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Abstract
This paper is devoted to the explicit pseudo two-step exponential Runge–Kutta (EPT-
SERK) methods for the numerical integration of first-order ordinary differential
equations. These methods inherit the structure of explicit pseudo two-step Runge–
Kutta methods and explicit exponential Runge–Kutta methods. We analyze the order
conditions and the global errors of the new methods. The new methods are of order
s + 1 with s-stages for some suitable nodes. Numerical experiments are reported to
show the convergence and the efficiency of the new methods.
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1 Introduction

In this paper, we are concerned with the numerical integration of the system of the
form {

y′(t) + Ay(t) = g(y(t)), t ∈ [t0, tend ],
y(t0) = y0,

(1.1)

where g : Rm → Rm is an analytic function and A ∈ Rm×m is a symmetric positive
definite or skew-Hermitian with eigenvalues of large modulus. Accordingly, in this
case, e−tA is exactly the matrix exponential function and ‖e−tA‖ ≤ C, t ≥ 0. Such
problems frequently arise in different fields of applied science such as fluid mechan-
ics, quantum mechanics, and spatial semi-discretization of semilinear parabolic
problems. These problems can be solved with the adapted methods by considering
the special structure of the problems (see, e.g., [7, 23, 27]). The idea of exponential
integrators is not a new one and has been discussed by many authors [14, 20, 24, 25].
However, it has been widely perceived that exponential Runge–Kutta (ERK) methods
possess more advantages over the classical Runge–Kutta methods for the numerical
integration of (1.1).

Generally, the problem (1.1) may have the following equivalent form{
y′(t) = f (y(t)), t ∈ [t0, tend ],
y(t0) = y0,

(1.2)

with f (y) = −Ay + g(y) and many well-known numerical methods have been pre-
sented for (1.2) in the scientific literatures. Compared with multistep methods whose
implementation requires a series of starting values, Runge–Kutta (RK) methods are
favorable because the initial values are available for them to run [17–19]. Runge–
Kutta methods were initially proposed for (1.2) by Runge [21] and Kutta [15]. Since
then, many Runge–Kutta methods with special structure, such as implicit methods
with strong stability, exponential methods for stiff problems, trigonometrically fit-
ted methods for oscillatory problems, and smyplectic/energy-preserving methods for
Hamiltonian systems, were investigated [8, 9].

With the development of parallel computers, several kinds of parallel RK-type
methods were designed and studied in [3–6]. In fact, the parallel methods consume
less time than the sequential methods with the same order accuracy. Cong et al. pre-
sented a general class of explicit pseudo two-step Runge–Kutta (EPTSRK) methods
as well as explicit pseudo two-step Runge–Kutta–Nyström (EPTSRKN) methods for
the numerical integration of first-order differential equations and second-order differ-
ential equations, respectively. In [16], Li et al. constructed extended explicit pseudo
two-step RKN methods for second-order oscillatory system and derived the error
bounds of the new methods.

In this paper, we focus on the construction of explicit pseudo two-step exponen-
tial RK methods (EPTSERK) adapted to the special structure of (1.1). This paper is
organized as follows: Section 2 summarizes some basic results for pseudo two-step
Runge–Kutta methods and the explicit pseudo two-step exponential Runge–Kutta
methods. The local truncation error and order conditions are analyzed in Section 3.
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In Section 4, we present the global error analysis of the new method. Several prac-
tical numerical methods are constructed in Section 5. In Section 6, the numerical
experiments are reported to show the efficiency of the new methods. The concluding
remarks are included in the last section.

2 Explicit pseudo two-step exponential Runge–Kutta methods

As is known, the solution of the semilinear problem (1.1) satisfies the variation-of-
constants formula

y(tn + h) = e−hAy(tn) +
∫ h

0
e−(h−τ)Ag(y(tn + τ))dτ, (2.1)

which motivates the following numerical method

yn+1 = ezyn + h

s∑
i=1

bi(z)g(y(tn + cih)),

with z = −hA. We call this an exponential quadrature rule with weights bi(z) and
nodes ci[14, 20]. The order conditions of order p are given by

s∑
i=1

bi(z)
c
j−1
i

(j − 1)! = ϕj (z), j = 1, · · · , p,

where ϕj (z) is determined by

ϕj (z) =
∫ 1

0
e(1−θ)z θj−1

(j − 1)!dθ, j ≥ 1,

which have the following property:

ϕj+1(z) = ϕj (z) − ϕj (0)

z
, ϕ0(z) = ez.

We approximate the integral (2.1) with some quadrature formulas and obtain the
following explicit pseudo two-step exponential Runge–Kutta methods.

Definition 1 An s-stage explicit pseudo two-step exponential Runge–Kutta method
for the numerical integration (1.1) is defined as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y
[n]
i = ecizyn + h

s∑
j=1

aij (z)g(Y
[n−1]
i ), i = 1, · · · , s

yn+1 = ezyn + h
s∑

i=1
bi(z)g(Y

[n]
i ),

(2.2)

where aij (z), bi(z) with i, j = 1, . . . n are matrix-valued function of z = −hA and

Y
[n]
i ≈ y(tn + cih) for i = 1, · · · , s. The method (2.2) can be displayed by the

following Butcher Tableau
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It follows from g(y) = f (y) − Ay that the classical explicit pseudo two-
step Runge–Kutta methods considered in [3] are recovered, once A → 0. It
should be noted that EPTSERK is a new kind of ERK method which only needs
to compute s function evaluations for each step. These s function evaluations can
be computed in parallel on s processors. Therefore, the s-stage EPTSERK only
requires one sequential function evaluation per step evaluated on an s-processor
computer.

3 Order conditions of the EPTSERKmethods

Definition 2 Suppose that the n−th step numerical solution of (2.2) satisfies yn =
y(tn) and Y

[n−1]
i = y(tn−1 + cih) + O(hp1+1), then the methods are said to be of

step order p = p2 and stage order q = min{p1, p2}, if

y(tn + cih) − Y
[n]
i = O(hp1+1), y(tn + h) − yn+1 = O(hp2+1).

The main task in this section is to derive the order conditions of the method (2.2),
combining the exact solution with (2.2) yields

y(tn + cih) = e−cihAy(tn) + h

s∑
j=1

aij (z)ĝ(tn + (cj − 1)h) + �ni,

y(tn + h) = e−hAy(tn) + h

s∑
i=1

bi(z)ĝ(tn + cih) + δn+1. (3.1)

in which ĝ(t) = g(y(t)) and the expression of �ni can be given by

�ni = h

∫ ci

0
e−(ci−τ)hAĝ(tn + hτ)dτ − h

s∑
j=1

aij (z)ĝ(tn + (cj − 1)h)

= cih

∫ 1

0
e−ci (1−τ)hAĝ(tn + cihτ)dτ − h

s∑
j=1

aij (z)ĝ(tn + (cj − 1)h)
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Substituting ĝ(tn + cihτ) and ĝ(tn + (ci − 1)h) with their Taylor series
gives

�ni = cih

∫ 1

0
e−ci (1−τ)hA

∞∑
m=0

cm
i hmτm

m! ĝ(m)(tn)dτ −h

s∑
j=1

aij (z)

∞∑
m=0

(ci −1)mhm

m! ĝ(m)(tn)

=
∞∑

m=0

hm+1
(
cm+1
i

∫ 1

0
e−ci (1−τ)hA τm

m! dτ −
s∑

j=1

aij (z)
(ci − 1)m

m!
)
ĝ(m)(tn)

=
∞∑

m=0

hm+1
(
cm+1
i ϕm+1(ciz) −

s∑
j=1

aij (z)
(ci − 1)m

m!
)
ĝ(m)(tn). (3.2)

Likewise, we have

δn+1 = h

∫ 1

0
e−(1−τ)hA

∞∑
m=0

hmτm

m! ĝ(m)(tn)dτ − h

s∑
i=1

bi(z)

∞∑
m=0

cm
i hm

m! ĝ(m)(tn)

=
∞∑

m=0

hm+1
(∫ 1

0
e−(1−τ)hA τm

m! dτ −
s∑

i=1

bi(z)
cm
i

m!
)
ĝ(m)(tn)

=
∞∑

m=0

hm+1
(
ϕm+1(z) −

s∑
i=1

bi(z)
cm
i

m!
)
ĝ(m)(tn). (3.3)

It can be observed that for arbitrary numbers p1 and p2, the error �ni = O(hp1+1)

and δn+1 = O(hp2+1) if

cm+1
i ϕm+1(ciz) −

s∑
j=1

aij (z)
(cj − 1)m

m! = 0, m = 0, · · · , p1 − 1

ϕm+1(z) −
s∑

i=1

bi(z)
cm
i

m! = 0, m = 0, · · · , p2 − 1. (3.4)

We will discuss the relation between (3.4) and the order of the EPTSERK method
(2.2) in the next theorem.

Theorem 1 Suppose that the function g(y) is Lipschitz continuous on y and the
coefficients of EPTSERK (2.2)) satisfies (3.4), then the method EPTSERK (2.2) is of
step order p = min{p1 + 1, p2} and stage order q = min{p1, p2}.
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Proof Given the numerical solution of methods EPTSERK (2.2) satisfying yn =
y(tn) and Y

[n−1]
i = y(tn−1 + cih) + O(hp1+1). We derive the following error for

order estimation

y(tn + cih) − Y
[n]
i = y(tn + cih) − e−cihA − h

s∑
j=1

aij (z)g(y(tn−1 + cjh))

+ h

s∑
j=1

aij (z)
(
g(y(tn−1 + cjh)) − g(Y

[n−1]
i )

)

= �ni + O(h)

s∑
j=1

(
y(tn−1 + cjh) − Y

[n−1]
i

)
= O(hp1+1) + O(hp1+2) = O(hp1+1). (3.5)

Using a similar way, we have

y(tn + h) − yn+1 = y(tn + h) − e−hA − h

s∑
i=1

bi(z)g(y(tn + cih))

+ h

s∑
i=1

bi(z)
(
g(y(tn + cih)) − g(Y

[n]
i

)

= δn+1 + O(h)

s∑
i=1

(
y(tn + cih) − Y

[n]
i

)
= O(hp2+1) + O(hp1+2). (3.6)

In light of (3.5), (3.6), and Definition 2, we prove the theorem.

4 Global error analysis

In this section, we will conduct the global error analysis of the new methods which
satisfy the conditions (3.4). In what follows, we will use the Euclidean norm and
its induced matrix norm which will be denoted by ‖ · ‖. For the error analysis, the
Gronwall inequality (see, e.g., [13]) is useful.

Lemma 1 Let α, φ, ϕ, and χ be nonnegative functions defined for t = n�t, n =
0, 1, . . ., N and assume that χ is nondecreasing. If

φk + ϕk ≤ χk + �t

k−1∑
n=1

αnφn, k = 1, 2, . . ., N,

and if there is a positive constant ĉ such that �t

k−1∑
n=1

αn ≤ ĉ, then

φk + ϕk ≤ χke
ĉk�t , k = 1, 2, . . ., N,
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where the subscript indices k and n denote the values of function at tk = k�t and
tn = n�t , respectively.

To begin with the global error, we introduce the notations

en = y(tn) − yn, Eni = y(tn + cih) − Y
[n]
i ,

which have following error recursions

Eni = ecizen + h

s∑
j=1

aij (z)
(
g
(
y(tn + (cj − 1)h)

) − g
(
Y

[n]
i

)) + �ni, i = 1, . . ., s,

(4.1)
and

en+1 = ezen + h

s∑
j=1

bi(z)
(
g
(
y(tn + (cj − 1)h)

) − g
(
Y

[n]
i

)) + δn+1. (4.2)

Theorem 2 Let ‖En‖ = max
1≤i≤s

‖Eni‖ and ‖�n‖ = max
1≤i≤s

‖�ni‖, and suppose that

the function g(y) is Lipschitz continuous on y and A is a symmetric positive definite
or skew-Hermitian in the initial value problems (1.1). Furthermore, we assume that
‖g′(y)‖ is uniformly bounded, and then for the EPTSERK method (2.2), we have

‖En‖ ≤
s∑

k=1

(
(C1h)n−k

(‖ek‖ + ‖�k‖
)) + (hC1)

n‖E0‖, (4.3)

where C1 depends on g′(y) but is independent of ‖A‖.

Proof Applying the mean value theorem yields

‖g(
y(tn + (cj − 1)h)

) − g
(
Y

[n]
i

)‖ ≤ Cf ‖Eni‖,
where Cf depends on g′(y) but is independent of ‖A‖. It follows from (4.1) that

‖Eni‖ ≤ ‖en‖ + h

s∑
j=1

‖aij (z)‖Cf ‖En−1,j‖ + ‖�ni‖, i = 1, . . ., s.

Therefor, we obtain

‖En‖ ≤ ‖en‖ + hC1‖En−1‖ + ‖�n‖
≤ ‖en‖ + hC1(‖en−1‖ + hC1‖En−2‖ + ‖�n−1‖) + ‖�n‖
≤ (‖en‖ + hC1‖en−1‖ + · · · + (hC1)

n−1‖e1‖) + (hC1)
n‖E0‖

+(‖�n‖ + hC1‖�n−1‖ + · · · + (hC1)
n−1‖�1‖)

=
n∑

k=1

(
(C1h)n−k

(‖ek‖ + ‖�k‖
)) + (hC1)

n‖E0‖.
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Theorem 3 Under the assumption of Theorem 2, we consider the s-stages EPTSERK
method (2.2) with the coefficients given by (3.4) and the stepsize is sufficient small. If

‖y(t1) − y1‖ ≤ c0h
p, ‖y(t0 + cih) − Y

[0]
i ‖ ≤ c0h

p,

with p = min{p1, p2}, then we have
‖y(tn) − yn‖ ≤ Chp, 2 ≤ n ≤ tend − t0

h
,

where the constant C depends on s, tend , ‖g′(y)‖ but is independent of ‖A‖ and n.

Proof It follows from (4.2) that

‖en‖ ≤ ‖en−1‖ + h

s∑
i=1

‖bi(z)‖Cf ‖En−1,j‖ + ‖�n‖

≤ ‖en−1‖ + hC2‖En−1‖ + ‖�n‖‖
≤ ‖en−2‖ + C2h‖En−2‖ + ‖�n−1‖ + hC2‖En−1‖ + ‖�n‖‖

≤ ‖e1‖ + C2h
( n−1∑

j=1

‖Ej‖
)

+
n−1∑
j=1

‖δj+1‖‖

(4.4)

in which C2 depends on ‖g′(y)‖ but is independent of ‖A‖. For the sufficiently small
h > 0, we have

n−1∑
j=1

‖Ej‖ ≤
n−1∑
j=1

(

j∑
k=1

(
(C1h)j−k

(‖ek‖ + ‖�k‖
)) +

n−1∑
j=1

(hC1)
j‖E0‖)

≤
n−1∑
j=1

n−1−j∑
k=0

(hC1)
k(‖ej‖ + ‖�j‖) +

n−1∑
j=1

(hC1)
j‖E0‖

≤
n−1∑
j=1

C̄h
(‖ej‖ + ‖�j‖

) + ¯̄C‖E0‖. (4.5)

Substituting (4.5) into (4.4) yields

‖en‖ ≤
n−1∑
j=1

C3h‖ej‖ + C4h
p. (4.6)

According to the computation of (4.4), (4.5), and (4.6), it is clear that C3 and C4
depend on s, ‖g′(y)‖, and tend but are independent of n and ‖A‖. In Lemma (1), we
set

φn = ‖en‖, ϕn = 0, χn = C4h
p, αn = C3.

We then have

h

n−1∑
j=1

αj = h

n−1∑
j=1

C3 ≤ Ĉ.
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Applying the Gronwall Lemma to (4.6) obtains

‖en‖ ≤ C4h
peĈnh ≤ Chp,

where C depends on ‖g′(y)‖ but is independent of ‖A‖.

5 Construction of themethods

Next, we will construct some EPTSERK methods (2.2) based on the condition (3.4).
Suppose that the nodes ci for i = 1, . . . , s are distinct and p1 = p2 = s in (3.4), we
have

cm+1
i ϕm+1(ciz) −

s∑
j=1

aij (z)
(cj − 1)m

m! = 0, m = 0, · · · , s − 1

ϕm+1(z) −
s∑

i=1

bi(z)
cm
i

m! = 0, m = 0, . . ., s − 1. (5.1)

The coefficients aij (z) and bi(z) can be derived from (5.1) with the errors

�ni = O(hs+1), δn+1 = O(hs+1).

Therefore, the method is of step order and stage order s.
In order to express the parameters vector b(z) and matrix A(z) simplified in terms

of the collocation vector c, we give the following notes

P1 := (
cϕ1(cz), c

2ϕ2(cz), · · · , csϕs(cz)
)
, Q1 := (

e, c − e, · · · ,
(c − e)s−1

(s − 1)!
)
,

P2 := (
ϕ1(z), ϕ2(z), · · · , ϕs(z)

)
, Q2 := (

e, c, · · · ,
cs−1

(s − 1)!
)
,

with e = (1, · · · , 1)T . Then, the order conditions (5.1) have the following equivalent
form

A(z)(Q1 ⊗ I ) = P1, bT (z)(Q2 ⊗ I ) = P2, (5.2)

where I is the identity matrix with the same order as z. Since the nodes ci, i = 1. . ., s
are distinct, the matrices Q1 and Q2 are nonsingular. It follows from (5.2) that

A(z) = P1(Q1 ⊗ I )−1, bT (z) = P2(Q2 ⊗ I )−1. (5.3)

Although (5.3) provides a way to determine the coefficients of method (2.2), it is
very complicated to solve the equation (5.3) for large s and d . The following theorem
provides an alternative way to obtain the coefficients of the EPTSERK method (2.2)
which satisfy the order conditions (5.1).
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Theorem 4 The following coefficients

aij (z) =
∫ 1+ci

1
e(1+ci−τ)zlj (τ )dτ,

bi(z) =
∫ 1

0
e(1−τ)zli(τ )dτ, (5.4)

with the Lagrange interpolation function li (τ ) =
s∏

j=1,j �=i

τ−cj

ci−cj
, satisfy order

conditions (5.1).

Proof Since for distinct nodes ci , the coefficients can be obtained uniquely from
(5.1), we only need to verify the correction of (5.1) for the coefficients determined in
(5.4). For m = 0, . . ., s − 1, we obtain

s∑
j=1

aij (z)
(cj − 1)m

m! =
s∑

j=1

(∫ 1+ci

1
e(1+ci−τ)zlj (τ )dτ

)
(cj − 1)m

m!

=
∫ 1+ci

1
e(1+ci−τ)z 1

m!
s∑

j=1

lj (τ )(cj − 1)mdτ

=
∫ 1+ci

1
e(1+ci−τ)z 1

m! (τ − 1)mdτ .

Let τ = 1 + uci , and we have

s∑
j=1

aij (z)
(cj − 1)m

m! =
∫ 1+ci

1
e(1+ci−τ)z 1

m! (τ − 1)mdτ

= cm+1
i

∫ 1

0
e(1−u)ciz

um

m! du = cm+1
i ϕm+1(ciz).

This implies that the (5.1) holds for aij (z). Similarly, we can prove that bi(z) satisfies
(5.1). It should be noted that the condition (5.1) defines a method of order at least
s for distinct ci . It is possible to obtain order p beyond s by some orthogonality
assumptions. Thus, we give the following theorem.

Theorem 5 For any distinct collocation points ci , the EPTSERK method (2.2) with
s−stage is of order p = s and stage order q = s. It has order p = s + 1 provided
the following conditions∫ 1

0
ξj−1

s∏
i=1

(ξ − ci)dξ = 0, j = 1, . . .l,

are satisfied.
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Proof The first conclusion follows from Theorem 3.2. We next show the second one.
Using (3.1), we have

δn+1 = h

∫ 1

0
e(1−τ)zĝ(tn + hτ)dτ − h

s∑
i=1

bi(z)ĝ(tn + cih)

= h

∫ 1

0
e(1−τ)zĝ(tn + hτ)dτ − h

s∑
i=1

∫ 1

0
e(1−τ)zli(τ )dτ ĝ(tn + cih)

= h

∫ 1

0
e(1−τ)z

(
ĝ(tn + hτ) −

s∑
i=1

li (τ )ĝ(tn + cih)

)
dτ . (5.5)

Inserting the Taylor series of ĝ(tn + hτ) and ĝ(tn + cih) at tn into (5.5) yields

δn+1 =
∞∑

m=0

hm+1

m!

(∫ 1

0
e(1−τ)z

(
τm −

s∑
i=1

li (τ )cm
i

)
dτ

)
ĝ(m)(tn)

=
∞∑

m=s

hm+1

m!

(∫ 1

0
e(1−τ)z

(
τm −

s∑
i=1

li (τ )cm
i

)
dτ

)
ĝ(m)(tn). (5.6)

For s ≤ m ≤ s + l − 1, we can write

τm = rm−s(τ )

s∏
i=1

(τ − ci) +
s∑

i=1

li (τ )cm
i , (5.7)

where rm−s is a polynomial of degree m − s. Substituting (5.7) into (5.6) yields∫ 1

0
e(1−τ)z

(
τm −

s∑
i=1

li (τ )cm
i

)
dτ =

∫ 1

0
e(1−τ)zrm−s(τ )

s∏
i=1

(τ − ci)dτ

=
∫ 1

0

∞∑
k=0

(1 − τ)kzk

k! rm−s(τ )

s∏
i=1

(τ − ci)dτ

=
n∑

k=0

zk

k!
∫ 1

0
(1 − τ)krm−s(τ )

s∏
i=1

(τ − ci)dτ + O(hn+1), (5.8)

where n satisfies l − 1 ≤ n + m − s ≤ l. Hence, we obtain∫ 1

0
e(1−τ)z

(
τm −

s∑
i=1

li (τ )cm
i

)
dτ = O(hl−m+s), (5.9)

where s ≤ m ≤ s + l − 1. Combining (5.7) and (5.9), we have

δn+1 =
s+l−1∑
m=s

hm+1

m!
∫ 1

0
e(1−τ)z

(
τm −

s∑
i=1

li (τ )cm
i

)
dτ ĝ(m)(tn) + O(hs+l+1)

= O(hs+l+1) + O(hs+l+1) = O(hs+l+1). (5.10)
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It can be concluded from Theorem 3.2 that the step order p = min{s + 1, s + l} =
s + 1.

On the basis of the Theorem 5, we can construct EPTSERK methods with arbi-
trarily high algebraic order. In this paper, we will construct EPTSERK methods and
compare the new methods with other exponential Runge–Kutta methods for first-
order differential equations. Therefore, we consider EPTSERK methods expressed
by the tableau (2) with the coefficients aij (z), bi(z) given by Theorem 4. We take an
example of a family of 2-stage EPTSERK methods with the collocation vectors c :

(
1

2
, 1

)
,

(
3 − √

3

6
,
3 + √

3

6

)
, (5.11)

with orders 2 and 3 respectively. The resulting methods are denoted as EPTSERK2
and EPTSERK3. For more precise requirements, we present a 3-stage EPTSERK
method of order four with the collocation vectors c :

(
5 − √

15

10
,
1

2
,
5 + √

15

10

)
, (5.12)

and we denote this method as EPTSERK4.

6 Numerical experiments

In this section, we will show the numerical performance of the new methods com-
pared with some existing codes proposed in the scientific literature. The criterion
used in the numerical comparisons is the decimal logarithm of the maximum global
error (LOG10 (ERROR)) versus the computational effort measured by the number
of function evaluations (NUMBER OF FUNCTION EVALUATIONS) required by
each method. The methods for comparison are denoted as:

– EERK2: the explicit exponential Runge–Kutta method of order two given in [25].
– EERK3: the explicit exponential Runge–Kutta method of order three given in

[25].
– EPTSRK2: the explicit pseudo two-step Runge–Kutta methods of order two

derived in [3].
– EPTSRK3: the explicit pseudo two-step Runge–Kutta methods of order three

derived in [3].
– EPTSERK2: the explicit pseudo two-step exponential Runge–Kutta methods of

order two presented in this paper.
– EPTSERK3: the explicit pseudo two-step exponential Runge–Kutta methods of

order three presented in this paper.
– EPTSERK4: the explicit pseudo two-step exponential Runge–Kutta methods of

order four presented in this paper.
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Problem 1 We study the Hénon-Heiles problem

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠

′

+

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

−2y1y2
−y2

1 + y2
2

⎞
⎟⎟⎠ (6.1)

which can be used to depicting stellar motion [2, 12]. We select the initial
values

(y1(0), y2(0), y3(0), y4(0))
T =

(√
11

96
, 0, 0,

1

4

)T

.

The problem is solved on the interval [0, 50] and the numerical results are given in
Fig. 1 with the stepsize h = 1/2i for EERK3, h = 1/(3 · 2i−1) for EERK2, and
h = 1/(3 ·2i ) for EPTSRK2, EPTSRK2, EPTSERK2, EPTSERK3, and EPTSERK4,
where i = 1, . . . , 5.

0 1000 2000 3000 4000 5000
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O
R

)

Problem 1: the efficiency curves
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EPTSRK3
EERK2
EERK3
EPTSERK2
EPTSERK3
EPTSERK4

Fig. 1 The efficiency curves of problem 1

1155Numerical Algorithms (2021) 86:1143–1163



Problem 2 We consider the Fermi-Pasta-Ulam problem in [12, 22]. The Hamiltonian
function is given by

H(x, y) = 1

2

2m∑
i=1

y2
i + ω2

2

m∑
i=1

x2
m+i + 1

4

[
(x1 − xm+1)

4

+
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4,

]

which leads to a nonlinear oscillatory system(
x

y

)′
+

(
02m×2m −I2m×2m

M 02m×2m

) (
x

y

)
=

(
0

−∇U(x)

)
(6.2)

where

M =
(
0m×m 0m×m

0m×m ω2Im×m

)
,

and

U(x) = 1

4

[
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

]
.

In this problem, we choose

m = 3, ω = 50, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y4(0) = 1

and set the remaining initial values to zeros. The problem is solved on the interval
[0, 10] and the numerical results are plotted in Fig. 2 with the stepsize h = 1/2i+5 for
EERK3, h = 1/(3·2i+4) for EERK2, and h = 1/(3·2i+5) for EPTSRK2, EPTSRK2,
EPTSERK2, EPTSERK3, and EPTSERK4, where i = 1, . . . , 5.

Problem 3 We consider the Allen-Cahn equation [1, 10]

{
∂u
∂t

+ ε ∂2u

∂x2
= u − u3, −1 < x < 1, t > 0,

u(x, 0) = 0.53x + 0.47 sin(−1.5πx), −1 ≤ x ≤ 1,

with the periodic boundary condition u(−1, t) = u(1, t). The Allen-Cahn equation
was presented by Allen and Cahn in [1] to describe the motion of anti-phase bound-
aries in crystalline solids. We approximate the spatial derivatives with the classical
second-order central difference operator and obtain

dU

dt
+ MU = F(t, U), t ∈ [0, tend],
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Fig. 2 The efficiency curves of problem 2

where U(t) = (u1(t), · · · , uN(t))T with ui(t) ≈ u(xi, t), xi = −1 + i�x, i =
1, . . ., N and �x = 2/N . The matrix M has the form

M = ε

�x2

⎛
⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 1 −2

⎞
⎟⎟⎟⎟⎟⎠

and F(t, U) = u − u3 = (u1 − u31, · · · , uN − u3N)T . We select the parameters
ε = 0.01, N = 64 and solve this problem on interval [0, 20]. The numerical results
are stated in Fig. 3 with the stepsize h = 1/2i+4 for EERK3, h = 1/(3 · 2i+3) for
EERK2, and h = 1/(3 · 2i+4) for EPTSRK2, EPTSRK2, EPTSERK2, EPTSERK3,
and EPTSERK4, where i = 1, . . . , 4.

Problem 4 We study the sine-Gorden equation with periodic boundary conditions
[11, 26]

⎧⎪⎨
⎪⎩

∂2u

∂t2
= ∂2u

∂x2
− sin(u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t).
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Fig. 3 The efficiency curves of problem 3

By using the semi-discretization on the spatial variable with second-order symmetric
differences, we have the following first-order differential system

d

dt

(
U ′
U

)
+

(
0 M

−I 0

)(
U ′
U

)
=

( − sin(U)

0

)
, t ∈ [0, tend],

where U(t) = (u1(t), · · · , uN(t))T with ui(t) ≈ u(xi, t) for i = 1, . . . , N ,

M = 1

�x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠

with �x = 2/N , xi = −1 + i�x and F(t, U) = − sin(u) =
−(sin(u1), · · · , sin(uN))T . The initial value conditions for this test are

U(0) = (π)Ni=1, U ′(0) = √
N

(
0.01 + sin(

2πi

N
)

)N

i=1

with N = 64, and the problem is solved on the interval [0, 10]. The numerical results
are stated in Fig. 4 with the stepsize h = 1/(10 · (4 ∗ i)) for EERK3, h = 1/(10 · 3 ·
(2∗i)) for EERK2, and h = 1/(3·10·(2∗i)) for EPTSRK2, EPTSRK3, EPTSERK2,
EPTSERK3, and EPTSERK4, where i = 1, . . . , 4.
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Fig. 4 The efficiency curves of problem 4
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Fig. 5 The global error against the stepsize for problem 1
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Fig. 7 The global error against the stepsize for problem 3
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Fig. 8 The global error against the stepsize for problem 4

From Figs. 1, 2, 3, and 4, we can conclude the explicit pseudo two-step exponen-
tial Runge–Kutta methods show more advantages over the explicit pseudo two-step
Runge–Kutta methods as well as the explicit exponential Runge–Kutta methods in
the literature.

In order to show the convergence order of the constructed methods, in Figs. 5, 6,
7, and 8, we plot the global errors against the stepsize for methods EPTSERK2, EPT-
SERK3, and EPTSERK4 when solving problems (1–4). The slopes of dotted lines
indicate theoretical order two (red), order three (blue), and order four (green), respec-
tively. From Figs. 5, 6, 7, and 8, we find that the numerical solution of EPTSERK2
method has second order of convergence as expected. Surprisingly, the numerical
solutions of EPTSERK3 and EPTSERK4 methods exceed their theoretical order
three and order four, respectively. The analysis of the convergence of explicit pseudo
two-step exponential Runge–Kutta methods is an interesting and challenging topic
for future work.

7 Conclusion

In this paper, we investigate and study the construction of explicit pseudo two-
step exponential Runge–Kutta methods for the first-order differential equations. The
global error analysis is carried out and the error bounds are given. The order condi-
tions are discussed and the two practical numerical methods of order two and three
with two-stage are obtained. Numerical experiments are accompanied to verify the
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efficiency and convergence of the new methods. From numerical results, we can see
that, for first-order differential equations of form (1.1), our new methods work better
than the classical exponential Runge–Kutta methods as well as the explicit pseudo
two-step Runge–Kutta methods in the literature. The constructions and discussions
of the higher order methods and the variable stepsize methods of this type are in
process.
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