (C(z) − s)︸ ︷︷ ︸

=0

≥ 0. (8)

The first under-brace equality follows as a consequence of the right angle at PK(z)

of the triangle of vertices z, PK(z), and C(z). The under-brace inequality is due to
characterization of projections onto closed convex sets as, in particular, s belongs
to K . The last under-brace remark holds since PK(z) − zMAP is orthogonal to the
subspace U and both C(z) and s are in U . Now, inequality (8) together with (7) gives
us

(zMAP − C(z))T (s − C(z)) = 1 − r

r
(z − zMAP)

T (s − C(z)) ≤ 0,

which, due to the cosine rule, leads to ‖C(z) − s‖ ≤ ‖zMAP − s‖ for any s ∈ K ∩ U .
Taking this into account and letting ẑ, z̃ ∈ K ∩ U realize the distance of C(z), zMAP
to K ∩ U , respectively, we have

dist(C(z), K ∩U) = ‖C(z)− ẑ‖ ≤ ‖C(z)− z̃‖ ≤ ‖zMAP− z̃‖ = dist(zMAP, K ∩U),

proving the first inequalities in items (i) and (ii).
The rest of the proof is a comparison between zMAP and zDRM. We will see below

that under our hypothesis zMAP is precisely the midpoint of PK(z) and zDRM. The
linearity of RU will be employed.

RUPK(z) = RU

(
1

2
(z + RK(z))

)
= 1

2
(RU(z) + RURK(z))

= 1

2
(z + RURK(z)) = zDRM.

So, zMAP = 1
2 (PK(z)+zDRM). Furthermore, ‖PK(z)−zMAP‖ = ‖zDRM−zMAP‖, and

PK(z)−zMAP and zDRM−zMAP are orthogonal toU . In particular, for any s ∈ K∩U ,
it holds that (s − zMAP)

T (PK(z) − zMAP) = 0 and (s − zMAP)
T (zDRM − zMAP) = 0.

Then, we conclude that the right triangle of vertices s, zMAP, and PK(z) is congruent
to the one of vertices s, zMAP, and zDRM. This implies that ‖zDRM−s‖ = ‖PK(z)−s‖.
However, ‖PK(z) − s‖ ≥ ‖zMAP − s‖ as PK(z) − s is a hypotenuse vector with
one corresponding leg vector being zMAP − s. Finally, having stated the inequality
‖PK(z) − s‖ ≥ ‖zMAP − s‖ for any s ∈ K ∩ U allows us to take ž, z̃ ∈ K ∩ U

realizing the distance of zDRM, zMAP, to K ∩ U , respectively, and thus we have

dist(zMAP, K∩U) = ‖zMAP−z̃‖ ≤ ‖zMAP−ž‖ ≤ ‖zDRM−ž‖ = dist(zDRM, K∩U).

The previous theorem is particularly meaningful when seen as a comparison
between CRM and MAP as the associated sequences to these methods stay in the

Numerical Algorithms (2021) 86:1475–1494 1487



affine subspace U whenever the initial point is taken there. This is not the case for
DRM sequences. Anyhow, our numerical section confirms a strict favorability of
CRM over both MAP and DRM.

3 CRM for general convex intersection

We are now going to use CRM for solving

Find x∗ ∈ X :=
m⋂

i=1

Xi, (9)

where is a nonempty set given by the intersection of finitely many closed
convex sets X1, X2, . . . , Xm.

In order to employ CRM, let us rewrite Problem (9) by considering Pierra’s refor-
mulation [32]. Define W := X1 ×X2 ×· · ·×Xm as the product space of the sets and

. Then, one can easily see that

x∗ ∈ X ⇔ (x∗, x∗, . . . , x∗) ∈ W ∩ D. (10)

Due to (10), solving Problem (9) corresponds to solving

Find z∗ ∈ W ∩ D. (11)

Note that it is straightforward to prove that D is a subspace of . Moreover,
considering m arbitrary vectors x(i) in , with i = 1, . . . , m, we can build

an arbitrary point in of the form and its
projection onto D is given by

PD(z) = 1

m

(
m∑

i=1

x(i),

m∑

i=1

x(i), . . . ,

m∑

i=1

x(i)

)
. (12)

As for the orthogonal projection of onto W , we
have

PW(z) =
(
PX1(x

(1)), PX2(x
(2)), . . . , PXm(x(m))

)
. (13)

Next, relying on the results of Section 2, we establish convergence of CRM to a
solution of Problem (9).

Theorem 3 (convergence of CRM for general convex intersection) Assume
as above and let be given. Then, taking as initial point

z0 :− (x0, x0, . . . , x0) ∈ D, we have that the sequence generated by
zk+1 :− circumcenter{zk, RW(zk), RDRW(zk)} is well-defined, entirely contained in
D, and converges to a point , where x∗ ∈ X.

Proof The result follows by enforcing Theorem 1 with W , D, and nm playing the
role of K , U , and n, respectively.
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4 Numerical experiments

This section illustrates several numerical comparisons between CRM, MAP, and
DRM. Computational tests were performed on an Intel Xeon W-2133 3.60GHz with
32GB of RAM running Ubuntu 18.04 and using Julia programming language.

In order to present the results of our numerical experiments, we choose the number
of iterations as performance measure. The rationale of choosing such measure is that
in each of the methods, the majority of the computational cost involved in one itera-
tion is equivalent: the same number of orthogonal projections. Moreover, when using
the product space reformulation, one can parallelize the computation of projections
to speedup the CPU time, and iterations are still equivalent.

4.1 Intersection between an affine and a convex set

First, we show the results of the aforementioned methods when applied to solve the
problem of finding a point in the intersection of an affine subspace and a closed
convex set.

In these experiments, we want to find that solves the conic system

Ax = b,

x ∈ Cn, (14)

where is a matrix with m < n, and Cn is the standard
second-order cone of dimension n defined as

Cn is also called the ice-cream cone or the Lorentz cone and it is easy to verify that
it is a closed convex set. This problem, called second-order conic system feasibility,
arises in second-order cone programming (SOCP) [1, 29], where a linear function is
minimized over the intersection of an affine set and the intersection of second-order
cones and an initial feasible point needs to be found [23]. Of course, x∗ is a solution

of (14) if and only if x∗ lies in S := Cn ∩ UA,b, where
is the affine subspace defined by A and b, that is, if nonempty, the solution set of (14)
can be written as (2).

To execute our tests, we randomly generate 100 instances of subspaces UA,b,
where n is fixed as 200 and m is a random value between 1 and n − 1. We guarantee
that S is nonempty by sampling A from the standard normal distribution and choos-
ing a suitable b. Each instance is run for 10 initial random points, summing up to
1000 individual tests. Each initial point z0 is also sampled from the standard normal
distribution and is accepted as long as it is not in S. We also assure that the norm of
z0 is between 5 and 15 and then we project it over UA,b to begin each method. Thus,
in view of Theorem 1, we are sure that CRM solves problem (14).

Let {zk} be any of the three sequences that we monitor: {zk
CRM}, {zk

DRM}, and
{zk

MAP}, that is, CRM, DRM, and MAP sequences, respectively. We considered as
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tolerance ε := 10−6 and employed as stopping criteria the gap distance, given by

‖PUA,b
(zk) − PCn

(zk)‖ < ε,

which we consider a reasonable measure of infeasibility. Note that for CRM and
MAP, the sequence monitored lies in UA,b; however, that is not the case for DRM.
So, for the sake of fairness, we utilized the aforementioned stopping criteria for all
methods. The projections computed to measure the gap distance can be utilized on
the next iteration; thus, this calculation does not add any extra cost.

The numerical experiments results shown in Fig. 3 and Table 1 corroborate with
Theorem 2, since CRM has a much better performance than DRM andMAP. Figure 3
is a performance profile [25], an analytic tool that allows one to compare several dif-
ferent algorithms on a set of problems with respect to a performance measure or cost.
The vertical axis indicates the percentage of problems solved, while the horizontal
axis indicates, in log-scale, the corresponding factor of the number of iterations used
by the best solver. It shows that CRM was always better or equal than the other two
methods in comparison.

In Table 1, each column shows the mean, minimum, median, and maximum,
respectively, of iterations taken by each method for all instances and starting points.
We remark that CRM took at most 6 iterations, but in average, less than 5. Moreover,
we report that there were 89 (out of 1000) ties between CRM and DRM, while CRM
always took less iterations than MAP. There were 10 ties between MAP and DRM.

Fig. 3 Experiments with affine subspaces and the second-order cone
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Table 1 Statistics of the
experiments with affine
subspaces and the second-order
cone (in number of iterations)

Mean Min Median Max

CRM 4.727 3 5.0 6

DRM 11.602 4 8.0 83

MAP 83.981 4 32.0 1063

4.2 Experiments with product space reformulation

We show now experiments with Pierra’s product space reformulation of CRM stated
in Section 3, which we call CRM-prod. Recall that we defined the Cartesian prod-
uct of of the convex sets X1, . . . Xm as W and defined D as the diagonal subspace

.
Both MAP and DRM can also be considered in product space reformulation ver-

sions. For MAP, the iteration is given by zk+1
MAP := PWPD(zk

MAP). For DRM, the
iteration is given by

zk+1
DRM := 1

2
zk
DRM + 1

2
RWRD(zk

DRM)

where we use the projections onto D and W given by (12) and (13) to define the
reflectors RD and RW , respectively.

Fig. 4 Polyhedral feasibility using the product space reformulation
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Table 2 Statistics of the
intersection of half-spaces using
the product space reformulation
(in number of iterations)

Mean Min Median Max

CRM 41.5 19.0 38.0 89.0

DRM 1441.15 1036.0 1470.5 1586.0

MAP 2768.3 2534.0 2787.0 2952.0

We compare the numerical experiments of CRM-prod with MAP-prod and DRM-
prod when applied to the problem of polyhedral feasibility. Here, each closed convex
set is a half-space given by

here and . X = ⋂m
i=1 Xi is called convex polyhedron

(or polytope).
To generate the instance, we fix n = 200 and sampled each ai from the standard

normal distribution, for i = 1, . . . , m, where m is randomly selected from 1 to n− 1.
To assure that X 
= ∅, we sample from the standard normal distribution an x̄ and
fix b̄i := aT

i x̄. We then randomly select p indices from 1 to m to determine the set
I = {i1, . . . , ip} and we define

bi =
{

b̄i , if i /∈ I
b̄i + ‖b̄‖ · r, if i ∈ I ,

where b̄ = (b̄1, . . . , b̄m) and r is a random value between 0 and 1. Thus, for all
i = 1, . . . , m, aT

i x̄ ≤ bi and moreover, for ı̂ ∈ I, aT
ı̂
x̄ < bi , that is, X has a Slater

point.
Again, for each sequence {zk} that we generate, we use as stopping criteria the

error given by the gap distance

‖zk − PW(zk)‖ < ε,

with tolerance ε := 10−6. In Fig. 4, we plot number of iterations (horizontal axis) ver-
sus the error (vertical axis), both with log10 scale that each method realized to achieve
the stopping criteria, for one instance. One can see that CRM-prod overpowers
DRM-prod and MAP-prod.

We also restart the methods with 20 different starting points sampled from the
standard normal distribution guaranteeing that the norm of each one is between 5 and
15 and then we project it over D to begin each method. In Table 2, we present again
the mean, minimum, median, and maximum, respectively, for these experiments.

5 Concluding remarks

This work has taken a large step towards consolidating circumcenter schemes as pow-
erful theoretical and practical tools for addressing feasibility problems. We were able
to prove that the circumcentered-reflection method, referred to as CRM throughout
the article, finds a point in the intersection of a finite number of closed convex sets.
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Also, favorable theoretical properties of circumcenters over alternating projections
and Douglas-Rachford iterations were proven. Along with the theory, we have seen
great numerical performance of CRM in comparison with the classical variants for
polyhedral feasibility and inclusion problems involving second-order cones. Our aim
now is to widen the scope of experiments as well as to broaden the investigation on
the use of circumcenters for nonconvex problems, including sparse affine feasibility
problems and optimization involving manifolds. Finally, due to favorable computa-
tional tests, we would like to carry out a local rate convergence analysis for CRM
under conditions such as metric-subregularity and Hölder type error bounds.
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