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Abstract
In this paper, we study a class of block collocation boundary value methods for the
first-kind Volterra integral equations. The numerical algorithm is constructed by uti-
lizing approximations to the exact solution in future steps. The solvability of the new
method is not ensured, even for the uniform mesh. Therefore, we discuss its solv-
ability by studying the special structure of the collocation equation and present the
sufficient condition for the existence of the collocation solution. Furthermore, we
exploit the convergence property with the help of interpolation remainders. Finally,
numerical experiments are conducted to show the effectiveness of the new boundary
value method and verify given theoretical results.

Keywords Volterra integral equation · Collocation · Boundary value method ·
Convergence analysis

1 Introduction

Recently, boundary value methods for solving the second-kind Volterra integral equa-
tion (VIE) are investigated by several authors. This idea comes from numerical
studies of ordinary differential equations (ODE) [1]. In contrast to its linear multi-
step counterpart, the boundary value method for solving ODE reconstructs the initial
value problem as a boundary value problem. By developing the reducible quadrature
rule with such methodology, Chen and Zhang devised boundary value methods for
solving Volterra integral and related functional equations [2]. Afterwards, researchers
gave comprehensive studies on such class of algorithms [3–5]. On the other hand,
with the help of multistep collocation methods, Ma and Xiang constructed a class
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of collocation boundary value methods for the second-kind Volterra integral equa-
tions in [6]. Numerical experiments showed this class of algorithms had a wide stable
region and was able to solve highly oscillatory integral equations efficiently. With the
help of fractional Lagrange interpolation, its further extension to the weakly singular
problem was studied in [7].

In this paper, we consider the numerical solution of Volterra integral equation of
the first kind, ∫ t

0
K(t − s)u(s)ds = g(t), t ∈ [0, T ]. (1)

Here, K(t) and g(t) are sufficiently smooth in [0, T ], g(0) = 0, and |K(0)| > 0.
These conditions guarantee a unique solution of (1) (see [8, pp.64]). Applications of
VIE (1) frequently arise in geological prospecting, fault movement, scattering prob-
lem, and analysis of causal processes [9–11]. Although VIE (1) can be solved by
Laplace transform techniques in some special cases (see [12–14]), we have to resort
to numerical methods in the general case.

Among existing algorithms, the collocation method is well-known for its low
computational cost and attracts much attention [8]. Let

Ih := {tn : 0 = t0 < t1 < · · · < tN = T }
denote a uniform mesh, where tn = t0 + nh, h = T/N, and define the set of collo-
cation parameters {cj }mj=1 with 0 ≤ cj ≤ 1. Then, the collocation grid is determined
by Ih and {cj }mj=1, that is,

Xh := {tn + cjh, j = 1, · · · , m, n = 0, 1, · · · , N − 1}.
Immediately, the collocation solution uh(t) is computed by the collocation equation∫ tn+cj h

0
K(tn + cjh − s)uh(s)ds = g(tn + cjh), (2)

where

uh(s) = uh(tn + vh) =
m∑

j=1

uh(tn + cjh)

m∏
k=1,k �=j

v − ck

cj − ck

, v ∈ (0, 1].

By choosing 0 < c1 < c2 < · · · < cm ≤ 1 with

(−1)m
m∏

j=1

1 − cj

cj

∈ [−1, 1),

the classical collocation method results in an approximation with a global order of
O(hm) as h → 0 in the piecewise polynomial space [8, pp.123]. Particularly, in the
case of cm = 1 and

(−1)m
m−1∏
j=1

1 − cj

cj

∈ [−1, 1),

the convergence rate of the collocation method is able to attain O(hm+1) [8, pp.130].
On the other hand, to develop high-order algorithms without increasing colloca-

tion points, researchers usually employ multistep algorithms (see [15–17]). In [18],
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Zhang and Liang considered a class of multistep collocation methods for the first-
kind Volterra integral equation by using approximated values of the solution in
previous steps. To compute the solution u(t) in [tn, tn+1], n = r, ..., N − 1, they
rewrote the collocation polynomial uh(t) as follows:

uh(tn + vh) =
r−1∑
i=0

Bi(v)uh(tn−i ) +
m∑

j=1

B̂j (v)uh(tn + cjh), v ∈ [0, 1],

where the basis functions Bi(v), B̂j (v) were constructed by satisfying the following:{
Bl(−p) = δlp, Bl(cj ) = 0, l, p = 0, ..., r − 1,
B̂i(−p) = 0, B̂i(cj ) = δij , i, j = 1, ..., m.

Then, the multistep collocation solution was obtained by imposing the collocation
polynomial uh(t) at collocation points {tn+cjh, n = 0, 1, · · · , N−1, j = 1, ..., m},

g(tn + cjh) = h

m∑
j=1

uh(tn + cjh)

∫ cj

0
K(h(cj − v))B̂j (v)dv

+ h

r−1∑
p=0

uh(tn−p)

∫ cj

0
K(h(cj − v))Bp(v)dv

+ h

r−2∑
l=0

∫ 1

0
K(h(n − l + cj − v))uh(tl + vh)dv

+ h

n−1∑
l=r−1

r−1∑
p=0

uh(tl−p)

∫ 1

0
K(h(n − l + cj − v))Bp(v)dv

+ h

n−1∑
l=r−1

m∑
j=1

uh(tl + cjh)

∫ 1

0
K(h(n − l + cj − v))B̂j (v)dv.

Zhang and Liang discussed the existence and uniqueness of the collocation solution
for VIE (1). Furthermore, they developed the convergence condition for 2- and 3-step
collocation methods.

The main purpose of this paper is to study the block collocation boundary value
method for VIE (1). The remaining parts are organized as follows. In Section 2, we
construct the k-step collocation boundary value method with N̂ blocks (B

N̂
CBVMk).

In Section 3, the solvability and convergence analysis are studied with the help of
the theory of Toeplitz matrices. Experiments contained in Section 4 give a numerical
illustration and verify theoretical results derived in the previous section. Finally, we
present some concluding remarks.

2 Block collocation boundary valuemethod

In this section, we will focus on the construction of B
N̂
CBVMk for VIE (1), which

can be considered as an extension of the classical collocation method by relaxing the
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restriction of cj ≤ 1. To make the statement more readable, we discuss B1CBVM1
firstly, which corresponds to c1 = 0, c2 = 1, and c3 = 2 in the collocation parameter
set Xh.

By defining the local Lagrange basis

φ1
i (v) =

2∏
j=0,j �=i

v − j

i − j
, v ∈ [0, 1], i = 0, 1, 2,

we rewrite the collocation solution uh(t) in [tn, tn+1] as follows:
uh(tn + vh) = ynφ

1
0(v)+ yn+1φ

1
1(v)+ yn+2φ

1
2(v), v ∈ [0, 1], n = 0, 1, · · · , N − 3.

where yn := uh(tn), h = T/N . In the last subinterval [tN−2, tN ], we rewrite the
collocation polynomial uh(t) as follows:

uh(tN−2 + vh) = yN−1φ̂
1
0(v) + yN φ̂1

1(v), v ∈ [0, 2],
where

φ̂1
i (v) =

1∏
j=0,j �=i

v − (j + 1)

i − j
, v ∈ [0, 2], i = 0, 1.

The above approximations guarantee the fact that previous values y1, y2, · · · , yN−2
do not appear in the collocation polynomial uh(t) in [tN−2, tN ], which helps to prove
the solvability and analyze the convergence property of B

N̂
CBVMk .

Now, we arrive at the collocation equation,∫ tn

0
K(tn − s)uh(s)ds = g(tn), n = 1, 2, · · · , N, (3)

or equivalently,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(tn) = h

n−1∑
j=0

∫ 1

0
K(h(n − j − v))

(
2∑

i=0

yj+iφ
1
i (v)

)
dv, n = 1, · · · , N − 2,

g(tn) = h

N−3∑
j=0

∫ 1

0
K(h(n − j − v))

(
2∑

i=0

yj+iφ
1
i (v)

)
dv

+h

∫ n−N+2

0
K(h(n − N + 2 − v))

(
1∑

i=0

yN−1+i φ̂
1
i (v)

)
dv, n = N − 1, N .

(4)
Before illustrating B

N̂
CBVMk, we introduce some notations firstly. Let am(t) =

m−1∑
i=−m+1

ait
i , then m × m Toeplitz matrix T [am] is defined by the following:

T [am] =

⎛
⎜⎜⎝

a0 a−1 · · · a−m+1
a1 a0 · · · a−m+2
· · · · · · · · · · · ·

am−1 am−2 · · · a0

⎞
⎟⎟⎠ .
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Furthermore, denote the following:

d−j,i :=
∫ 1

0
K(h(j − v))φ1

i (v)dv, (5)

d̂j,i :=
∫ j−N+2

0
K(h(j − N + 2 − v))φ̂1

i (v)dv, (6)

with i = 1, 2, · · · , N, and define Laurent polynomial di
m(t) as follows:

di
m(t) :=

0∑
j=−m+1

dj−1,i t
j , i = 0, 1, 2. (7)

In the remaining part, we let M̂ := M(a : b, c : d) denote the submatrix formed by
taking a block of entries of (b − a + 1) × (d − c + 1) from the original matrix M,

where its (i, j) element is determined by M̂(i, j) := M(a + i − 1, c + j − 1), and
let Oa×b denote a zero matrix of size a × b.

Letting

C0 = (
T [d0N ](1 : N, 1 : N − 2) ON×3

)
,

C1 = (
ON×1 T [d1N ](1 : N, 1 : N − 2) ON×2

)
,

C2 = (
ON×2 T [d2N ](1 : N, 1 : N − 2) ON×1

)
,

we can get the compact form of (4)

hA(1 : N, 2 : N + 1)y = b − hy0A(1 : N, 1 : 1), (8)

where

y =

⎛
⎜⎜⎜⎝

y1
y2
...

yN

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

g(t1)

g(t2)
...

g(tN )

⎞
⎟⎟⎟⎠ ,

A = C0 + C1 + C2 + S, y0 = g′(0),

and S is a N × (N + 1) sparse matrix with the only nonzero elements

S(N − 1 : N, N : N + 1) =
(

d̂N−1,0 d̂N−1,1

d̂N,0 d̂N,1

)
.

The coefficient matrix in (8) is a Toeplitz matrix without regard to the last 2 × 2
submatrix, or equivalently, A(1 : N, 2 : N +1) can be represented by the summation
of a Toeplitz matrix and a sparse matrix. For the Toeplitz matrix, we are able to embed
it to a circulant matrix, which allows a fast calculation of matrix-vector multiplication
[19]. Hence, it is expected that (8) can be solved efficiently with Krylov subspace
methods such as GMRES.

Let us turn to the general B
N̂
CBVMk . Firstly, we divide [0, T ] into N̂ parts, that

is, [T0, T1], [T1, T2], · · · , [T
N̂−1, TN̂

] with T0 = 0, T
N̂

= T . Secondly, applying k-
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step collocation boundary value method to VIE (1) on each interval [Tn̂, Tn̂+1] with
the stepsize hn̂ = (Tn̂+1 − Tn̂)/N, we obtain, for n = 1, · · · , N, n̂ = 0, · · · , N̂ − 1,

n̂−1∑
ĵ=0

∫ T
ĵ+1

T
ĵ

K(t n̂n − s)uh(s)ds +
∫ t n̂n

Tn̂

K(t n̂n − s)uh(s)ds = g(t n̂n ). (9)

Here, for j = 0, 1, · · · , N, m̂ = 0, 1, · · · , N̂ − 1, we let t m̂j = Tm̂ + jhm̂, and

uh(t) denotes the collocation solution. In [t m̂j , t m̂j+1], j = 0, 1, · · · , N − k − 2, we
express uh(t) as follows:

uh(t
m̂
j + vhm̂) =

k+1∑
i=0

uh(t
m̂
j+i )φ

k
i (v), (10)

and in [t m̂N−k−1, t
m̂
N ], we rewrite uh(t) as follows:

uh(t
m̂
N−k−1 + vhm̂) =

k∑
i=0

uh(t
m̂
N−k+i )φ̂

k
i (v). (11)

Here,

φk
i (v) =

k+1∏
j=0,j �=i

v − j

i − j
, i = 0, 1, · · · , k + 1,

and

φ̂k
i (v) =

k∏
j=0,j �=i

v − (j + 1)

i − j
, i = 0, 1, · · · , k.

For n = 1, · · · , N −k−1, substituting (10) and (11) into (9) results in the following:

g(t n̂n ) =
n̂−1∑
ĵ=0

h
ĵ

N−k−2∑
j=0

∫ 1

0
K(tn̂n − t

ĵ
j − vh

ĵ
)

k+1∑
i=0

uh(t
ĵ
j+i )φ

k
i (v)dv

+
n̂−1∑
ĵ=0

h
ĵ

∫ k+1

0
K(tn̂n − t

ĵ

N−k−1 − vh
ĵ
)

k∑
i=0

uh(t
ĵ
N−k+i )φ̂

k
i (v)dv

+ hn̂

n−1∑
j=0

∫ 1

0
K(hn̂(n − j − v))

k+1∑
i=0

uh(t
n̂
j+i )φ

k
i (v)dv,
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and for n = N−k, · · · , N, substituting (10) and (11) into (9) results in the following:

g(t n̂n ) =
n̂−1∑
ĵ=0

h
ĵ

N−k−2∑
j=0

∫ 1

0
K(tn̂n − t

ĵ
j − vh

ĵ
)

k+1∑
i=0

uh(t
ĵ
j+i )φ

k
i (v)dv

+
n̂−1∑
ĵ=0

h
ĵ

∫ k+1

0
K(tn̂n − t

ĵ

N−k−1 − vh
ĵ
)

k∑
i=0

uh(t
ĵ
N−k+i )φ̂

k
i (v)dv

+ hn̂

N−k−2∑
j=0

∫ 1

0
K(hn̂(n − j − v))

k+1∑
i=0

uh(t
n̂
j+i )φ

k
i (v)dv

+ hn̂

∫ n−N+k+1

0
K(hn̂(n − N + k + 1 − v))

k∑
i=0

uh(t
n̂
N−k+i )φ̂

k
i (v)dv,

Furthermore, denoting

d
k,n̂
−j,i : =

∫ 1

0
K(hn̂(j − v))φk

i (v)dv, (12)

d̂
k,n̂
j,i : =

∫ j−N+k+1

0
K(hn̂(j − N + k + 1 − v))φ̂k

i (v)dv, (13)

we have the the following:

di,k,n̂
m (t) =

0∑
j=−m+1

d
k,n̂
j−1,i t

j , i = 0, 1, · · · , k + 1. (14)

Then, we derive k + 2 Toeplitz-like matrices,

C
k,n̂
i =

(
ON×i T [di,k,n̂

N ](1 : N, 1 : N − k − 1) ON×(k−i+2)

)
, i = 0, 1, · · · , k+1,

and a sparse N × (N + 1) matrix Sk,n̂ with the only nonzero elements

Sk,n̂(N − k : N, N − k + 1 : N + 1) =

⎛
⎜⎜⎜⎜⎝

d̂
k,n̂
N−k,0 d̂

k,n̂
N−k,1 · · · d̂

k,n̂
N−k,k

d̂
k,n̂
N−k+1,0 d̂

k,n̂
N−k+1,1 · · · d̂

k,n̂
N−k+1,k

...
...

...
...

d̂
k,n̂
N,0 d̂

k,n̂
N,1 · · · d̂

k,n̂
N,k

⎞
⎟⎟⎟⎟⎠ .

Letting

d
k,α,β
i,j,l : =

∫ 1

0
K(tαi − t

β
j − vhβ)φk

l (v)dv, (15)

d̂
k,α,β
i,j,l : =

∫ j−N+k+2

0
K(tαi − t

β
N−k−1 − vhβ)φ̂k

l (v)dv, (16)

we can construct, for l = 0, 1, · · · , k + 1,

Ĉ
k,α,β
l =

(
ON×l C̃

k,α,β
l (1 : N, 1 : N − k − 1) ON×(k−l+2)

)
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with a N × N matrix

C̃
k,α,β
l =

⎛
⎜⎜⎜⎜⎝

d
k,α,β
1,0,l d

k,α,β
1,1,l · · · d

k,α,β
1,N−1,l

d
k,α,β
2,0,l d

k,α,β
2,1,l · · · d

k,α,β
2,N−1,l

...
...

...
...

d
k,α,β
N,0,l d

k,α,β
N,1,l · · · d

k,α,β
N,N−1,l

⎞
⎟⎟⎟⎟⎠ ,

and a sparse N × (N + 1) matrix Ŝα,β with the only nonzero elements

Ŝk,α,β(1 : N, N − k + 1 : N + 1) =

⎛
⎜⎜⎜⎜⎝

d̂
k,α,β
1,N−1,0 d̂

k,α,β
1,N−1,1 · · · d̂

k,α,β
1,N−1,k

d̂
k,α,β
2,N−1,0 d̂

k,α,β
2,N−1,1 · · · d̂

k,α,β
2,N−1,k

...
...

...
...

d̂
k,α,β
N,N−1,0 d̂

k,α,β
N,N−1,1 · · · d̂

k,α,β
N,N−1,k

⎞
⎟⎟⎟⎟⎠ .

Letting yn̂ = (
uh(t

n̂
0 ), uh(t

n̂
1 ), · · · , uh(t

n̂
N )

)T
denote the approximate values in

the interval [Tn̂, Tn̂+1], we arrive at the compact form of (9),

Ak
n̂
(1 : N, 2 : N +1)yn̂(2 : N +1) = gn̂−yn̂(1)A

k
n̂
(1 : N, 1 : 1)−

n̂−1∑
β=0

Âk
n̂,βyβ, (17)

where

gn̂ =

⎛
⎜⎜⎜⎝

g(t n̂1 )

g(t n̂2 )
...
g(t n̂N )

⎞
⎟⎟⎟⎠ , Ak

n̂
= Sk,n̂ +

k+1∑
j=0

C
k,n̂
j , Âk

n̂,β = Ŝk,n̂,β +
k+1∑
j=0

Ĉ
k,n̂,β
j .

According to the definition of the local Lagrange interpolation polynomial, we know
that yn̂(1) = yn̂−1(N + 1) for n̂ = 1, · · · , N̂ − 1.

3 Solvability and convergence analysis

In this section, we study the existence and convergence of the collocation approxi-
mation computed by (17). In contrast to classical collocation methods, the boundary
value solution cannot be obtained step-by-step or in a recurrence relation. All values
are computed simultaneously by solving the linear system. Therefore, the existence,
uniqueness, and the convergence property of the collocation solution uh(t) in (9)
should be reconsidered in detail.

To begin with, we study the special case for which the kernel in VIE (1) is K(t) =
1. The more general theory of the existence of the block collocation boundary value
solution can be established with the help of such special case.
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3.1 The case of K(t ) = 1

Let us consider the n̂th block. It follows that

g(t n̂n ) =
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
uh(t

ĵ
j + vh

ĵ
)dv + hn̂

n−1∑
j=0

∫ 1

0
uh(t

n̂
j + vhn̂)dv. (18)

For n = N − 1, N − 2, · · · , 0, computing g(t n̂n+1)− g(t n̂n ) successively results in the
following:

hn̂

∫ 1

0
uh(t

n̂
n + vhn̂)dv = g(t n̂n+1) − g(t n̂n ), n = 0, 1, · · · , N − 1. (19)

Rewriting the coefficient matrix of the above linear system with notations in
Section 2 leads to the following:

Bk
N =

(
T k

N r
0 Rk

N

)
. (20)

Here, r is a (N − k −1)× (k +1) matrix, T k
N is a (N − k −1)× (N − k −1) Toeplitz

matrix generated by the Laurent polynomial

c
k,n̂
N−k−1(t) =

1∑
j=−k

d
k,n̂
1,1−j t

j ,

and

Rk
N =

⎛
⎜⎜⎜⎜⎝

d̂
k,n̂
N−k,0 d̂

k,n̂
N−k,1 · · · d̂

k,n̂
N−k,k

d̂
k,n̂
N−k+1,0 d̂

k,n̂
N−k+1,1 · · · d̂

k,n̂
N−k+1,k

...
...

...
...

d̂
k,n̂
N,0 d̂

k,n̂
N,1 · · · d̂

k,n̂
N,k

⎞
⎟⎟⎟⎟⎠ .

Now, (19) is transformed into the following:

Bk
N

⎛
⎜⎜⎜⎝

yn̂
1

yn̂
2
...

yn̂
N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

g(t n̂1 ) − g(t n̂−1
N ) − yn̂

0d
k,n̂
1,0

g(t n̂2 ) − g(t n̂1 )
...

g(t n̂N ) − g(t n̂N−1)

⎞
⎟⎟⎟⎟⎠ , (21)

To examine the solvability of (21), it is enough to study the inverse of T k
N and Rk

N .
Now let us review some auxillary results. Suppose that there is a Laurent polynomial

b(t) =
∞∑

n=−∞
bnt

n. Then, we can define an infinite Toeplitz matrix by the following:

T [b] =

⎛
⎜⎜⎜⎝

b0 b−1 b−2 · · ·
b1 b0 b−1 · · ·
b2 b1 b0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .
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Let T denote the complex unit circle. Then, as t moves once around the
counterclockwise-oriented T, b(t) traces out a continuous and closed curve. The
winding number of b(t) denoted by windb is the number of times this curve sur-
rounds the origin counterclockwise. Particularly, assume b(t) �= 0 for all t ∈ T and
b(t) has only finitely many nonzero coefficients, that is,

b(t) =
s∑

j=−r

bj t
j ,

then, we can obtain by a direct calculation as follows:

b(t) = t−rbs

J∏
j=1

(t − δj )

I∏
i=1

(t − μi) = t−r b̄(t),

where |δj | < 1 for all j and |μi | > 1 for all i, and b̄(t) is called the condition
polynomial for b(t). Let pj (t) = t − δj and qi (t) = t − μi Then, we have windpj

=
1,windqi

= 0 for j = 1, · · · , J, i = 1, · · · , I . Therefore, the winding number of
b(t) can be computed by windb = J − r . Moreover, since b(t) �= 0 for all t ∈ T,we
know the operator T [b] is an invertible modulo compact operator, that is, there exists
an operatorB such that bothBT [b]−I and T [b]B−I are compact (see [20, Theorem
1.9]). Besides, its index is −windb. Hence, we arrive at the following fact.

Lemma 1 [20, pp.10] The operator T [b] is invertible on lp(1 ≤ p ≤ ∞) if and only
if b(t) �= 0 for all t ∈ T and windb = 0.

Denoting Tn[b] by T [b](1 : n, 1 : n), we have lim
n→∞Tn[b] = T [b]. It is noted that

the invertibility of Tn[b] is determined by T [b], that is,

Lemma 2 [20, pp.63] Let b(t) belong to Wiener algebra. Then,

lim sup
n→∞

‖(Tn[b])−1‖ < ∞ if T [b] is invertible,
lim

n→∞‖(Tn[b])−1‖ = ∞ if T [b] is not invertible.

On the other hand, Rk
N is non-singular due to the linear independence of the local

basis functions. Therefore, the coefficient matrix in the linear system (19) is invertible
when d

c
k,n̂
N−k−1

(t) belongs to Wiener algebra and wind
c
k,n̂
N−k−1

= 0.

Next, to study the convergence property of the collocation error, we introduce the
remainder representation from the approximation theory.

Lemma 3 [8, pp.43] Assume

• For given abscissa a ≤ ξ1 < ... < ξm ≤ b, let

εm(f ; t) = f (t) −
m∑

j=1

Lj (t)f (ξj ), t ∈ [a, b]
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denote the error between f (t) and the Lagrange interpolation polynomial of
degree m − 1 with respect to the given points {ξj }.

• f (t) ∈ Cd [a, b] with 1 ≤ d ≤ m.

Then, εm(f ; t) possesses the integral representation as follows:

εm(f ; t) =
∫ b

a

κd(t, s)f (d)(s)ds, t ∈ [a, b], (22)

where the Peano kernel κd(t, s) is given by the following:

κd(t, s) := 1

(d − 1)!

⎧⎨
⎩(t − s)d−1+ −

m∑
j=1

Lj (t)(ξj − s)d−1+

⎫⎬
⎭ .

Here,

(t − s)
p
+ :=

{
0, t < s,

(t − s)p, t ≥ s.

With the winding number and remainder theory in hand, we give the condition for
the solvability of B

N̂
CBVMk and its corresponding convergence rate in the following

theorem.

Theorem 1 Assume the given functions K(t) and g(t) describing VIE (1) satisfy
K(t) = 1 and g(t) ∈ Ck+2([0, T ]). Furthermore, suppose that the winding number
of ck,n̂

N−k−1(t) is zero. Then, BN̂
CBVMk leads to a unique solution as h → 0, and the

collocation error admits as follows:

‖en̂‖∞ = O(hk+1), n̂ = 0, 1, · · · , N̂ − 1, (23)

where h = max
ĵ=0,··· ,N̂−1

{h
ĵ
}, en̂ = (eh(t

n̂
1 ), eh(t

n̂
2 ), · · · , eh(t

n̂
N ))T .

Proof Since the winding number of ck,n̂
N−k−1(t) is zero, we get B

k
N in (19) is invertible

due to Lemmas 1 and 2. Therefore, (19) can be solved uniquely, or equivalently, (18)
has a unique solution.

The remaining work is to study the convergence property of B
N̂
CBVMk . Let

eh(t) := u(t) − uh(t), then we get the error equation

0 =
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
eh(t

ĵ
j + vh

ĵ
)dv + hn̂

n−1∑
j=0

∫ 1

0
eh(t

n̂
j + vhn̂)dv. (24)
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A similar differentiation as that employed in (19) leads to the following:

hn̂

∫ 1

0
eh(t

n̂
j + vhn̂)dv = 0, j = 0, 1, · · · , N − 1. (25)

According to Lemma 3, we have the following:

hn̂

(∫ 1

0

k+1∑
i=0

eh(t
n̂
j+i )φ

k
i (v)dv + O(hk+2

n̂
)

)
= 0, j = 0, · · · , N − k − 2,

hn̂

(∫ j−N+k+2

0

k∑
i=0

eh(t
n̂
N−k+i )φ̂

k
i (v)dv + O(hk+1

n̂
)

)
= 0, j = N − k − 1, · · · , N − 1.

Since eh(t
ĵ
i ) = O(hk+1) for ĵ = 0, 1, · · · , n̂ − 1, i = 0, 1, · · · , N − 1, we get the

following:

Bk
Nen̂ = rn̂. (26)

Here, Bk
N is defined by (20), en̂ is defined by

(
eh(t

n̂
1 ), eh(t

n̂
2 ), · · · , eh(t

n̂
N )

)T
, and

the elements of rn̂ are O(hk+1). Since the norm of the inverse of Bk
N is bounded as

N → ∞ by Lemma 2, we have the following:

‖en̂‖∞ = O(hk+1), h → 0.

This completes the proof.

By taking k = 1, 2, 3, 4 in B
N̂
CBVMk, we arrive at the fact

that corresponding condition polynomials c̄1(t), c̄2(t), c̄3(t), and c̄4(t) for
c
1,n̂
N−2(t), c

2,n̂
N−3(t), and c

3,n̂
N−4(t), c

4,n̂
N−5(t) are as follows:

c̄1(t) = 5

12
t2 + 2

3
t − 1

12
,

c̄2(t) = 3

8
t3 + 2

3
t2 − 5

24
t + 1

24
,

c̄3(t) = 251

720
t4 + 323

360
t3 − 11

30
t2 + 53

360
t − 19

720
,

c̄4(t) = 95

288
t5 + 1427

1440
t4 − 133

240
t3 + 241

720
t2 − 173

1440
t − 95

288
.

In Fig. 1, we show the roots distribution of above polynomials. It can be seen
that winding numbers of c1,n̂N−2(t), c

2,n̂
N−3(t), c

3,n̂
N−4(t), and c

4,n̂
N−5(t) are zero, which

coincide with the condition in Theorem 1.
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Fig. 1 Distribution of roots of condition polynomials for various k

3.2 The case of general K(t )

In this subsection, we consider a general kernel function, which can be written as
follows:

K(t) = K(0) + tK̄(t) (27)

with K(0) �= 0. We summarize the main theoretical result in the following theorem.

Theorem 2 Assume the given functions K(t) and g(t) describing VIE (1) satisfy
K(0) �= 0, K(t) ∈ Ck+2([0, T ]), and g(t) ∈ Ck+2([0, T ]). Furthermore, suppose
that the winding number of ck,n̂

N−k−1(t) is zero. Then, B
N̂
CBVMk leads to a unique

solution as h → 0, and the collocation error admits to the following:

‖en̂‖∞ = O(hk+1), n̂ = 0, 1, · · · , N̂ − 1, (28)

where h = max
ĵ=0,··· ,N̂−1

{h
ĵ
}, en̂ = (eh(t

n̂
1 ), eh(t

n̂
2 ), · · · , eh(t

n̂
N ))T .

Proof Noting the local representation of the collocation solution uh(t) for fixed n̂

and n = 0, 1, · · · , N − 1, we have as follows:

g(t n̂n ) =
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tn̂n − (t

ĵ
j + vh

ĵ
))uh(t

ĵ
j + vh

ĵ
)dv

+hn̂

n−1∑
j=0

∫ 1

0
K(tn̂n − (t n̂j + vhn̂))uh(t

n̂
j + vhn̂)dv. (29)
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For n = N − 1, N − 2, · · · , 0, computing g(t n̂n+1)− g(t n̂n ) successively results in the
following:

g (t n̂n+1) − g(t n̂n )

=
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tn̂n+1 − (t

ĵ
j + vh

ĵ
))uh(t

ĵ
j + vh

ĵ
)dv

−
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tn̂n − (t

ĵ
j + vh

ĵ
))uh(t

ĵ
j + vh

ĵ
)dv

+hn̂

n∑
j=0

∫ 1

0
K(tn̂n+1 − (t n̂j + vhn̂))uh(t

n̂
j + vhn̂)dv

−hn̂

n−1∑
j=0

∫ 1

0
K(tn̂n − (t n̂j + vhn̂))uh(t

n̂
j + vhn̂)dv (30)

By denoting

bn̂ =

⎛
⎜⎜⎜⎝

g(t n̂1 ) − g(t n̂0 ) − LAGn̂
1 + LAGn̂−1

N

g(t n̂2 ) − g(t n̂1 ) − LAGn̂
2 + LAGn̂

1
...

g(t n̂N ) − g(t n̂N−1) − LAGn̂
N + LAGn̂

N−1

⎞
⎟⎟⎟⎠ and 1 =

⎛
⎜⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎟⎠ ,

where

LAGm̂
m =

n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tm̂m − (t

ĵ
j + vh

ĵ
))uh(t

ĵ
j + vh

ĵ
)dv,

we obtain the matrix form of (30)

Mn̂ · 1 = bn̂. (31)

or equivalently,⎛
⎜⎜⎜⎜⎝

Mn̂
1,0 0 · · · 0

Mn̂
2,0 − Mn̂

1,0 Mn̂
2,1 · · · 0

...
...

...
...

Mn̂
N,0 − Mn̂

N−1,0 Mn̂
N,1 − Mn̂

N−1,1 · · · Mn̂
N,N−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

bn̂
1

bn̂
2
...

bn̂
N

⎞
⎟⎟⎟⎠ , (32)

with

Mn̂
i,j = hn̂

∫ 1

0
K(tn̂i − (t n̂j + vhn̂))uh(t

n̂
j + vhn̂)dv.

Noting thatMn̂
i,j = O(hn̂) and utilizing the mean value theorem, we have as hn̂ → 0,

Mn̂
i,j−1 − Mn̂

i−1,j−1 = O(h2
n̂
) for j < i. Employing Gaussian elimination leads to
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the following:⎛
⎜⎜⎜⎜⎝

Mn̂
1,0 0 · · · 0
0 Mn̂

2,1 · · · 0
...

...
...

...
0 0 · · · Mn̂

N,N−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

bn̂
1

bn̂
2 + O(hn̂)

...
bn̂
N + O(hn̂)

⎞
⎟⎟⎟⎠ . (33)

According to (27), Mj,j−1 can be decomposed into the following:

Mn̂
j,j−1 = hn̂K(0)

∫ 1

0
uh(t

n̂
j + vhn̂)dv+ h2

n̂

∫ 1

0
(1− v)K(hn̂(1− v))uh(t

n̂
j + vhn̂)dv.

Hence, for sufficiently small hn̂, the linear system (29) has a unique solution when
Bk

N defined in (20) is invertible and the norm of its inverse is bounded as N → ∞.
Now, let us consider the collocation error eh(t) := u(t) − uh(t). By a similar

deduction, we have as follows:

0 =
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tn̂n+1 − (t

ĵ
j + vh

ĵ
))eh(t

ĵ
j + vh

ĵ
)dv

−
n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tn̂n − (t

ĵ
j + vh

ĵ
))eh(t

ĵ
j + vh

ĵ
)dv

+hn̂

n∑
j=0

∫ 1

0
K(tn̂n+1 − (t n̂j + vhn̂))eh(t

n̂
j + vhn̂)dv

−hn̂

n−1∑
j=0

∫ 1

0
K(tn̂n − (t n̂j + vhn̂))eh(t

n̂
j + vhn̂)dv (34)

For j = 0, 1, · · · , N − k − 2, with Lemma 3 in mind, interpolating eh(t
ĵ
j + vh

ĵ
) at

t
ĵ
j , t

ĵ

j+1, · · · , t
ĵ

j+k+1 leads to the following:

eh(t
ĵ
j + vh

ĵ
) =

k+1∑
i=0

eh(t
ĵ
j+i )φ

k
i (v) + O(hk+2

ĵ
), (35)

On the other hand, we have, for j = N − k − 1, · · · , N − 1,

eh(t
ĵ
j + vh

ĵ
) =

k∑
i=0

eh(t
ĵ
N−k+i )φ̂

k
i (v) + O(hk+1

ĵ
). (36)

By the mean value theorem, we have the following:

K(tn̂n+1−(t
ĵ
j +vh

ĵ
))−K(tn̂n−(t

ĵ
j +vh

ĵ
))=(h

ĵ
+hn̂)K

′(ξ ĵ
n ), ξ

ĵ
n ∈(t n̂n−t

ĵ

j+1, t
n̂
n+1−t

ĵ
j ).

For ĵ = 0, · · · , n̂ − 1, and i = 1, · · · , N, the fact that eh(t
ĵ
i ) = O(hk+1) implies

ERRn̂
n+1 − ERRn̂

n = O(hk+2),

925Numerical Algorithms (2021) 86:911–932



where

ERRn̂
m =

n̂−1∑
ĵ=0

h
ĵ

N−1∑
j=0

∫ 1

0
K(tn̂m − (t

ĵ
j + vh

ĵ
))eh(t

ĵ
j + vh

ĵ
)dv.

Let d denote a N × 1 vector with its nth element being ERRn̂
n − ERRn̂

n−1. Then, (34)
can be rewritten in the compact form,

En̂ · 1 = dn̂. (37)

or equivalently,⎛
⎜⎜⎜⎜⎝

En̂
1,0 0 · · · 0

En̂
2,0 − En̂

1,0 En̂
2,1 · · · 0

...
...

...
...

En̂
N,0 − En̂

N−1,0 En̂
N,1 − En̂

N−1,1 · · · En̂
N,N−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

dn̂
1

dn̂
2
...

dn̂
N

⎞
⎟⎟⎟⎠ , (38)

with

En̂
i,j = hn̂

∫ 1

0
K(tn̂i − (t n̂j + vhn̂))eh(t

n̂
j + vhn̂)dv.

Noting that Ei,j goes to zero for i ≤ j as h → 0, and Ei,j with i < j is one order
higher than Ej,j , we have by Gaussian elimination as follows:⎛

⎜⎜⎜⎜⎝
En̂
1,0 0 · · · 0
0 En̂

2,1 · · · 0
...

...
...

...
0 0 · · · En̂

N,N−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

dn̂
1

dn̂
2 + O(hk+3)

...
dn̂
N + O(hk+3)

⎞
⎟⎟⎟⎠ . (39)

Hence, for sufficiently small h, we arrive at the fact by utilizing Lemmas 1 and 2 as
follows:

‖en̂‖∞ = O(hk+1), h → 0.

This completes the proof.

4 Numerical experiments

In this section, we carry out some tests to illustrate the numerical performance
of B

N̂
CBVMk firstly. Then, the first-kind Volterra integral equation arising in the

scattering problem is solved by collocation boundary value methods.

Example 1 We utilize B
N̂
CBVMk to solve the following VIE of the first kind,∫ t

0
cos(t − s)u(s)ds = t cos t, t ∈ [0, 2]. (40)

The solution of this equation is as follows:

u(t) = 2 cos t − 1.
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We firstly consider B1CBVMk with k = 1 and k = 2, respectively. Com-
puted results are shown in Table 1, where “error” denotes ‖en̂‖∞, and “order” is

computed by log2
errorprevious
errorcurrent

. Then, we divide the interval [0, 2] uniformly into

4 parts and apply CBVMk to each subinterval. The convergence rates are given in
Table 2. In Table 3, we present the computed results by utilizing B3CBVMk with
T1 = T/5, T2 = 3T/4 in the coarse grid.

It can be found in Tables 1, 2, and 3 that convergence orders for B
N̂
CBVM1 and

B
N̂
CBVM2 are 2 and 3, respectively, which are in accordance with the theoretical

estimates given in Theorem 2.

Example 2 In the study of acoustic scattering, a class of single-layer potential
equations can be changed into the following:∫ t

0
J0(ω(t − s))u(s)ds = g(t), t ∈ [0, T ], (41)

by polar coordinate and spatial Fourier transforms [9]. Here, J0(t) denotes the first-
kind Bessel function of order zero. Furthermore, with the help of Laplace transform
[21], the exact solution can be represented as follows:

u(t) = g′(t) + ω

∫ t

0

J1(ω(t − s))

t − s
g(s)ds.

Letting T = 2 and ω = 10, we illustrate the performance of B
N̂
CBVMk in

Tables 4 and 5. Moreover, we show the convergence property of B1CBVMk with
respect to ω in Fig. 2, where the moment integrals are computed by Lommel function
[22].

Numerical results given in Tables 4 and 5 verify the estimates in Theorem 2 again.
In Fig. 2, we can find ‖en̂‖∞ scaled by the asymptotic order, that is, ‖en̂‖∞·ω1/2. The
moderate varying circles in this figure imply ‖en̂‖∞ · ω1/2 behaves as O(1) when ω

goes to infinity, or equivalently, ‖en̂‖∞ behaves as O(ω−1/2). Therefore, B
N̂
CBVMk

shares the property that the higher the oscillation of the kernel function, the better the
approximation. By employing the methodology in [23], it is expected to develop the
convergence rate of B

N̂
CBVMk in terms of the frequency ω. The details are ignored

for simplicity.

Table 1 Absolute errors and convergence rates of B1CBVMk for example 1

B1CBVM1 B1CBVM2

Error Order Error Order

N = 16 3.43 × 10−3 – 9.35 × 10−4 –

N = 32 9.72 × 10−4 1.82 1.14 × 10−4 3.03

N = 64 2.57 × 10−4 1.92 1.41 × 10−5 3.02

N = 128 6.60 × 10−5 1.96 1.75 × 10−6 3.01

N = 256 1.67 × 10−5 1.98 2.18 × 10−7 3.01
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Table 2 Absolute errors and convergence rates of B4CBVMk for example 1

B4CBVM1 B4CBVM2

Error Order Error Order

N = 16 5.79 × 10−4 – 1.52 × 10−5 –

N = 32 1.44 × 10−4 2.01 1.90 × 10−6 3.00

N = 64 3.58 × 10−5 2.00 2.38 × 10−7 3.00

N = 128 8.94 × 10−6 2.00 2.97 × 10−8 3.00

N = 256 2.23 × 10−6 2.00 3.72 × 10−9 3.00

Table 3 Absolute errors and convergence rates of B3CBVMk for example 1

B3CBVM1 B3CBVM2

Error Order Error Order

N = 16 3.87 × 10−4 – 1.60 × 10−4 –

N = 32 9.63 × 10−5 2.01 2.02 × 10−5 2.99

N = 64 2.40 × 10−5 2.00 2.53 × 10−6 3.00

N = 128 6.00 × 10−6 2.00 3.16 × 10−7 3.00

N = 256 1.50 × 10−6 2.00 3.96 × 10−8 3.00

Table 4 Absolute errors and convergence rates of B1CBV Mk for example 2

B1CBVM1 B1CBVM2

Error Order Error Order

N = 16 2.32 × 10−2 – 6.21 × 10−3 –

N = 32 2.58 × 10−3 3.17 6.41 × 10−4 3.28

N = 64 2.83 × 10−4 3.19 7.79 × 10−5 3.04

N = 128 3.44 × 10−5 3.04 9.07 × 10−6 3.10

N = 256 8.74 × 10−6 1.98 1.08 × 10−6 3.07

Table 5 Absolute errors and convergence rates of B3CBVMk for example 2

B3CBVM1 B3CBVM2

Error Order Error Order

N = 16 5.62 × 10−3 – 1.13 × 10−3 –

N = 32 1.25 × 10−3 2.16 1.44 × 10−4 2.98

N = 64 2, 95 × 10−4 2.09 1.77 × 10−5 3.02

N = 128 7.16 × 10−5 2.04 2.19 × 10−6 3.02

N = 256 1.76 × 10−5 2.02 2.72 × 10−7 3.01

928 Numerical Algorithms (2021) 86:911–932



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

ω

A
b

so
lu

te
 E

rr
o

rs
 S

ca
le

d
 b

y 
ω

1
/2

B
1
CBVM

1

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

ω

A
b

so
lu

te
 E

rr
o

rs
 S

ca
le

d
 b

y 
ω

1
/2

B
1
CBVM

2

Fig. 2 The asymptotic order of B1CBVMk with respect to the frequency ω

5 Final remark

The main results of this paper are contained in Sections 2 and 3. By employing mul-
tistep interpolation, we have derived the block collocation boundary value method.
For the first-kind VIE of convolution-type, the sufficient condition for uniqueness
and convergence property of collocation boundary value solutions is established.
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Fig. 3 Pointwise errors of B1CBVM1 for example 1
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Table 6 Absolute errors and convergence rates of the modified B2CBVM1

E1 E2

Error Order Error Order

N = 16 5.78 × 10−5 – 1.92 × 10−3 –

N = 32 7.20 × 10−6 3.01 2.38 × 10−4 3.01

N = 64 9.00 × 10−7 3.00 2.99 × 10−5 3.00

N = 128 1.12 × 10−7 3.00 3.75 × 10−6 3.00

N = 256 1.41 × 10−8 3.00 4.69 × 10−7 3.00

To construct the collocation solution, we rewrite uh(t) in [tN−k−1, tN ] as follows:

uh(tN−k−1 + vh) =
k∑

i=0

uh(tN−k+i )φ̂i (v),

which leads to relatively poor approximations in the final several steps (see Fig. 3).
In fact, the numerical performance of the collocation boundary value method can be
improved by employing the local representation in [tN−k−1, tN ] as follows:

ūh(tN−k−1 + vh) =
k+1∑
i=0

uh(tN−k−1+i )φi(v),
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Fig. 4 Pointwise errors of modified B1CBVM1 for example 1
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which leads to a modified block collocation boundary value method. According to
the remainder theory of Lagrange interpolation, we have as follows:

ūh(tN−k−1 + vh) =
k∑

i=0

ūh(tN−k+i )φ̂i(v) + O(hk+1),

Therefore, ūh(t) can be considered as a perturbation of uh(t). The existence and
convergence rate of the modified collocation solution ūh(t) can be deduced with the
help of B

N̂
CBVMk . We employ the modified collocation method with k = 1 to

solve VIE in examples 1 and 2 again. Computed results are presented in Table 6.
Here, “E1” and “E2” implied tested problems are the same as those in example 1
and example 2, respectively. It can be found that the convergence rate increases to
k + 2 in these numerical experiments. Furthermore, we show pointwise errors of the
modified collocation method in Fig. 4. We find solutions of (40) in the last several
steps to have been properly approximated (compared with Fig. 3).
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