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Abstract
In consideration of the initial singularity of the solution, a temporally second-order
fast compact difference scheme with unequal time-steps is presented and analyzed
for simulating the subdiffusion problems in several spatial dimensions. On the basis
of sum-of-exponentials technique, a fast Alikhanov formula is derived on general
nonuniform meshes to approximate the Caputo’s time derivative. Meanwhile, the
spatial derivatives are approximated by the fourth-order compact difference operator,
which can be implemented by a fast discrete sine transform via the FFT algorithm.
So the proposed algorithm is computationally efficient with the computational cost
about O(MN logM logN) and the storage requirement O(M logN), where M and
N are the total numbers of grids in space and time, respectively. With the aids of
discrete fractional Grönwall inequality and global consistency analysis, the uncondi-
tional stability and sharp H 1-norm error estimate reflecting the regularity of solution
are established rigorously by the discrete energy approach. Three numerical experi-
ments are included to confirm the sharpness of our analysis and the effectiveness of
our fast algorithm.
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1 Introduction

In recent decades, fractional partial differential equations have attracted many atten-
tions for its superiority in describing the phenomenon related to nonlocality and
spatial heterogeneity. The time fractional differential equations are one of the impor-
tant fractional models developed in various fields [1]. We consider the following
reaction-subdiffusion problem

∂α
t u − �u = κ u + f (x, t) for x ∈ � and 0 < t ≤ T , (1.1)

u(x, t) = 0 for x ∈ ∂� and 0 < t ≤ T , (1.2)

u(x, 0) = u0(x) for x ∈ �̄, (1.3)

where � ⊂ R
d is a bounded interval (d = 1), rectangle (d = 2), or cube (d = 3),

and ∂� denotes its boundary. � be the d-dimensional Laplacian operator and the
reaction coefficient κ is a positive constant. In (1.1), ∂α

t = C
0 Dα

t represents the Caputo
fractional derivative of order α with respect to t , defined by

(∂α
t v)(t) :=

∫ t

0
ω1−α(t − s)v′(s)ds, 0 < α < 1, (1.4)

where the weakly singular kernel ω1−α(t − s) is defined by ωμ(t) := tμ−1/�(μ) for
t > 0.

Despite there are some theoretical methods to solve the fractional diffusion equa-
tions analytically, we may still have to explore numerical methods to obtain the
solutions in general. In previous literatures, a large number of numerical methods
are presented to approximate the Caputo derivative (1.4) availably. For instance, the
well-known L1 formula [2, 3], which is constructed by using a piecewise linear
interpolation on each subinterval and has the accuracy of order 2 − α. High-order
approximations are constructed recently in [4–7] by using the piecewise quadratic
polynomial interpolation. Most of discrete approximations for the Caputo derivative
depend on the uniform time-steps and restrict the solutions to be sufficiently smooth.
Nevertheless, studies in [8–12] show that the existence of the singular kernel makes
the exact solution u always has an initial layer at t = 0, which is typically for
fractional differential equations and has great influence on the convergence rate. In
[10], the authors prove that the uniform L1 formula is accurate of orders O(tα−1

n τ )

and O(t−1
n τ ) for smooth and nonsmooth initial data respectively, which are far from

the desired goals. Recently, there appears several interesting works, including the
specified mesh techniques [12–16] and the (generally) nonuniform mesh approaches
[17–20], to fill this gap by resolving the initial regularity and restoring the optimal
convergence rate.

However, due to the intrinsically nonlocal property and historical dependence of
the fractional derivative, numerical applications of the aforementioned methods are
always time-consuming, especially for the problems on two- or three-dimensional
space domain. Therefore, it is imperative and necessary to develop efficient algo-
rithms to reduce the huge storage and computational cost. Many efforts have been
made in the literatures to develop fast time-stepping methods. Ke et al. [21] apply the
fast Fourier transform for block triangular Toeplitz-like systems and propose a fast
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direct method for solving the time-fractional PDEs. Another idea is suggested by Baf-
fet and Hesthaven [22], where the compression is carried out in the Laplace domain
by solving the equivalent ODE with some one-step A-stable scheme. Recently, Jiang
et al. [23] use the sum-of-exponentials (SOEs) technique to approximate the kernel
and reduce the computational complexity significantly. The overall computational
cost O(MN2) and storage O(MN) of the L1 formula are reduced to O(MN logN)

and O(M logN), respectively, where M is the grid points in space and N is the
total levels in time. Yan et al. [24] propose a second-order fast formula on uniform
meshes to approximate the Caputo derivative. They also investigate the stability and
convergence of the resulting second-order time-stepping scheme for the subdiffu-
sion equations, corresponding to the case of κ = 0 of (1.1) by assuming that the
solution is sufficiently smooth. Moreover, a fast L1 finite difference scheme on the
graded mesh is reported in [25] for time-fractional diffusion equations by consider-
ing both the initial singularity and the long-time historical memory. Liao et al. [26]
propose a two-level nonuniform L1 scheme for solving semilinear subdiffusion equa-
tions and prove that the fast linearized scheme is unconditionally stable on generally
nonuniform meshes. To the best of our knowledge, no nonuniform fast algorithms
for high-order numerical Caputo derivatives have been published yet.

The main contribution of this paper is to construct and analyze a computationally
efficient difference algorithm on a general class of nonuniform time meshes for linear
reaction-subdiffusion equations in multi-dimensions. More precisely, the nonuniform
Alikhanov formula with the SOEs approximation is employed for the Caputo frac-
tional derivative, and the fourth-order compact difference operator with a fast discrete
sine transform (DST) is utilized for spatial discretization so that our algorithm is
computationally efficient in both time direction and spatial dimensions. Consider the
(possibly nonuniform) time levels 0 = t0 < t1 < · · · < tk−1 < tk < · · · < tN = T

with the weighted time tn−θ := θtn−1 + (1− θ)tn for an offset parameter θ ∈ [0, 1).
Denote the time-step sizes τk = tk − tk−1 for 1 ≤ k ≤ N and the maximum time-step
size τ := max1≤k≤N τk . Let the step size ratios ρk := τk/τk+1 for 1 ≤ k ≤ N − 1
and the maximum time-step ratio

ρ := max
1≤k≤N−1

ρk .

Our accelerated discrete Caputo formula for the Caputo derivative (1.4) takes a form
of

(∂α
aτ v)n−θ :=

n∑
k=1

A(n)
n−k�τ v

k, (1.5)

where �τ v
k = vk − vk−1 and the discrete convolution kernels A(n)

n−k are determined
later. Let �̄h be the discrete spatial grid covered by �̄ with uniform spacings in
each direction. For 0 ≤ n ≤ N , denote the numerical solution un

h ≈ u(xh, tn), and
un−θ

h := θun−1
h + (1 − θ)un

h ≈ u(xh, tn−θ ) for xh ∈ �̄h. We take θ = α/2 and have
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the following θ -weighted compact difference scheme for the reaction-subdiffusion
problem (1.1)–(1.3)

(∂α
aτ uh)

n−θ − Dhu
n−θ
h = κun−θ

h + f (xh, tn−θ ) for xh ∈ �h and 1 ≤ n ≤ N, (1.6)

un
h = 0 for xh ∈ ∂�h and 1 ≤ n ≤ N, (1.7)

u0h = u0(xh) for xh ∈ �̄h. (1.8)

Here, the compact difference operatorDh will be defined in the next section, in which
the numerical implementation of (1.6)–(1.8) is also described.

The stability and convergence analysis of (1.6)–(1.8) rely on the recently devel-
oped fractional Grönwall inequality in [18], which is applicable for any discrete
fractional derivative having the discrete convolution form (1.5). For the complete-
ness of presentation, we combine three previous results from [18, Lemma 2.2,
Theorems 3.1, and 3.2] into the following lemma.

Lemma 1.1 Assume that discrete convolution kernels A(n)
n−k satisfy the following two

criteria:

A1. There is a constant πA > 0 such that A(n)
n−k ≥ 1

πA

∫ tk
tk−1

ω1−α(tn−s)

τk
ds for 1 ≤

k ≤ n ≤ N .
A2. The discrete kernels are monotone, i.e., A(n)

n−k−1 − A(n)
n−k ≥ 0 for 1 ≤ k ≤

n − 1 ≤ N − 1.

Define also a sequence of complementary discrete convolution kernels P(n)
n−k by

P(n)
0 := 1

A(n)
0

, P(n)
n−j := 1

A
(j)

0

n∑
k=j+1

(
A(k)

k−j−1 − A(k)
k−j

)
P(n)

n−k for 1 ≤ j ≤ n − 1.

(1.9)
Then the complementary kernels P(n)

n−k ≥ 0 are well-defined and fulfill

n∑
j=k

P(n)
n−j A

(j)
j−k = 1 for 1 ≤ k ≤ n ≤ N . (1.10)

n∑
j=1

P(n)
n−jω1+(m−1)α(tn) ≤ πAω1+mα(tn) for m = 0, 1 and 1 ≤ n ≤ N . (1.11)

Suppose that the offset parameter 0 ≤ ν < 1, λ is a nonnegative constant
independent of the time-steps and the maximum step size

τ ≤ 1/ α
√
2�(2 − α)λπA.

If the nonnegative sequences (vk)Nk=0 and (ηk)Nk=1 satisfy

n∑
k=1

A(n)
n−k�τ v

k ≤ λvn−ν + ηn for 1 ≤ n ≤ N, (1.12)
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or
n∑

k=1

A(n)
n−k�τ (v

k)2 ≤ λ(vn−ν)2 + vn−νηn for 1 ≤ n ≤ N, (1.13)

then it holds that for 1 ≤ n ≤ N ,

vn ≤ 2Eα

(
2max{1, ρ}λπAtαn

)
⎛
⎝v0 + max

1≤k≤n

k∑
j=1

P(k)
k−j η

j

⎞
⎠

≤ 2Eα

(
2max{1, ρ}λπAtαn

) (
v0 + πA�(1 − α) max

1≤k≤n
{tαk ηk}

)
,

where Eα(z) := ∑∞
k=0

zk

�(1+kα)
is the Mittag–Leffler function.

This fractional discrete Grönwall lemma suggests that these two criteria A1-A2
should be verified to guarantee the stability of the fully discrete scheme (1.6)–(1.8).
In Section 3, we will prove some properties of the discrete convolution kernels A(n)

n−k

by assuming

M1. The maximum time-step ratio ρ = 3/2.

Then Lemma 1.1 leads to the unconditional stability, see Theorem 3.1. Note that,M1
is a mild mesh condition, but it implies that a sudden, drastic reduction of time-steps
should be avoided to ensure the stability.

The present analysis is also built on a new concept named global consistency
analysis, developed recently by Liao et al. in [19], where a sharp L2-norm error esti-
mate of the nonuniform Alikhanov scheme for the problem (1.1)–(1.3) is established
systematically. To make the analysis extendable (such as for distributed-order subd-
iffusion problems), we assume that the continuous solution u satisfies the regularity
assumptions

‖u‖H 4(�) ≤ Cu, ‖u(ν)(t)‖H 2(�) ≤ Cu(1 + tσ−ν), (1.14)

where ν ∈ {1, 2, 3} and 0 < t ≤ T , σ ∈ (0, 1) ∪ (1, 2) is a regularity parameter and
Cu is a positive constant. For instance [9, 11, 12], this assumption holds with σ = α

for the original problem (1.1) if f (x, t) = 0 and u0 ∈ H 1
0 (�) ∩ H 2(�). Invoking

to the new global consistency error analysis of the accelerated Alikhanov formula
presented in Lemma 4.2 and the fractional discrete Grönwall lemma described earlier,
we establish sharp H 1-norm error estimate by means of the time-space error splitting
technique, see Theorem 4.1. This theorem implies that the convergence analysis is
applicable to a general family of nonuniform time meshes satisfying M1. To resolve
the initial singularity of solution and solve it efficiently, we choose the time-steps
that satisfy the following condition:

AssG. There is a positive constant Cγ independent of k, such that τk ≤
Cγ τ min{1, t1−1/γ

k } for 1 ≤ k ≤ N , with tk ≤ Cγ tk−1 and τk/tk ≤
Cγ τk−1/tk−1 for 2 ≤ k ≤ N .

Here, the parameter γ ≥ 1 controls the extent to which the time levels are con-
centrated near t = 0. If the mesh is quasi-uniform, then AssG holds with γ = 1.
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As γ increases, the initial step sizes become smaller compared with the later ones.
A simple example satisfying AssG is the graded mesh tk = T (k/N)γ . Under the
assumption of AssG, Theorem 4.1 shows the error estimate of the time-stepping
scheme (1.6)–(1.8) as

∣∣u(tn) − un
h

∣∣
1 ≤ Cu

σ(1 − α)

(
τmin{γ σ,2} + h4 + ε

)
for 1 ≤ n ≤ N,

and the second-order accuracy in time is achieved if γ ≥ 2/σ , see Corollary 4.1
and Remark 2. In the last section, three numerical examples are given to confirm
the theoretical results and verify the accuracy and effectiveness of the fast scheme.
Throughout the paper, any subscripted C, such as Cu, Cv , and C�, denotes a general
positive constant, which has different values in different circumstances, and always
depends on the given data and the continuous solution but is independent of the time
and spatial steps.

2 Accelerated Alikhanov formula and fully discrete scheme

In this section, based on the SOEs approximation, fast Alikhanov formula on gener-
ally nonuniform time meshes is considered at first. Then, we develop a fully discrete
second-order compact scheme for the problem (1.1)–(1.3) combined with the com-
pact difference operator. Furthermore, an efficient numerical implementation is given
at the end of this section.

2.1 Fast Alikhanov formula on nonuniform grids

Denote �1,kv and �2,kv are the linear interpolation of a function v with respect
to tk−1, tk and the quadratic interpolation of v with respect to tk−1, tk , and tk+1,
respectively. Recalling the definition �τ v

k , it is easy to check that for k ≥ 1,

(�1,kv)′(t) = �τ v
k

τk

,

(�2,kv)′ = �τ v
k

τk

+ 2(t − tk−1/2)

τk(τk + τk+1)
(ρk�τ v

k+1 − �τ v
k).

For simplicity of presentation, we always denote �n(ξ) := −ω2−α(tn−θ − ξ) for
0 ≤ ξ ≤ tn−θ and � ′

n(ξ) = ω1−α(tn−θ − ξ) for 0 ≤ ξ < tn−θ . The nonuniform
Alikhanov approximation to the Caputo fractional derivative (1.4) is defined as [19]

(∂α
τ v)n−θ :=

n−1∑
k=1

∫ tk

tk−1

� ′
n(ξ)(�2,kv)′(ξ)dξ +

∫ tn−θ

tn−1

� ′
n(ξ)(�1,nv)′(ξ)dξ

= a
(n)
0 �τ v

n+
n−1∑
k=1

(
a

(n)
n−k�τ v

k+ρkb
(n)
n−k�τ v

k+1−b
(n)
n−k�τ v

k
)

, (2.1)
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where the discrete coefficients a
(n)
n−k and b

(n)
n−k are defined by

a
(n)
n−k := 1

τk

∫ min{tn−θ ,tk}

tk−1

� ′
n(ξ)dξ for 1 ≤ k ≤ n, (2.2)

b
(n)
n−k := 2

τk(τk + τk+1)

∫ tk

tk−1

(ξ − t
k− 1

2
)� ′

n(ξ)dξ for 1 ≤ k ≤ n − 1. (2.3)

Rearranging the terms in (2.1), we reformulate (2.1) in the following discrete
convolution form

(∂α
τ v)n−θ =

n∑
k=1

A
(n)
n−k�τ v

k, (2.4)

where the discrete convolution kernels A
(n)
n−k are defined as: A

(1)
0 := a

(1)
0 if n = 1,

and for n ≥ 2,

A
(n)
n−k :=

⎧⎪⎨
⎪⎩

a
(n)
0 + ρn−1b

(n)
1 for k = n,

a
(n)
n−k + ρk−1b

(n)
n−k+1 − b

(n)
n−k for 2 ≤ k ≤ n − 1,

a
(n)
n−1 − b

(n)
n−1 for k = 1.

Due to the essentially nonlocal property of the fractional derivative, the formula
mentioned above involves the solution information at all historical time-levels and it
is time-consuming in practical calculations. Here, the SOEs technique is employed
to deduce an accelerated Alikhanov formula to improve the efficiency. The key point
of the SOEs approximation (see [23, Theorem 2.5] or [26, Lemma 2.2]) is as follows:

Lemma 2.1 Given α ∈ (0, 1), an absolute tolerance error ε � 1, a cut-off time
�t > 0, and a final time T , there exist a positive integer Nq , positive quadrature
nodes s�, and positive weights ϑ� (1 ≤ � ≤ Nq) such that

∣∣∣∣∣∣ω1−α(t) −
Nq∑
�=1

ϑ�e−s�t

∣∣∣∣∣∣ ≤ ε ∀t ∈ [�t, T ],

where the quadrature nodes number Nq satisfies

Nq = O

(
log

1

ε

(
log log

1

ε
+ log

T

�t

)
+ log

1

�t

(
log log

1

ε
+ log

1

�t

))
.

In [24], the authors illustrate thatNq = O(logN) for T � 1 andNq = O(log2 N)

for T ≈ 1. Moreover, they also list a table to show the relationships between Nq and
various parameters α, τ , and ε, see Table 1 in [24]. These results indicate the SOEs
strategy efficiently reduces the computational complexity and storage requirement.
By virtue of this lemma, we divide (2.1) into a sum of a local part (an integral over
[tn−1, tn−θ ]) and a historical part (an integral over [0, tn−1]). In the former part, linear
interpolation is utilized to approximate v′(ξ)(ξ ∈ (tn−1, tn−θ )) as before, and in the

1017Numerical Algorithms (2021) 86:1011–1039



Table 1 Temporal error of Example 1 for different α with σ = 0.8, γ = 1

α = 0.2 α = 0.5 α = 0.8

Alikhanov AccA Alikhanov AccA Alikhanov AccA

N Error Error Order Error Error Order Error Error Order

80 2.73e−04 2.73e−04 8.32e−04 8.32e−04 1.70e−03 1.70e−03

160 1.57e−04 1.57e−04 0.80 4.78e−04 4.78e−04 0.80 9.79e−04 9.79e−04 0.80

320 9.00e−05 9.00e−05 0.80 2.75e−04 2.75e−04 0.80 5.62e−04 5.62e−04 0.80

640 5.17e−05 5.17e−05 0.80 1.58e−04 1.58e−04 0.80 3.23e−04 3.23e−04 0.80

1280 2.97e−05 2.97e−05 0.80 9.06e−05 9.06e−05 0.80 1.85e−04 1.85e−04 0.80

min{σ, 3 − α} 0.80 0.80 0.80

latter one, SOEs technique is applied to the convolution kernel � ′
n(ξ), i.e.,

(∂α
τ v)n−θ ≈

∫ tn−θ

tn−1

� ′
n(ξ)

�τ v
n

τn

dξ +
∫ tn−1

0

Nq∑
�=1

ϑ�e−s�(tn−θ−ξ)v′(ξ)dξ

= a
(n)
0 �τ v

n +
Nq∑
�=1

ϑ�e−s�(1−θ)τnH�(tn−1) for n ≥ 1,

where

H�(tk) =
∫ tk

0
e−s�(tk−ξ)v′(ξ)dξ with H�(t0) = 0 for 1 ≤ � ≤ Nq .

To compute H�(tk) efficiently, we attempt to obtain the recurrence formulation.
Applying the quadratic interpolation to approximate v′(ξ) in each subinterval
[tk−1, tk] (1 ≤ k ≤ n − 1) yields

H�(tk) ≈ e−s�τkH�(tk−1) +
∫ tk

tk−1

e−s�(tk−ξ)(�2,kv)′(ξ)dξ

= e−s�τkH�(tk−1) + a(k,�)�τ v
k + b(k,�)(ρk�τ v

k+1 − �τ v
k),

where the coefficients are given by

a(k,�) = 1

τk

∫ tk

tk−1

e−s�(tk−ξ)dξ,

b(k,�) = 2

τk(τk + τk+1)

∫ tk

tk−1

(ξ − t
k− 1

2
)e−s�(tk−ξ)dξ .

Note that these coefficients are calculated exactly based on the integral property of
exponential functions. Overall, the accelerated nonuniform Alikhanov formula can
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be formulated as

(∂α
aτ v)n−θ := a

(n)
0 �τ v

n +
Nq∑
�=1

ϑ�e−s�(1−θ)τnH�(tn−1) for n ≥ 1, (2.5)

where H�(tk) satisfies H�(t0) = 0 and the recurrence relation

H�(tk) = e−s�τkH�(tk−1) + a(k,�)�τ v
k

+b(k,�)(ρk�τ v
k+1 − �τ v

k) for k ≥ 1, 1 ≤ � ≤ Nq .

2.2 Second-order compact scheme and implementation

We discretize the spatial domain � ∈ R
d by equal spatial step sizes hk = (xk,R −

xk,L)/Mk for the positive integers Mk (1 ≤ k ≤ d) and denote h := max1≤k≤d hk

is the maximum spatial length. Let xk,ik = xk,L + ikhk for 0 ≤ ik ≤ Mk, 1 ≤
k ≤ d , then the fully discrete grids in space can be defined as �̄h := {xh =
(x1,i1 , x2,i2, · · · , xd,id )|0 ≤ ik ≤ Mk, 1 ≤ k ≤ d}. Set �h = �̄h ∩ � and the bound-
ary ∂�h = �̄h ∩ ∂�. Also, M = ∏d

k=1(Mk + 1) represents the total number of grid
points in space. Denote an index vector h = (i1, i2, · · · , id) and for any grid function
vh at the kth position (1 ≤ k ≤ d), we introduce the following difference operators:

δkvik+ 1
2

:= vik+1 − vik

hk

, δ2kvik := vik+1 − 2vik + vik−1

h2k

, Ikvik := (I+h2k

12
δ2k )vik ,

and the compact difference operator is denoted as Dkvik := δ2k
Ik

vik . As a result, the
second-order and fourth-order spatial approximations of �v(xh) for xh ∈ �h can be
denoted separately as �hvh := ∑d

k=1 δ2kvh and Dhvh := ∑d
k=1Dkvh.

Let Vh = {v = (vh)xh∈�h
|vh = 0 when xh ∈ ∂�h} be the space of grid

functions. For any v, w ∈ Vh, we define the discrete inner product 〈v, w〉h :=
(
∏d

k=1 hk)
∑

xh∈�h
vhwh and the corresponding discrete L2-norm ‖v‖ := √〈v, v〉h.

Also, the discrete H 1 semi-norm is defined as |v|1 :=
√∑d

k=1 ‖δkvh‖2. Based on
the embedding theorem, there exist a positive constant C� dependent on the domain
� such that

‖v‖ ≤ C�|v|1 for v ∈ Vh. (2.6)

Combining with the fast Alikhanov formula derived earlier, one has a fully discrete
second-order compact scheme (1.6)–(1.8) for the problem (1.1)–(1.3). To speed up
the numerical computations, we introduce the fast discrete sine transform (DST) [27,
28] in spatial direction and bypass the direct calculations. Based on the DST and
compact difference operator, for any grid function vh at the kth position, fourth-order
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spatial approximation can be drawn:

Mk−1∑
jk=1

v̂′′
jk

[
sin

(
(ik + 1)jkπ

Mk

)
+ 10 sin

(
ikjkπ

Mk

)
+ sin

(
(ik − 1)jkπ

Mk

)]

≈ 12

h2k

Mk−1∑
jk=1

v̂jk

[
sin

(
(ik + 1)jkπ

Mk

)
− 2 sin

(
ikjkπ

Mk

)
+ sin

(
(ik − 1)jkπ

Mk

)]
.

After simple calculations, for 1 ≤ jk ≤ Mk − 1 and 1 ≤ k ≤ d , we have

v̂′′
jk

≈ v̂jk

12

h2k

(
cos

(
jkπ

Mk

)
− 1

)(
cos

(
jkπ

Mk

)
+ 5

)−1

= v̂jk
�

(jk,Mk).

Denote an index set ν = {(j1, j2, · · · , jd)|1 ≤ jk ≤ Mk − 1, 1 ≤ k ≤ d}. Resorting
to the fast Alikhanov formula in (2.5) and the fast DST mentioned above, numerical
scheme (1.6) can be reformulated in the following way for implementation:

(
a(n)
0 − (1 − θ)κ − (1 − θ)

d∑
k=1

�
(jk ,Mk)

)
�τ ûn

ν =
(

d∑
k=1

�
(jk ,Mk) + κ

)
ûn−1

ν + f̂ n−θ − M̂n−1,

M̂n−1 =
Nq∑
�=1

ϑ�e−s�(1−θ)τnĤ�(tn−1)

=
Nq∑
�=1

ϑ�e−s�(1−θ)τn

[
e−s�τnĤ�(tn−2) + (a(n−1,�) − b(n−1,�))�τ ûn−1

ν + b(n−1,�)ρn−1�τ ûn
ν

]
,

where Ĥ�(t0) = 0. ûn−1
ν and f̂ n−θ are obtained from un−1

h and f n−θ via the DST,
respectively. The current solution un

h is computed from ûn
ν via the inverse DST.

The fast DST is essentially implemented via the fast Fourier transform (FFT).
In [29], the authors illustrate that FFT algorithm can reduce the numerical cost
from O(M2) to O(M logM). Therefore, compared with traditional algorithms,
the presented one reduces the overall computational cost from O(M2N2) to
O(MN logM logN) and the overall storage from O(MN) to O(M logN).

3 Properties of discrete convolution kernels and stability

To prepare for the subsequent analysis, in this section, we show that the discrete
kernels A(n)

n−k of the fast approximation (∂α
aτ v)n−θ satisfyA1-A2 in Lemma 1.1. Then,

the stability in the H 1-norm can be verified rigorously via the fractional discrete
Grönwall lemma.

3.1 Properties of discrete kernels

We eliminate the historical termH�(tn−1) in (2.5) and reformulate the recursive rela-
tionship into the discrete convolution form. The recurrence relation in (2.5) leads
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to

H�(tk) =
k∑

j=1

e−s�(tk−tj )
(
a(j,�)�τ v

j + ρjb
(j,�)�τ v

j+1 − b(j,�)�τ v
j
)
. (3.1)

Replacing k by n− 1 and plugging (3.1) into (2.5), we use the definitions (2.2)–(2.3)
to obtain an alternative formula

(∂α
aτ v)n−θ = a(n)

0 �τ v
n +

n−1∑
k=1

(
a(n)
n−k�τ v

k + ρkb(n)
n−k�τ v

k+1 − b(n)
n−k�τ v

k
)

, (3.2)

where the positive coefficients a(n)
n−k and b(n)

n−k are defined by

a(n)
0 := a

(n)
0 and a(n)

n−k := 1

τk

∫ tk

tk−1

Nq∑
�=1

ϑ�e−s�(tn−θ −ξ)dξ for 1 ≤ k ≤ n − 1, (3.3)

b(n)
n−k := 2

τk(τk + τk+1)

∫ tk

tk−1

Nq∑
�=1

ϑ�e−s�(tn−θ −ξ)(ξ − t
k− 1

2
)dξ for 1 ≤ k ≤ n − 1. (3.4)

Correspondingly, we rearrange (3.2) and obtain the following discrete convolution
form

(∂α
aτ v)n−θ =

n∑
k=1

A(n)
n−k�τ v

k,

where the discrete convolution kernels A(n)
n−k are defined as: A(1)

0 := a
(1)
0 if n = 1,

and for n ≥ 2,

A(n)
n−k =

⎧⎪⎨
⎪⎩

a(n)
0 + ρn−1b(n)

1 for k = n,

a(n)
n−k + ρk−1b(n)

n−k+1 − b(n)
n−k for 2 ≤ k ≤ n − 1,

a(n)
n−1 − b(n)

n−1 for k = 1.

Comparing the coefficients between (2.2)–(2.3) and (3.3)–(3.4), we see that the
latter ones are obtained by replacing the SOEs approximations with the integral
kernels in the formers. Then Lemma 2.1 gives∣∣∣a(n)

n−k − a
(n)
n−k

∣∣∣ ≤ ε for 1 ≤ k ≤ n − 1, (3.5)

and whenM1 (ρk ≤ ρ = 3
2 ) holds, for 1 ≤ k ≤ n − 1,

∣∣∣b(n)
n−k − b

(n)
n−k

∣∣∣ ≤ 2ε

τk(τk + τk+1)

∫ tk

tk−1

∣∣∣ξ − t
k− 1

2

∣∣∣ dξ = τ 2k ε

2τk(τk + τk+1)
= ρkε

2(1 + ρk)
≤ 3ε

10
. (3.6)

Next, we show that discrete convolution kernels A(n)
n−k satisfy the assumptions A1-

A2. The following bounds which can be proved by the integral mean-value theorem
will be utilized in several places,

a
(n)
n−k−1 > ω1−α(tn−θ − tk) > a

(n)
n−k for 1 ≤ k ≤ n − 1. (3.7)
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Lemma 3.1 Let M1 holds. Denote ε∗ = α
2(1−α)

ω1−α(T ) and ε∗∗ = 1
26ω1−α(T ). If

the tolerance error ε ≤ min{ε∗, ε∗∗}, then the discrete convolutional kernels A(n)
n−k

satisfy A1 with πA = 2 for 1 ≤ k ≤ n. Furthermore, A(n)
n−k has an upper bound with

A(n)
n−k ≤ 2

τn
ω2−α(τn).

Proof The definition of a(n)
n−k in (3.3) and the integral mean-value theorem yield

a(n)
n−k−1 > a(n)

n−k for 1 ≤ k ≤ n − 2,

where s�, ϑ� are positive in Lemma 2.1 and the monotonicity of exponential function
was also used. For k = n − 1, the definition (2.2) and (3.7) yield

a
(n)
0 −a

(n)
1 >

1

τn

ω2−α(tn−θ −tn−1)−ω1−α(tn−θ −tn−1) = α − θ

1 − α
(1−θ)−αω1−α(τn).

Since ex > 1 + x for x ∈ R and ln(1 − x
2 ) < 0 for 0 < x < 1, one has

a
(n)
0 − a

(n)
1 >

α

2(1 − α)
e−α ln(1− α

2 )ω1−α(τn) >
α

2(1 − α)
ω1−α(τn) ≥ ε∗ ≥ ε.

Therefore, we obtain a(n)
0 = a

(n)
0 > a

(n)
1 + ε ≥ a(n)

1 by using the definitions in (3.3)

and the inequality (3.5). It means that a(n)
n−k−1 > a(n)

n−k for 1 ≤ k ≤ n − 1.

In consideration of [19, Lemma 4.3] and 0 < θ < 1
2 , it is easy to check

b
(n)
n−k <

θτk

2(tn−θ − tk)

ρk

1 + ρk

a
(n)
n−k ≤ θτk

2(1 − θ)τk+1

ρk

1 + ρk

a
(n)
n−k <

ρ2
k

2(1 + ρk)
a

(n)
n−k .

(3.8)
For 1 ≤ k ≤ n − 1, the definition of A(n)

n−k and the inequalities (3.5)–(3.6) yield

A(n)
n−k ≥ a(n)

n−k−b(n)
n−k > a

(n)
n−k−ε− ρ2

k

2(1 + ρk)
a

(n)
n−k− 3ε

10
= 2 + 2ρk − ρ2

k

2(1 + ρk)
a

(n)
n−k− 13ε

10
.

Note that 2+2x−x2

2(1+x)
is increasing for x ∈ (0, 3

2 ], and ε ≤ ε∗∗ ≤ 1
26w1−α(tn−θ −

tk−1) < 1
26a

(n)
n−k , then we find

A(n)
n−k ≥ 11

20
a

(n)
n−k−

1

20
a

(n)
n−k = 1

2
a

(n)
n−k >

1

2

∫ tk

tk−1

ω1−α(tn − ξ)

τk

dξ for 1 ≤ k ≤ n−1.

For the case of k = n, it is clear that A(n)
0 ≥ a(n)

0 = a
(n)
0 > 1

2

∫ tk
tk−1

ω1−α(tn−ξ)

τk
dξ . In

summary, by choosing πA = 2, the discrete convolution kernels A(n)
n−k satisfy A1 for

1 ≤ k ≤ n.
Now we derive an upper bound of A(n)

n−k . From (3.6) and (3.8), one gets

A(n)
0 = a

(n)
0 + ρn−1b(n)

1 < a
(n)
0 + ρ3

n−1

2(1 + ρn−1)
an
1 + 3ε

10
ρn−1.

Note that x3

2(1+x)
is increasing for x ∈ (0, 3

2 ], we apply (3.7) andM1 to get

A(n)
0 < a

(n)
0 + 27

40
a

(n)
1 + 9ε

20
< a

(n)
0 + 27

40
a

(n)
0 + 9

20
× 1

26
a

(n)
0 = 22

13
a

(n)
0 < 2a(n)

0 .
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Since a
(n)
0 = 1

τn
(1−θ)1−α

∫ tn
tn−1

ω1−α(tn−ξ)dξ ≤ 1
τn

∫ tn
tn−1

ω1−α(tn−ξ)dξ , we obtain

an upper bound, i.e., A(n)
n−k ≤ 2

τn

∫ tn
tn−1

ω1−α(tn − ξ)dξ = 2
τn

ω2−α(τn). This completes
the proof.

Next, we establish the monotonicity of discrete kernels. For simplicity of presen-
tation, two positive coefficients are introduced [19]

I
(n)
n−k := 1

τk

∫ tk

tk−1

(tk − ξ)� ′′
n (ξ)dξ, J

(n)
n−k := 1

τk

∫ tk

tk−1

(ξ − tk−1)�
′′
n (ξ)dξ for 1 ≤ k ≤ n − 1.

(3.9)

Some properties of the coefficients are also given as follows:

Lemma 3.2 The positive coefficients in (3.9) satisfy

(i) I
(n)
n−k ≥ 1 + ρk

ρk

b
(n)
n−k, (ii) J

(n)
n−k ≥ 2(1 + ρk)

ρk

b
(n)
n−k for 1 ≤ k ≤ n − 1.

(iii) J
(n)
n−k−1 ≥ 1

ρk

J
(n)
n−k for 1 ≤ k ≤ n − 2.

Proof We refer to [19, Lemma 4.4] for (i)–(ii) and [19, Lemma 4.5] for (iii).

Next, we are ready to prove the following monotonicity lemma.

Lemma 3.3 Let M1 holds. Denote εk = α(1+5ρk)τk

105T ω1−α(T ) for 1 ≤ k ≤ n − 1. If

the tolerance error ε ≤ min1≤k≤n−1 εk , then the discrete convolutional kernels A(n)
n−k

satisfy A2 for 1 ≤ k ≤ n.

Proof Comparing the discrete convolution kernels between two formulas and invok-
ing to the inequalities (3.5)–(3.6), one has A(1)

0 = A
(1)
0 if n = 1, and for n ≥

2,

∣∣∣A(n)
n−k − A

(n)
n−k

∣∣∣ ≤
⎧⎨
⎩

ε + 3ε
10ρn−1 ≤ 29

20ε for k = n,

ε + 3ε
10ρk−1 + 3ε

10 ≤ 7
4ε for 2 ≤ k ≤ n − 1,

ε + 3ε
10 ≤ 13

10ε for k = 1,
(3.10)

where M1 was also used. Also, we can derive a similar estimate of∣∣∣A(n)
n−k−1 − A

(n)
n−k−1

∣∣∣. Combining these two inequalities, we have A
(1)
0 = A(1)

0 if

n = 1. For n ≥ 2, A(n)
0 ≤ A(n)

0 + 29ε
20 and

A
(n)
n−k−1 − A

(n)
n−k + A(n)

n−k − A(n)
n−k−1 ≤

⎧⎨
⎩
16ε/5 for k = n − 1,
7ε/2 for 2 ≤ k ≤ n − 2,
61ε/20 for k = 1.

(3.11)

According to [19, Theorem 2.2 (II)] and Lemma 3.2 (i), it holds that

A
(n)
n−k−1−A

(n)
n−k ≥ (1+ρk)b

(n)
n−k+

1

5
I

(n)
n−k ≥ (1+ρk)(

1

5ρk

+1)b(n)
n−k for 1 ≤ k ≤ n−1.

(3.12)
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Recalling the definition of �n(ξ), we get the second derivative � ′′
n (ξ) =

−ω−α(tn−θ − ξ) > 0 and the third derivative � ′′′
n (ξ) = ω−α−1(tn−θ − ξ) > 0 for

0 ≤ ξ < tn−θ . By means of [19, Lemma 2.1], for 1 ≤ k ≤ n − 1, it is not difficult to
check

b
(n)
n−k =

∫ tk

tk−1

(tk − ξ)(ξ − tk−1)

τk(τk + τk+1)
� ′′

n (ξ)dξ ≥ τ 2k

6(τk + τk+1)
� ′′

n (tk−1)

= ρkτk

6(1 + ρk)
� ′′

n (tk−1). (3.13)

Substituting (3.13) into (3.12) and applying (3.11), one gets

A(n)
n−k−1 − A(n)

n−k ≥ A
(n)
n−k−1 − A

(n)
n−k − 7ε

2
≥ (1 + 5ρk)τk

30
� ′′

n (tk−1) − 7ε

2
.

When the hypothesis holds, i.e., ε ≤ min1≤k≤n−1
α(1+5ρk)τk

105T ω1−α(T ), we obtain

A(n)
n−k−1 −A(n)

n−k > − (1 + 5ρk)τk

30
ω−α(T )− 7ε

2
= α(1 + 5ρk)τk

30T
ω1−α(T )− 7ε

2
≥ 0.

This completes the proof of Lemma 3.3.

Remark 1 In numerical simulations, the SOEs tolerance error ε is always set to
be small enough so that the convergence order should not be degraded. Hence, the
condition of ε in Lemma 3.3 is allowed to guarantee the monotonicity of discrete
convolutional kernels A(n)

n−k .

In addition to the boundedness and monotonicity described above, the following
auxiliary lemma is also indispensable in the subsequent analysis.

Lemma 3.4 Under the conditions of Lemma 3.3, it holds that

A(n)
0 − A(n)

1 > θ(2A(n)
0 − A(n)

1 ) for n ≥ 2.

Proof The conclusion is equivalent to 1−2θ
1−θ

A(n)
0 − A(n)

1 > 0. For n ≥ 2, (3.10) yields

1−2θ

1− θ
A(n)
0 −A(n)

1 ≥ 1 − 2θ

1 − θ
A

(n)
0 −A

(n)
1 −1 − 2θ

1 − θ
·29ε
20

−7ε

4
>

1−2θ

1− θ
A

(n)
0 −A

(n)
1 −16ε

5
.

Resorting to the proof of [19, Theorem 2.2 (III)], we have

1 − 2θ

1 − θ
A

(n)
0 − A

(n)
1 >

{
J

(n)
1 + b

(n)
1 for n = 2,

J
(n)
1 − ρn−2b

(n)
2 + b

(n)
1 for n ≥ 3.

By means of Lemma 3.2 (ii)–(iii) with k = n − 2, it is easy to check

J
(n)
1 = ρ3

n−2

2(1 + ρn−2)
J

(n)
1 + 2 + 2ρn−2 − ρ3

n−2

2(1 + ρn−2)
J

(n)
1 ≥ ρn−2b

(n)
2 + 13

40
J

(n)
1 ,
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where M1 and 2+2x−x3

2(1+x)
≥ 13

40 for x ∈ (0, 3
2 ] were used. Then, it follows that

J
(n)
1 − ρn−2b

(n)
2 + b

(n)
1 − 16ε

5
≥ 13 + 33ρn−1

20ρn−1
b

(n)
1 − 16ε

5

≥ (13 + 33ρn−1)τn−1

120(1 + ρn−1)
� ′′

n (tn−2) − 16ε

5
,

where Lemma 3.2 (ii) with k = n − 1 and (3.13) were used. Under the conditions
of Lemma 3.3, one has ε ≤ εn−1 = α(1+5ρn−1)τn−1

105T ω1−α(T ). This together with M1
leads to

J
(n)
1 − ρn−2b

(n)
2 + b

(n)
1 − 16ε

5
>

α(13 + 33ρn−1)τn−1

120(1 + ρn−1)T
ω1−α(T ) − 16ε

5
> 0.

Overall, for n ≥ 2, we have 1−2θ
1−θ

A(n)
0 −A(n)

1 > 0. This completes the proof of Lemma
3.4.

If the tolerance error ε ≤ min{ε∗, ε∗∗,min1≤k≤n−1 εk} andM1 holds, Lemmas 3.1
and 3.3 state that the discrete convolution kernels A(n)

n−k satisfy the assumptions A1-
A2 and have the property in Lemma 3.4. According to Lemmas 3.3 and 3.4, one has
the following result.

Corollary 3.1 Under the conditions of Lemma 3.3, the fast Alikhanov formula (2.5)
satisfies

vn−θ (∂α
aτ v)n−θ ≥ 1

2

n∑
k=1

A(n)
n−k�τ

(∣∣∣vk
∣∣∣2
)

for 1 ≤ n ≤ N .

Proof Lemma 3.3 implies that the discrete convolution kernels A(n)
n−k are monotone,

and Lemma 3.4 shows that θ(n) ≥ θ for 1 ≤ n ≤ N , where

θ(1) := 1

2
and θ(n) := A(n)

0 − A(n)
1

2A(n)
0 − A(n)

1

for n ≥ 2.

Then, the proof of [18, Lemma 4.1] leads to the claimed result.

3.2 H1-norm stability

In the following analysis, we also need some results on the spatial approximation
Dh. Recalling the compact difference operator, it is well-known that the matrix cor-
responding to Ik is a tridiagonal, real, symmetric, and positive definite matrix, and
the eigenvalues are in the form of

λk,jk
= 5

6
+ 1

6
cos(

jkπ

Mk

) for 1 ≤ jk ≤ Mk − 1, 1 ≤ k ≤ d .
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Denote Hk is the matrix associated with the operator I−1
k and λHk,jk

represents the
eigenvalues of Hk . For 1 ≤ k ≤ d , it is easy to check 1 < λHk,jk

< 3
2 and

3

2
〈�hvh, vh〉h < 〈Dhvh, vh〉h = 〈

d∑
k=1

Hkδ
2
kvh, vh〉h < 〈�hvh, vh〉h. (3.14)

Now we establish the stability of the time-stepping scheme (1.6)–(1.8). Taking
the discrete inner product of (1.6) with 2(∂α

aτ uh)
n−θ and applying Cauchy-Schwarz

inequality yield

2‖(∂α
aτ uh)

n−θ‖2 = 2〈Dhu
n−θ
h , (∂α

aτ uh)
n−θ 〉h + 2κ〈un−θ

h , (∂α
aτ uh)

n−θ 〉h
+2〈f n−θ , (∂α

aτ uh)
n−θ 〉h

≤ 2〈Dhu
n−θ
h , (∂α

aτ uh)
n−θ 〉h + κ2‖un−θ

h ‖2
+‖f n−θ‖2 + 2‖(∂α

aτ uh)
n−θ‖2.

With the aids of (3.14) and embedding inequality (2.6), we apply Corollary 3.1 with
v := �

1/2
h uh and obtain

n∑
k=1

A(n)
n−k�τ (|uk

h|21) ≤ κ2C�|un−θ
h |21 + ‖f n−θ‖2 for 1 ≤ n ≤ N,

which has the form of (1.12) with λ := κ2C�, vk := |uk
h|21, and ηn := ‖f n−θ‖2.

Under the conditions of Lemmas 3.1 and 3.3, we see that Lemma 1.1 holds with
πA = 2. Consequently, Lemma 1.1 indicates the H 1-norm stability of the presented
scheme in the following sense.

Theorem 3.1 Let the conditions of Lemmas 3.1 and 3.3 hold. If the restriction of
maximum time-step τ ≤ 1/ α

√
4κ2�(2 − α)C�, then the numerical solution un

h of the
scheme (1.6)–(1.8) is stable in the sense that

∣∣∣uk
h

∣∣∣2
1

≤ 2Eα

(
6κ2tαn C�

)⎛⎝∣∣∣u0h
∣∣∣2
1
+ max

1≤k≤n

k∑
j=1

P(k)
k−j‖f j−θ‖2

⎞
⎠

≤ 2Eα

(
6κ2tαn C�

)(∣∣∣u0h
∣∣∣2
1
+2�(1−α) max

1≤k≤n
{tαk ‖f k−θ‖2}

)
for 1≤n≤N .

4 Global consistency analysis and convergence

4.1 Global consistency error analysis

We now proceed with the global consistency error analysis of the fast Alikhanov for-
mula (2.5). First of all, the local consistency error of the standard Alikhanov formula
on nonuniform girds in (2.1) is given (slightly simplified) from [19, Theorem 3.4].
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Lemma 4.1 Let M1 holds. Assume that v ∈ C3(0, T ], and there exists a positive
constant Cv such that |v′′′(t)| ≤ Cv(1 + tσ−3) for 0 < t ≤ T , where σ ∈ (0, 1) ∪
(1, 2) is a regularity parameter. For the standard Alikhanov formula on nonuniform
girds, there exist

∣∣(∂α
t v)(tn−θ ) − (∂α

τ v)n−θ
∣∣≤A

(n)
0 Gn

loc +
n−1∑
k=1

(
A

(n)
n−k−1−A

(n)
n−k

)
Gk

his for 1≤n≤N,

where two quantities Gn
loc and Gk

his are defined as

Gn
loc := 3

2

∫ tn−1/2

tn−1

(ξ − tn−1)
2|v′′′(ξ)|dξ + 3τn

2

∫ tn

tn−1/2

(tn − ξ)|v′′′(ξ)|dξ,

Gk
his := 5

2

∫ tk

tk−1

(ξ − tk−1)
2|v′′′(ξ)|dξ + 5

2

∫ tk+1

tk

(tk+1 − ξ)2|v′′′(ξ)|dξ .

The main difference between the fast Alikhanov formula and the standard one is
that the convolution kernels are approximated by SOEs with the tolerance error ε.
Denote t̂j = max{1, tj } for 1 ≤ j ≤ N . When j ≥ 2, the regularity assumptions
(1.14) and (3.10) lead to

∣∣∣(∂α
aτ v)j−θ − (∂α

τ v)j−θ
∣∣∣ ≤

j−1∑
k=1

|�τ v
k||A(j)

j−k − A
(j)
j−k|

≤ 7ε

4

j−1∑
k=1

∫ tk

tk−1

|v′(ξ)|dξ ≤ Cv

σ
tσj−1ε ≤ Cv

σ
t̂2j−1ε.

From Lemma 4.1 and (3.11), we have |(∂α
t v)(t1−θ ) − (∂α

τ v)1−θ | ≤ A(1)
0 G1

loc if j = 1,
and for j ≥ 2,

∣∣∣(∂α
t v)(tj−θ ) − (∂α

τ v)j−θ
∣∣∣ ≤ A

(j)

0 G
j

loc +
j−1∑
k=1

(
A

(j)

j−k−1 − A
(j)
j−k

)
Gk

his

+29ε

20
G

j

loc + 7ε

2

j−1∑
k=1

Gk
his.

In view of the regularity assumptions (1.14) and the definition of Gn
loc, it is not diffi-

cult to find G1
loc ≤ Cvσ

−1τσ
1 and Gk

loc ≤ Cvt
σ−3
k−1 τ 3k for 2 ≤ k ≤ N . Accordingly, the

regularity assumptions (1.14) and the definition of Gk
his mentioned above imply that

G1
his ≤ Cv(σ

−1τσ
1 + tσ−3

1 τ 32 ) and Gk
his ≤ Cv(t

σ−3
k−1 τ 3k + tσ−3

k τ 3k+1) for 2 ≤ k ≤ N −1.
Hence, we have

29ε

20
G

j

loc + 7ε

2

j−1∑
k=1

Gk
his ≤ Ch

⎛
⎝tσj−1ε + tσ1

σ
ε +

j−1∑
k=2

(tσk−1 + tσk )ε

⎞
⎠

≤ Cv

σ
t̂2j−1ε for j ≥ 2.
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Denote the local consistency error

ϒn−θ [v] := (∂α
t v)(tn−θ ) − (∂α

aτ v)n−θ (4.1)

a triangle inequality leads to |ϒ1−θ [v]| ≤ A(1)
0 G1

loc if j = 1, and for j ≥ 2,

|ϒj−θ [v]| ≤ A
(j)

0 G
j

loc +
j−1∑
k=1

(
A

(j)

j−k−1 − A
(j)
j−k

)
Gk

his + Cv

σ
t̂2j−1ε. (4.2)

Multiplying the inequality (4.2) by P(n)
n−j and summing the index j from 1 to n, we

exchange the order of summation and apply the definition (1.9) of P(n)
n−j to get

n∑
j=1

P(n)
n−j |ϒj−θ [v]| ≤

n∑
j=1

P(n)
n−j A

(j)

0 G
j

loc +
n∑

j=2

P(n)
n−j

j−1∑
k=1

(
A

(j)

j−k−1 − A
(j)
j−k

)
Gk

his + Cvε

σ

n∑
j=2

P(n)
n−j t̂

2
j−1

≤
n∑

j=1

P(n)
n−j A

(j)

0 G
j

loc +
n−1∑
k=1

Gk
his

n∑
j=k+1

P(n)
n−j

(
A

(j)

j−k−1 − A
(j)
j−k

)
+ Cvt̂

2
n−1ε

σ

n∑
j=2

P(n)
n−j

≤
n∑

k=1

P(n)
n−kA(k)

0 Gk
loc +

n−1∑
k=1

P(n)
n−kA(k)

0 Gk
his + Cv

σ
tαn t̂2n−1ε. (4.3)

where (1.11) with m = 1 and πA = 2 was used in the last step. Under the conditions
of Lemma 3.1, the boundedness implies that A(k)

0 ≤ 2
τk

ω2−α(τk), A(k)
k−2 ≥ 1

2ω1−α(tk −
t1) and

A(k)
0

A(k)
k−2

≤ 4ω2−α(τk)

τkω1−α(tk − t1)
≤ 4

1 − α

(tk − t1)
α

τα
k

≤ Cv

1 − α
tαk τ−α

k for 2 ≤ k ≤ n ≤ N .

Moreover, the identity (1.10) for the complementary discrete kernels P(n)
n−j gives

P(n)
n−1A(1)

0 ≤ 1 and
n−1∑
k=2

P(n)
n−kA(k)

k−2 ≤
n∑

k=2

P(n)
n−kA(k)

k−2 = 1.

Then, it follows from (4.3) that

n∑
j=1

P(n)
n−j |ϒj−θ [v]| ≤ P(n)

n−1A(1)
0

(
G1

loc + G1
his

)
+

n∑
k=2

P(n)
n−kA(k)

0 Gk
loc +

n−1∑
k=2

P(n)
n−kA(k)

0 Gk
his + Cv

σ
tαn t̂2n−1ε.

The first term on the right-hand side is bounded by Cv

(
σ−1τσ

1 + tσ−3
1 τ 32

)
≤ Cv

τσ
1
σ
,

and two terms in the middle can be bounded by

Cv

1 − α

(
n∑

k=2

P(n)
n−kA(k)

k−2t
α
k τ−α

k Gk
loc +

n−1∑
k=2

P(n)
n−kA(k)

k−2t
α
k τ−α

k Gk
his

)

≤ Cv

1 − α

(
max
2≤k≤n

tαk tσ−3
k−1 τ 3−α

k + max
2≤k≤n−1

tαk (tσ−3
k−1 τ 3−α

k + tσ−3
k τ 3k+1τ

−α
k )

)

≤ Cv

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1(ρ
α
k−1 + 1) ≤ Cv

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1 for 2 ≤ n ≤ N .
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Combining these inequalities together, one has

n∑
j=1

P(n)
n−j |ϒj−θ [v]| ≤ Cv

(
τσ
1

σ
+ 1

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1 + ε

σ
tαn t̂2n−1

)
.

In conclusion, by taking the initial singularity into account, we have the following
global consistency error analysis of the fast Alikhanov approximation on nonuniform
meshes.

Lemma 4.2 Assume that v ∈ C3(0, T ] and there exist Cv > 0 such that |v′(t)| ≤
Cv(1 + tσ−1) and |v′′′(t)| ≤ Cv(1 + tσ−3) for 0 < t ≤ T , where σ ∈ (0, 1) ∪ (1, 2)
is a regularity parameter. Denote t̂n = max{1, tn}. Under the conditions of Lemma
3.1, the global consistency error of the fast Alikhanov approximation (2.5) satisfies

n∑
j=1

P(n)
n−j |ϒj−θ [v]| ≤ Cv

(
τσ
1

σ
+ 1

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1 + ε

σ
tαn t̂2n−1

)
for 1 ≤ n ≤ N .

4.2 Sharp H1-norm error analysis

As described in section 3.1 of [20], under the assumption ofAssG, the traditionalH 1-
norm analysis together with the discrete Grönwall inequality in Lemma 1.1 shows
the error estimate of the time-stepping scheme (1.6)–(1.8) as

|u(tn) − un
h|1 ≤ Cu

σ(1 − α)

(
τmin{2−α,γ (σ−α/2)} + h4 + ε

)
for 1 ≤ n ≤ N .

It is obvious that a loss of theoretical accuracy O(τγ α
2 ) exists in time under the

regularity assumption (1.14), which leads to a suboptimal error estimate due to the
initial singularity and the discrete convolution form. The authors utilize the time-
space error splitting technique to overcome this problem (see [20] for more details).
In the following analysis, an alternative two-stage error analysis is applied to establish
sharp H 1-norm error estimate for the fully discrete scheme (1.6)–(1.8) under the
realistic assumption of solution.

Define the continuous inner product (v, w) := ∫
�

v(x)w(x)dx with the associ-
ated L2-norm ‖v‖L2 := √

(v, v). Also, the H 1 semi-norm is defined as |v|H 1 :=√
(−�v, v). It is easy to check ‖v‖L2 ≤ C�|v|H 1 via the embedding inequality.

Additionally, we have |v|1 ≤ C�|v|H 1 by using the Cauchy-Schwarz inequality.
Stage 1: Temporal error analysis for time-discrete system We apply the fast

Alikhanov formula (3.2) to approximate the problem (1.1)–(1.3) and obtain the time-
discrete system

(Dα
τ u)n−θ = �un−θ + κun−θ + f (x, tn−θ ) for x ∈ � and 1 ≤ n ≤ N, (4.4)

un(x) = 0 for x ∈ ∂� and 1≤n≤N, (4.5)

u0(x) = u0(x) for x ∈ �̄. (4.6)

The existence and uniqueness of the solution un can be proved straightforward
since it is a linear elliptic problem. Denote the solution error en(x) := u(x, tn) − un
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for x ∈ �, then the governing equation reads

(Dα
τ e)n−θ = �en−θ + κen−θ + ϒn−θ [u] + Rn−θ

τ , (4.7)

where ϒn−θ [u] is the local consistency error described in (4.1), and

Rn−θ
τ := (κ + �)[un−θ (x) − u(x, tn−θ )] for x ∈ �. (4.8)

Taking the continuous inner product of (4.7) with −�en−θ , we have

((Dα
τ e)n−θ , −�en−θ )+‖�en−θ‖2

L2 = (κen−θ ,−�en−θ )− (ϒn−θ [u], �en−θ )− (Rn−θ
τ , �en−θ ).

In terms of the first Green formula and Cauchy-Schwarz inequality, we apply
Corollary 3.1 with v := �1/2e and obtain

n∑
k=1

A(n)
n−k�τ

(
|ek|2

H 1

)
≤ 2κ|en−θ |2

H 1 + 2|en−θ |H 1

(|ϒn−θ [u]|H 1 + |Rn−θ
τ |H 1

)
,

which takes the form of (1.13) with λ := 2κ , vk := |ek|H 1 , and ηn :=
2
(|ϒn−θ [u]|H 1 + |Rn−θ

τ |H 1

)
. By virtue of Lemmas 3.1 and 3.3, we see that Lemma

1.1 is satisfied with πA = 2. Thus, under the restriction of maximum time-step size
τ ≤ 1/ α

√
8κ�(2 − α), Lemma 1.1 gives

|en|H 1 ≤ 2Eα

(
12κtαn

)
max
1≤k≤n

k∑
j=1

P(k)
k−j

(
|ϒj−θ [u]|H 1 + |Rj−θ

τ |H 1

)
.

Similar to the proof of [19, Lemma 3.8], it is easy to find
n∑

j=1

P(n)
n−j |Rj−θ

τ | ≤ Cu

(
τσ+α
1

σ
+ tαn max

2≤k≤n
tσ−2
k−1 τ 2k

)
for 1 ≤ n ≤ N . (4.9)

Therefore, Lemma 4.2 and (4.9) show that

|en|H 1 ≤ Cu

(
τσ
1

σ
+ 1

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1 + tαn max
2≤k≤n

tσ−2
k−1 τ 2k + ε

σ
tαn t̂2n−1

)
.

(4.10)
Stage 2: Spatial error analysis for fully discrete system Now return to the fully

discrete system, which can be viewed as the spatial approximation of time-discrete
system (4.4)–(4.6). Under the priori assumptions in (1.14), this system has a unique
solution un ∈ H 4(�) for 1 ≤ n ≤ N . Denote the solution error en

h := un − un
h for

xh ∈ �h, the governing equation reads

(∂α
aτ eh)

n−θ = Dhe
n−θ
h + κen−θ

h + Rn−θ
s , (4.11)

where Rn−θ
s = (Dh − �)un−θ . By means of Taylor’s expansion with integral

reminder, it is easy to check that ‖Rn−θ
s ‖ ≤ Cuh

4.
Taking the discrete inner product of (4.11) with 2(∂α

aτ eh)
n−θ , one has

2‖(∂α
aτ eh)n−θ‖2 − 2〈Dhen−θ

h , (∂α
τ eh)n−θ 〉h = 2〈κen−θ

h , (∂α
aτ eh)n−θ 〉h + 2〈Rn−θ

s , (∂α
aτ eh)n−θ 〉h.
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By means of (3.14) and the embedding inequality (2.6), we apply Corollary 3.1 with
v := �

1/2
h eh and obtain

n∑
k=1

A(n)
n−k�τ

(
|ek

h|21
)

≤ κ2‖en−θ
h ‖2 + ‖Rn−θ

s ‖2 ≤ κ2C�|en−θ
h |21 + ‖Rn−θ

s ‖2,

which has the form of (1.12) with λ := κ2C�, vk := |ek
h|21, and ηn = ‖Rn−θ

s ‖2.
Under the conditions of Lemmas 3.1 and 3.3, we see that Lemma 1.1 holds with
πA = 2. If the maximum time-step size τ ≤ 1/ α

√
4κ2�(2 − α)C�, Lemma 1.1 yields

|en
h|1 ≤

√
2Eα(6κ2C�tαn )�(1 − α) max

1≤k≤n
{tα/2

k ‖Rk−θ
s ‖} ≤ Cut

α/2
n h4. (4.12)

Combining (4.10) with (4.12), we utilize the triangle inequality

|u(tn) − un
h|1 ≤ |en|1 + |en

h|1 ≤ C�|en|H 1 + |en
h|1

≤ Cu

(
τσ
1

σ
+ 1

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1 + tαn max
2≤k≤n

tσ−2
k−1 τ 2k + t

α/2
n h4 + ε

σ
tαn t̂2n−1

)
.

Overall, we establish the convergence of the numerical solution.

Theorem 4.1 Assume that the exact solution u satisfies the regularity prop-
erty in (1.14) with the parameter σ ∈ (0, 1) ∪ (1, 2). Let M1 holds and
t̂n = max{1, tn} for 1 ≤ n ≤ N . Under the restriction of maximum time-
step τ ≤ 1/ α

√
4κ max{2, κC�}�(2 − α) and the SOEs tolerance error ε ≤

min{ε∗, ε∗∗,min1≤k≤n−1 εk}, the numerical solution un
h is convergent with respect to

the discrete H 1-norm,

|u(tn) − un
h|1 ≤ Cu

(
τσ
1

σ
+ 1

1 − α
max
2≤k≤n

tαk tσ−3
k−1 τ 3k τ−α

k−1 + tαn max
2≤k≤n

tσ−2
k−1 τ 2k + t

α/2
n h4 + ε

σ
tαn t̂2n−1

)
.

As mentioned in Section 1, the aforesaid analysis is applicable to a wider class of
unequal time-steps satisfying M1. On the other hand, if AssG holds, one has

tαk tσ−3
k−1 τ 3k τ−α

k−1 ≤ Cγ tα+σ−3
k τ 3−α

k ≤ Cγ tα+σ−3
k τ

3−α−β
k (τ min{1, t1−1/γ

k })β

≤ Cγ t
σ−β/γ

k (τk/tk)
3−α−β τβ ≤ Cγ t

max{0,σ−(3−α)/γ }
k τβ for 2 ≤ k ≤ n, (4.13)

where β := min{2, γ σ }. Obviously, τσ
1 ≤ Cγ τγσ ≤ Cγ τβ . Moreover, it is easy to

check

tσ−2
k−1 τ 2k ≤ Cγ tσ−2

k τ
2−β
k (τ min{1, t1−1/γ

k })β
≤ Cγ t

σ−β/γ

k (τk/tk)
2−β τβ ≤ Cγ t

max{0,σ−2/γ }
k τβ for 2 ≤ k ≤ n.(4.14)

Then, Theorem 4.1 gives the following corollary.
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Corollary 4.1 Let the conditions of Theorem 4.1 hold. If the time mesh satisfies
AssG, the discrete solution un

h is convergent in the sense that

|u(tn) − un
h|1 ≤ Cu

σ(1 − α)

(
τmin{γ σ,2} + h4 + ε

)
for 1 ≤ n ≤ N .

It says that the optimal grading parameter γopt = 2/σ .

Remark 2 Actually, an alternative estimate of (4.13) can be obtained similarly

tαk tσ−3
k−1 τ 3k τ−α

k−1 ≤ Cγ tα+σ−3
k τ 3−α

k ≤ Cγ tα+σ−3
k (τ min{1, t1−1/γ

k })3−α ≤ Cγ t
σ−(3−α)/γ

k τ 3−α .

This means that the fast nonuniform Alikhanov formula (∂α
aτ v)n−θ approximates

(∂α
t v)(tn−θ ) to order O(τmin{γ σ,3−α}), and the optimal grading parameter γopt =

(3 − α)/σ . However, restricted by the term (4.14) arising from Rn−θ
τ in (4.8), the

temporal convergence rate of the new scheme is to order O(τ 2) if γ ≥ 2/σ .

5 Numerical examples

In this section, three examples are presented to verify the effectiveness and accu-
racy of the new scheme. For comparisons, we denote the numerical scheme using
the standard Alikhanov (Alikhanov) approximation (2.4) as Scheme 1 in the tables,
while the fully discrete scheme (1.6)–(1.8) using the accelerated Alikhanov (AccA)
formula is called Scheme 2 for simplicity. To illustrate superiority of the fast algo-
rithm, comparisons of computational cost between Scheme 1 and Scheme 2 are also
indicated.

Example 1 To test the validity and accuracy of the fast Alikhanov approximation, we
begin by considering a fractional ordinary differential equation Dα

t u = ω1+σ−α(t).
The time interval is (0, 1) and the exact solution is u = ω1+σ (t) which satisfies the
regularity assumptions (1.14). To trade off the accuracy and efficiency, here and in
what follows, we choose ε = 10−12 in the simulations for the fast algorithm.

Tables 1 and 2 display the temporal error and convergence order in uniform mesh
(γ = 1). Due to the lack of smoothness near the initial time, we find that all con-
vergence orders are hard to achieve O(τ 3−α). Orders in two tables can be described
as O(τσ ) which supports the sharp error estimate in Remark 2. By comparison test,
we observe that the convergence rate is improved with the increase of the regular-
ity parameter σ . It is also in agreement with the theoretical analysis. Additionally,
computational errors in two tables indicate that the accelerated formula has the same
accuracy as well as the standard one.

The graded grids are employed to improve the convergence order. Tables 3, 4, and
5 list the temporal error and convergence order for σ = 0.8 in nonuniform partitions
with different parameters α and γ . The effectiveness of the fast Alikhanov formula is
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Table 2 Temporal error of Example 1 for different α with σ = 1.6, γ = 1

α = 0.2 α = 0.5 α = 0.8

Alikhanov AccA Alikhanov AccA Alikhanov AccA

N Error Error Order Error Error Order Error Error Order

80 3.96e−06 3.96e−06 1.18e−05 1.18e−05 2.59e−05 2.59e−05

160 1.30e−06 1.30e−06 1.60 3.90e−06 3.90e−06 1.60 8.54e−06 8.54e−06 1.60

320 4.30e−07 4.30e−07 1.60 1.29e−06 1.29e−06 1.60 2.82e−06 2.82e−06 1.60

640 1.42e−07 1.42e−07 1.60 4.25e−07 4.25e−07 1.60 9.29e−07 9.29e−07 1.60

1280 4.68e−08 4.68e−08 1.60 1.40e−07 1.40e−07 1.60 3.06e−07 3.06e−07 1.60

min{σ, 3 − α} 1.60 1.60 1.60

still held in this situation due to the same temporal error between two formulas. Com-
paring with Table 1, it is not difficult to find that the convergence rate is increased
with different γ . Numerical results in Tables 3, 4, and 5 witness the predicted time
accuracy in Remark 2. Moreover, invoking to the data in three tables, one gets the
optimal mesh parameter γopt = (3 − α)/σ which is also coincide with our analysis.
All these results substantiate the validity of nonuniform meshes in resolving the ini-
tial singularity and the sharpness of error estimate in Remark 2. Also, we see that the
fast Alikhanov approximation is effective no matter in uniform grid or nonuniform
ones.

Example 2 We consider the problem (1.1)–(1.3) in � = (0, π)2 to witness
the effectiveness and accuracy of Scheme 2. Let T = 1, κ = 2, and
f = ω1+σ−α(t) sin x sin y. The continuous problem has an exact solution u =
ω1+σ (t) sin x sin y which satisfies the regularity assumptions (1.14).

Table 3 Temporal error of Example 1 for different γ with α = 0.2, σ = 0.8

γ = 3 γ = 3.5 = γopt γ = 4

Alikhanov AccA Alikhanov AccA Alikhanov AccA

N Error Error Order Error Error Order Error Error Order

80 8.24e−07 8.24e−07 8.50e−07 8.50e−07 1.13e−06 1.13e−06

160 1.56e−07 1.56e−07 2.40 1.36e−07 1.36e−07 2.64 1.83e−07 1.83e−07 2.63

320 2.96e−08 2.96e−08 2.40 2.13e−08 2.13e−08 2.67 2.88e−08 2.88e−08 2.67

640 5.61e−09 5.61e−09 2.40 3.26e−09 3.26e−09 2.71 4.45e−09 4.45e−09 2.69

1280 1.06e−09 1.06e−09 2.40 4.95e−10 4.94e−10 2.72 6.79e−10 6.76e−10 2.72

min{γ σ, 3 − α} 2.40 2.80 2.80
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Table 4 Temporal error of Example 1 for different γ with α = 0.5, σ = 0.8

γ = 3 γ = 3.125 = γopt γ = 3.5

AlikhanovAccA Alikhanov AccA AlikhanovAccA

N Error Error Order Error Error Order Error Error Order

80 3.91e−06 3.91e−06 4.09e−06 4.09e−06 4.80e−06 4.80e−06

160 7.41e−07 7.41e−07 2.40 7.55e−07 7.55e−07 2.44 8.90e−07 8.90e−07 2.43

320 1.40e−07 1.40e−07 2.40 1.37e−07 1.37e−07 2.46 1.62e−07 1.62e−07 2.46

640 2.66e−08 2.66e−08 2.40 2.48e−08 2.48e−08 2.47 2.93e−08 2.93e−08 2.47

1280 5.04e−09 5.03e−09 2.40 4.43e−09 4.43e−09 2.48 5.26e−09 5.25e−09 2.48

min{γ σ, 3 − α} 2.40 2.50 2.50

Define the L∞(H 1) semi-norm solution error e(N, h) = max1≤k≤N |uk − uk
h|1.

In numerical tests, temporal order and spatial order are investigated by suppos-
ing that e(N, h) ≈ C(τp + hq) and evaluating the convergence rates p ≈
log[e(N, h)/e(2N, h)] and q ≈ log[e(N, h)/e(N, h/2)]. To check the spatial accu-
racy, we choose the parameters α = 0.4, σ = 1.6 and set N = 1000 to avoid
contamination of the temporal error. Spatial errors and convergence rates for both
uniform partition and nonuniform ones are recorded in Table 6. We see that the
spatial errors of Schemes 1 and 2 are equal and both two schemes preserve the fourth-
order accuracy well. This is consistent with our predicted space accuracy in Corollary
4.1. Table 7 displays the errors and orders in time for different parameters γ with
α = 0.4, σ = 1.6 and a fine mesh size h = π/200. Temporal errors of Schemes 1 and
2 remain the same which confirms the effectiveness and accuracy of the fully discrete
scheme. Unfortunately, numerical results in the third part of Table 7 are different
from the first two cases. The convergence rates in this part are higher than 2, maybe
can reach γ σ . This amusing phenomenon shows that there are certain differences

Table 5 Temporal error of Example 1 for different γ with α = 0.8, σ = 0.8

γ = 2 γ = 2.75 = γopt γ = 3

Alikhanov AccA Alikhanov AccA Alikhanov AccA

N Error Error Order Error Error Order Error Error Order

80 6.64e−05 6.64e−05 2.12e−05 2.12e−05 2.21e−05 2.21e−05

160 2.19e−05 2.19e−05 1.60 4.82e−06 4.82e−06 2.14 4.90e−06 4.90e−06 2.17

320 7.23e−06 7.23e−06 1.60 1.08e−06 1.08e−06 2.16 1.08e−06 1.08e−06 2.18

640 2.38e−06 2.38e−06 1.60 2.39e−07 2.39e−07 2.18 2.36e−07 2.36e−07 2.19

1280 7.86e−07 7.86e−07 1.60 5.27e−08 5.27e−08 2.18 5.16e−08 5.16e−08 2.19

min{γ σ, 3 − α} 1.60 2.20 2.20
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Table 6 Spatial error of Example 2 for different γ with α = 0.4, σ = 1.6, N = 1000

γ = 1 γ = 1.25 = γopt γ = 1.5

Scheme1 Scheme2 Scheme1 Scheme2 Scheme1 Scheme2

h Error Error Order Error Error Order Error Error Order

π/5 1.04e−03 1.04e−03 1.04e−03 1.04e−03 1.04e−03 1.04e−03

π/10 6.40e−05 6.40e−05 4.02 6.40e−05 6.40e−05 4.02 6.40e−05 6.40e−05 4.02

π/20 4.00e−06 4.00e−06 4.00 3.99e−06 3.99e−06 4.00 3.99e−06 3.99e−06 4.00

π/40 1.40e−07 2.58e−07 3.95 2.51e−07 2.51e−07 3.99 2.50e−07 2.50e−07 4.00

4.00 4.00 4.00

between theory and experiment. It seems that the truncation error of u(tn−θ ) − un−θ

in (4.9) can be further enhanced at least for the coarse meshes.
The left panel of Fig. 1 shows the errors with the parameters α = 0.5, σ =

0.5, h = π/10 at T = 1 for different γ . We can conclude that the performance of
nonuniform grids is better than the uniform one. Error curves on different nonuni-
form partitions are indicated in the right panel. These curves illustrate that the fully
discrete scheme is unconditionally stable.

Since the computational cost in space had been proved in [29], we just examine the
computational cost in time. Taking the parameters α = 0.6, σ = 1.6, γ = 1.5, h =
π/10, and T = 1, we consider the relationship between CPU time and the time-step
size N . The left panel of Fig. 2 reports the CPU time in seconds for Schemes 1 and 2
versus N . We find that the CPU time increase via the number of N is linear with the
slopes of one and two in the logarithm for Scheme 2 and Scheme 1, respectively. It
verifies that the new scheme is much faster than the normal one.

Example 3 Consider the three-dimensional problems (1.1)–(1.3) in � = (0, π)3 and
the time interval is (0, 1]. Let κ = 3 and f = ω1+σ−α(t) sin x sin y sin z, so that

Table 7 Temporal error of Example 2 for different γ with α = 0.4, σ = 1.6, h = π/200

γ = 1 γ = 1.25 = γopt γ = 1.5

Scheme1 Scheme2 Scheme1 Scheme2 Scheme1 Scheme2

N Error Error Order Error Error Order Error Error Order

10 3.89e−04 3.89e−04 1.78e−04 1.78e−04 1.39e−04 1.39e−04

20 1.28e−04 1.28e−04 1.60 4.45e−05 4.45e−05 2.00 2.66e−05 2.66e−05 2.39

40 4.23e−05 4.23e−05 1.60 1.11e−05 1.11e−05 2.00 5.05e−06 5.05e−06 2.40

80 1.40e−05 1.40e−05 1.60 2.78e−06 2.78e−06 2.00 9.56e−07 9.56e−07 2.40

min{γ σ, 2} 1.60 2.00 2.00
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Fig. 1 Error curves of the fully discrete scheme (1.6)–(1.8) for different γ in Example 2 (left); Error curves
of the fully discrete scheme (1.6)–(1.8) on nonuniform meshes for different γ and h in Example 2 (right)

the reaction-subdiffusion problem has an exact solution u = ω1+σ (t) sin x sin y sin z.
This solution still satisfies the regularity assumptions (1.14).

We choose the paremeters α = 0.8, σ = 0.8 and still test the temporal error
and spatial error separately. For spatial accuracy, N = 1000 is taken as Example 2
to ignore the temporal error. Errors and convergence orders are reported in Table 8
by varying mesh sizes from h = π/5 to π/40. For the case of uniform partition,
we observe that the errors are almost invariable when the mesh size is refined to
h = π/10. This problem might be caused by too small regularity parameter σ , so
that the temporal error contaminates the final data. On the contrary, numerical results
of nonuniform partitions are close to the fourth-order accuracy which agrees well
with our theoretical prediction. In general, the nonuniform grids outperform the uni-
form one for the problem with singularity solutions. Always, the same parameters are
selected to check the temporal convergence rates in Table 9. We choose h = π/200
enable to avoid the errors in space and double increase the number of N . Numerical
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Fig. 2 Comparisons of computational cost between two schemes for 2D problem in Example 2 (left) and
3D problem in Example 3 (right)

1036 Numerical Algorithms (2021) 86:1011–1039



Table 8 Spatial error of Example 3 for different γ with α = 0.8, σ = 0.8, N = 1000

γ = 1 γ = 2.5 = γopt γ = 3

Scheme1 Scheme2 Scheme1 Scheme2 Scheme1 Scheme2

h Error Error Order Error Error Order Error Error Order

π/5 2.60e−03 2.60e−03 2.72e−03 2.72e−03 2.72e−03 2.72e−03

π/10 4.45e−04 4.45e−04 2.55 1.68e−04 1.68e−04 4.02 1.68e−04 1.68e−04 4.02

π/20 4.45e−04 4.45e−04 0 1.03e−05 1.03e−05 4.00 1.03e−05 1.03e−05 4.00

π/40 4.45e−04 4.45e−04 0 4.77e−07 4.77e−07 4.43 4.87e−07 4.87e−07 4.40

0 4.00 4.00

results in the first two cases maintain the theoretical analysis in Corollary 4.1 for both
uniform partition and nonuniform ones. However, the third part in this table arises an
interesting phenomenon similar to Example 2, namely, the convergence rate is higher
than 2, approaches 3 − α.

Analogously, comparisons of error curves between two types of meshes and
unconditional stability of the proposed scheme are listed in Fig. 3. In the left panel,
error curve of the uniform grid is still higher than the other nonuniform ones. On the
other side, the performances of error curves on different nonuniform grids illustrate
the unconditionally stability of the new scheme.

Comparisons of computational complexity are also reported for 3D case. CPU
times with the parameters α = 0.6, σ = 1.6, h = π/10 at T = 1 and different
numbers of time steps N are shown in the right panel of Fig. 2. The fast scheme has
almost linear complexity in N and is much more efficient than the normal one.

In conclusion, compared with Scheme 1, the fully discrete scheme (Scheme 2)
not only has the same accuracy but also reduces the computational cost and stor-
age requirement significantly for long time calculation and spatial multi-dimensional
cases.

Table 9 Temporal error of Example 3 for different γ with α = 0.8, σ = 0.8, h = π/200

γ = 1 γ = 2.5 = γopt γ = 3

Scheme1 Scheme2 Scheme1 Scheme2 Scheme1 Scheme2

N Error Error Order Error Error Order Error Error Order

10 1.77e−02 1.77e−02 2.96e−03 2.96e−03 3.08e−03 3.08e−03

20 1.02e−02 1.02e−02 0.80 7.70e−04 7.70e−04 1.94 7.62e−04 7.62e−04 2.02

40 5.84e−03 5.84e−03 0.80 1.93e−04 1.93e−04 2.00 1.79e−04 1.79e−04 2.09

80 3.35e−03 3.35e−03 0.80 4.82e−05 4.82e−05 2.00 4.09e−05 4.09e−05 2.13

min{γ σ, 2} 0.80 2.00 2.00
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Fig. 3 Error curves of the fully discrete scheme (1.6)–(1.8) for different γ in Example 3 (left); Error curves
of the fully discrete scheme (1.6)–(1.8) on nonuniform meshes for different γ and h in Example 3 (right)

6 Concluding remarks

By taking the intrinsically initial singularity of solution into account, an acceler-
ated nonuniform version of Alikhanov formula is presented for approximating the
Caputo fractional derivative. In the finite difference framework, we utilize the dis-
crete sine transform and develop a second-order fast compact scheme for solving
the subdiffusion problems. Unconditional stability and sharp H 1-norm error estimate
are established by employing the discrete fractional Grönwall inequality and global
consistency analysis. Some numerical examples are presented to support the effec-
tiveness of this scheme and the sharpness of our analysis. The theoretical results in
time approximation together with their proofs here would be also valid for some other
spatial discretizations such as finite element method and spectral method.
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