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Abstract
The LP-Newton method solves linear programming (LP) problems by repeatedly
projecting a current point onto a certain relevant polytope. In this paper, we extend
the algorithmic framework of the LP-Newton method to conic programming (CP)
problems via a linear semi-infinite programming (LSIP) reformulation. In this exten-
sion, we produce a sequence by projection onto polyhedral cones constructed from
LP problems obtained by finitely relaxing the LSIP problem equivalent to the CP
problem.We show global convergence of the proposed algorithm under mild assump-
tions. To investigate its efficiency, we apply our proposed algorithm and a primal-dual
interior-point method to second-order cone programming problems and compare the
obtained results.

Keywords Conic programming · Semi-infinite programming ·
Adaptive polyhedral approximation · LP-Newton method

1 Introduction

In this paper, we consider the following conic programming problem (CP):

minimize c�x

subject to Ax = b,

x ∈ K , (1)
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where A ∈ R
m×n, b ∈ R

m, and c ∈ R
n are a given matrix and vectors, respectively,

and K := ∏p

i=1 Ki ⊆ R
n is the Cartesian product of nonempty closed convex

cones Ki for i = 1, . . . , p. In what follows, we denote ni by the dimension of Ki ,
i.e., Ki ⊆ R

ni . If K = R
n+ (nonnegative orthant), then the CP problem (1) reduces

to the linear programming (LP) problem of the standard form:

minimize c�x

subject to Ax = b,

x ≥ 0. (2)

More generally, if K is a symmetric cone, the CP problem (1) is called a symmetric
cone programming (SCP) problem. The SCP problem includes the second-order cone
programming (SOCP) problems and the semidefinite programming (SDP) problems.
The CP problem (1) is a very important optimization model because it has many
practical applications in fields such as synthesis of filter and antennae arrays, struc-
tural design, stability analysis of mechanics, robust optimization, and relaxation of
combinatorial optimization [1, 2, 13, 20, 21].

To solve the CP problem (1), many researchers have developed algorithms exploit-
ing the geometrical or algebraic structure of the cone K . For instance, we can find
Newton-type methods such as primal-dual interior-point methods [16, 18, 20] and
non-interior continuous methods along with complementarity functions [3, 7, 9],
Chubanov-type algorithms [12, 15], and simplex-type algorithms [6, 17, 25]. These
algorithms were originally carried over from LP. One popular extension from LP to
SCP is based on the Jordan algebra [4], by which the LP and SCP problems can
be handled in the same algebraic framework. Another approach is based on a semi-
infinite reformulation of the conic constraint x ∈ K . This approach can be applied
to the CP problem (1) with K being possibly nonsymmetric cone. By representing
the conic constraint as the intersection of an infinite number of half-spaces, the CP
problem (1) can be reformulated as the following linear semi-infinite programming
(LSIP) problem with infinitely many linear inequality constraints as we mention
below. To derive the semi-infinite reformulation of the CP problem (1), we define the
dual cone K ∗

i of Ki by K ∗
i := {s ∈ R

n : x�s ≥ 0 (x ∈ Ki )}. In addition, we call
a compact subset S of Rni a base of K ∗

i when it satisfies

{αv : α ∈ R+, v ∈ S} = K ∗
i .

Note that for each cone, a base is not unique. In this paper, we denote a fixed base of
K ∗

i by base(K ∗
i ). Using these notations, we can derive the following LSIP problem

equivalent to the CP problem (1):

minimize c�x

subject to Ax = b,

(vi)�xi ≥ 0 (vi ∈ base(K ∗
i ); i = 1, . . . , p), (3)

where xi ∈ R
ni denotes the i-th block of x partitioned so that it matches the Cartesian

structure of K , i.e., x = ((x1)�, (x2)�, . . . , (xp)�)� ∈ ∏p

i=1R
ni . For example, if
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we take a base of a second-order cone appropriately, this semi-infinite constraint can
be simplified to (1, (v̄i )�)xi ≥ 0 (v̄i ∈ R

ni−1 : ‖v̄i‖ ≤ 1; i = 1, . . . , p) as we
mention later. Hayashi et al. [6] tailored the dual-simplex method for LP problems to
dual SOCP problems via their LSIP representation. For an overview of semi-infinite
programming problems, we refer readers to the survey articles [8, 14].

Algorithms for solving LP problems include the simplex method, ellipsoid
method, and interior-point method. Although the ellipsoid and interior-point methods
are polynomial-time algorithms, the existence of a strongly polynomial-time algo-
rithm for solving LPs remains an open problem. In an attempt to devise a strongly
polynomial-time algorithm for LPs, Fujishige et al. [5] proposed the LP-Newton
method for box-constrained LP problems, which have a box constraint l ≤ x ≤ u

instead of the nonnegativity constraint x ≥ 0 in the LP problem (2). Kitahara
et al. [10] extended it to the LP problem (2). This algorithm repeats projecting a cur-
rent point onto a polytope arising from the feasible region and the computation of a
supporting hyperplane. Numerical results in [5] suggest that the algorithm is promis-
ing. In addition, Kitahara and Sukegawa [11] proposed a simple projection algorithm
for the box-constrained LP problems based on the LP-Newton method.

Recently, Silvestri and Reinelt [19] developed an LP-Newton method for SCP
problems. To the best of our knowledge, this is the first extension of the LP-Newton
method to SCP problems. In [19], the authors considered conic-box-constrained
SCP problems, i.e., the CP problem (1) with x ∈ K replaced by a conic-box
constraint l 	 x 	 u, which denotes x − l, u − x ∈ K with a symmetric
cone K . Their algorithm computes a projection onto a conic zonotope at each iter-
ation, and they proposed a Frank–Wolfe-based inner algorithm for this computation.
Nevertheless, the computation of the projection still appears to be difficult. In fact,
their numerical results showed that the inner algorithm for obtaining the projection
required a number of iterations, although the outer loop was repeated relatively few
times.

In this paper, we propose a different type of LP-Newton method for the CP
problem (1) with K being possibly a nonsymmetric cone, which is based on the
semi-infinite reformulation (3). In our approach, we construct a sequence of LPs by
adaptively selecting finitely many constraints from the infinitely many constraints of
the LSIP problem (3). To produce an iteration point, we compute a projection onto
a polytope arising from a polyhedral approximation of K , which can be realized by
solving a convex quadratic programming (QP) problem.

The remainder of this paper is organized as follows. In Section 2, we describe
our proposed LP-Newton method for the CP problem (1). In Section 3, we establish
global convergence of the proposed algorithm under the boundedness assumption
of the optimal set of the CP problem (1). In Section 4, we propose a primal-dual
algorithm that generates a sequence in the dual space of the CP problem (1). We also
show its global convergence to a pair of optimums of the CP problem (1) and its dual
problem under Slater’s constraint qualification. In Section 5, we report numerical
results of applying the proposed method to SOCPs to investigate its validity and
effectiveness.
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2 Primal algorithm

In this section, we extend the LP-Newton method for the LP problem (2) proposed
by Kitahara et al. [10] to the CP problem (1). For simplicity, we use the following
notation:

Ā :=
(

c�
A

)
∈ R

(1+m)×n, L :=
{(

γ

b

)
: γ ∈ R

}
⊆ R

1+m, (4)

and for some Vi ⊆ base(K ∗
i ) (i = 1, . . . , p),

V :=
p∏

i=1

Vi, cone(V )∗ := {x ∈ R
n : (vi)�xi ≥ 0 (vi ∈ Vi; i = 1, . . . , p)}.

Note that cone(V )∗ defined above is the dual cone of the conic hull of V , denoted
by cone(V ), and hence especially cone(base(K ∗

i ))∗ = (K ∗)∗ = Ki for each i.
Moreover, we often use a MATLAB notation for a partitioned vector, i.e., we denote
(u�, v�)� by (u; v) for any vectors u and v. In addition, we denote m-dimensional
zero vector (0; . . . ; 0) ∈ R

m by 0m.
In the proposed algorithm, we construct sequences {x(k)} ⊆ R

n and {V (k)} ⊆∏p

i=1 base(K
∗

i ) such that V (k) := ∏p

i=1 V
(k)
i and |V (k)

i | < ∞ (i = 1, . . . , p) for
each k ≥ 1. As more specifically described shortly, the sequence {x(k)} is produced
by performing one iteration of the LP-Newton method for the following LP prob-
lem, which is obtained by replacing base(K ∗) in the LSIP problem (3) by the finite
set V (k)

i for i = 1, . . . , p:

minimize c�x

subject to Ax = b,

(vi)�xi ≥ 0 (vi ∈ V
(k)
i ; i = 1, . . . , p). (5)

Note that the finite number of linear inequality constraints of the LP problem (5) form
an outer polyhedral approximation of K . Thus, the LP problem (5) is a relaxation
problem of the LSIP problem (3) or the CP problem (1). As will be proved later, if x(k)

is feasible to the CP problem (1), it is nothing but an optimum of the CP problem (1).
Otherwise, for each i such that xi,(k) /∈ Ki , we update V

(k)
i by adding vi,(k) ∈

argminvi∈base(K ∗
i )(v

i)�xi,(k), which is one of the indices most violating the i-th conic

constraint xi ∈ K (i) at x(k).
We name the proposed algorithm the adaptive LP-Newton (ALPN) method for the

CP problem (1) and formally describe it in Algorithm 1. This algorithm generates
sequences {w(k−1/2)}k≥1 on the line L and {w(k)} on the outside of ĀK (recall the
definition by (4)). For illustration, we give a schematic diagram in Fig. 1. At the k-
th iteration of Algorithm 1, we first compute w(k) and w(k+1/2) from w(k−1/2) by
applying one iteration of the existing LP-Newton method [10] developed for LPs
to the LP problem (5). Specifically, we set the projection of w(k−1/2) onto ĀK as
w(k). Subsequently, we update an outer approximation Ācone(V (k)

i )∗ of ĀKi for
each i by updating V (k) in the way explained in the previous paragraph. After that,
we construct the support hyperplane H(k) of ĀK at w(k) and set the intersection
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of the plane H(k) and the line L as w(k+1/2). A sequence {γ (k−1/2)} ∪ {γ (k)} =
{γ (1/2), γ (1), γ (3/2), γ (2), . . . } is nondecreasing and bounded above by the optimal
value θ∗ of the CP problem (1) as we show in Lemma 2. Moreover, it converges to
θ∗ under mild assumptions. Another sequence {β(k)} converges to b as we show in
Lemma 3. In conjunction with these two sequences, a sequence {x(k)} converges to
an optimal solution (Theorem 1).

In Algorithm 1, it is easy to compute γ (k+1/2) as follows:

γ (k+1/2) = γ (k) − ‖β(k) − b‖2
γ (k−1/2) − γ (k)

.

In addition, it is also easy to compute

vi,(k) ∈ argmin
vi∈base(K ∗

i )

(vi)�xi,(k) (6)

for some particular cones as illustrated below.
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Fig. 1 A schematic diagram of the k-th iteration of Algorithm 1. The horizontal line depicts L, which is
parallel to the γ -axis associated with the objective function. The circular cone (shown in blue) and the
square pyramid (whose four ridges are shown in solid lines) depict ĀK and Ācone(V (k))∗, respectively.
The line segment from w(k−1/2) to w(k) (shown in dotted line) is orthogonal to a supporting hyper-
plane H(k) (shown in green) of Ācone(V (k))∗ at w(k). Note that H(k) touches Ācone(V (k))∗ on a ridge.
The intersecting point of L and H(k) is w(k+1/2)

Example 1 (Second-order cone) For the n-dimensional second-order cone K n
SOC ⊂

R
n defined by K n

SOC := {x ∈ R+ × R
n−1 : x1 ≥ ‖x̄‖}, where x̄ ∈ R

n−1 denotes
the subvector of x without the first element, that is, x = (x1; x̄) ∈ R × R

n−1, we
can take {(s1; s̄) ∈ K n

SOC : s1 = 1} as base((K n
SOC)∗) = base(K n

SOC). In addition,
(1; −x̄i,(k)/‖x̄i,(k)‖) is an optimal solution to the subproblem (6) with K ∗

i = K n
SOC

if x̄i,(k) 
= 0n−1; otherwise, (1; 0n−1) is optimal.

Example 2 (Positive semidefinite cone) The set of all n-dimensional positive
semidefinite matrices forms a cone. The cone is called the n-dimensional pos-
itive semidefinite cone and denoted by K n

PSD. For K n
PSD, we can take {S ∈

K n
PSD : trace(S) = 1} as base((K n

PSD)∗) = base(K n
PSD). In addition, it holds that

ξ∗(ξ∗)� ∈ argminV i∈base(K ∗
i ) trace(V

iXi,(k)), which is the matrix version of the

subproblem (6), where ξ∗ is a normalized eigenvector of Xi,(k) corresponding to the
minimum eigenvalue.

Example 3 (�p-norm cone) For p ≥ 1, the n-dimensional �p-norm cone K n
�p

⊂ R
n

is defined by K n
�p

:= {x ∈ R+ × R
n−1 : x1 ≥ ‖x̄‖p}. The �p-norm cone is a

generalization of the second-order cone. In fact, K n
�2

= K n
SOC. In addition, it holds
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that K ∗
�p

= K�q , where q := (1 − p−1)−1. For this cone, we can take {(s1; s̄) ∈
K n

�q
: s1 = 1} as base(K n

�q
) and an optimal solution to the subproblem (6) with

K ∗
i = K n

�q
can be written as (1; −sign(x̄i,(k)) ◦ (|x̄i,(k)|/‖x̄i,(k)‖p)p/q) if x̄i,(k) 
=

0n−1, where ◦ denotes the Hadamard product and (sign(x̄i,(k)))j := 1 (x̄
i,(k)
j >

0), 0 (x̄
i,(k)
j = 0), −1 (x̄

i,(k)
j < 0) and (|x̄i,(k)|)j = |x̄i,(k)

j | for each j ; otherwise,
(1; 0n−1) is optimal.

Remark 1 Cones K n
SOC, K n

PSD, K n
�p

in Examples 1–3 have nonempty interior. Such

cones are called solid. For a solid cone K , we can take {s ∈ K ∗ : x̃�s = 1} as
base(K ∗) for any x̃ ∈ int K , where int K denotes the interior of K . Bases given
in Examples 1–3 are constructed by this procedure.

Drawbacks of Algorithm 1 are the construction of V (1), which corresponds to ini-
tial cutting hyperplanes, and the computation of w(k) and x(k), that is, the projection
onto Ācone(V (k))∗. In general, it is not easy to construct an initial finite set V (1) such
that the following LP problem is lower-bounded:

minimize c�x

subject to Ax = b,

x ∈ cone(V (1))∗.
(7)

However, if a feasible solution ŷ to the dual of the CP problem (1)

maximize b�y

subject to c − A�y ∈ K ∗ (8)

is available, we can take {c − A�ŷ} as V (1). In fact, if we take V (1) := {c − A�ŷ},
x ∈ cone(V (1))∗ is equivalent to (c − A�ŷ)�x ≥ 0, which implies c�x ≥ b�ŷ for
any feasible solution x of the LP problem (7). If there are no dual feasible solutions
available, we may construct V (1) heuristically. In the computation of w(k) and x(k)

in Algorithm 1, we may solve the following convex quadratic programming (QP)
problem for i = 1, . . . , p:

minimize ‖Āx − w(k−1/2)‖2
subject to (vi)�xi ≥ 0 (vi ∈ V

(k)
i ; i = 1, . . . , p),

(9)

and use an optimal solution of the QP problem (9) as x(k), and set w(k) = Āx(k).
The number of constraints in the QP problem (9) increases as iterations progress.
This drawback can be mitigated by using warm-start techniques or exchange meth-
ods [8, 14]. For example, if we solve the QP problem (9) using the active set method,
we can set (w(k), x(k)) as an initial point of the active method in the (k + 1)-th iter-
ation. The use of initial points often accelerates the active set method. Moreover,
like exchange methods, by dropping constraints, we may refrain the number of con-
straints of the QP problem (9) at every iteration. But, it is nontrivial how to select
constraints to be dropped, while preserving the global convergence. Even though
warm-start techniques or exchange methods are utilized, solving QP problems is still
computationally expensive. Hence, a more sophisticated subroutine is required. The
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LP-Newton method [5] for a box-constrained LP problem employs Wolfe’s algo-
rithm [24] to find the nearest point in a zonotope to a given point, and the LP-Newton
method [10] for the standard form LP problem (2) uses Wilhelmsen’s algorithm [23]
to find the nearest point in a polyhedral cone to a given point. The subroutines are
conjectured to be polynomial-time algorithms, and thus the LP-Newton methods for
LPs have the potential to be strongly polynomial-time algorithms. Although these
subroutines are powerful, it may be difficult to use them in Algorithm 1. In these
subroutines, extreme directions or points of the zonotope or polyhedral cone are
explicitly required. In our case, unfortunately, we do not have such explicit formulas.

Remark 2 Algorithm 1 is able to detect infeasibility of the LP problem (5), and hence
of the CP problem (1), if β(k) 
= b and γ (k−1/2) = γ (k) hold. It can be proved in a
manner similar to [10, Lemma 3.3].

3 Convergence analysis

In this section, we prove that a sequence generated by Algorithm 1 converges globally
to an optimum of the CP problem (1). We first state the following technical lemmas.

Lemma 1 Let {α(k)} be a sequence of nonnegative scalars and {z(k)} be defined by
z(k) := α(k)x(k) for each k. If Algorithm 1 generates an infinite sequence {x(k)} and
there exists an accumulation point of {z(k)}, then it belongs to K .

Proof Let us express z(k) as z(k) := (z1,(k), . . . , zp,(k)) = α(k)(x1,(k), . . . , xp,(k))

and let z∗ := (z1,∗, . . . , zp,∗) be an arbitrarily chosen accumulation point of
{z(k)}. Because of the compactness of base(K ∗

i ) for every i = 1, . . . , p, {v(k)} ⊆
base(K ∗) = ∏p

i=1 base(K
∗

i ) has at least one accumulation point in base(K ∗).
Denote this point by v∗ and express it as (v1,∗, v2,∗, . . . , vp,∗) ∈ ∏p

i=1 base(K
∗

i ).
Taking an appropriate subsequence {v(k)}k∈K , we can assume that (v(k), z(k)) con-
verges to (v∗, z∗) as k ∈ K → ∞.

Note that vi,(k) ∈ argminvi∈base(K ∗
i )(v

i)�zi,(k) holds because vi,(k) ∈
argminvi∈base(K ∗

i )(v
i)�xi,(k) and α(k) ≥ 0. Here, by letting k ∈ K →

∞, we obtain vi,∗ ∈ argminvi∈base(K ∗
i )(v

i)�zi,∗. Thus, to show z∗ ∈ K ,

it suffices to prove that (vi,∗) �zi,∗ ≥ 0 for each i. To this end, let us fix i and prove
(vi,(k))�zi,∗ ≥ 0 for any k ∈ K . Choosing some arbitrary k̂ ∈ K , it follows that

(vi,(k̂))�zi,(k) ≥ 0 for any k > k̂ in K , because zi,(k) = α(k)xi,(k) ∈ cone(V (k))∗ and

vi,(k̂) ∈ V
(k)
i for any k > k̂. Then, by letting k ∈ K → ∞, we obtain (vi,(k̂))�zi,∗ ≥

0. As k̂ was arbitrarily chosen from K , we conclude that (vi,(k))�zi,∗ ≥ 0 (k ∈ K)

holds. Finally, by forcing k ∈ K → ∞, we conclude that (vi,∗)�zi,∗ ≥ 0 for any i.
Therefore, z∗ ∈ K .
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Lemma 2 Assume that the optimal value of the CP problem (1) is finite and θ∗ be
the optimal value. If Algorithm 1 does not stop at the k-th iteration, we have

γ (k−1/2) ≤ γ (k) ≤ γ (k+1/2) ≤ θ∗.

Proof Let θ(k) ∈ R be the optimal value of the LSIP problem (3) with base(K ∗
i )

replaced by V
(k)
i for i = 1, . . . , p, which is a relaxation problem for the CP prob-

lem (1). Therefore, θ(k) ≤ θ∗ holds. In a similar manner to [10, Lemma 3.1], it can
be verified that

γ (k−1/2) ≤ γ (k) ≤ γ (k+1/2) ≤ θ(k).

Hence, we have the desired result.

Lemma 3 Assume that the optimal value of the CP problem (1) is finite. If
Algorithm 1 generates an infinite sequence {β(k)}, then limk→∞ β(k) = b holds.

Proof To show the desired result, we prove limk→∞ ‖β(k) − b‖ = 0. Note that
{γ (k−1/2)} and {γ (k)} converge to the same point by Lemma 2. In fact, the joint
sequence {γ (k−1/2)} ∪ {γ (k)} = {γ (1/2), γ (1), γ (1+1/2), γ (2), . . . } is a nondecreasing
sequence bounded above and thus convergent. Since {γ (k−1/2)} and {γ (k)} are both
convergent subsequences of the joint sequence, they must share the same limit point.
Thus, |γ (k+1/2) − γ (k−1/2)| → 0 and |γ (k) − γ (k−1/2)| → 0 as k → ∞. More-
over, as w(k) is the projection of w(k−1/2) onto the supporting hyperplane H(k) and
w(k+1/2) ∈ H(k), we have

|γ (k+1/2) − γ (k−1/2)| = ‖w(k+1/2) − w(k−1/2)‖ ≥ ‖w(k) − w(k−1/2)‖ =
∥∥∥∥
(

γ (k) − γ (k−1/2)

β(k) − b

)∥∥∥∥ .
From these facts, it follows that limk→∞ ‖β(k) − b‖ = 0.

In what follows, we prove the boundedness of {x(k)} and its global convergence to
an optimal solution. To this end, let us make the following assumption.

Assumption 1 The optimal solution set SP of the CP problem (1) is nonempty and
compact.

Remark 3 Assumption 1 holds if the dual CP problem (8) has an optimum and strictly
feasible solution, i.e., there exists some ŷ ∈ R

m such that c − A�ŷ ∈ int K ∗.

Proposition 1 If Algorithm 1 generates an infinite sequence {x(k)} and Assumption 1
holds, then the generated sequence {x(k)} is bounded.

Proof Denote the feasible domain of the CP problem (1) by FP. To show the
boundedness of {x(k)}, we assume to the contrary for a contradiction. Thus, there
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exists some subsequence {x(k)}k∈K ⊆ {x(k)} such that limk∈K→∞ ‖x(k)‖ = ∞ and
‖x(k)‖ 
= 0 for any k ∈ K . Then, we have

Ax(k)

‖x(k)‖ = β(k)

‖x(k)‖ ,
x(k)

‖x(k)‖ ∈ cone(V (k))∗, c�x(k)

‖x(k)‖ ≤ θ∗

‖x(k)‖ ,

where the second relation is derived from the fact that x(k) ∈ cone(V (k))∗ and
cone(V (k))∗ is a cone. Letting k ∈ K → ∞ in the above and choosing an arbitrary
accumulation point of {x(k)/‖x(k)‖}, denoted by d∗, implies that

Ad∗ = 0m, d∗ ∈ K , c�d∗ ≤ 0, ‖d∗‖ = 1, (10)

where the first relation follows from the boundedness of {β(k)} implied by Lemma 3
and the second one follows from Lemma 1 with z(k) = x(k)/‖x(k)‖ and α(k) =
1/‖x(k)‖. Choose x∗ ∈ SP arbitrarily and define � := {x∗ + αd∗ : α ≥ 0}. We then
deduce that � ⊆ SP from (10), because

A(x∗ + αd∗) = b, x∗ + αd∗ ∈ K , c�(x∗ + αd∗) ≤ c�x∗

for any α ≥ 0, where the second statement follows from the facts that x∗ ∈ K ,
αd∗ ∈ K , and K is a convex cone. Note that � is unbounded because ‖d∗‖ = 1,
which implies the unboundedness of SP. However, this contradicts Assumption 1.
As a consequence, {x(k)} is bounded.

Theorem 1 Under Assumption 1, Algorithm 1 stops in a finite number of iterations
and returns an optimal solution, or it generates an infinite sequence {x(k)} such that
any accumulation point of {x(k)} is an optimal solution of the CP problem (1).

Proof First, we assume Algorithm 1 terminates at the k-th iteration. Since we are
assuming the feasibility of the CP problem (1) here, it terminates because condi-
tions β(k) = b and V (k+1) = V (k) are simultaneously satisfied. Because β(k) = b and
x(k) ∈ Ācone(V (k)), we haveAx(k) = β(k) = b and (vi)�xi,(k) ≥ 0 (vi ∈ V

(k)
i ). This

means the feasibility of x(k) for the LP problem (5). In addition, from V (k+1) = V (k),
we can deduce (vi)�xi,(k) ≥ 0 (vi ∈ base(K ∗

i )) for each i. Therefore, x(k) is feasi-
ble for the LSIP problem (3) and the CP problem (1), and hence c�x(k) ≥ θ∗ follows,
where θ∗ denotes the optimal value of the CP problem (1). On the other hand, from
Lemma 2, we have c�x(k) = γ (k) ≤ θ∗. Therefore, we obtain c�x(k) = θ∗ and
conclude that x(k) is optimal for the CP problem (1).

Hereinafter, we assume {x(k)} is an infinite sequence. From Proposition 1, {x(k)}
is bounded and has an accumulation point. Choose an arbitrary accumulation point
and denote it by x∗. Without loss of generality, we may assume that limk→∞ x(k) =
x∗ by taking a subsequence if necessary. Now, let us recall that Ax(k) = β(k) and
x(k) ∈ cone(V (k))∗ hold for any k. Together with Lemmas 1 and 3, this implies
that Ax∗ = b and x∗ ∈ K , that is, x∗ is feasible for the CP problem (1). Hence,
c�x∗ ≥ θ∗ follows. On the other hand, by Lemma 2, it holds that c�x(k) = γ (k) ≤ θ∗
for each k, and by taking the limit therein, we obtain c�x∗ ≤ θ∗. Therefore, we have
c�x∗ = θ∗. Thus, we conclude that x∗ is optimal for the CP problem (1).
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Remark 4 According to [10, Theorem 3.1], for the case with K = R
n+, the number

of iterations of the algorithm is, at most, the number of faces of the cone ĀK .

4 Primal-dual algorithm

4.1 Description of the algorithm

In Section 3, we proposed the ALPN method for solving the CP problem (1). In this
section, we consider a primal-dual algorithm for the ALPN method, which solves the
CP problem (1) and the dual problem (8) simultaneously.

Our primal-dual algorithm is described in Algorithm 2, where {x(k)}, {γ (k−1/2)},
{γ (k)}, and {β(k)} represent sequences generated by Algorithm 1. Since Algorithm 2
uses sequences generated by Algorithm 1, they are executed jointly. Note that
(1; −y(k)) is the normal vector of the supporting hyperplane H(k) of ĀK at Āx.
Supporting hyperplanes of ĀK play a crucial role as the following property.

Proposition 2 Let x∗ ∈ K be an optimum of the CP problem (1) and H ∗ be a
supporting hyperplane of ĀK at Āx∗ ∈ ĀK . Suppose that (1; −y∗) is a normal
vector to H ∗. Then, together with x∗, y∗, and s∗ := c − A�y∗ satisfy the Karush–
Kuhn–Tucker (KKT) conditions of the CP problem (1):

Ax∗ = b, A�y∗ + s = c, x∗ ∈ K , s∗ ∈ K ∗, (s∗)�x∗ = 0. (11)

In particular, y∗ is an optimum of the dual CP problem (8).

Proof As H ∗ is a supporting hyperplane of ĀK at Āx∗ = (c�x∗; Ax∗) and x∗
solves the CP problem (1), we have

Āx∗ ∈ argmin
w∈ĀK

(1, −(y∗)�)w.

Hence, it holds that
x∗ ∈ argmin

x∈K
(c − A�y∗)�x. (12)
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By the KKT conditions of the problem (12), there exists some s∗ ∈ R
n such that

s∗ = c − A�y∗, x∗ ∈ K , s∗ ∈ K ∗, (s∗)�x∗ = 0,

which, together with Ax∗ = b, implies the system (11). The optimality of y∗ for the
dual CP problem (8) is obvious.

4.2 Convergence analysis

In our analysis of the primal-dual algorithm, we make the following assumption:

Assumption 2 Slater’s constraint qualification holds for the CP problem (1), i.e.,
there exists some x̂ ∈ R

n such that x̂ ∈ int K and Ax̂ = b, and the matrix A is of
full row rank.

Under Assumptions 1 and 2, it is guaranteed that the optimal set of the dual CP
problem (8) is nonempty and compact.

Remark 5 In Proposition 2, by assuming the existence of a supporting hyperplaneH ∗
of ĀK at Āx∗ ∈ ĀK that is not parallel to L, we proved the existence of a KKT
point. We can derive the assumption of such a supporting hyperplane from Assump-
tion 2 (details are omitted here) but the converse is not true. Hence, we can regard the
assumption of the existence of such a supporting hyperplane as a weaker constraint
qualification than Slater’s one and the full rank assumption.

Here, we prove the global convergence of Algorithm 2 under Assumptions 1 and
2.

Theorem 2 Under Assumptions 1 and 2, Algorithm 2 stops in a finite number of
iterations and returns an optimal solution, or it generates an infinite sequence {y(k)}
such that {y(k)} is bounded and any accumulation point of {y(k)} solves the dual CP
problem (8).

Proof Since the case of the finite termination is obvious, we assume {y(k)} is an infi-
nite sequence in what follows. We first show the boundedness of {y(k)}. To derive
a contradiction, suppose that {y(k)} is unbounded, and hence there exists some sub-
sequence {y(k)}k∈K such that ‖y(k)‖ → ∞ and y(k) 
= 0m for any k ∈ K . Note
that H(k) is a supporting hyperplane of Ācone(V (k))∗ at Āx(k) that has the normal
vector (1; −y(k)). Then, by the definition of x(k), we find that

Āx(k) ∈ argmin
w∈Ācone(V (k))∗

(1, −(y(k))�)w,

and thus

x(k) ∈ argmin
x∈cone(V (k))∗

(c − A�y(k))�x.
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Table 1 Performance of the adaptive LP-Newton method

Dimensions # hyperplanes

m n (n1, n2, . . . , np) Time [s] # iter Initial Final

10 200 (1, 1, . . . , 1) 0.1 3.5 200.0 200.0

10 200 (2, 2, . . . , 2) 0.3 3.8 200.0 385.5

10 200 (5, 5, . . . , 5) 7.3 19.1 320.0 1019.4

10 200 (10, 10, . . . , 10) 58.4 62.5 360.0 1580.9

10 200 (20, 20, . . . , 20) 167.6 141.1 380.0 1779.4

10 200 (100, 100) 136.8 352.0 396.0 1098.0

10 200 200 48.1 274.4 398.0 671.4

10 350 (1, 1, . . . , 1) 0.1 3.6 350.0 350.0

10 350 (2, 2, . . . , 2) 0.9 3.5 350.0 592.8

10 350 (5, 5, . . . , 5) 34.0 19.2 560.0 1786.6

10 350 (10, 10, . . . , 10) 303.0 64.7 630.0 2849.2

10 350 (35, 35, . . . , 35) 1911.0 281.9 680.0 3489.0

10 350 (175, 175) 462.4 414.7 696.0 1523.4

10 350 350 104.4 217.3 698.0 914.3

10 500 (1, 1, . . . , 1) 0.1 3.8 500.0 500.0

10 500 (2, 2, . . . , 2) 2.0 3.5 500.0 805.7

10 500 (5, 5, . . . , 5) 98.0 19.9 800.0 2638.5

10 500 (10, 10, . . . , 10) 856.6 66.0 900.0 4135.5

10 500 (50, 50, . . . , 50) 5618.0 372.5 980.0 4694.8

10 500 (250, 250) 866.0 398.1 996.0 1790.1

10 500 500 183.6 172.7 998.0 1169.7

50 200 (1, 1, . . . , 1) 0.0 4.0 200.0 200.0

50 200 (2, 2, . . . , 2) 0.3 4.0 200.0 461.8

50 200 (5, 5, . . . , 5) 5.2 16.8 320.0 947.6

50 200 (10, 10, . . . , 10) 26.3 47.9 360.0 1297.9

50 200 (20, 20, . . . , 20) 67.3 105.3 380.0 1423.0

50 200 (100, 100) 62.7 257.1 396.0 908.2

50 200 200 30.5 238.1 398.0 635.1

50 350 (1, 1, . . . , 1) 0.1 4.0 350.0 350.0

50 350 (2, 2, . . . , 2) 1.3 3.9 350.0 752.3

50 350 (5, 5, . . . , 5) 27.3 17.2 560.0 1690.5

50 350 (10, 10, . . . , 10) 184.6 54.4 630.0 2499.0

50 350 (35, 35, . . . , 35) 675.8 200.5 680.0 2674.9

50 350 (175, 175) 235.7 308.3 696.0 1310.6

50 350 350 64.0 164.6 698.0 861.6

50 500 (1, 1, . . . , 1) 0.1 3.9 500.0 500.0

50 500 (2, 2, . . . , 2) 3.2 3.8 500.0 1026.4

50 500 (5, 5, . . . , 5) 80.1 17.9 800.0 2487.1

50 500 (10, 10, . . . , 10) 548.5 56.4 900.0 3669.7
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Table 1 (continued)

Dimensions # hyperplanes

m n (n1, n2, . . . , np) Time [s] # iter Initial Final

50 500 (50, 50, . . . , 50) 2287.4 274.9 980.0 3719.0

50 500 (250, 250) 392.6 281.0 996.0 1556.0

50 500 500 125.5 140.3 998.0 1137.3

100 200 (1, 1, . . . , 1) 0.0 4.0 200.0 200.0

100 200 (2, 2, . . . , 2) 0.3 4.0 200.0 481.9

100 200 (5, 5, . . . , 5) 3.8 14.9 320.0 875.7

100 200 (10, 10, . . . , 10) 13.6 38.1 360.0 1102.0

100 200 (20, 20, . . . , 20) 30.3 78.4 380.0 1154.0

100 200 (100, 100) 35.3 195.4 396.0 784.8

100 200 200 24.5 211.5 398.0 608.5

100 350 (1, 1, . . . , 1) 0.1 4.0 350.0 350.0

100 350 (2, 2, . . . , 2) 1.5 4.0 350.0 828.4

100 350 (5, 5, . . . , 5) 24.1 16.6 560.0 1645.8

100 350 (10, 10, . . . , 10) 114.6 46.9 630.0 2236.5

100 350 (35, 35, . . . , 35) 397.4 166.1 680.0 2331.0

100 350 (175, 175) 159.0 257.8 696.0 1209.6

100 350 350 87.9 212.3 698.0 909.3

100 500 (1, 1, . . . , 1) 0.1 4.0 500.0 500.0

100 500 (2, 2, . . . , 2) 5.9 4.0 500.0 1195.9

100 500 (5, 5, . . . , 5) 72.2 17.0 800.0 2399.6

100 500 (10, 10, . . . , 10) 388.0 50.2 900.0 3360.0

100 500 (50, 50, . . . , 50) 1286.0 223.6 980.0 3206.0

100 500 (250, 250) 399.2 290.1 996.0 1574.2

100 500 500 120.4 139.4 998.0 1136.4

Using the KKT conditions and the definition of x(k) again, we have

x(k) ∈ cone(V (k))∗, c −A�y(k) ∈ cone(V (k)), (c −A�y(k))�x(k) =0, Ax(k) =β(k).
(13)

As cone(V (k)) ⊆ K ∗ follows from K ⊆ cone(V (k))∗, we find that c − A�y(k) ∈
K ∗. Divide c−A�y(k) ∈ K ∗ and (c−A�y(k))�x(k) = 0 by ‖y(k)‖ and let k ∈ K →
∞ in (13). Choose an accumulation point of {y(k)/‖y(k)‖} and denote it by d∗. Let
x∗ be an accumulation point of {x(k)} (recall Theorem 1). Without loss of generality,
we may assume that limk∈K→∞(x(k), y(k)/‖y(k)‖) = (x∗, d∗). Then, noting that
(c − A�y(k))/‖y(k)‖ ∈ K ∗ for any k ∈ K and limk→∞ β(k) = b by Lemma 3, it
holds that

x∗ ∈ K , −A�d∗ ∈ K ∗, (Ax∗)�d∗ = 0, Ax∗ = b. (14)

Here, let y∗ be an arbitrary optimum of the dual CP problem (8). Then, the set � :=
{y∗+αd∗ : α ≥ 0} is contained in the optimal solution set of the dual CP problem (8),
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denoted by SD. This is shown as follows. Fix an arbitrary value of α ≥ 0. Using
the second relation in (14) and c − A�y∗ ∈ K ∗ together with the fact that K ∗ is a
closed convex cone, we have c − A�(y∗ + αd∗) ∈ K ∗, and so y∗ + αd∗ is feasible
for the dual CP problem (8). Moreover, we can deduce from (14) that

b�(y∗ + αd∗) = b�y∗ + α(Ax∗)�d∗ = b�y∗,

which indicates that the optimal value of the dual CP problem (8) is also attained at
y∗ + αd∗. Therefore, � ⊆ SD. Note that � is unbounded because ‖d∗‖ 
= 0, which
implies the unboundedness of SD. However, this contradicts the boundedness of SD
derived from Assumptions 1 and 2. Hence, {y(k)} is bounded.

The remaining part of the claim is easy to prove by taking the limit in (13) with
the second relation replaced by c − A�y(k) ∈ K using cone(V (k)) ⊆ K ∗.

5 Numerical results

We conducted numerical experiments to verify the performance of our proposed
algorithm for SOCP problems. We implemented the ALPN method with MATLAB
R2018a (9.4.0.813654) on a workstation running CentOS release 6.10 with eight Intel
Xeon CPUs (E3-1276 v3 3.60 GHz) and 32 GB RAM.

In our experiments, we solved the CP problem (1) with Ki := K ni

SOC for each i,
which is SOCP. We used an initial polyhedral approximation of the i-th block K ni

SOC

of K with ni ≥ 2 given by V
(1)
i := ⋃ni−1

j=1 {ej , −ej }, where ej denotes the j -th col-

umn of the identity matrix of appropriate size. Note that V
(1)
i defined above exactly

represents K ni

SOC if ni = 1, 2. In the projection step, we solved Problem (9) using the
MATLAB function lsqlin. We stopped the algorithm when an approximate pri-
mal optimal solution was found, namely, a primal solution x(k) at the k-th iteration
satisfies

max{‖Ax(k) − b‖, p
max
i=1

‖x̄i,(k)‖ − x
i,(k)
1 } ≤ 10−4.

We randomly generated the following instances of the SOCP problem. First, we
set m, p, and (n1, n2, . . . , np) and randomly generated each element of A from the
standard Gaussian distribution. Next, we set b = Ax̃ and c = A�e − s̃, where e is
the vector whose elements are all ones and x̃i = s̃i := e1 for each i. Note that the
two points x̃ and s̃ are interior feasible solutions of the primal and dual problems,
respectively.

5.1 Performance of the adaptive LP-Newtonmethod

For the ALPN method, Table 1 presents the average runtime, number of iterations,
and number of hyperplanes in the initial and final approximations of the second-order
cone over ten executions. From this table, we can make the following observations:

– When K = ∏p

i=1 K ni

SOC is polyhedral-like, i.e., p ≈ n and ni ≈ 1 for all i =
1, . . . , p, the ALPN method works well. The algorithm gives a good polyhedral
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Table 2 Comparison with SDPT3

Dimensions Time [s]

m n (n1, n2, . . . , np) ALPN SDPT3

1400 1500 (3, 3, . . . , 3) 177.3 366.6

1700 1800 (3, 3, . . . , 3) 260.4 638.4

2000 2100 (3, 3, . . . , 3) 363.4 970.0

approximation of K with a small number of hyperplanes. As a result, there are
few iterations and the computation time is short.

– When K = ∏p

i=1 K ni

SOC is medium-dimensional, i.e., 1 � p � n and 1 �
ni � n for all i = 1, . . . , p, the ALPN method becomes slow, although it gets
better when K = ∏p

i=1 K ni

SOC is high-dimensional, i.e., p ≈ 1 and ni ≈ n

for all i = 1, . . . , p. The medium-dimensional K requires many hyperplanes to
obtain a good polyhedral approximation.

– The total dimension n of the variables seems to be positively correlated with the
runtime, although the runtime of the original LP-Newton method for LP is almost
independent of n [5]. This difference arises from the solution methods of the
minimum norm point step. In our implementation, we solve the QP problem (9)
using the MATLAB function lsqlin, for which the computation time depends
on n.

– Surprisingly, the number m of linear constraints is negatively correlated with the
runtime. This might be because the dimension of the feasible region is low for
large values of m, and this region can then be approximated by a small number
of hyperplanes.

5.2 Comparison with a primal-dual interior-point method

We also compared our proposed ALPN method with a primal-dual interior-point
method. In this experiment, we solved the randomly generated instances using our
implementation of ALPN and SDPT3 [22], which is a MATLAB implementation
of the primal-dual interior-point method. Basically, SDPT3 was found to be faster
than the ALPN method. However, the computation time of SDPT3 increases with m,
whereas that of ALPN decreases as m and p increase. For instances with large values
of m and p, ALPN outperformed SDPT3. The results are presented in Table 2, which
shows the average runtime of the ALPN and SDPT3 methods over ten runs.

6 Conclusions

In this paper, we have developed an LP-Newton method for the CP problem (1)
through a transformation into an LSIP problem with an infinite number of lin-
ear inequality constraints. The proposed ALPN algorithm produces a sequence by
sequentially projecting a current point onto a polyhedral cone arising from finitely
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many linear inequality constraints chosen from the constraints of the LSIP problem.
We have also proposed a dual algorithm for the ALPN method for solving the dual
of the CP problem. Under some mild assumptions, we have proved that an arbi-
trary accumulation point of a couple of sequences generated by the two proposed
algorithms are optima of the CP problem and its dual. Finally, we have conducted
some numerical experiments for SOCP problems and compared the performance of
our algorithms with that of the primal-dual interior-point method. Our future work
includes analysis under weaker assumptions, for example, in the absence of Slater’s
constraint qualification, or infeasible cases.
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