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Abstract

In this paper, we develop an efficient spectral Galerkin method for the three-
dimensional (3D) multi-term time-space fractional diffusion equation. Based on the
L2-1, formula for time stepping and the Legendre-Galerkin spectral method for
space discretization, a fully discrete numerical scheme is constructed and the sta-
bility and convergence analyses are rigorously established. The results show that
the fully discrete scheme is unconditionally stable and has second-order accuracy in
time and optimal error estimation in space. In addition, we give the detailed imple-
mentation and apply the alternating-direction implicit (ADI) method to reduce the
computational complexity. Furthermore, numerical experiments are presented to con-
firm the theoretical claims. As an application of the proposed method, the fractional
Bloch-Torrey model is also solved.

Keywords Multi-term time-space fractional diffusion equation - Three dimensions -
Spectral Galerkin method - L2-1, formula - Alternating-direction implicit (ADI)
method

1 Introduction
As is well known, the diffusion model is one of the most important mathemati-

cal models for description of the transport process. The classical diffusion model
was obtained from Fick’s law, which rests on the assumption that particles move as
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Brownian motion. However, many experimental studies indicated that the Brownian
motion assumption may not be appropriate to depict some physical processes such
as transport process in environments that are not locally homogeneous. In these sit-
uations, classical Fick’s law is no longer obeyed and generalized Fick’s law should
be developed. In this direction, fractional differential equations (FDEs), which are
based on fractional Fick’s law, have gained considerable attention and popularity, and
have been widely applied for modeling anomalously slow transport processes with
memory and heredity in engineering, physics, biology and finance [3, 19, 24, 25, 28,
36-38, 61].

In general, FDEs can be classified into time-fractional differential equations
(TFDEs), space-fractional differential equations (SFDEs) and time-space fractional
differential equations (TSFDEs). For most FDEs, it is not feasible to obtain their
exact solutions. Therefore, developing efficient numerical methods to solve FDEs
has become essential.

In recent years, various efficient time-stepping schemes have been developed
for solving TFDEs numerically. A typical approximation formula is the Griinwald—
Letnikov approximation, which was considered initially in Oldham and Spanier [39]
and further discussed in Lubich [33], Podlubny [40] and Liu et al. [29]. Many works
have followed up along the line of the Griinwald—Letnikov formula (see [35, 49] for
details). Another class of approximation formulae for the Caputo fractional derivative
is based on the interpolation approximation, i.e. by replacing the integrand with its
piecewise polynomial interpolation. The most widely used method is the L1 formula,
which has convergence order O (72~%) under the assumption that the given function
is twice continuously differentiable [22, 48]. In addition, to improve the numerical
accuracy to approximate the Caputo fractional derivative, the L1-2 formula [16] and
L2-1, formula [1] have also been constructed by using quadratic interpolation.

All the above mentioned works were devoted to the numerical approximation
of the single-term time-fractional derivative. Over the past few decades, the multi-
term TFDEs have attracted more and more attention and have been successfully
applied to model many processes in practice, such as the underlying processes with
loss [34], viscoelastic damping [46], oxygen delivery through a capillary to tissues
[47], anomalous diffusion in highly heterogeneous aquifers and complex viscoelas-
tic materials [18] and in rheology [6]. It is noted that existing numerical methods for
multi-term time-fractional derivatives are obtained mainly by applying directly the
techniques which are used to handle the single-term time-fractional derivative (see [2,
9, 10, 12, 26, 32] for detail). In this paper, we adopt the L2-1, formula [13], which
is proved to have second-order accuracy if the given function is cubic continuously
differentiable, to discretize the multi-term time-fractional derivatives.

A number of numerical methods also have been developed to solve SFDEs, such
as finite difference methods [5, 57, 62, 64, 65], finite element methods [8, 11, 30,
45], finite volume methods [20, 21, 27], spectral methods [55, 59, 60, 63] and mesh-
free methods [23, 31]. Most recent studies have looked at the numerical solutions of
SFDEs in one or two dimensions. Although the three-dimensional fractional mod-
els are much more useful in real applications, numerical methods for the 3D SFDEs
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are still underdeveloped. In this paper, we consider the following three-dimensional
multi-term time-space fractional diffusion equation

K] ) 28 28
Z K; C'D?’u(x,y,z,t) — Kxa lu(x,y,z,t) + Kya 2u(x,y,z,t)

T
KD 4 (),
subject to initial condition
u(x,y,z,0) = ¢, y,2), (x,y,2) €L, 2
and Dirichlet boundary condition:
u(x,y,z,0lpe =0,  0=<r=T, 3)

where |l = a9 > a1 > a2 > ... > a3 >0,1/2 < B1,Po,B3 < LLK; >0, (i =
0,1,...,5), 2 =[0,1;] x [0, ] x [0, [3] is a cuboid region. K, Ky, K; > 0 are
the diffusion coefficients in x, y, z directions, respectively. d€2 is the boundary of
Q. The Caputo fractional derivative CDf‘i is defined as [29, 40]

;1 e ot =97 f/(s)ds, 0 < o < 1,

L} )

o = 1.

DY) = {

The Riesz space fractional derivative of order 2; with respectto 0 < x < [, namely,
01 s defined as [29, 50]

a1
%P1 f (x) 2 2
where cg, = m, OD,%BI and folﬁ ! are the left- and right- Riemann—Liouville

derivatives of order 2f3; with respect to 0 < x < [{, defined as

B L @Y fEds 1
PO = ey e ), Goem <P < ©)

B L@ fEds 1
D) = T2l ). G B2 <B1 <1 (6)

Similarly, we can define the Riesz fractional derivatives 3&% with respect to 0 <

y <l and 0P |233 with respectto 0 < z < 3.

The ex1stence and uniqueness of the weak solution for the problem (1)-(3) can
be guaranteed by the well-known Lax-Milgram lemma (one can refer to [51, 52]).
In [51], based on the fractional integration by parts formula, Li and Xu derived the
variational formulation of space-time fractional diffusion equation and then proved
the well-posedness of the weak solution by the Lax-Milgram lemma. Through similar
argument, Zheng, Liu, Anh and Turner [52] proved the well-posedness of variational
solution for the multi-term time-fractional diffusion equations. In addition, one can
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prove the uniqueness of solution by the maximum principle (see the details in [53,
54)).

This present work is devoted to designing an efficient spectral Galerkin method
for the 3D multi-term time-space fractional diffusion equation. Here, the Legendre-
Galerkin spectral method is implemented for the space discretization and the L2-1,
formula is applied to discretize the multi-term time-fractional derivatives. The sta-
bility and convergence are proved rigorously, which show that the proposed method
is unconditionally stable and convergent with second-order accuracy in time, and the
optimal spectral accuracy in space. In addition, to reduce the computational cost and
memory requirement, we adopt the ADI method and provide the detailed implemen-
tation. Numerical experiments are carried out to verify the theoretical predictions,
which are in good agreement with the theoretical analysis. Additionally, the proposed
method is extended to solve the fractional Bloch—Torrey model, which is widely used
to simulate anomalous diffusion in the human brain [41, 42, 58].

The paper is organized as follows. In Section 2, some definitions and lemmas on
the spaces of fractional derivatives are introduced. In Section 3, we develop the L2-1,
spectral Galerkin scheme for the 3D multi-term time-space fractional diffusion equa-
tion. The stability and convergence are rigorously proved in Section 4. In Section 5,
we construct the ADI spectral Galerkin scheme and give its detailed implementation.
In Section 6, the numerical experiments are shown to confirm the theoretical analysis,
and the conclusions follow in Section 7.

2 Preliminaries
In this section, based on Ervin and Roop [7, 43], we present some definitions and
lemmas on the spaces of fractional derivatives, which are useful for the rigorous
analysis of stability and convergence.

We write (-, -) for the inner product on the space L2(2) with the Lnorm || - || L2(Q)-
For convenience, we denote || - || ;2(q) as | - |-
Definition 1 (Left fractional derivative space). For 1 > 0, we define the semi-norm

w2 w2 w12 1/2
gy = (I PLul® + 1 gDYull® + | DL ul?)
and the norm
1/2
_ 2 2
el ey = (Nl + )

and denote Jf(Q) and JfO(Q) as the closure of C*°(£2) and C°(£2) with respect to
-1l Q) respectively.

Definition 2 (Right fractional derivative space). For 1 > 0, we define the semi-norm

1/2
ulgpce = (1 Dfl® + 1 Dhul® + 1 Dful?)
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and the norm

1/2
el ey = (Nl + e )
and denote JI’; (2) and J;?L,O(Q) as the closure of C*°(2) and C{°(£2) with respect to

-1l Q) respectively.

Definition 3 (Symmetric fractional derivative space). Let u > Oand p # n— lne
N, we define the seminorm

1/2
g = (IGoP4u, Dl +1(oDyu, Dhwl+1(oDhu, D) ",

and the norm

1/2
Il gy = (1 + 1l )

and denote Jg (2) and JgO(Q) as the closure of C*°(2) and C{°(£2) with respect to
IF- 11 72 (> Tespectively.

Definition 4 (Fractional Sobolev space). For u > 0, we define the semi-norm

lulme) = EI"F@E) 2wy

and the norm

2 2 2
ety = (Nl + gy )

and denote H*(2) and H(’)L (€2) as the closure of C*°(2) and C{°(£2) with respect to
Il H (), respectively. Here, F(i)(£) is the Fourier transformation of the function
i, and 1 is the zero extension of u outside 2.

Lemma 1 [7] Suppose u # n — 3, n € Nandu € J}' ((Q) N Tk ((Q) N HH(Q).
Then there exist positive constants C 1 and C» mdependent ofu such that

Cilu|gn(@) < max {|U|J£‘(Q), |u|1£(9)} < Colulgr()-
Lemma 2 [7] Suppose © > 0 andu € JZ,O(Q) N ]]’;,O(Q), then we have

(o Dfu, D“w = oS oDl o) = €05 Dl g,
(OD;LM U) - COS(HJT)” —ooD I/l” L2 R3) - COS(/‘UT)“ Oou||L2(R’§)’

(oDzu, ZD"v)—cos(m)u oo D7 3 g3y = cOS(um)| Dooun

L2(RY) LA(R%)’

where 0 is the extension of u by zero outside S2.
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Lemma 3 [43] Suppose 0 < v < pandu € Hé‘(Q), then we have the following
fractional Poincaré-Friedrichs inequalities

2 Iz
C3||MI|2 < |l ¢Dyull < Call (D ull,
"
Gsllull” = Il yDyull = Call oDy ull,
2 Iz
Csllull® = Il yDull < Call oDz ull,
where C3 and Cy are positive constants independent of u.
Remark 1 The above lemmas indicate that these fractional derivative spaces J I’f (),

JR (), J§ () and H*(Q) (15,0(9)’ Jg’O(Q), J;fo(Q) and H{' (Q)) are equivalent

with equivalent semi-norms and norms if u # n — % neN.

Lemma 4 [7] Suppose 1/2 < u < 1. Foranyu, v € JszlO(Q) N J;fLO(Q), we have

2 2

(()Dxuuv U) = (OD)ICLL{? XD;TU)’ (xDllﬂus U) = (XD;TI'h OD)ICLU),
2 2

(oDy'u, v) = ((Dyu, ,Dpv), (D u, v)=(,Dpu, (Dyv),
2 2

(oD"u, v) = (,Diu, Z'D;;U), (ZD13”u, v):(ZD;;u, oD ).

Finally, we define the spaces of functions mapping the time interval (0, 7] to the
fractional space X equipped with the norm ||-|| x.

Definition 5 For the space X with norm ||-||x, define the spaces of functions as
L*(0,T; X) := {w: (0, T] — X measurable : |w(x, ¥, DllL20,7:x) < 0},
and
C@O,T; X):={w: (0, T] — X measurable : |w(x,y, H)lco,r;x) < o0},
with

T
lw@, ¥, 2. 01720 7.y = Jo 1wy, 2, 01154t
||U)(.x, )’7 Z, t)”C(O,T;X) = maXOSTST{”w(xa y7 Z, t)“X}
3 Numerical scheme
In this section, we present the numerical scheme for problem (1)-(3), which is based

on the L2-1, formula for the time discretization and Legendre-spectral Galerkin
method for the space discretization.
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3.1 Variational formulation

Considering Lemma 4, we can drive the following variational formulation for
problem (1): Find u(-, 1) € HY'(Q) N H (@) N HY (%), such that

<Z KD u, v) +Aw v = (f,v), VoeHM@nHP@NHP @, )
i=0

where

K,
e B B B B
A ) = 5o (@D, «Df'w) + (Dfu, o Df ) )

K,

ZCOS(,BQJT)
K,

+2cos(,3371)
For a multi-index B = (By, B2, B3), we set
Bmax = max{Pi, B2, B3}, Bmin = min{py, B2, B3}.

From Lemma 2, we know that A(v, v) > 0. Then we define the semi-norm ||p and
norm ||-||g as follows

olp = VA@. v, llvllp = /lvI? + vl

The semi-norm |-|g and norm ||-||g are equivalent if v € H(?l Q)N H(?z(Q) N

(@D, \DfEv) + (Dfu, Df) )

(6PPu D v + (Dfu.aDPv).  ®

H(I)S3(S'2) (% < B1, B2, B3 < 1), which is given in the following lemma.

Lemma 5 Forv € H(? (), we have
lvlI* < Cslvlj, ©)
where Cs is a positive constant independent of u.

Proof One can easily obtain (9) from Lemmas 2 — 3 and Remark 1. O

Lemma 6 Suppose that @ = (0,11) x (0,12) x (0,13), v € HY'(2) N HP (@) n

H(?3 (Q) (% < Bi1, B2, B3 < 1). Then there exist positive constants C¢ < 1 and Cq
independent of u, such that

Collvllp < vlp < [[vllg < C71v] gm0

Proof The proof of this lemma is similar to that of Lemma 4.2 in [59], so we omit it
here for simplicity. O

3.2 Time semi-discrete scheme

The existing approaches to approximate the multi-term time-fractional derivatives
are mainly direct applications of the techniques which are used to handle the

@ Springer



1450 Numerical Algorithms (2021) 86:1443-1474

single-term time-fractional derivative, including the L1 approximation [2, 4, 11] and
the Grii nwald-Letnikov approximation [14, 15, 56]. A disadvantage of the former
approach lies in the lower order of numerical accuracy, while the latter one requires
the continuous zero-extension of solutions when ¢ < 0. Here, we adopt the L2-1,
approximation [13], which can reach second-order accuracy and does not require
the continuous zero-extension of solutions when ¢ < 0. The core idea of the L2-1,
formula is described below.

For any positive integer N7, let t be the time step size such that 7 = NL We
denote by {r, = nt, n =0, 1, ..., N7} a uniform partition of the time interval [0, T']
and t,_14+5 = (n — 1 + o)t. For any function u(t), we denote u” = u(t,). For
convenience, we introduce the following notation:

un—l+0 — ou" + (1 _ O_)un—l’

where o is the unique root of the equation

5
K; 1— (e 7O T %)) o
F = _— ®i —(1 - —= a’:ov 1 ——< <]1-— 10
(0) ;_0 rG—an’ lo == 7 So= 2 (10)

In addition, we define the linear and quadric interpolation operators over the time
interval [fx_1, tx] and [tx_1, tx+1] as

Ly gu(r) = tk_tu(rk_wr%,
Loty = (NI ) EZ DR 2 )
T T
t — tj— t —
U i) 1) "21:2( LU (11)

Using the L2-1, formula, the multi-term time-fractional derivatives at time t =
th—1+¢ can be approximated by

S
> KD ultn-110)

i=0
Sk nlorn du(s) hette 9ou(s)

=Y i | D e [ G s
i=0 F(l - Oli) k=1 Th—1 (tn—1+0 - S)al th—1 (tn—1+o - s)al
K n—1

K; Tk ogL In—1+o dgL

~ Z i Z/ s Lo pu(s) ds+f s L1,,(s) ds
i—0 {1 — o) k1 Y k-1 (In—140 — )™ th—1 (In—140 — $)%
n—1 s o
im0 \izp T2 —a)
n—1

— él({n)(un—k _ un—k—l — Déxun—l—a)’ (12)
k=0
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where c(()l’ai) = a(()a" ) and for n > 2,
(0‘1) + b(az k — O,
e = (“’ + b,(f_tl b 1<k<n-2, (13)
("" — b, k=n—1
with
(011) _(71 a,-’ (Otl (k+0’)1 —a _ (k l+0’)170", k > 1’
<“> = [k +0)™ = (k= 14+0)>)/Q—a) — [k + )™ + (k= 1+0)")/2, k=1

(14)
In particular, c(()n’l) =1, cj."’l) =0,1<j<n-1

Lemma 7 [13] Given any non-negative integer s and positive constants K,
Ki,...,K, forany o; € [0,1], i =0, 1, ..., s, where at least one of a; belongs to
(0, 1), it holds that

NONGNON 2 ) * —a —a
¢, >¢C .>C, > n—140) %. (15
>4 "lzr(z—al 2( +0)74. (15)
Lemma 8 [13] Given any non-negative integer s and positive constants K,
Ki,...,Ks, forany aj € [0,1], i =0, 1, ..., s, where at least one of «; belongs to
(0, 1), then there exists a number 1y > 0, such that

2o — )& —oél” >0, (16)
whent <19, n =2,3,...and hence
& > g, (17)

Lemma 9 [13] Suppose u(t) € C3(0, T). ]D)‘,"u”’”" as defined in (12). Then, we
have

CDt u(ty_ H_U)_]D)Lx n—l+o

K l—oz; o . .
<M ) e —a; 3—04,’ 18
2 Zr(z—a,) ( 12 +6>U ‘ {18

where M = maxg<; <t |u” (£)]|.

Lemma 10 Forv°, v!, v2,... " ¢ HOB‘“‘""(Q), we have

n—1 n—1
A _j —jio1 - 1 R —j —j—
Do Sy > 5ch.")(uv" TZ = =R,
n—1
Zé;n)A(vn_] _ vn_]—l n— 1+O') > Zé(”)(h}l’l j| | n—]—1|123). (19)

Proof Using Lemmas 7, 8 and Lemma 1, Corollary 1 in [1], we can easily obtain
(19), so we skip the detailed proof. O
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Discretizing the (12) at time ¢t = #,—14+,, We obtain the following time semi-

discrete scheme: Find u" € Hg T (Q2) satistying

(D517 0) + AW 0) = (Flamri0),0), Yo € HE™ (@), (20)
3.3 Fully discrete scheme

In this subsection, we use the spectral Galerkin method for the spatial discretization.
For a fixed positive integer N, we denote by Py (1) , Py (Iy) and Py ([;) the spaces
of polynomials defined on the intervals I, = (0,[1), I, = (0,/3) and I; = (0, [3)
with the degree no greater than N, respectively. The approximation space Sy (2) is
defined as

Sn () = (Pn(Ix) ® Pn(ly) ® Pn(I)) N H([)S'““(Q)-

Then the L2-1,/spectral Galerkin scheme of (1) can be expressed as follows: for
n=1,2,.. Nr,find u}y € Sy such that

{ (Do 7 un ) + AW ow) = (Flamrso) ow)s Von € SK(@),

ufy = Ing,
1)
where I is the interpolation operator satisfying
Inu(xp, yg,25) = u(xp, Yq, Zs), p.q,s=0,1,..., N, (22)

with {x,} {y,4} {zs} being the Legendre—Gauss—Lobatto (LGL) points in the domains
[0, 1], [0, I] and [0, I3], respectively.

Lemma 11 [44] Suppose 0 < u <r andu € H" (R2), then
lu — Inullgry < CsN*lullgr, lnull < Collull,

where the positive constants Cg and Cy are independent of N.

For the theoretical analysis, we also introduce the orthogonal projection operator
H?V’O from H(?m‘“ (2) to Sy (2), which satisfies

Aw - T U, vy) =0, Yoy € Sy(Q). (23)

The orthogonal projection operator has the following properties.

Lemma 12 Let By, B2, B3 and r be arbitrary real numbers satisfying % < B1, B2,
B3 < 1 < r. Then there exists a positive constant Cyq independent of N such that,
foranyu € H Pmax (2) N H" (), the following estimate holds:

0 -
ju — 115 ulg < CroNPm " |lul (0. 24

Proof The proof of this lemma is similar to that of Lemma 4.4 in [59], so we skip
it. [
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Corollary 1 It follows from the “duality argument” method that if u € H(? )N
H" (), then we have

,0 -
lu = 5l < CLN " lull . (25)

where C11 is a constant independent of N.

4 Theoretical analysis
In this part, we discuss the stability and convergence of the fully discrete scheme (21).
4.1 Stability

Theorem 1 Suppose ¢ € L*(Q) N HPmax (Q), f e C,T, L*(Q)), {uly luly, €

Hg ma (Q)}LI:ZO be the numerical solution of the L2-1,/spectral Galerkin scheme
(21). Then for 1 <n < Nt, we have

Cs
12 < U917 + ———— 1 1201120
i=0 T(I—q;)

|MN|B S C7(1 + C8)|¢|Hﬁmdx(g) Z ”f”c(o T LZ(Q))
=0 l"(l )

n—l+4o :

Proof Firstly, choosing vy = u'y in (21), we get
Zé(")(u n Jj—1 UMN+(1 —o)u )+A(un l+r7’ur11\71+ﬂ)
= (f(rn o) iy ). (26)
It follows from Lemma 10 that
n—1 1 n—1
A 1 - A - 1
Doy —uy T ouy (o) = 2 e Gy I = P,
j=0 i=0
(27)
Using Young’s inequality, we obtain
Cs
(f (tnt4o) uly ) < —||f(rn_1+g)||2+ LK
< —||f<rn o) 12 + [y g, (28)
where (9) was used in the last inequality.
Combining (26) and (27)-(28), we get
LS o0 ndy2 i Cs 2
5 2 & Uy P = 1y ) = I o) I (29)
=0

@ Springer



1454

Numerical Algorithms (2021) 86:1443-1474

ie.
. R . n Cs
e uly|? < Z( P = S I+ 8 I P+ 0 o) 1P B0)
Noticing
OKT% - 1 - K
Aln) o ! =1 Y% o> d 31
n1 = ; Fre—wy 2 @ lforT=z3 L TaT (1 — ) D

we can obtain that

n—1

Z(’\(")

(nuﬁvu2 +

A0D | 12
o luyll” =<

+e,

Z =0 T“tl"(l —a;)

NONTIR Y
— ¢ )||MN J”

C
2 I ta150)ll ) (32)

. 26 2B 2B,
Next, by setting vy = — (K aiqzlﬁl + K, a|8y|22l32 + za‘a |2f33 'y 149 in (21), and
noticing
n—1 ) 2B 2B, 2B3
A1) n—j _ n—j-1 0 0 9 n I+o
J;OC/ (uN MN ) (Kx 8|X|2B1 + Ky 8|y|2[32 8| |ZB?) )
— Z (”)A( Un—j—l’o_vn +(1 _O_)Un—l>
I il
> EZ P (IR — IR, (33)
9281 9282 9283
n l+<7 n 140
§2h1 9282 5283 - |
— +0 12
= WKy gy + Ky & Kegrog iy 7 (34)
and
92B1 5282 §2Bs - o
(f(tn—l+o)7 (K)C 8|x|251 + Ky 8|y|232 + 8| |ZB3)
1 52B1 5282 9283 nelto
= G Omreo) I + 1Ky + Ky g + Kegmgmouy 1% (35)

@ Springer



Numerical Algorithms (2021) 86:1443-1474 1455

we get
eo" luy 1§ < Z(“”) — My T g+ a1+ ||f<tn_1+a)||2
< & <|uN|B + 1/ (=140 )
>i-o TaTr(l )
n—1 )
+ D@ =y g (36)
t
Applying mathematical induction to (32) and (36) will produce that
Cs
eyl = I + =, max |1/ (ta-10)l
> izo r(1 oy =N
Cs
< Gilol? + %1 107,120 37)
Z':O I'l—o;)
and
1
2 02
Wl = IR+ g max 1 o)l
i=0 T(1—0;)
2 _ 2 1 2
Z' 0 T(1—;
20412 2 1 2
=< C7(|¢|Hﬁmax(sz) + |¢ - IN¢|H[imaX(S2)) + W”‘f”C(O,T,LZ(Q))
2i=0 T(I—a)
=< C7(1 + C8)|¢|H[3mdx(g2) + v—”f”C(() T, LZ(Q)) (38)
2 i=0 T e
This completes the proof. O

Theorem 1 shows the unconditional stability of the spectral Galerkin scheme
(21) with respect to the initial value function ¢ and the source term f. In the next
subsection, we will prove the convergence of our scheme.

4.2 Convergence

Before giving the convergence analysis, we assume that the exact solution of the
original problem (1) has the following regularities.

Assumption 1 The exact solution of (1) satisfies the following regularities:
s
w, Y KiDf'ue CO,T; H'(Q). 8ueCO T; HFm(Q), 8ueCO T;L*(Q)).

i=0
(39)
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In other words, there exist positive constants M1, M, M3z and My, such that

N
lullco, ;@) < M1, 1D Ki D ullco.r:mr @) < Mo,
i=0
Nusell oo, 7: H2Bmax ()) = M3, Nutiellco,r:02() < Ma. (40)

Corollary 2 Replacing the |-| in the proof of Lemma 9 (i.e. Theorem 2.1 in [13]) with
the ||-ll, we can easily obtain that the following estimate holds true if u(x,y, z,t)
satisfies Assumption 1.

S
Cpr o —1
1" Ki “D{u(ty-116) — Dfu" 14|
i=0

s
K; 1 —o o —oi _3—a;
<M : T ) omeigd, 41
= 4;;1“(2—%-) ( 2 +6>0 i D

Theorem 2 Let By, P2, B3 and r be arbitrary real numbers satisfying % <

B1, B2, B3 < 1 < r. Suppose that the exact solution u(x, y, z, t) of the original prob-

lem (1) satisfies Assumption 1 and { u'y };11\20 is the solution of the L2-1,/spectral

Galerkin scheme (21), then there exist constant C1p and C13 independent of T and N
such that the following estimates hold true,

le"|l < Cra(z? + N7, le"|p < C13(t? + NPmax=),
where " = u(x,y, z,t;) — u’}\,(x, v, 2).
Proof Splitting the error ¢” into
" =u" —uly =" — H?\;Ou”) + (H?\}Ou” —uhy) =:p" +1", 0<n<Nr.
Based on Lemma 12, Corollary 1 and (40), we obtain

o™l < CtuN""lulico,r:87 @) < C.LiMIN™",
10" I8 < C1oNP™ " lullco,7: 1)) < CroMyNPmox™ (42)

When n = 0, it follows from Lemmas 6, 11 and 12 that

In°ll = ||H[/3\;0¢_1N¢|| =<l¢— H[,s\}oqﬁll + ¢ — Ingll < (C3+CLON "9l Hr (@),

43)
and
0lg = 1T — Inglg < 16 — TN plg + 16 — Inglp
< CioNP" Yol pr @) + C1llp — ING | yBmarced
< (Cio+ C1C8) NP ||| (). (44)
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From now on, we consider the case of n > 1. Subtracting the first equation of (21)
from (7) and using the definition (23), we conclude that: Yoy € Sy (€2)

where

(Da n—1+o UN)+A(7’]"_1+G,UN)

N
(Z K D {ulty—146) — D¥u" 117, UN)

i=0

— AU (tp—140) — "1 vy — (D?p"—”", vN)

= (RHS, vy),

s
RHS = Y Ki “D{ulty—110) — Dfu" "+ —Df p" =10
i=0

( Gl 9282 9283

_ g n—l+4o
X 8|X|2ﬁ1 + Ky 3|y|232 + Kz 8|Z|2B3) (M(tn,prg) u )

(45)

(46)

Before bounding ||RH S||, we give the following estimates by using the Taylor
formula and the Cauchy-Schwarz inequality:

IA

IA

=<

2| —1 2
oD Uty 110) — w1 47))|
In—1+o

In
/ 0/ t, — 1) OD Yu (Hde + (1 70)/ t —t,—1) OD Vi (1)dt
Q h—14o

2 2 tﬂ 2 ZB]
o f (/ (ty — 1) dt/ (ODX u“(z)> dt) aQ
Q In—14o h—140
5 In—1+o 5 h—1+o ZB 2
+2(1 — o) / (/ (t =t 1) dt/ (ODX ‘u,,(z)) dt) aQ
th—

n—1

2¢3 2
T —0)2// Opﬁﬁ'u,,(z)) drdQ
1

274
TO’ (1 J) I OD

Ut ”C(O,T;LZ(Q))'

Similarly, the following estimates are true:

4
2 _
”xDllBl (u(tn,lﬂ,)—u" l+(r)”2 T U) “ ll utt”c(or L2(Q))’
4
2 _ 2'[ 2
10D 3% Wltnot) = "~ )P < 20?1 = 001 0D i g 1. 120
274
1D 2 (ltamrs0) = "I < S0 = 01D PP unlidyg 7,120
4
2 _ 2T
10D 22 Wtar) = "~ )P = S0 (1= 0?1 D PP 7.2
n—14o0y2 27:4
1D 2 ltamre0) ="~ P < Z20?(1 =001 D PP unlid g 1,120

“47)

(48)
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It follows from Corollaries 1 and 2 that

s s
IDf "N < D" =Y K CD Y pltairo) |+ 1Y Ki D pltamiro)

i=0 i=0
s
K; 1 —o; o a3
< 33 . e o o
= 3 pllcor.2@) <12(; r2-—a;) ( 12 +6>g ’
N
+C11N7r|\z Ki D {utuorio) lr @)
i=0
s
. K; 1 — o o
< C N~ 33 L . l+ 70(,',[370(,'
< Cn 197 ullco, 7,20 <§ r2—a) D 6)°
s
+CUNTIY K “D P ulco.r @)
i=0
y K; 1—q o
< ClM4N~" — . Ly —)o 3% | 4+ C MyN~". (49
< CuM, (;‘;r(zai) ( B +6 o %t +CuM, 49)

Combining Corollary 2 and (47)—(49), we can obtain the upper bound for || R H S||
as follows.

IRHS]|

s
C i -1 -1
< 1)K CD ulty140) — DEU T 4 Do

i=0
s (10D i) = w4 1 D ) = w0 1)
—%ﬁ’m (10D P @ltnr0) =0~ 411 D P Wlta-140) ="~ )
—ﬁfm (10D P @trr0) = ™ 4 1 D P @trr0) = =4
< (1+CuN")My (io 7”21? ) (1 Izai + %) a“"r3°"'>
i=
+CMN™ +47%6 (1 — 0)CrCa M3
< 1+ C112N*’)M4 (; r(zli ai)) 2 4+ CUMaN~" + 72C2CaMs
< a+ 211)M4 (g F(Zli ai)) 2 4 CLUMAN™ + 12C2CaMs, (50)

Similar to the proof of Theorem 1, we deduce that

Cs
< I+ | —S RHS,
ZS K;
i=0 T(I-a)
s < %+ |————|RHS)| 1)
g =1 K; :

Yi—0 T a0
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Combining the above equation and the triangle inequality, we derive that

lle” |

A

=< "I+ 1"l

C _
<C11M1 + (Cs + C1D ol ar @) + SSKI_Can) N7
2i=0 Ta)
Cs ((1+C11)M4 ( ~ K ) ) 2
+ = , > + My | T2, (52)
>0 r(lK—'ai) 2 i F@—a)

IA

and
le"lg < 1o"Ip+In"lp
C
= <C10M1 + (Cio + C1C)NIPN 17 (@) + WC]]MQ) NBma—r
Zi:O T(l—a;)
C 1+ CiMy [ K;
+\/?(( 211) 4 (Z s i )+C2C4M3> 2. 53)
2 i=0 Fi-aD T2 —a)

This completes the proof. 0

5 Implementation

In this subsection, we will give the details of the implementation of the fully discrete
scheme (21). The approximation space can be expressed as

Sy = span{¢; ()M V1(z) = j. k, 1 =0,1,..., N =2},

in which ¢y (x), ¢;1(y), ¥ (z) are defined as

G (x) = Li(®) — Lega(®), £e[-1,1], x =105,
@) =L — Lina@), §el-1,1], y="20 (54)
Y (@) = L) — L2, 2 € [—1,1], z =50

where Li(x), L;j(y), L;,(Z) are the Legendre polynomials [44].

It is obvious that Sy is a subspace of Hg
can be given by

(€2). The numerical solution uy, € Sy

N-2N-2N-2
Wy =Y itk (D9 ()Y (2). (55)
k=0 [=0 m=0
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Define the matrices M*, MY, M?, §*, §¥, §% € RN=DxV=D 'which satisfy

(M )1 = Mj; = ($1(x), ¢ (x)),  (M)i = My = (@ (), ek (9),
(MO =My = W (2), Yi(2)),

Ky ' |
(8901 = 8§ = 5o (PP, P ox ) + (D 10, 0DL3x0))).
, K,
N1 =8 = 50y (0PFa0,PR0m) + ((PLa ). 0Dfe))).
K, 3 N )
91 = 5 = 5o s (PP 0@, D) + (PR, PPV 0)) ).

Now, we compute the elements of the above matrices. Obviously, these matri-
ces are symmetric. Considering the orthogonality of Legendre polynomials, we can
verify that the elements of the matrix M* are

[y

My = &1 ()i (x)dx
Lo! R n . A\ gn
=2/, (Li(R) = Li42(®)) (Lk(X) — Lgg2(£)) dx
l l
L =k,
2k +1 2k +5
= 56
o l=k=+2, (56)
2k +5
0, otherwise,

which means that M* is a 5 bandwidth matrix. Similarly, we can calculate the ele-
ments of the matrices M> and M?*. Since the computations of the matrices S and
S% are almost the same as that of the matrix S*, here we mainly concentrate on
computing the elements of S*. In this part, the following lemma will be used.

Lemma 13 [17] For 0 < u < 1, we have

ODEL(R) = s L+ DT T ),
DL () = F(r,,('_’—;i)l)(l — )RR, (57)

where J,f’b()?)(a, b > —1,n=0,1,2,...) are the Jacobi polynomials, which are
orthogonal with respect to the weight function o®? = (1 — x)*(1 + x)? over I =
[—1,1].

Since

(P2 @100, DP9 ) = (D8 (L1(R) = Lia (@), xDf) (L) = Lisa (@) )
(58)
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we only need to calculate ( E' DY (2, E' D3 k()?)). It is easy to obtain

/

—

-8
0DY Li () = m—_ﬁ)dx/ (x =) P Li(§)ds —( ) D0 L,

DL = r s / 6 =0 L = (5

o

N =

—Bi p
) £D11Lk(£)

(59)

where we have used the transform x = # € [0,1]and s = % e [0, 1]
Based on Lemma 13 and the transform x = # € [0, [1], we have

I
DY Li(3), » D)) L (%)) = / 0D Li(3) . Df} Li(R)dx
0
i 1-28; 1 . A 3 A
- (5) f DL D Li()d

_(1_1>1_2,3. P+  TA+D
—\2 Fk—PBi+DTIA—-PB1+1)

1
x/ A+ -2 s Py PP R)di.

-1
(60)

To calculate the integral
1
1(k,1,B1) = / A+H P - PP Py Prbigag,  6n
-1

we use the following Jacobi-Gauss-Lobatto quadrature

N
161 B) = Y w00 P P g P, (62)

j=0

where {x;} are the Jacobi-Gauss nodes with respect to the weight function
w BB = (14 x) P11 —x)P1 and {w;} are the corresponding weights. Note that
the numerical integration (62) is exact for all 0 < k, [ < N when N > N.In con-
clusion, the detailed implementation of assembling the stiffness matrix S* is shown
Algorithm 1.
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Algorithm 1 Assembling the stiffness matrix S*.

Input:
the polynomial degree N, the number of Jacobi-Gauss nodes N, K, B; and ;.
Output:
1:
2: Compute the Jacobi-Gauss nodes xg = {x ]} _, and corresponding weights
3: Compute two matrices B;, B, € RNtV 'which satisfy (B)jkx = J]ﬁl’_ﬁl (xx)
and (B,)jx = J; P ()
4: Compute a N + 1-dimensional vector ve = {vc(i) =
5: Update B; := diag(ve) * B; and B, := diag(ve) x B,;
6: Update B :== Bj(1 : N —1,:)—B(3: N+1,:)and B, := B,(1: N —1,:
)—B,B3:N+1,:);
7. Compute §* = (ll)1 2B
return S*

@) }N-‘r].
ra@—ppti=1 >

W(Br * diag(wg) * BIT + B; x diag(wg) * BrT);

It is noted that S*, S¥ and S* are full, which is very different from the Galerkin
spectral methods for the integer-order differential equation.
The fully discrete scheme (21) can be written in the matrix form as

"= QUM = I (M @ MY @ MO — 0T 4 FTL(63)
where
P= ¢9M @ M> @ M*
o (ST @MY ® M* + M* ® §¥ @ M* + M* ® M* ® 5%,
Q= &M @M ®M*
—(1—0)(S* @MY @M+ M* ® S* @ M* + M* @ M? ® §9),

_rhn ~Nn AN AN T
=Ly s U Nt U N N1 s U N =1

and

n n n T
[Fl 1,100 Fl,l,N—l’ T Fl,N—l,N—l’ T FN—I,N—I,N—I] ’

where Fi!; = (f, ¢ (X)@1 () ¥m (2)).

Since P isa (N — 1)3 X (N — 1)3 dense matrix, it consumes a large amount of
CPU time if we calculate (63) directly. To reduce the computational complexity, we
introduce the alternating-direction implicit (ADI) method.

Firstly, for convenience, we introduce the following notations:

92B1y, 92B2y, 9283y,

Fu=K,—— Fu=K,— 2 Fu=K. —
P TV e TR M P TR

(64)
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then the fully discrete scheme (21) can be rewritten as

W}, vn) —nto ((Fx 4+ Fy + Fuly, vy)
= Gy, )+ 771 =) (P + Py + Fouly ™" vy

(65)
—nt Z a —ul T o) T (foon), Yoy € VY,
MN - IN¢7
where n = A(;) is a bounded constant.

n [\
We add the perturbation term

1

@223 (FyFy + FoFy + FyF)Suy > — o2’ T3 B Fy Ful 0 uy) = 0(23)
(66)
to the left side of above equation which leads to the following ADI spectral Galerkin
scheme:
((1 —ontFo)(1 —ontFy)(1 —ont F)u}, vN)
= <(1 + (=Mt F) 1+ (1 — ot Fy) + (1 — o)nr Fuly, UN)

+n2r2(2a -1 ((FX Fy + FyF. + FyFu + o2t Fy Fy Py UN) ©

N —j—1
-t Z] AT —uT o) HnT(foon), Yoy e VY,
=

ul, = In¢.
Next, we will give the details of the implementation of ADI scheme (67) . We denote
P, PY, P*, Q% Q7, Q%as

P¥=M"+ontS*, o*=M*"— ({1 —-o)nts*,
Py =M+ ontS§’, Q¥=M"—-(1-o0)nrs’,
P* = M*+ ontS?, Q= M*— (1 —o)ntS=.
For any v = ¢y (x)@r (¥) ¥ (2) in Sy,
ont
(0= ZFFoa = 2R = T Fouy, v
N-2N-— 2N 2
=2 2 2 Pkt PP (68)
k=0 [=0 m=0
GZ}ll/m/ = ((1 + (1 —o)ntFy) (14 (1 —o)ntFy) (14 (1 — 0)nTFy) u';\,_l, UN)
N-2N-2N-2
Z Z Z QZ kﬁZhnl Ql’l m'm’ (69)
k=0 =0 m=0
Gl = =y = “Z_j_l, vN)
N-2N-2N—
An—j an—j—1 y
Z Z Mgy gy =ty IMyy M, (70)
=0 /=0 m=0
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and
Gz;ﬁm’ - = (fn_l+0’ v)
1yls N N N
~ 3 - ZZZJM_HU(XP’)’q’Zs)wpwqwx¢k’(xp)fﬂl’(Yq)l/fm’(Zs),
p=0¢=0s=0

(71)

where {%,}, {95}, {Zs} are the Legendre-Gauss-Lobatto nodes and {w,} are the corre-
sponding weights. Letting G, := Gz,’ll,m, +GZ;12’m’ +GZ,’[3,m,, (67) can be calculated
by the following equation:

N-2N-2N-2

Z Z Z Plf’kﬁ;:lm Pl)/)l P,f,/m = GZ’l’m" (72)

k=0 =0 m=0

Denote
N-2N-2

AN Y pz __yn
Z Z Wt Py By = Virme
=0 m=0

N-2
Z AN _ n
Pmtkim = Wit
m=0
equation (72) can be solved using the following three steps in one time step:
. N-2 .
Step 1:  For fixed I, m’, compute ) ;" P, Vi = Gl
. , N=2 py _ .
Step 2:  For fixed k, m’, compute ) ;" Py, W}, = V[,
Step 3: For fixed k, [, compute ZZ;& Pl Wy = Wi

To summarize, the ADI scheme (67) can be solved by the following algorithm:

Algorithm 2 Framework of solving the ADI scheme (67).

1: Pre-computing: Compute the matrixes M*, MY, M*, S§*, §¥, S and conse-
quently obtain the matrixes P*, PY, P*, Q*, O0”, 0%

2: forn=1:Nrdo

Compute the first right-hand term G™! by (69);

Compute the second right-hand term G” by (70);

Compute the second right-hand term G”> by (71);

Compute the right-hand term G” = G™! + G™? + G™3;

For fixed’,m’ = 1,..., N — 1, compute V"(:,I',m’) = P*\G(, ', m’),

For fixed k,m' = 1,..., N — 1, compute W"(k, :, m") = P"\V(k, :, m’);

For fixed k,/ =1, ..., N — 1, compute 0”(1(, l,:) = P\W(,L,2);

10: Obtain u’y, by (55);

11: end for

R A A
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Remark 2 Algorithm 2 shows that we just need to solve some algebraic systems of
the form Ax = b (A = P*, PY, P?) to get the numerical solutions, which can reduce
the computational complexity significantly.

The perturbation term (66) is very small, which will not affect the error estimation.
Using a similar method in Theorem 2, the convergence result of the ADI scheme (67)
can be directly obtained as follows.

Theorem 3 Let By, B2, B3 and r be arbitrary real numbers satisfying % <
B1, B2, B3 < 1 < r. Suppose that the exact solution u(x, y, z, t) of the original prob-

lem (1) satisfies Assumption 1 and { uly }’Ilvio is the solution of the ADI scheme (67).
Then there exist constant C14 and C15 independent of T and N such that the following
estimates hold true:

"]l < Cla(2+ N7"),  [e"|p < Ci5(z? + NPT,

where " = u(x,y, z,t;) — u’;\,(x, ¥, 2).

6 Experimental results

In this section, two numerical examples are presented to illustrate the theoretical
results. In addition, we will use our method to simulate the multi-term time-space
fractional Bloch-Torrey model.

6.1 Example 1

We consider the following three-term time-space fractional diffusion equation [4] on
the unit cube Q = (0, 1) x (0,1) x (0, 1) :

u Comatl Coar 92h1 5262 923y, )
Koo + K1 “Df'u+ Ky “Du _K,(mx‘zﬁl +1<y8|y|2ﬂ2 +K28|Z|2ﬂ3 +f inQx(0,T]
u(x,y,z,0) =0, in Q,
u(x,y,z,1) =0, on Q2 x (0, T,

(73)
where

fG,y,z,0)

Kir'4) 5 KoI'(4) 5
— 223K 2 A 372201 — 0221 — 2221 — 2)2
(3Ko +F(4fa1) FG— ) x“(1 = x)7y"(1 — y)7z°(1 — 2)
22K, 5, 2.2 2 22K
X320 1— , —— 2 53221 - x)%221 - 2%y,
+2cos([317r) Y=y -2l By + 2 cos(Bamr) (1 =x)72°(1 —2)°g(y, B2)
212k
o1 =) (1 - y)°g (2, B3)
2 cos(Bsm)
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and
re
$0.B = )2[3) (=2 +a-0*)
__20A) (3 328 r'e 42 1 _ 428
1‘<4—2B>(S +(1—s) >+F(5—2B)(S + (1 —)*P).

The exact solution of (73) is u(x, y, z, 1) = 21263x2(1 — x)2y%(1 — y)?z2(1 — 2)%.
Weset Ki = Ky =K, =K, =1,i=0,1,2, and T = 1. The error function
between the exact solution u(x, y, z, T) and the numerical solution U/C]T (x,y,2)1s
given by e(t, N)(x,y,2) = u(x,y,z,T) — UI{\,JT (x, ¥, z). The convergence rates in
time and space in the L2-norm on two successive time step sizes 71 and 12 and two
successive polynomial degrees N1 and N, are defined as

log(le(@. MI/le@.ND  ip time.

Rate = 1ou(fe(e /) (74)
g(lle(, NI /lle(z. NI
Tog(N1 /N2) , 1n space.

The convergence rates in the L>°-norm and HP-seminorm can be defined similarly.

Set (a1, a2) = (0.8, 0.6), (B1, B2, B3) = (0.9, 0.75, 0.6) and time step T = 1073,
The errors in the L2-norm and CPU time of L2-1,/spectral Galerkin scheme (21)
and ADI scheme (67) are listed in Table 1. We see that both schemes can achieve
the same precision and convergence rate of errors. Moreover, compared with the L2-
1, /spectral Galerkin scheme without ADI, the ADI scheme can greatly reduce the
CPU time and storage.

In the latter tests, we use the ADI scheme (67) to calculate the numerical solu-
tion. Firstly, we check the temporal convergence rate for different (o1, a2) by fixing
polynomial degree N = 40 and (B1, B2, B3) = (0.6, 0.7, 0.8). In Table 2, we present
the errors and rates in the L°°-norm, L2-norm and H B_seminorm and CPU time
for (a1, a2) = (0.99,0.60) , (@1, a2) = (0.63,0.34) and (a1, @2) = (0.37,0.26).
These results show that our method has second-order convergence in time, which is
in accordance with our theoretical analysis in Theorem 3.

Then, we investigate the spatial convergence rate for different (By, B2, B3) by
fixing time step 7 = 1073 and (a1, 2) = (0.8,0.3). The errors versus poly-
nomial degree N for different (B1, B2, B3) are displayed in Table 3. Here we test
three cases, (B1, B2, B3) = (0.80, 0.80, 0.80), (B1, B2, B3) = (0.9,0.75,0.6) and

Table 1 The errors, rates and CPU time of L2-1, /spectral Galerkin scheme (21) and ADI scheme (67)

L2-1,/spectral Galerkin scheme ADI scheme
N N —uyll Rate CPU llu —uyll Rate CPU
4 6.6473e—03 - 14.33 s 6.6469¢—03 - 32.31s
8 2.8419e—04 N4 1m25s 2.8421e—04 N—4% 5381s
16 1.3367e—05 N4 6h20m 1.3435¢—05 N—440 2m59s
32 - - Memory error 9.1595e—07 N—387 14m23s
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Table 2 The errors, rates and CPU time versus 7 for (B, B2, B3) = (0.6, 0.7, 0.8) with different (a1, a2)

(a1, a2) T lu —unllcc  Rate lu —unll Rate lu —unlp Rate CPU

1/10  1.5285¢—02 - 3.1027e—03 - 22935e—02 — 1.33s
120 4.0031e—03 t'9%  8.1093e—04 t!%* 6.0714e—03 <12 2765
a; =099 1/40  1.0250e—03 t!97  2.0724e—04 17 1.5660e—03 !9  6.55s
a; =060 1/80  2.5838e—04 !  52143e—05 !  3.9826e—04 !9  17.17s
1/160  6.3845¢e—05 1292 1.2897e—05 1292  1.0074e—04 '8 49965
1/320  1.5355e—05 t206  3.1177e—06 1295 28595¢—05 <!¥2 2m4ls
110 2.8149e—02 - 5.7677e—03 - 4.1310e—02 - 1355
120 7.8304e—03 !5  15961e—03 t!8  1.1679e—02 !82 2975
a; =063 1/40  2.0999e—03 !0  42609e—04 !9  3.1708e—03 r!8  6.625
ay =034 1/80  54934e—04 ! 1.1095e—04 !9* 8401204 !9  17.06s
1/160  1.4017e—04 ©'97  2.8210e—05 1! 2.1835e—04 !* 50.38s
17320 3.4566e—05 1202 69799e—06 1201  57103e—05 ! 2m46s
1/10  3.4885e—02 - 7.1645¢—03 - 5.084le—02 — 1.36's
120 9.6771e—03 '8  1.9742¢—03 '8  14382e—02 <!¥ 2865
o =037 1/40  2.5750e—03 t!®1  52316e—04 t!2  3.8770e—03 ¢! 6.8
a; =026 1/80  6.6840e—04 !5 13542e—04 195 1.0160e—03 !9 1721s
1/160  1.7029e—04 t'97  3.4472e—05 97 2613le—04 !9 49215
1/320  4.2580e—05 t2%0  8.6688¢—06 1! 6.7510e—05 ! 2m4ls

(Bi1, B2, B3) = (0.58,0.83, 0.66), respectively. We observe that errors decay alge-
braically (not exponentially) in spatial direction. This is because that the function
f(x,y,z,t)is singular on €2, which causes a loss of accuracy when calculating (71).
Our results on spatial convergence rate are in agreement with the results of Exam-
ple 6.1 in [59], which considered the two-dimensional space-fractional diffusion
equation. The CPU time in Tables 2 and 3 shows the effectiveness of our algorithm.

6.2 Example 2

We now consider the following 3D multi-term time-space fractional Bloch-Torrey
equation [4]:

A e yae oo 2
DMy | =1 D5 My | a1 02My 201200 My 220 M,

ot a2 lx | H By2B2
3
+D 2P 238‘ I;‘éx + A(M,,
M, _19%1M, _19%2M, YV 822 p1
at) _l_a)otl 1 3;011) _I_a)otz 1 3;0‘2) — 2B 28 y +D 2Br— 2d 252\
IXI [yl
a2 3M
+Dp2Bs— 2a|\ Y MM,

(75)
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a,=0.99, o =0.8. a,=0.8, a,=0.6. a,=0.6, a,=0.4.
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Fig. 1 The solution behaviour versus ¢ at point (x*, y*, z*) for different (o1, o)

a;= 0.99, a,= 0.8.
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Fig. 2 The normalized decay of the transverse magnetization versus 7 at point (x*, y*, z*) for different
(o1, @2)

8,= 8,=8,=0.75. B,= B,=,=0.55.
= = = =
* ' '
N N N
> > > o
£ S 3
- < <.
= 5 = =
M, (x"y"Z50) M (x"y"251)

Fig.3 The solution behaviour versus ¢ at point (x*, y*, z*) for different (B, B2, B3)
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Fig. 4 The normalized decay of the transverse magnetization versus 7 at point (x*, y*, z*) for different
(B1. B2, B3)
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with the initial condition and boundary condition

My(x,y,z,0) =100, (x,y,z,t) € 2 x (0, T],
Mx(xvyvzro)zo’ (x5ysz’t)€QX(0’ T]’ (76)
Mx(xv)’azyt)ZM}'(X,y,Z,I)ZOa (xayazvt)eagzx(oa T]9

where A(t) =1, 2= (0,1) x (0,1) x (0, 1) and T = 20.
We choose w = 2, D = 1073, u = 15 © = 1/40,N = 24
to simulate the behaviour of the transverse magnetization |M,,(x,y,z,t)| =

\/M)%(x,y,z,t)+M§(x,y,z, t). In Figs. 1 and 2, we illustrate the solution

behaviour for My (x, y, z, 1), My(x, y, z, t) at the point (x*, y*, z*) = (0.5, 0.5, 0.5)
and normalized decay of the transverse magnetization for different (o1, op) with
fixed (B1, B2, B3) = (0.6,0.7,0.8). It is observed that (|, ap) has a significant
impact on the solution behaviour; specifically, decreasing the time-fractional power
can accelerate the evolution from (0, 100) to (0, 0) . The simulation results for differ-
ent (B1, B2, B3) with fixed (a1, ap) = (0.9, 0.7) are displayed in Figs. 3 and 4, which
show that the effects of (31, B2, B3) on the solution behaviour are not obvious; this is
because the parameter D is very small.

7 Conclusions

In this paper, we proposed an efficient spectral Galerkin method by using the L2-
1, formula for time discretization and the Legendre-Galerkin spectral method for
space discretization to solve the three-dimensional multi-term time-space fractional
diffusion equation. The stability and convergence of the numerical scheme were rig-
orously established, which show that the fully discrete scheme is unconditionally
stable and can reach second-order convergence in time and spectral convergence in
space. The direct method to solve the fully discrete scheme is too time consuming;
thus, we constructed an ADI spectral Galerkin scheme and gave the detailed imple-
mentation. Finally, numerical examples were presented to validate our theoretical
analysis. As an application of our method, we solved the 3D multi-term time-space
fractional Bloch—Torrey problem. The simulation results show that such problem can
have very different dynamics with different values of the time-fractional power «.
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