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Abstract
We propose a spectral collocation method, based on the generalized Jacobi wavelets
along with the Gauss–Jacobi quadrature formula, for solving a class of third-kind
Volterra integral equations. To do this, the interval of integration is first transformed
into the interval [−1, 1], by considering a suitable change of variable. Then, by
introducing special Jacobi parameters, the integral part is approximated using the
Gauss–Jacobi quadrature rule. An approximation of the unknown function is consid-
ered in terms of Jacobi wavelets functions with unknown coefficients, which must
be determined. By substituting this approximation into the equation, and collocat-
ing the resulting equation at a set of collocation points, a system of linear algebraic
equations is obtained. Then, we suggest a method to determine the number of basis
functions necessary to attain a certain precision. Finally, some examples are included
to illustrate the applicability, efficiency, and accuracy of the new scheme.
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1 Introduction

In this paper, we consider the following Volterra integral equation (VIE)

tβu(t) = f (t) +
∫ t

0
(t − x)−ακ(t, x)u(x)dx, t ∈ [0, T ], (1)

where β > 0, α ∈ [0, 1), α + β ≥ 1, f (t) = tβg(t) with a continuous function g,
and κ is continuous on the domain � := {(t, x) : 0 ≤ x ≤ t ≤ T } and is of the form

κ(t, x) = xα+β−1κ1(t, x),

where κ1 is continuous on �. The existence of the term tβ in the left-hand side of
(1) gives it special properties, which are distinct from those of VIEs of the second
kind (where the left-hand side is always different from zero), and also distinct from
those of the first kind (where the left-hand side is constant and equal to zero). This
is why in the literature they are often mentioned as VIEs of the third kind. This class
of equations has attracted the attention of researchers in the last years. The existence,
uniqueness, and regularity of solutions to (1) were discussed in [1]. In that paper, the
authors have derived necessary conditions to convert the equation into a cordial VIE,
a class of VIEs which was studied in detail in [2, 3]. This made possible to apply to
(1) some results known for cordial equations. In particular, the case α + β > 1 is of
special interest, because in this case, if κ1(t, x) > 0, the integral operator associated
to (1) is not compact and it is not possible to assure the solvability of the equation by
classical numerical methods. In [1], the authors have introduced a modified graded
mesh and proved that with such mesh the collocation method is applicable and has
the same convergence order as for regular equations.

In [4], two of the authors of the present paper have applied a different approach,
which consisted in expanding the solution as a series of adjusted hat functions and
approximating the integral operator by an operational matrix. The advantage of that
approach is that it reduces the problem to a system of linear equations with a simple
structure, which splits into subsystems of three equations, making the method effi-
cient and easy to implement [4]. A limitation of this technique is that the optimal
convergence order (O(h4)) can be attained only under the condition that the solution
satisfies u ∈ C4([0, T ]), which is not the case in many applications.

It is worth remarking here that there is a close connection between equations of
class (1) and fractional differential equations [5]. Actually, the kernel of (1) has the
same form as the one of a fractional differential equation, and if we consider the
case κ(t, x) ≡ 1, then the integral operator is the Riemann–Liouville operator of
order 1 − α. Therefore, it makes sense to apply to this class of equations numerical
approaches that have recently been applied with success to fractional differential
equations and related problems [5].

One of these techniques were wavelets, a set of functions built by dilation and
translation of a single function ϕ(t), which is called the mother wavelet. These
functions are known as a very powerful computational tool. The term wavelet was
introduced by Jean Morlet about 1975 and the theory of the wavelet transform
was developed by him and Alex Grossmann in the 80s [6, 7]. Some developments
exist concerning the multiresolution analysis algorithm based on wavelets [8] and
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the construction of compactly supported orthonormal wavelet basis [9]. Wavelets
form an unconditional (Riesz) basis for L2(R), in the sense that any function in
L2(R) can be decomposed and reconstructed in terms of wavelets [10]. Many authors
have constructed and used different types of wavelets, such as B-spline [11], Haar
[12], Chebyshev [13], Legendre [14], and Bernoulli [15] wavelets. The advantage
of employing wavelets, in comparison with other basis functions, is that when using
them one can improve the accuracy of the approximation in two different ways: (i)
by increasing the degree of the mother function (assuming that it is a polynomial);
(ii) by increasing the level of resolution, that is, reducing the support of each basis
function.

We underline that the application of wavelets has special advantages in the case of
equations with non-smooth solutions, as it is the case of (1). In such cases, increasing
the degree of the polynomial approximation is not a way to improve the accuracy
of the approximation; however, such improvement can be obtained by increasing the
level of resolution.

In a recent work [16], Legendre wavelets were applied to the numerical solution
of fractional delay-type integro-differential equations. In the present paper we will
apply a close technique to approximate the solution of (1).

The paper is organized as follows. Section 2 is devoted to the required preliminar-
ies for presenting the numerical technique. In Section 3, we give some error bounds
for the best approximation of a given function by a generalized Jacobi wavelet.
Section 4 is concerned with the presentation of a new numerical method for solving
equations of type Eq. (1). In Section 5, we suggest a criterion to determine the num-
ber of basis functions. Numerical examples are considered in Section 6 to confirm
the high accuracy and efficiency of this new numerical technique. Finally, concluding
remarks are given in Section 7.

2 Preliminaries

In this section, we present some definitions and basic concepts that will be used in
the sequel.

2.1 Jacobi wavelets

The Jacobi polynomials
{
P

(ν,γ )

i (t)
}∞

i=0
, ν, γ > −1, t ∈ [−1, 1], are a set of

orthogonal functions with respect to the weight function

w(ν,γ )(t) = (1 − t)ν(1 + t)γ ,

with the following orthogonality property:

∫ 1

−1
w(ν,γ )(t)P

(ν,γ )

i (t)P
(ν,γ )

j (t)dt = h
(ν,γ )

i δij ,
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where δij is the Kronecker delta and

h
(ν,γ )

i = 2ν+γ+1
(ν + i + 1)
(γ + i + 1)

i!(ν + γ + 2i + 1)
(ν + γ + i + 1)
.

The Jacobi polynomials include a variety of orthogonal polynomials by considering
different admissible values for the Jacobi parameters ν and γ . The most popular
cases are the Legendre polynomials, which correspond to ν = γ = 0, Chebyshev
polynomials of the first-kind, which correspond to ν = γ = −0.5, and Chebyshev
polynomials of the second-kind, which correspond to ν = γ = 0.5.

We define the generalized Jacobi wavelets functions on the interval [0, T ) as
follows:

ψ
(ν,γ )
n,m (t) =

{
2

k
2

√
1

h
(ν,γ )
m T

P
(ν,γ )
m

(
2k

T
t − 2n + 1

)
, n−1

2k−1 T ≤ t < n

2k−1 T ,

0, otherwise,

where k = 1, 2, 3, . . . is the level of resolution, n = 1, 2, 3, . . . , 2k−1, m =
0, 1, 2, . . ., is the degree of the Jacobi polynomial, and t is the normalized time. The
interested reader can refer to [17, 18] for more details on wavelets. Jacobi wavelet
functions are orthonormal with respect to the weight function

w
(ν,γ )

k (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w
(ν,γ )

1,k (t), 0 ≤ t < 1
2k−1 T ,

w
(ν,γ )

2,k (t), 1
2k−1 T ≤ t < 2

2k−1 T ,

...

w
(ν,γ )

2k−1,k
(t), 2k−1−1

2k−1 T ≤ t < T ,

where

w
(ν,γ )

n,k (t) = w(ν,γ )

(
2k

T
t − 2n + 1

)
, n = 1, 2, . . . , 2k−1.

An arbitrary function u ∈ L2[0, T ) may be approximated using Jacobi wavelet
functions as

u(t) � �
(ν,γ )

k,M (t) =
2k−1∑
n=1

M∑
m=0

un,mψ
(ν,γ )
n,m (t),

where
un,m = 〈u(t), ψ

(ν,γ )
n,m (t)〉

w
(ν,γ )
k

= ∫ T

0 w
(ν,γ )

k (t)u(t)ψ
(ν,γ )
n,m (t)dt

= ∫ n

2k−1 T

n−1
2k−1 T

w
(ν,γ )

n,k (t)u(t)ψ
(ν,γ )
n,m (t)dt .

2.2 Gauss–Jacobi quadrature rule

For a given function u, the Gauss–Jacobi quadrature formula is given by

∫ 1

−1
(1 − t)ν(1 + t)γ u(t)dt =

N∑
l=1

ωlu(tl) + RN(u),
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where tl , l = 1, . . . , N , are the roots of P
(ν,λ)
N , ωl , l = 1, . . . , N , are the

corresponding weights given by (see [19]):

ωl = 2ν+γ+1
(ν + N + 1)
(γ + N + 1)

N !
(ν + γ + N + 1)( d
dt

P
(ν,γ )

N (tl))2(1 − t2l )
, (2)

and RN(u) is the remainder term which is as follows:

RN(u) = 2ν+γ+2N+1N !
(ν+N+1)
(γ+N+1)
(ν+γ+N+1)
(ν+γ+2N+1)(
(ν+γ+2N+1))2

×u(2N)(η)
(2N)! , η ∈ (−1, 1).

(3)

According to the remainder term (3), the Gauss–Jacobi quadrature rule is exact for all
polynomials of degree less than or equal to 2N − 1. This rule is valid if u possesses
no singularity in (−1, 1). It should be noted that the roots and weights of the Gauss–
Jacobi quadrature rule can be obtained using numerical algorithms (see, e.g., [20]).

3 Best approximation errors

The aim of this section is to give some estimates for the error of the Jacobi wavelets
approximation of a function u in terms of Sobolev norms and seminorms. With this
purpose, we extend to the case of Jacobi wavelets some results which were obtained
in [21] for the best approximation error by Jacobi polynomials in Sobolev spaces. The
main result of this section is Theorem 1, which establishes a relationship between
the regularity of a given function and the convergence rate of its approximation by
Jacobi wavelets.

We first introduce some notations that will be used in this paper. Suppose that
L2

w∗(a, b) is the space of measurable functions whose square is Lebesgue integrable
in (a, b) relative to the weight function w∗. The inner product and norm of L2

w∗(a, b)

are, respectively, defined by

〈u, v〉w∗ =
∫ b

a

w∗(t)u(t)v(t)dt, ∀ u, v ∈ L2
w∗(a, b),

and
‖u‖L2

w∗ (a,b) = √〈u, u〉w∗ .

The Sobolev norm of integer order r ≥ 0 in the interval (a, b), is given by

‖ u ‖Hr
w∗ (a,b)=

⎛
⎝ r∑

j=0

‖ u(j) ‖2
L2

w∗ (a,b)

⎞
⎠

1
2

, (4)

where u(j) denotes the j th derivative of u and Hr
w∗(a, b) is a weighted Sobolev space

relative to the weight function w∗.
For ease of use, for some fixed values of −1 < ν, γ < 1, we set

ψi,j (t) := ψ
(ν,γ )

i,j (t), w(t) := w(ν,γ )(t), wk(t) := w
(ν,γ )

k (t), wn,k(t) := w
(ν,γ )

n,k (t).

For starting the error discussion, first, we recall the following lemma from [21].
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Lemma 1 (See [21]) Assume that u ∈ H
μ
w(−1, 1) with μ ≥ 0 and LM(u) ∈ PM

denotes the truncated Jacobi series of u, where PM is the space of all polynomials of
degree less than or equal to M . Then,

‖ u − LM(u) ‖L2
w(−1,1)≤ CM−μ|u|

H
μ;M
w (−1,1)

, (5)

where

| u |
H

μ;M
w (−1,1)

=
⎛
⎝ μ∑

j=min{μ,M+1}
‖ u(j) ‖2

L2
w(−1,1)

⎞
⎠

1
2

(6)

and C is a positive constant independent of the function u and integer M . Also, for
1 ≤ r ≤ μ, one has

‖ u − LM(u) ‖Hr
w(−1,1)≤ CM2r− 1

2−μ|u|
H

μ;M
w (−1,1)

. (7)

Suppose that �M(Ik,n) denotes the set of all functions whose restriction on each

subinterval Ik,n =
(

n−1
2k−1 T , n

2k−1 T
)
, n = 1, 2, . . . , 2k−1, are polynomials of degree

at most M . Then, the following lemma holds.

Lemma 2 Let un : Ik,n → R, n = 1, 2, . . . , 2k−1, be functions in H
μ
wn,k

(Ik,n)

with μ ≥ 0. Consider the function un : (−1, 1) → R defined by (ūn)(t) =
un

(
T
2k (t + 2n − 1)

)
for all t ∈ (−1, 1). Then, for 0 ≤ j ≤ μ, we have

‖ (ūn)
(j) ‖L2

w(−1,1)=
(
2k

T

) 1
2−j

‖ u
(j)
n ‖L2

wn,k
(Ik,n) .

Proof Using the definition of the L2-norm and the change of variable t ′ = T
2k (t +

2n − 1), we have

‖ ū
(j)
n ‖2

L2
w(−1,1)

= ∫ 1
−1 w(t)|ū(j)

n (t)|2dt

= ∫ 1
−1 w(t)

∣∣∣un
(j)
(

T
2k (t + 2n − 1)

)∣∣∣2 dt

= ∫ n

2k−1 T

n−1
2k−1 T

wn,k(t
′)
(
2k

T

)−2j ∣∣∣u(j)
n (t ′)

∣∣∣2
(
2k

T

)
dt ′

=
(
2k

T

)1−2j ‖ u
(j)
n ‖2

L2
wn,k

(Ik,n)
,

which proves the lemma.

In order to continue the discussion, for convenience, we introduce the following
seminorm for u ∈ H

μ
wk

(0, T ), 0 ≤ r ≤ μ, M ≥ 0 and k ≥ 1, which replaces the
seminorm (6) in the case of a wavelet approximation:

| u |
H

r;μ;M;k
wk

(0,T )
=
⎛
⎝ μ∑

j=min{μ,M+1}

(
2k
)2r−2j ‖ u(j) ‖2

L2
wk

(0,T )

⎞
⎠

1
2

. (8)
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If we choose M such that M ≥ μ − 1, it can be easily seen that

| u |
H

r;μ;M;k
wk

(0,T )
=
(
2k
)r−μ ‖ u(μ) ‖L2

wk
(0,T ) . (9)

The next theorem provides an estimate of the best approximation error, when Jacobi
wavelets are used, in terms of the seminorm defined by (8).

Theorem 1 Suppose that u ∈ H
μ
wk

(0, T ) with μ ≥ 0 and

�k,M(u) =
2k−1∑
n=1

M∑
m=0

un,mψn,m(t),

is the best approximation of u based on the Jacobi wavelets. Then,

‖ u − �k,M(u) ‖L2
wk

(0,T )≤ CM−μ|u|
H

0;μ;M;k
wk

(0,T )
, (10)

and, for 1 ≤ r ≤ μ,

‖ u − �k,M(u) ‖Hr
wk

(0,T )≤ CM2r− 1
2−μ|u|

H
r;μ;M;k
wk

(0,T )
, (11)

where in (10) and (11) the constant C denotes a positive constant that is independent
of M and k but depends on the length T .

Proof Consider the function un : Ik,n → R such that un(t) = u(t) for all t ∈ Ik,n.
Then, from (4) and Lemma 2 for 0 ≤ r ≤ μ, we have

∥∥u − �k,M(u)
∥∥2

Hr
wk

(0,T )
=

2k−1∑
n=1

∥∥∥∥un −
M∑

m=0
un,mψn,m(t)

∥∥∥∥
2

Hr
wn,k

(Ik,n)

=
2k−1∑
n=1

∑r
j=0

∥∥∥∥∥u
(j)
n −

(
M∑

m=0
un,mψn,m(t)

)(j)
∥∥∥∥∥

L2
wn,k

(Ik,n)

=
2k−1∑
n=1

r∑
j=0

(
2k

T

)2j−1∥∥∥ū(j)
n − (LM(ūn))

(j)
∥∥∥2

L2
w(−1,1)

≤ C1

2k−1∑
n=1

r∑
j=0

(
2k
)2j−1

∥∥∥ū(j)
n − (LM(ūn))

(j)
∥∥∥2

L2
w(−1,1)

.

(12)
By setting r = 0 in (12), we obtain

∥∥u − �k,M(u)
∥∥2

L2
wk

(0,T )
≤ C1

2k−1∑
n=1

(
2k
)−1‖ūn − (LM(ūn))‖2L2

w(−1,1)

≤ C2M
−2μ

(
2k
)−1 2k−1∑

n=1

∑μ

j=min{μ,M+1}
∥∥∥ū(j)

n

∥∥∥2
L2

w(−1,1)

≤ CM−2μ∑μ
j=min{μ,M+1}

(
2k
)−2j 2k−1∑

n=1

∥∥∥u(j)
n

∥∥∥2
L2

wn,k
(In,k)

= CM−2μ∑μ

j=min{μ,M+1}
(
2k
)−2j∥∥u(j)

∥∥2
L2

wk
(0,T )

,
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where we have used (5) and Lemma 2. This completes the proof of (10). Furthermore,
using (12) for 1 ≤ r ≤ μ and k ≥ 1, we get:

∥∥u − �k,M(u)
∥∥2

Hr
wk

(0,T )
≤ C1

(
2k
)2r−1 2k−1∑

n=1

r∑
j=0

∥∥∥ū(j)
n − (LM(ūn))

(j)
∥∥∥2

L2
w(−1,1)

= C1

(
2k
)2r−1 2k−1∑

n=1

‖ūn − LM(ūn)‖2Hr
w(−1,1)

≤ C2M
4r−1−2μ

(
2k
)2r−1 2k−1∑

n=1

μ∑
j=min{μ,M+1}

∥∥∥ū(j)
n

∥∥∥2
L2

w(−1,1)

= C2M
4r−1−2μ

(
2k
)2r−1

μ∑
j=min{μ,M+1}

2k−1∑
n=1

∥∥∥ū(j)
n

∥∥∥2
L2

w(−1,1)

≤ CM4r−1−2μ
μ∑

j=min{μ,M+1}

(
2k
)2r−2j 2k−1∑

n=1

∥∥∥u(j)
n

∥∥∥2
L2

wn,k(Ik,n)

= CM4r−1−2μ
μ∑

j=min{μ,M+1}

(
2k
)2r−2j ∥∥∥u(j)

∥∥∥2
L2

wk(0,T )

,

where we have used (4), (7), and Lemma 2. Therefore, we have proved (11).

Remark 1 We can also obtain estimates for the Jacobi wavelets approximation in
terms of the L2-norm. With M ≥ μ − 1, if we combine (9) with (10), we get

‖ u − �k,M(u) ‖L2
wk

(0,T )≤ CM−μ2−μk ‖ u(μ) ‖L2
wk

(0,T );
from (9) and(10), we obtain

‖ u − �k,M(u) ‖Hr
wk

(0,T )≤ CM2r− 1
2−μ

(
2k
)r−μ ‖ u(μ) ‖L2

wk
(0,T ), r ≥ 1.

4 Method of solution

In this section, we propose a method for solving the VIE (1). To this end, by using
a suitable change of variable, we transform the interval of the integral to [−1, 1].
Suppose that

s = 2
(x

t

)
− 1, ds = 2

t
dx.

Therefore, (1) is transformed into the following integral equation:

tβu(t) = f (t) +
(

t

2

)1−α ∫ 1

−1
(1 − s)−ακ(t,

t

2
(s + 1))u(

t

2
(s + 1))ds. (13)
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In order to compute the integral part of (13), we set ν = −α and γ = 0 as the Jacobi
parameters and use the Gauss–Jacobi quadrature rule. Then, we have

tβu(t) = f (t) +
(

t

2

)1−α N∑
l=1

ωlκ(t,
t

2
(sl + 1))u(

t

2
(sl + 1)), (14)

where sl are the zeros of P
(−α,0)
N and wl are given using (2) as

ωl = 21−α

(
d
dx

P
(−α,0)
N (sl)

)2 (
1 − s2l

) , l = 1, 2, . . . , N .

We consider an approximation of the solution of (1) in terms of the Jacobi wavelets
functions as follows:

u(t) �
2k−1∑
i=1

M∑
j=0

ui,jψ
(ν,γ )

i,j (t), (15)

where the Jacobi wavelets coefficients ui,j are unknown. In order to determine these
unknown coefficients, we substitute (15) into (14) and get

∑2k−1

i=1
∑M

j=0

[
tβψ

(ν,γ )

i,j (t) − (
t
2

)1−α ∑N
l=1 ωlκ

(
t, t

2 (sl + 1)
)

×ψ
(ν,γ )

i,j

(
t
2 (sl + 1)

)]
ui,j = f (t).

(16)
In this step, we define the following collocation points

tn,m = T

2k
(τm + 2n − 1) , n = 1, 2, . . . , 2k−1, m = 0, 1, . . . , M,

where τm, m = 0, 1, . . . , M , are the zeros of P
(ν,γ )

M+1 . Therefore, tn,m are the shifted

Gauss–Jacobi points in the interval
(

n−1
2k−1 T , n

2k−1 T
)
, corresponding to the Jacobi

parameters ν and γ . By collocating (16) at the points tn,m, we obtain

∑2k−1

i=1
∑M

j=0

[
t
β
n,mψ

(ν,γ )

i,j (tn,m)−
(

tn,m

2

)1−α ∑N
l=1 ωlκ

(
t,

tn,m

2 (sl + 1)
)

×ψ
(ν,γ )

i,j

(
tn,m

2 (sl + 1)
)]

ui,j = f (tn,m).

(17)
By considering n = 1, 2, . . . , 2k−1 and m = 0, 1, . . . ,M , in the above equation,
we have a system of linear algebraic equations that can be rewritten as the following
matrix form:

AU = F, (18)
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where

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,0
u1,1
...

u1,M
...

u2k−1,0
u2k−1,1

...
u2k−1,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (t1,0)

f (t1,1)
...

f (t1,M)
...

f (t2k−1,0)

f (t2k−1,1)
...

f (t2k−1,M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the entries of the rows of the matrix A are the expressions in the bracket in
(17), which vary corresponding to the values of i and j , i.e., the coefficients of ui,j ,
i = 1, 2, . . . , 2k−1, j = 0, 1, . . . , M , for tn,m, that are all nonzero and positive.

Since the functions ψ
(ν,γ )

i,j are orthonormal and the nodes tn,m are pairwise distinct,
the matrix A is nonsingular. Therefore, (18) is uniquely solvable. By solving this
system using a direct method, the unknown coefficients ui,j are obtained. Finally, an
approximation of the solution of (1) is given by (15).

5 A criterion for choosing the number of wavelets

Now we discuss the choice of adequate values of k and M (number of basis func-
tions). To do this, we suppose that u(·) ∈ C2N([0, T ]) and κ(·, ·) ∈ C2N([0, T ] ×
[0, T ]). Using the error of the Gauss–Jacobi quadrature rule given by (3), and
substituting ν = −α and γ = 0 in it, the exact solution of (1) satisfies the equation

tβu(t) = f (t) +
(

t

2

)1−α
[

N∑
l=1

ωlκ

(
t,

t

2
(sl + 1)

)
u

(
t

2
(sl + 1)

)
+ RN(κu)

]
,

where
RN(κu) = 2−α+2N+1(N !)2(
(−α+N+1))2

(2N)!(−α+2N+1)(
(−α+2N+1))2

×( t
2

)2N ∂2N(κ(t,x)u(x))

∂x2N
|x=η,

for η ∈ (0, T ). Therefore, we have

tβu(t) = f (t) + (
t
2

)1−α
(∑N

l=1 ωlκ
(
t, t

2 (sl + 1)
)
u
(

t
2 (sl + 1)

))

+t1−α+2Nξα,N
∂2N(κ(t,x)u(x))

∂x2N
|x=η,

where

ξα,N = (N !)2 (
(−α + N + 1))2

(2N)!(−α + 2N + 1) (
(−α + 2N + 1))2
.

Suppose that t �= 0. Then we obtain that

u(t) = g(t) + 2α−1t1−α−β
(∑N

l=1 ωlκ
(
t, t

2 (sl + 1)
)
u
(

t
2 (sl + 1)

))

+t1−α−β+2Nξα,N
∂2N(κ(t,x)u(x))

∂x2N
|x=η.

(19)
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Let Uk,M(t) =
2k−1∑
i=1

M∑
j=0

ui,jψ
(ν,γ )

i,j (t) be the numerical solution of (1) obtained by the

proposed method in Section 4. From the definition of the Jacobi wavelets, for the
collocation points tn,m, n = 1, . . . , 2k−1, m = 0, 1, . . . ,M , we have

Uk,M(tn,m) =
M∑

j=0

un,jψ
(ν,γ )

n,j (tn,m), n = 1, . . . , 2k−1.

By definition, the restriction of the functions ψ
(ν,γ )

n,j (t), n = 1, . . . , 2k−1, on the

subinterval Ik,n, which we denote here by ρ
(ν,γ )

n,j (t), is smooth. Therefore, we can
define

ζn,j = max
x,t∈Ik,n

∣∣∣∣∣∣
∂2N

(
κ(t, x)ρ

(ν,γ )

n,j (x)
)

∂x2N

∣∣∣∣∣∣ .

For a given ε > 0, since all the collocation points, tn,m, n = 1, . . . , 2k−1, m =
0, 1, . . . , M , are positive, using (19), we can choose k and M such that for all tn,m,
the following criterion holds:
∣∣∣∣∣Uk,M(tn,m) − g(tn,m) − 2α−1t1−α−β

n,m

(
N∑

l=1

ωlκ

(
tn,m,

tn,m

2
(sl + 1)

)

Uk,M

(
tn,m

2
(sl + 1)

))∣∣∣∣+ t1−α−β+2N
n,m ξα,N

∣∣∣∣∣∣
M∑

j=0

un,j ζn,j

∣∣∣∣∣∣ < ε.

6 Numerical examples

In this section, we consider three examples of VIEs of the third-kind and apply the
proposed method to them. The weighted L2-norm is used to show the accuracy of the
method. In all the examples, we have used N = 10 in the Gauss–Jacobi quadrature
formula and the following notation is used to show the convergence of the method

Ratio = e(k − 1)

e(k)
,

where e(k) is the L2-error obtained with resolution k.

Example 1 As the first example, we consider the following third-kind VIE, which is
an equation of Abel type [1, 4]:

t2/3u(t) = f (t) +
∫ t

0

√
3

3π
x1/3(t − x)−2/3u(x)dx, t ∈ [0, 1],

where

f (t) = t
47
12

(
1 − 
( 13 )
( 5512 )

π
√
3
( 5912 )

)
.
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Table 1 Example 1.) Numerical results with different values of M and k

M = 3 M = 4 M = 5

ν = γ = 0.5

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 6.61e − 4 — 6.16e − 5 — 1.19e − 5 —

2 5.68e − 5 11.64 4.47e − 6 13.78 8.20e − 7 14.51

3 4.26e − 6 13.33 2.92e − 7 15.31 5.28e − 8 15.53

4 3.06e − 7 13.92 1.86e − 8 15.70 3.34e − 9 15.81

5 2.15e − 8 14.23 1.18e − 9 15.76 2.12e − 10 15.75

ν = γ = 0

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 8.93e − 4 — 8.46e − 5 — 1.66e − 5 —

2 7.12e − 5 12.54 6.33e − 6 13.36 1.24e − 6 13.39

3 5.54e − 6 12.85 4.71e − 7 13.44 9.19e − 8 13.49

4 4.24e − 7 13.07 3.50e − 8 13.46 6.83e − 9 13.46

5 3.22e − 8 13.17 2.60e − 9 13.46 5.09e − 10 13.42

ν = γ = −0.5

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 1.29e − 3 — 1.24e − 4 — 2.48e − 5 —

2 1.12e − 4 11.52 1.04e − 5 11.92 2.12e − 6 11.70

3 9.78e − 6 11.45 9.12e − 7 11.40 1.85e − 7 11.46

4 8.57e − 7 11.41 8.02e − 8 11.37 1.63e − 8 11.35

5 7.53e − 8 11.38 7.07e − 9 11.34 1.44e − 9 11.32

The exact solution of this equation is u(t) = t
13
4 , which belongs to the space

H 3([0, 1]). We have employed the method for this example with different values of
M , k, ν and γ , and reported the results in Tables 1, 2 and Fig. 1. Table 1 displays the
weighted L2-norm of the error for three different classes of the Jacobi parameters,
which include ν = γ = 0.5 (second-kind Chebyshev wavelets), ν = γ = 0 (Leg-
endre wavelets), and ν = γ = −0.5 (first-kind Chebyshev wavelets) with different
values of M and k. Moreover, the ratio of the error versus k is given in this table. It
can be seen from Table 1 that the method converges faster in the case of the second-
kind Chebyshev wavelets. In Table 2, we compare the maximum absolute error at the
collocation points obtained by our method with the error of the collocation method

Table 2 (Example 1.) Comparison of the maximum absolute error

Present method (M = 5, k = 6) Method of [1] (Radau II) Method of [4]

ν = γ = 0.5 ν = γ = 0 ν = γ = −0.5 m = 3, N = 256 n = 192

2.81e − 10 2.02e − 10 1.15e − 10 5.13e − 9 5.16e − 9
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Fig. 1 (Example 1.) Plot of the error function with ν = γ = 0.5 and M = 6, k = 4 (left), and M = 6,
k = 6 (right)

introduced in [1], and the operational matrix method based on the adjusted hat func-
tions [4]. From this table, it can be seen that our method gives more accurate results
with less collocation points (we have used 192) than the method of [1] (N = 256)
and also, has higher accuracy with a smaller number of basis functions (we have used
192) than the method of [4] (193). In Fig. 1, we show the error function obtained by
the method based on the second-kind Chebyshev wavelets with M = 6, k = 4 (left)
and M = 6, k = 6 (right).

Example 2 Consider the following third-kind VIE, which is used in the modelling of
some heat conduction problems with mixed-type boundary conditions [1, 4]:

tu(t) = 6

7
t3

√
t +

∫ t

0

1

2
u(x)dx, t ∈ [0, 1].

This equation has the exact solution u(t) = t
5
2 (u ∈ H 2([0, 1])). The numerical

results are given in Tables 3, 4 and Fig. 2. The L2-norms and the ratio of the error
given in Table 3 confirm the superiority of the second-kind Chebyshev wavelets
compared to the Legendre wavelets and first-kind Chebyshev wavelets. The method
converges slower in this example than in the previous one, which could be expected,
due to the lower regularity of the solution. A comparison between the maximum
absolute error at collocation points of the present method and the methods given in
[1] and [4] is presented in Table 4. Moreover, the error functions in the case of the
second-kind Chebyshev wavelets with M = 6, k = 4 and M = 6, k = 6, can be seen
in Fig. 2.

Example 3 Consider the following VIE of the third kind:

t3/2u(t) = f (t) +
∫ t

0

√
2

2π
x(t − x)−1/2u(x)dx, x ∈ [0, 1],

where

f (t) = t33/10

⎛
⎝1 −



(
19
5

)
√
2π


(
43
10

)
⎞
⎠ .
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Table 3 (Example 2.) Numerical results with different values of M and k

M = 3 M = 4 M = 5

ν = γ = 0.5

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 1.06e − 3 — 2.42e − 4 — 7.83e − 5 —

2 1.38e − 4 7.68 3.00e − 5 8.07 9.92e − 6 7.89

3 1.74e − 5 7.93 3.69e − 6 8.13 1.23e − 6 8.07

4 2.15e − 6 8.09 4.56e − 7 8.09 1.52e − 7 8.09

5 2.64e − 7 8.14 5.59e − 8 8.16 1.93e − 8 7.88

ν = γ = 0

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 1.07e − 3 — 2.33e − 4 — 7.33e − 5 —

2 1.38e − 4 7.75 3.01e − 5 7.74 9.45e − 6 7.76

3 1.79e − 5 7.71 3.86e − 6 7.80 1.21e − 6 7.81

4 2.29e − 6 7.82 4.95e − 7 7.80 1.55e − 7 7.81

5 2.93e − 7 7.82 6.32e − 8 7.83 2.04e − 8 7.60

ν = γ = −0.5

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 1.28e − 3 — 2.78e − 4 — 8.82e − 5 —

2 1.84e − 4 6.96 4.04e − 5 6.88 1.29e − 5 6.84

3 2.71e − 5 6.79 5.97e − 6 6.77 1.91e − 6 6.75

4 4.02e − 6 6.74 8.86e − 7 6.74 2.83e − 7 6.75

5 5.97e − 7 6.73 1.32e − 7 6.71 4.23e − 8 6.69

Table 4 (Example 2.) Comparison of the maximum absolute error

Present method (M = 5, k = 6) Method of [1] (Chebyshev) Method of [4]

ν = γ = 0.5 ν = γ = 0 ν = γ = −0.5 m = 2, N = 256 n = 192

3.70e − 8 2.69e − 8 1.46e − 8 1.46e − 8 3.46e − 8

Fig. 2 (Example 2) Plot of the error function with ν = γ = 0.5 and M = 6, k = 4 (left), and M = 6,
k = 6 (right)
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Table 5 (Example 3.) Numerical results with different values of M and k

M = 3 M = 4 M = 5

ν = γ = 0.5

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 4.18e − 4 — 1.35e − 4 — 5.48e − 5 —

2 7.88e − 5 5.30 2.46e − 5 5.49 9.80e − 6 5.59

3 1.39e − 5 5.67 4.27e − 6 5.76 1.70e − 6 5.76

4 2.40e − 6 5.79 7.36e − 7 5.80 2.92e − 7 5.82

5 4.12e − 7 5.83 1.26e − 7 5.84 4.99e − 8 5.85

ν = γ = 0

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 6.13e − 4 — 2.06e − 4 — 8.73e − 5 —

2 1.25e − 4 4.90 4.18e − 5 4.93 1.77e − 5 4.93

3 2.53e − 5 4.94 8.50e − 6 4.92 3.60e − 6 4.92

4 5.14e − 6 4.92 1.73e − 6 4.91 7.31e − 7 4.92

5 1.04e − 6 4.94 3.51e − 7 4.93 1.48e − 7 4.94

ν = γ = −0.5

k L2-Error Ratio L2-Error Ratio L2-Error Ratio

1 9.70e − 4 — 3.40e − 4 — 1.50e − 4 —

2 2.27e − 4 4.27 8.04e − 5 4.23 3.57e − 5 4.20

3 5.43e − 5 4.18 1.93e − 5 4.17 8.59e − 6 4.16

4 1.31e − 5 4.15 4.65e − 6 4.15 2.07e − 6 4.15

5 3.15e − 6 4.16 1.12e − 6 4.15 4.99e − 7 4.15

This equation has the exact solution u(t) = t
9
5 (u ∈ H 1([0, 1])). The numerical

results for this example are displayed in Table 5 and Fig. 3, which confirm the higher
accuracy of the second-kind Chebyshev wavelets method compared with the Legen-
dre wavelets and first-kind Chebyshev wavelets methods. Since the exact solution in
this case is not so smooth as in the previous examples, the method converges slower.

Fig. 3 (Example 3.) Plot of the error function with ν = γ = 0.5 and M = 6, k = 4 (left), and M = 6,
k = 6 (right)
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7 Concluding remarks

In this work, a numerical method based on Jacobi wavelets has been introduced
for solving a class of Volterra integral equations of the third-kind. First, the Jacobi
wavelet functions have been introduced. Some error bounds are presented for the best
approximation of a given function using the Jacobi wavelets. A numerical method
based on the Jacobi wavelets, together with the use of the Gauss–Jacobi quadrature
formula, has been proposed in order to solve Volterra integral equations of the third-
kind. A criterion has been introduced for choosing the number of basis functions
necessary to reach a specified accuracy. Numerical results have been included to
show the applicability and high accuracy of this new technique. Our results confirm
that the new method has higher accuracy than the other existing methods to solve the
considered class of equations.
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gia (FCT, the Portuguese Foundation for Science and Technology) through the grant UIDB/04621/2020
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