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Abstract
Linear algebraic systems involving linear dependencies between interval valued
parameters and the so-called united parametric solution set of such systems are con-
sidered. The focus is on systems, such that the vertices of their interval hull solution
are attained at particular endpoints of some or all parameter intervals. An essential
part of finding this endpoint dependence is an initial determination of the parameters
which influence the components of the solution set, and of the corresponding kind of
monotonicity. In this work, we review a variety of interval approaches for the initial
monotonicity proof and compare them with respect to both computational complex-
ity and monotonicity proving efficiency. Some quantitative measures are proposed
for the latter. We present a novel methodology for the initial monotonicity proof,
which is highly efficient from a computational point of view, and which is also very
efficient to prove the monotonicity, for a wide class of interval linear systems involv-
ing parameters with rank 1 dependency structure. The newly proposed method is
illustrated on some numerical examples and compared with other approaches.

Keywords Interval linear systems · Data dependencies · Interval hull solution ·
Monotonicity · Parameterized solution

1 Introduction

This paper deals with the solution of linear algebraic systems involving dependencies
between interval-valued parameters.

Denote by R
m×n the set of real m×n matrices. Vectors are considered one-column

matrices. A real compact interval is a = [a−, a+] := {a ∈ R | a− ≤ a ≤ a+}
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and IR
m×n denotes the set of interval m × n matrices. We consider systems of linear

algebraic equations having affine-linear uncertainty structure:

A(p)x = a(p), p ∈ p ∈ IR
K,

A(p) := A0 +
K∑

k=1

pkAk, a(p) := a0 +
K∑

k=1

pkak, (1)

where Ak ∈ R
n×n, ak ∈ R

n, k = 0, . . . , K and the parameters p = (p1, . . ., pK)�
are considered to be uncertain and varying within given non-degenerate1 intervals
p = (p1, . . . , pK)�. Nonlinear dependencies between interval valued parameters in
linear algebraic systems are often linearized to the form (1) and methods for the latter
are applied to bound the corresponding solution set. The united parametric solution
set of the system (1), which is considered most often, is defined by:

Σ
p

uni = Σuni(A(p), a(p),p) := {x ∈ R
n | (∃p ∈ p)(A(p)x = a(p))}. (2)

For a nonempty and bounded set Σ ⊂ R
n, its interval hull �Σ is defined by:

�Σ :=
⋂

{x ∈ IR
n | Σ ⊆ x}.

Since obtaining exact bounds for the solution of an interval linear system is an NP-
hard problem [20], a variety of interval methods are developed to deliver efficiently
an interval vector x ⊇ Σ

p

uni and the quality of the latter enclosure is measured with
respect to the sharpest enclosure �Σ

p

uni which is the ultimate goal.
The focus of the present research is parametric united solution sets (2) which

possess the so-called endpoint property.

Definition 1 A parametric united solution set (2) possesses the endpoint property if
the vertices of its interval hull are attained at particular endpoints of the parameter
intervals.

Graphical presentations of solution sets with this property can be found in
[16, Example 5.2] and Fig. 1. The endpoint property is possessed partly if the vertices
of the interval hull solution �Σ

p

uni are attained for particular endpoints of some (not
all) parameter intervals. Graphical presentations of such solution sets can be found
in [16, Examples 4.1 and 4.2]. Note that the endpoint property of the solution set is
possessed (fully or partly) by a very wide class of interval parametric linear systems.
This property is proven in [11] for parametric linear systems involving rank 1 uncer-
tainty structure. More generally, this property follows if the boundary of a parametric
united solution set has a linear shape. Furthermore, the boundary of a united para-
metric solution set may involve hypersurfaces which are nonlinear and the endpoint
property might hold true (see [16, Example 5.1]). If the endpoint property of a solu-
tion set holds true with respect to all (or some of the) interval parameters, one can
obtain the best interval solution enclosure �Σ

p

uni if the endpoint dependence is known
(or a solution enclosure which is sharper than the enclosure obtained by methods not

1An interval a = [a−, a+] is degenerate if a− = a+.
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Fig. 1 Projections of the parametric solution sets of system (23) with parameters varying in 0.25[−1, 1]
(dashed lines) and with parameters varying in 0.45[−1, 1] (solid red lines). The nonlinear parts of the
boundary of the second solution set are better visible on the x2x3 projection

accounting for the endpoint property). In other words, it is possible to obtain a better
solution than usual if the endpoints that generate the lower/upper bounds of the inter-
val hull (component by component) are known. The ultimate goal of most scientific
and applied problems (an interval solution enclosure which is most close to �Σ

p

uni)
highlights the importance of the basic problem considered in this work: to prove that
the vertices of the exact interval hull of a parametric united solution set are attained
at particular endpoints of the parameter intervals and during this proof to find which
endpoints of the parameter intervals generate the lower/upper bounds of the interval
hull components. Usually, the endpoint property and the endpoint dependence are
considered simultaneously by interval numerical methods.

J. Rohn was the first who proposed to exploit monotonic influence of the interval
parameters on the parametric solution set for its sharper interval enclosure, cf. [18].
This approach was further developed in [3, 10]. In [1], Ganesan et al. developed ana-
lytical methods to find the monotonic dependence of the solution components on the
rank one interval parameters involved in the system. Both the numerical approach,
initially proposed by Rohn, and the analytic one in [1] are based on determining the
sign of the partial derivatives of Σ

p

uni with respect to interval parameters. The numer-
ical proof of endpoint dependence is in general an iterative process; it may involve
proving both global and local monotonicity and at each iteration require solving inter-
val parametric linear systems, cf. [10]. An essential part of proving the endpoint
dependence is the first iteration, where the initial monotonic dependence of the solu-
tion components on some interval parameters is proven. The efficiency of the initial
monotonicity proof in the first iteration has various aspects discussed in more detail
in Section 2. An essential improvement in the computational complexity of the ini-
tial monotonicity proof is proposed in [12]. Recently, an attempt to compare three
approaches for the initial monotonicity proof is done in [22].
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The goal of the present work is two-fold:

1. To propose a new approach for the initial monotonicity proof (finding the
endpoint dependence), which is highly efficient, both computationally and for
proving the monotonicity, for interval parametric linear systems involving true
rank 1 interval parameters2;

2. To provide enhanced analysis and comparison of the methodologies for proving
the initial monotonic dependence.

The paper is organized as follows. In Section 2, we discuss several aspects of the
initial monotonicity proof. This motivates different approaches for implementing the
latter that will be compared in Section 4. Section 3.1 recalls three different methods
for obtaining a parameterized enclosure of a united parametric solution set. These
methods will be part of the numerical comparisons done in Section 4 and provide a
background for a novel initial monotonicity proving method presented in Section 3.2.
The new approach efficiently utilizes a parameterized solution in a single mono-
tonicity proving procedure, which fully accounts for the dependencies on the interval
parameters in the partial derivatives. In Section 4, we propose various measures for
the efficiency of the initial monotonicity proof of a given approach. In this section,
we discuss five monotonicity proving approaches, some of them in two versions, and
compare them on some numerical examples. The article ends by some conclusions.

2 Aspects of the initial monotonicity proof

We consider the system (1). If A(p) is invertible, then the solution of the parametric
system, x(p) = (A(p))−1 a(p), is a real-valued function of the parameters p. If, in
addition, A(p) is nonsingular for each p ∈ p, then the solution set Σ

p

uni is bounded,
respectively, the range of xi(p) is bounded on p. If a solution component i of a
bounded solution set is monotonic with respect to all parameters p, then the lower
and upper bounds of

(
�Σ

p

uni

)
i

are attained at respective endpoints of p corresponding
to the type of monotonicity. Proving monotonic dependence of Σ

p

uni with respect to a
parameter pk , k = 1, . . . , K , can be done by enclosing the united solution set of the
following interval parametric system of partial derivatives:

A(p)
∂x(p)

∂pk

= ∂a(p)

∂pk

− ∂A(p)

∂pk

x(p), p ∈ p. (3)

Let

zk :=
[
∂x(p)

∂pk

]
⊇ Σ

p

uni ((3)) . (4)

If 0 	∈
[

∂x(p)
∂pk

]

i
, then xi(p) is monotonic with respect to pk in p, and sign

(
zk,i

)

gives the type of monotonicity. If 0 ∈
[

∂x(p)
∂pk

]

i
, the monotonic dependence cannot be

proven, although it may exist. Due to overestimation in the interval enclosures (4),

2True rank 1 parameters are defined in [13].

1342 Numerical Algorithms (2021) 86:1339–1358



monotonic dependence of some solution components with respect to some interval
parameters might not be proven. As discussed and illustrated in [10], proving end-
point dependence (called there global and local monotonicity) is an iterative process.
Therefore, we call the first solving of systems (3) initial monotonicity proof.

Since x(p) in (3) is not known, it is usually estimated by an outer interval enclo-
sure x ⊇ Σ

p

uni ((1)) of the initial interval parametric system (1). The quality of the
enclosure for x determines the quality of the enclosure for z, thus influencing the
proof of monotonic dependence. Also, in x, the dependence on the parameters p

is implicit, which may lead to an overestimation in the enclosure provided by zk

resulting in a failure of the monotonicity proof. Therefore, various modifications and
alternative approaches aiming at a sharp interval enclosure of ∂x(p)

∂pk
, that eventually

could prove monotonicity, are proposed, cf. [4, 22]. These approaches have different
computational complexities and different efficiencies in the monotonicity proof.

It was proposed in [4] and studied in [22] that an interval enclosure for the
following interval parametric linear system:

(
A(p) 0
∂A(p)
∂pk

A(p)

) (
x
∂x
∂pk

)
=

(
a(p)
∂a(p)
∂pk

)
, p ∈ p (5)

for each k = 1, . . . , K , providing a better assessment of the monotonic dependence
than the other considered methods.

Usually, the interval methods (providing interval enclosure of �Σ
p

uni) generate
numerical interval vectors that contain the solution set and its interval hull. A new
type of solution, x(p, r), called parameterized or p-solution, is proposed in [5].
This solution is in the form of an affine-linear function of K + n interval-valued
parameters:

x(p, r) = x̃ + V
(
p̌ − p

) + r, p ∈ p, r ∈ r = [−r̂ , r̂], (6)

where x̃, r̂ ∈ R
n, p̌ ∈ p, V ∈ R

n×K will be precisely defined below for each method.
Some representations move x̃ into the interval vector r and consider the parameters
p, r varying independently within the interval [−1, 1]. The parameterized solutions
have the properties:

Σ
p
uni ⊆ {x(p, r) | p ∈ p, r ∈ r} , (7)

�Σ
p
uni ⊆ x(p, r), (8)

where x(p, r) is the interval evaluation of x(p, r). There are various approaches to
find a parameterized solution depending on K + n parameters; see, for example,
[21] and the references given therein. Theorem 1 in Section 3 recalls the simplest
single-step method for obtaining the p, r-solution to a united parametric solution
set Σ

p

uni. In [22], the authors consider proving the initial monotonic dependence by
solving the derivative systems (3), where x(p) is replaced by a parameterized solution
(6) depending on K + n interval parameters. In [22], both the initial parameterized
solution x(p, r) and the interval enclosures of the derivative systems (3) are obtained
by the computationally heaviest methods based on affine arithmetic. In this work
(Section 4), we compare the initial monotonicity proving approach based on three
different forms of parameterized solutions, none of them applying affine arithmetic.
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For all k = 1, . . . , K , the interval parametric systems (3) have the same interval
parametric matrix. Therefore, it is proposed in [12] that the initial proof of monotonic
dependence be done by solving one interval parametric matrix equation:

A(p)Z(p) = B(p), p ∈ p, (9)

where Z(p), B(p) ∈ R
n×K and ∂x(p)

∂pk
, ∂a(p)

∂pk
− ∂A(p)

∂pk
x(p) are the k-th columns of

Z(p) and B(p) respectively. Thus, solving one matrix equation will save K − 1
inversions of the same matrix when solving separately K systems (3). A numeri-
cal example in Section 4 will demonstrate the huge difference. Therefore, in this
work, all initial monotonicity proving methods, except the one based on (5), are
implemented by solving one interval parametric matrix equation.

Since all the proposed approaches for proving monotonic dependence reduce to
solving (other) interval parametric linear systems, the efficiency, in terms of the width
of the enclosure, of these approaches will depend on the quality of the numerical
interval methods used for solving interval parametric linear systems (or matrix equa-
tions), referred here as interval parametric solvers. The different interval parametric
solvers have different computational complexities and the quality of the enclosure
they provide often depends on the structure of the parameter dependencies. In this
work, we illustrate the application of two kinds of parametric solvers: one based on
the single-sided strong regularity condition (11), and another based on a more general
double-sided strong regularity condition (15). A comparison between the two kinds
of parametric solvers is done in [13]. In Section 4, we only discuss the application of
these solvers in the initial monotonicity proof.

3 New approach for findingmonotonic dependency

3.1 Background

For a = [a−, a+], define its mid-point ǎ := (a− + a+)/2, the radius â :=
(a+ −a−)/2, and the magnitude |a| := max{|a−|, |a+|}. These functions are applied
to interval vectors and matrices componentwise. The inequalities are understood
componentwise. The spectral radius of a matrix A ∈ R

n×n is denoted by �(A).
The identity matrix of appropriate dimension is denoted by I . For Ak ∈ R

n×m,
1 ≤ k ≤ t , (A1, . . . , At ) ∈ R

n×tm denotes the matrix obtained by putting side by
side the columns of the matrices Ak . Denote the ith column of A ∈ R

n×m by A•i

and its ith row by Ai•. For an interval matrix A = [I − �, I + �] ∈ IR
n×n with

�(�) < 1, [19, Theorem 4.4] determines the inverse interval matrix H = [H, H ] =[
min{A−1 | A ∈ A}, max{A−1 | A ∈ A}] by:

H = (hij ) = (I − �)−1 ,

H = (hij ), hij =
{

−hij if i 	= j,
hjj

2hjj − 1
if i = j

}
. (10)

The following theorem, modified from [6, Theorem 1], recalls the simplest single-
step method for obtaining a parameterized solution enclosing Σ

p

uni.
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Theorem 1 ([6, Theorem 1]) Let Ǎ = A(p̌) be nonsingular. Denote x̌ =(
Ǎ

)−1
a(p̌), F = (a1, . . . , aK), G = (A1x̌, . . . , AKx̌), B0 =

(
Ǎ

)−1
(F − G).

Assume that:

�

(
K∑

i=1

∣∣∣∣
(
Ǎ

)−1
Ai

∣∣∣∣ p̂i

)
< 1. (11)

The united p, r-solution x(p, r) of the system (1) exists and is determined by:

x(p, r) = x̌ + V
(
p̌ − p

) + r, p ∈ p, r ∈ [−r̂ , r̂] ∈ IR
n, (12)

where V = ȞB0, r̂ = Ĥ |B0|p̂, and Ȟ , Ĥ are the midpoint and radius matrices,
respectively, of the inverse interval matrix H = [H, H ] obtained by (10) for � =
∑K

i=1

∣∣∣∣
(
Ǎ

)−1
Ai

∣∣∣∣ p̂i .

In [13], the condition (11) is called single-sided strong regularity condition.
We consider another form of the parametric system (1). Let K = {1, . . . , K} and

π ′, π ′′ be two subsets of K such that π ′ ∩ π ′′ = ∅, π ′ ∪ π ′′ = K, Card(π ′) = K1.
The indices of the parameters that appear in both the matrix and the right-hand side
of the system are involved in π ′, while π ′′ involves the indices of the parameters that
appear only in a(p) of (1). For pπ = (pπ1 , . . . , pπK

), Dpπ denotes a diagonal matrix
with diagonal vector pπ . For every parameter pk , k ∈ π ′, we consider a full-rank
factorization of its coefficient matrix Ak ∈ R

n×n:

Ak = LkRk, Lk ∈ R
n×γk , Rk ∈ R

γk×n, γk = rank(Ak). (13)

Also, pkAk = LkDgk(pk)Rk , where gk(pk) = (pk, . . . , pk)
� ∈ R

γk . We define γ =
∑K1

k=1 γk , g(pπ ′) =
(
g�

1 (pπ ′
1
), . . . , g�

K1
(pπ ′

K1
)
)�

, L = (
L1, . . . , LK1

) ∈ R
n×γ ,

R =
(
R�

1 , . . . , R�
K1

)� ∈ R
γ×n . A numerical vector t ∈ R

γ is chosen so that
∑

k∈π ′ pkak = LDg(pπ ′ )t , (for example, by solving the latter equation with respect

to t), and F ∈ R
n×Card(π ′′) is such that a(p) = a0 + LDg(pπ ′ )t + Fpπ ′′ . Then, the

system (1) has the following equivalent form:
(
A0 + LDg(pπ ′ )R

)
x = a0 + LDg(pπ ′ )t + Fpπ ′′ , p ∈ p. (14)

For each parameter gi = (g(pπ ′))i , its coefficient matrix Ai = L•iRi• has rank 1.
Although the coefficient matrices Ak in (1) may not have rank 1 in general, some
sufficient conditions for regularity of an interval parametric matrix are based on its
approximation by another matrix with rank 1 uncertainty structure, cf. [13]. The latter
means that each instance of the parameter pi is cloned as a separate parameter, in
the diagonal matrix D, and each of these clones is considered independently. We
assume that (14) provides an equivalent, optimal, rank 1 representation (cf. [13], [14,
Definition 1]) of either A(pπ ′)−A0, or of A�(pπ ′)−A�

0 . Every interval parametric
linear system (1) has an equivalent, optimal, rank 1 representation (14) and there are
various ways to obtain it, cf. [9, 13]. The representation (14) of the system (1) is
closely related to the monotonicity properties of the parametric united solution set
and is a background for the newly proposed monotonicity proving approach.
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Theorem 2 ([13]) Let (14) be an equivalent, optimal, rank 1 representation of the

system (1) and let the matrix A(p̌) be nonsingular. Denote C = (
A(p̌)

)−1
and x̌ =

Ca(p̌). If

�
(∣∣∣(RCL)Dg(p̌π ′−pπ ′ )

∣∣∣
)

< 1, (15)

then

(i) Σuni (A(p), a(p), p) and the united solution set Σuni((16)) of the interval
parametric linear system:
(
I − RCLDg(p̌π ′−pπ ′ )

)
y =Rx̌ − RCF

(
p̌π ′′ −pπ ′′

) − RCLDg(p̌π ′−pπ ′ )t,

p ∈ p

(16)

are bounded,
(ii) y ⊇ Σuni((16)) is computable by methods that require (11) (cf. [13]),

(iii) Every x ∈ Σuni (A(p), a(p), p) satisfies

x ∈ x̌ − (CF)[−p̂π ′′ , p̂π ′′ ] + (CL)
(
Dg([−p̂π ′ ,p̂π ′ ])|y − t |

)
. (17)

The condition (15) is called in [13] double-sided strong regularity condition. Its
proof is based on the Woodbury formula [23]. Note also that (16) is obtained from
(14) by the substitution y = Rx. Theorem 2 is a background of Theorem 3 which
presents two different parameterized solutions to the system (14) and summarizes the
results of [14, Theorem 4] and [15, Theorem 3].

Theorem 3 Let (14) be an equivalent, optimal, rank 1 representation of the system

(1) and let the matrix A(p̌) be nonsingular. Denote C = (
A(p̌)

)−1
and x̌ = Ca(p̌).

If the condition (15) holds true, then:

(i) There exists an united parameterized solution of the system (1), respectively
the system (14),

x(p) = x̌ − (CF)
(
p̌π ′′ − pπ ′′

) + (
CLD|y−t |

)
g(p̌π ′ − pπ ′), p ∈ p, (18)

where y ⊇ Σuni((16)) is computable by methods that require (11);
(ii) There exists an united parameterized solution of the system (1), respectively

the system (14),

x(p, r) = x̌ − (CF)(p̌π ′′ − pπ ′′) + (CLDy̌−t )g(p̌π ′ − pπ ′) + r,

p ∈ p, r ∈ r = [−r̂ , r̂], (19)

where y̌ = Rx̌, y ⊇ Σuni((16)) is computable by methods that require (11),
and r̂ = |CL|D|y−y̌|g(p̂π ′).

(iii) With the same y used in (17), (18), and (19), interval evaluation x (p) of x(p)

(18) is equal to the interval evaluation x (p, r) of x(p, r) (19), and to the
interval vector x obtained by Theorem 2.

Although it is obtained by a better enclosure method, the parameterized solution
(19) is similar to that of Theorem 1. For parametric systems involving only rank 1
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interval parameters, the parameterized solution (18) depends only on the initial K

interval parameters, while (19) depends on K +n interval parameters; thus, the latter
one is greater than the former one.

3.2 Main result

Proposition 1 With the notation of Theorem 3, if (15) holds true, then

�Σuni((16)) ⊆ y(1)(p, r) = y(2)(p), (20)

where y(1)(p, r) is the parameterized solution of (16), obtained by Theorem 1, and

y(2)(p) = y̌ + H
(
B0 (

p̌π − pπ

))

= y̌ +
(
H |B0|

) (
p̌π − pπ

)
, p ∈ p,

where B0 = RC
(−F, LDy̌−tK

)
, π = (

π ′′, π ′), K ∈ R
γ×Card(π ′) is defined by

K•i = ∂g(pπ ′)

∂pi

, for every i ∈ π ′, (21)

and H =
(
I − |RCL|Dg(p̂π ′ )

)−1
.

Proof We apply Theorem 1 to the interval parametric system (16). The matrix B0 for
this system is:

B0 = I
(−RC (F, LDtK) + RC

(
0, LDy̌K

)) = RC
(−F, LDy̌−tK

)
.

For � = |RCL|Dg(p̂π ′ ), by (10), we obtain the corresponding inverse interval matrix[
H, H

]
. Theorem 1 implies the existence of

y(1)(p, r) = y̌ +
(
ȞB0

) (
p̌π − pπ

) + r, pπ ∈ pπ , r ∈ [−r̂ , r̂], (22)

where r̂ = Ĥ
∣∣B0

∣∣ p̂π , with properties (7) and (8). From the interval evaluation of
(22), that is y(1)(p, r) = y̌ + [−ŷ, ŷ], where

ŷ = Ȟ |B0|p̂π + Ĥ |B0|p̂π = H |B0|p̂π ,

we obtain

y(2)(p) = y̌ + H
(
B0 (

p̌π − pπ

)) = y̌ +
(
H |B0|

) (
p̌π − pπ

)
, pπ ∈ pπ

and the relation (20).

We use the relation (20) when evaluating partial derivatives of x(p). Consider the
function in (18):

x(p) = x̌ − (CF)
(
p̌π ′′ − pπ ′′

) + (CL)
(
Dg(p̌π ′−pπ ′ ) (y(p) − t)

)
, p ∈ p,

where y is replaced by y(p) = y(2)(p) from Proposition 1,

y(p) = y̌ + H
((

RC
(−F, LDy̌−tK

)) (
p̌π − pπ

))
, p ∈ p.
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We find the expressions of the partial derivatives of x(p) with respect to each
parameter pi , i ∈ π and evaluate these expressions at pπ .

For i ∈ π ′′,
∂x(p)

∂pi

= (CF)ei + (CL)
(
Dg(p̌π ′−pπ ′ )HRCFei

)
,

where ei is the i-th coordinate vector in R
Card(π ′′). In matrix form:

∂x(p)

∂pπ ′′
= CF + (CL)

(
Dg(p̌π ′−pπ ′ )(HRCF)

)
.

The interval evaluation of the latter is:

∂x(p)

∂pπ ′′

∣∣∣∣
p∈p

= CF + [−V̂ ′′, V̂ ′′],

where V̂ ′′ = |CL| (g(p̂π ′) ◦ |HRCF |) = |CL|Dg(p̂π ′ )|HRCF | and ◦ is the
componentwise Hadamard product.

For i ∈ π ′,
∂x(p)

∂pi

= (CL)
(
−DK•i (y(p) − t) − Dg(p̌π ′−pπ ′ )HRCLDy̌−tKei

)
,

where ei is the i-th coordinate vector in R
Card(π ′). In matrix form:

∂x(p)

∂pπ ′
= −(CL)

(
(y(p) − t) ◦ K + Dg(p̌π ′−pπ ′ )HRCLDy̌−tK

)
.

In order to minimize the number of interval operations in the interval evaluation of
the last expression, we rearrange it so that:

∂x(p)

∂pπ ′

∣∣∣∣
p∈p

= −CLDy̌−tK + [−V̂ ′, V̂ ′], where

V̂ ′ = |CL|
((∣∣HRC(−F, LDy̌−tK)

∣∣ p̂π

) ◦ K + Dg(p̂π ′ )
∣∣HRCLDy̌−tK

∣∣
)

= |CL| ((|HRCF | p̂π ′′ +∣∣HRCLDy̌−tK
∣∣p̂π ′

) ◦ K+g(p̂π ′)◦∣∣HRCLDy̌−tK
∣∣).

Thus, we have proven the following theorem.

Theorem 4 Let (14) be an equivalent, optimal, rank 1 representation of the system

(1) and let the matrix A(p̌) be nonsingular. Denote C = (
A(p̌)

)−1
. If the condition

(15) holds true, define interval matrixM ∈ IR
n×K by

M = C
(
F, −LDy̌−tK

) + [−V̂ , V̂ ],
where K , H are defined in Proposition 1 and

V̂ = |CL| (g(p̂π ′) ◦ |HRCF | , (|HRCF |p̂π ′′ + ∣∣HRCLDy̌−tK
∣∣ p̂π ′

) ◦ K

+ g(p̂π ′) ◦ ∣∣HRCLDy̌−tK
∣∣) .

Then, for i = 1, . . . , n, j ∈ π , sign
(
Mij

) 	= 0 gives the type of global monotonicity
of Σuni,i ((1)) with respect to pπj

.
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In the special case of rank 1 interval parameters K = I and

V̂ ′ = |CL| ((∣∣HRC(−F, LDy̌−t )
∣∣ p̂π

) ◦ I + g(p̂π ′) ◦ ∣∣HRCLDy̌−t

∣∣)

= |CL|
(
D∣∣HRC(−F,LDy̌−t )

∣∣p̂π
+ Dg(p̂π ′ )

∣∣HRCLDy̌−t

∣∣
)

.

The following example presents in detail the numerical computations based on the
theoretical results of this section.

Example 1 Consider the following parametric linear system:
⎛

⎝
1 + p1 − p2, −p1 + p2, 1 + p1
2 + p1 + p2, −1 − p1 − p2 − p3, −1 + p1 − 2p3

1 + p1, −3 − p1 − 2p3, 6 + p1 + 4p3

⎞

⎠ x =
⎛

⎝
1
1
1

⎞

⎠ (23)

with pi ∈ 1
4 [−1, 1], i = 1, 2, 3. In this system, the coefficient matrices of p1, p2

have rank 1, while the matrix of p3 has rank 2. An equivalent, optimal, rank 1 repre-
sentation (14) of the system is obtained for π ′ = {1, 2, 3}, π ′′ = ∅ implying F = 0
and omitting the terms involving it, g(pπ ′) = (p1, p2, p3, p3)

�, a0 = (1, 1, 1)�,
t = 0 ∈ R

4 and

A0 =
⎛

⎝
1 0 1
2 −1 −1
1 −3 6

⎞

⎠ , L =
⎛

⎝
1 −1 0 0
1 1 −1 −2
1 0 −2 4

⎞

⎠ , R =

⎛

⎜⎜⎝

1 −1 1
1 −1 0
0 1 0
0 0 1

⎞

⎟⎟⎠ .

The spectral radius of the matrix in condition (11) is �(11) ≈ 0.976, while that
in condition (15) is �(15) ≈ 0.582, showing that (15) will hold true for parame-
ters varying in wider intervals than the condition (11). We apply (as in the proof of
Proposition 1) Theorem 1 to the parametric system (16), which involves only column
dependencies in the matrix. By y̌ = R.x̌ = 1

14 (9, 6, 5, 3)�:

H = H =
(
I − |RCL|Dg(p̂π ′ )

)−1 = 1

6081

⎛

⎜⎜⎝

7784 9156/5 2408 3808/5
1636 9432 2956 1840
1556 20292/5 9056 5836/5
826 1848 868 7798

⎞

⎟⎟⎠ ,

K =

⎛

⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 1

⎞

⎟⎟⎠ , B0 = RC
(
LDy̌K

) = 1

196

⎛

⎜⎜⎝

81 24 −49
54 72 −84
45 −108 49
27 −48 35

⎞

⎟⎟⎠ ,

we obtain the parameterized solutions y(1)(p, r) and y(2)(p) of Proposition 1

y(1)(p, r) ≈
⎛

⎜⎜⎝

9
14
3
7
5
14
3
14

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0.434041 0.128605 −0.262568
0.31531 0.420413 −0.490482

0.257367 −0.61768 0.280244
0.144774 −0.257376 0.18767

⎞

⎟⎟⎠
(
p̌π − pπ

)+

⎛

⎜⎜⎝

0.245396
0.329458
0.350839
0.177327

⎞

⎟⎟⎠ ◦ r,

pπ ∈ pπ , π = π ′, ri ∈ [−1, 1], i = 1, . . . , 4,
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y(2)(p) = y̌ +
(
H |B0|

) (
p̌π − pπ

)

≈ 1

14

⎛

⎜⎜⎝

9
6
5
3

⎞

⎟⎟⎠+

⎛

⎜⎜⎝

0.720135 0.516231 0.570432
0.691804 0.944675 0.907557
0.657974 1.1441 0.756577
0.349285 0.520967 0.428877

⎞

⎟⎟⎠
(
p̌π −pπ

)
, π =π ′, p∈p,

and the relation (20). Then, applying Theorem 4, we obtain:

V̂ = |CL| ((∣∣HRCLDy̌K
∣∣ p̂π ′

) ◦ K + g(p̂π ′) ◦ ∣∣HRCLDy̌K
∣∣)

= 1

2979690

⎛

⎝
1487336 747981 875411
1560140 2074047 1504139
800508 928444 795130

⎞

⎠ ,

−CLDy̌K = − 1

196

⎛

⎝
−99 36 35
−45 108 −49
−27 48 −35

⎞

⎠ .

Thus, the interval matrix M = −CLDy̌K +
[
−V̂ , V̂

]
of Theorem 4

M ≈
( [−1.00426,−0.00594407] [−0.067353, 0.4347] [−0.115221, 0.472364]

[−0.753183, 0.294] [−0.145041, 1.24708] [−0.754797, 0.254797]
[−0.40641, 0.1309] [−0.0666928, 0.556489] [−0.445421, 0.0882785]

)

has zero involving intervals in all its elements except for M11, which has negative
sign and shows monotone decreasing dependence of the first solution component
with respect to p1. For the same parametric system (23) with narrower intervals
for the parameters, Theorem 4 gives the monotonic dependence of more solution
components with respect to more parameters (see Example 3 and Fig. 1).

4 Numerical comparisons

In this section, we compare the following approaches for finding initial monotonic
dependencies:

Mdx Finding initial monotonicity by solving one interval parametric matrix equa-
tion (9), where x(p) = x is an initial interval enclosure of the considered system
(1). Two versions of this approach are considered—parametric solvers based on:
the single-sided regularity condition (11) and on the more efficient double-sided
regularity condition (15).

MK2n The approach based on the systems (5). The abbreviation MK2n reflects the
requirement of this approach to solve K interval parametric linear systems, each
of dimension 2n. The efficiency of this approach in proving monotonic dependen-
cies depends on the quality of the method for solving interval parametric linear
systems. Since the parametric matrix A(p) appears twice in the systems that have
to be solved, the MK2n method cannot use the advantage of the parametric solvers
for matrices with rank 1 uncertainty structure. Therefore, the MK2n method seems
to have the best proving efficiency for systems with matrices whose radius of
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single-sided strong regularity is less than the radius of double-sided strong regular-
ity. Another deficiency of the MK2n method is its high computational complexity
since the approach of solving one matrix equation for all the parameter dependen-
cies [12] cannot be applied. Thus, for each parameter dependency, one has to solve
a separate interval parametric linear system of twice bigger dimension.

MpKsol Proving initial monotonicity by solving one interval parametric matrix
equation (9), where x(p) = x(p, r), p ∈ p, r ∈ r, is an initial parameterized
solution (6) depending on K + n interval parameters for the considered system
(1). Obtaining x(p, r) (6) is considered in two forms: one based on Theorem 1
using regularity condition (11) and another based on Theorem 3.(ii) using the more
efficient double-sided regularity condition (15).

MpPsol Proving initial monotonicity by solving one interval parametric matrix
equation (9), where x(p) = x(p, q), p ∈ p, q ∈ q, is an initial parameterized
solution of the considered system (1) obtained by the method of Theorem 3.(i)
using the double-sided regularity condition (15).

Mds The newly proposed method of Theorem 4. This approach combines the
two steps of the methods MpKsol and MpPsol into one procedure, which fully
accounts for the dependencies on the interval parameters in the partial derivatives.

The first three approaches above are the same as those considered in [22]. Here,
we apply the computationally more efficient approach [12] of solving one matrix
equation for all the parameter dependencies instead of solving K separate parametric
systems involving the same matrix, applied in [22]. This difference in the compu-
tational efficiency is demonstrated by Example 4. The second difference is in the
parametric solvers that are used. Contrary to [22], applying the heaviest parameter-
ized method based on affine arithmetic, we use only interval methods that do not
require affine arithmetic. The latter also implies a better computational efficiency.
The third major difference is in the presentation of the numerical results. In [22], the
results of the initial monotonicity proof are not presented but only the solution enclo-
sures, obtained after applying proven monotonic dependencies, are given. Below, we
propose several quantitative measures for the efficiency of the monotonicity proving
approaches.

Similarly to the radius of applicability of a solver of an interval parametric lin-
ear system, we introduce two radiuses (r1(Mth) and r2(Mth)) of the efficiency of
an initial monotonicity proving method, denoted by Mth. We consider system (1),
where pk ∈ pk = [−1, 1], k = 1, . . . , K . Let M ∈ {0, 1, −1}n×K be the sign
matrix resulting from an initial monotonicity proving method. We define a radius
r1(Mth) of the initial enclosure (monotonicity proving) efficiency of the approach
Mth by

r1(Mth) := argmax
r

{Mij 	= 0 for exactly one (ij),

i = 1, . . . , n, j = 1, . . . , K and for p ∈ rp}.

r1(Mth) corresponds to the maximal radius for the parameters such that exactly one
sign in M is known, which means that the monotonicity of one solution component
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with respect to one parameter is determined. Next, we define an r2(Mth) radius of
the initial enclosure (monotonicity proving) efficiency by:

r2(Mth) := argmax
r

{0 	∈ M for p ∈ rp}.
r2(Mth) corresponds to the maximal radius for the parameters such such that all signs
in M are known, which means that the monotonicity is determined for each solution
component with respect to each parameter. In practical applications, the exact val-
ues r1(Mth) and r1(Mth) are usually approximated by corresponding floating point
radiuses r = rprec, where “prec” denotes the number of decimal digits in the mantissa
of rprec. Thus, for a given interval parametric linear system (1) and a specified preci-
sion, one can find approximations of r1(Mth) and r2(Mth) by subsequently changing
the value of rprec. Below, in the numerical examples, we use prec = 4.

For problems of high dimension, involving many interval parameters, we propose
the following quantitative measure for the efficiency of a given approach. For an
interval parametric linear system (1) with a given radius of parameter uncertainties
r , such that pk ∈ pk = [−r, r], k = 1, . . . , K , the quality of an initial monotonicity
proving methodology Mth is denoted by ε(r, Mth). Let #0 be the number of zero
components in the sign matrix M of the monotonic dependencies, proven by Mth,
and # is the total number of the elements in the matrix M . Then,

ε(r, Mth) := # − #0

#
∈ [0, 1].

The measure ε(r, Mth) can be also applied to a row of the sign matrix M . This
means that the measure can be applied to problems that require finding monotonic
dependence of only one (or some) components of the parametric solution. Obtaining
ε(r, Mth) is exact and does not require additional computational effort.

Example 2 Consider the following interval parametric linear system after [22, Exam-
ple 3]:

⎛

⎜⎝

2p1 p2 − 1 −p3 p2 + 3p5
p2 + 1 0 p1 p4 + 1
2 − p3 4p2 + 1 1 −p5

−1 2p5 + 2 1
2 2p1 + p4

⎞

⎟⎠ x =
⎛

⎜⎝

1 + 2p3
−p4 + 2
3p4 + p5

p1 + p2 + 2p5

⎞

⎟⎠,

(
pk ∈ [0.8 − δ, 1.1 + δ],

k = 1, . . . , 5.

)

In [22, Example 3], Mdx, MK2n, and MpKsol are applied for δ = 0.01, 0.02, 0.03,
0.04, 0.05. Here, we have additionally applied the three proposed measures for the
efficiency of the considered approaches. Since the system involves parameters whose
dependency structure has rank greater than 1, all interval parametric solvers are based
on the single-sided regularity condition (11). Both Mdx and MpKsol are applied by
solving one interval parametric matrix equation (9). It should be mentioned that Mdx
yields the same initial monotonicity result for different δ = 0.01, 0.02, 0.03, and the
same result for δ = 0.04, 0.05, the latter mentioned in Table 1.

Similarly, MK2n yields the same result for δ = 0.02, 0.03, 0.04, and the same
result for δ = 0.05, 0.06, 0.07. MpKsol yields the same initial monotonicity result
for δ = 0.02, 0.03, 0.04, and the same result for δ = 0.05, 0.06, 0.07, the latter
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Table 1 Example 2: efficiency
of the considered approaches for
finding monotonic dependencies

Method r1(Mth) r2(Mth) ε(0.01, Mth)

Mdx 0.19 0 19/20

δ = 0.04, 0.05, 0.06 δ = −0.15

MK2n 0.2 0.01 1

δ = 0.05, 0.06, 0.07 δ = −0.14

MpKsol 0.2 0.01 1

δ = 0.05, 0.06, 0.07 δ = −0.14

mentioned in Table 1. It is clear that for the particular parametric system and the con-
sidered parameter uncertainties the three compared approaches have similar proving
efficiency.

Example 3 Consider the parametric linear system (23) with starting parameter inter-
vals pi ∈ [−1, 1], i = 1, 2, 3. Note, that none of the conditions (11) and (15)
holds true for these parameter intervals, which implies M = 0 ∈ R

n×K . Table 2
clearly presents the initial monotonicity proving efficiency of the three approaches,
where the corresponding parametric solvers are based on the single-sided regular-
ity condition (11), which holds true for parameters with smaller interval radiuses.
The differences between the three approaches are more pronounced than those in
Example 2.

Since the considered parametric system involves rank 1 interval parameters, we
apply monotonicity proving approaches based on the more efficient double-sided reg-
ularity condition (15). The estimated efficiency of these approaches is presented in
Table 3. For the traditional approach Mdx, both the initial interval solution enclosure
and the solution enclosure of the derivative matrix equation are based on (15). When
applying the approaches MpKsol and MpPsol, the respective two kinds of initial
parameterized solution enclosures are based on (15). In the corresponding derivative
systems, the initial rank 1 uncertainty structure is changed due to the parameterized
solutions in the right-hand sides. This implies that their solutions obtained by meth-
ods based on (15) will be overestimated. Therefore, the derivative matrix equation
is solved by methods applying (11). Comparing the results in Tables 2 and 3, we
see that any of the methods based on (15) has a better enclosure efficiency than any
of the methods based on (11). Table 3 clearly presents the best monotonicity prov-
ing efficiency of the newly proposed method of Theorem 4, which fully utilizes the
parameter dependencies.

Table 2 Example 3: efficiency
of the considered approaches
based on the single-sided
regularity condition (11)

Method r1(Mth) r2(Mth) ε(1/9, Mth) ε(1/11, Mth)

Mdx 0.098 0.070 0 2/9

MK2n 0.148 0.095 6/9 1

MpKsol 0.123 0.089 2/9 8/9
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Table 3 Example 3: efficiency of the considered approaches based on both regularity conditions (15), (11)

Method r1(Mth) r2(Mth) ε(1/8, Mth) ε(1/9, Mth) ε(1/11, Mth)

Mdx 0.126 0.092 1/9 2/9 1

MpKsol 0.159 0.101 3/9 8/9 1

MpPsol 0.186 0.103 7/9 8/9 1

Mds 0.251 0.138 1 1 1

In the next examples, we consider interval parametric linear systems based on a
finite element model of a one-bay 20-floor truss cantilever presented in Fig. 2, after
[7].

The structure consists of 42 nodes and 101 elements. The bay is L = 1 m, every
floor is 0.75 L, the element cross-sectional area is A = 0.01 m2, and the crisp value
for the element Young modulus is E = 2×108 kN/m2. Twenty horizontal loads with
nominal value P = 10 kN are applied at the left nodes. The boundary conditions are
determined by the supports: at A the support is a pin, at B the support is roller. It is
assumed that the modulus of elasticity Ek of each element and the external loads are
independent interval parameters. This problem is often used as a benchmark problem
for the computational efficiency and scalability of various interval methods applied
to mechanical structures with complex configuration and a large number of interval

Fig. 2 One-bay 20-floor truss cantilever after [7]
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parameters (see, e.g., [8, 14, 17]). Since the interval parametric linear system for the
unknown displacements at each node has rank 1 uncertainty structure, by [11, Theo-
rem 2, Proposition 1] the vertices of the interval hull of the unknown displacements
are attained at particular endpoints of the interval parameters. Similar properties are
verified for interval models of linear DC electric circuits [2, 3, 11]. However, finding
�Σ

p
uni by the combinatorial endpoint approach requires solving prohibitively many

2101+20 ≈ 2.66 × 1036 point linear systems for the model of truss cantilever. There-
fore, it is of particular practical interest to have computationally feasible methods for
obtaining �Σ

p
uni .

For any interval parametric linear system where some parameters are involved
only in the right-hand side, the monotonic dependence of �Σ

p
uni on these param-

eters can be proven first. Thus, these parameters are removed from the subsequent
considerations. By the next example, we demonstrate the computational advantage
of considering one matrix equation for the partial derivatives instead of solving a
number of interval parametric linear systems.

Example 4 Consider the interval parametric linear system for the displacements in
the model of truss cantilever presented in Fig. 2. It is assumed 6% uncertainty in
the modulus of elasticity Ek of each element (∓3% from the corresponding mean
value) and 10% uncertainty in each of the loads. The goal is to find the monotonic
dependence of the unknown displacements with respect to each of the 20 interval
load parameters that appear only in the right-hand side of the system.

For proving monotonic dependence of the solution with respect to 20 interval
parameters in the right-hand side of the system, we solve one interval parametric
matrix equation (9) where, due to the lack of dependence, B(p) ∈ R

81×20 is a
numerical matrix. This matrix equation is solved by an interval method based on
the regularity condition (11). Monotonic dependence of every solution component is
proven with respect to each interval parameter, except for five solution components
with respect to the first interval parameter. Then, we solve an interval parametric
linear system for the solution derivatives with respect to the first parameter by the
method of Theorem 2, which finds monotonic dependence for all the solution com-
ponents. For the sake of comparison of the computing times, we solve 20 separate
interval parametric linear systems for the solution derivatives with respect to each of
the parameters by the same method used to solve the corresponding matrix equation.
Solving 20 separate systems was about 15.6 times slower than solving the interval
parametric matrix equation.

Example 5 In this example, we compare both the monotonicity proving efficiency
and the computational efficiency of the newly proposed method Mds (Theorem 4)
with those of the method MpPsol. The latter method showed the best monotonicity
proving efficiency in Example 3 compared with the methods Mdx and MpKsol. Con-
sider the interval parametric linear system for the displacements in the model of truss
cantilever presented in Fig. 2 which is considered also in Example 4 with more inter-
val parameters. Here, it is assumed 6% uncertainty in the modulus of elasticity Ek

of each element while the twenty external loads are considered deterministic at their
nominal value. Thus, we have an interval parametric linear system involving 101
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rank 1 interval parameters Ek in the matrix and a numerical right-hand side vector
of dimension 81. The newly proposed method showed monotonicity proving effi-
ciency ε(0.03, Mds) = 6875/8181 ≈ 0.8404. We denote the computing time of this
method by Mdst . The method MpPsol, applied as in Example 3, showed monotonic-
ity proving efficiency ε(0.03, MpPsol) = 5663/8181 ≈ 0.6922 and a computing
time MpPsolt ≈ 2.6 Mdst . Thus, the newly proposed initial monotonicity proving
method of Theorem 4 demonstrates essentially better computational efficiency and
monotonicity proving efficiency in comparison with the methods based on explicit
parameterized solutions.

5 Conclusion

Proving the dependence of the unknown variables in interval parametric linear
systems on particular endpoints of the intervals for the model parameters is a com-
putationally heavy problem of particular importance for many scientific and applied
problems. An essential part of this iteration process is the initial proof of monotonic
dependence. In this work, we analyzed both theoretically and by numerical examples
various aspects of different methodological approaches aiming at the initial mono-
tonicity proof. The computational efficiency of some of the considered methods is
also analyzed. Some quantitative measures for the efficiency of different monotonic-
ity proving methodologies are proposed. These measures are applied at the numerical
comparisons between a variety of initial monotonicity proving approaches and a
newly proposed method.

For parametric linear systems involving true rank 1 interval parameters, which
appear in a variety of application domains, we proposed a novel method for prov-
ing an initial monotonic dependence of the solution components on the interval
parameters. This novel method, presented in Theorem 4, combines the best compu-
tational efficiency with the best monotonicity proving efficiency in comparison with
all considered approaches.

In [14], the parameterized solution (18) is a basis of a new approach for obtaining
sharp bounds for derived quantities (e.g., forces or stresses) which are functions of
the displacements (primary variables) in interval finite element models of mechanical
structures. A further research could expand the present novel method of Theorem 4,
which is also based on (18), in proving monotonic dependence of secondary variables
defined by classes of functions depending on the initial interval parameters and the
primary unknown variables.

Both the theoretical discussions and the numerical comparisons, involved in this
paper, clearly reveal what are the properties of the initial monotonicity proving
approaches. Thus, the end user can choose properly which is the best approach for
an application. The following general advice can be given. For problems of small
dimension or involving a few interval parameters with relatively small uncertainties,
any approach could be applied. If monotonicity should be checked simultaneously
for a big number of interval parameters, solving one matrix equation for all partial
derivatives [12] is computationally more efficient than solving separate derivative
systems. Applying initial parameterized solutions in the right-hand side of the partial
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derivatives improves the efficiency of the proof. If parameters with rank 1 uncertainty
structure dominate in the considered problem, then the novel approach, proposed in
Theorem 4, has the best computational and proving efficiency. In any case, choos-
ing how to prove the monotonic dependence or the endpoint property of a parametric
solution should be guided by the properties of the particular problem at hand and
by the properties (discussed in this work) of the corresponding methodologies. In
order to be informative, any comparisons of the monotonicity proving efficiency
of present or future methodologies should involve some of the three quantitative
measures proposed in this work.
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