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Abstract

Extended Krylov subspace methods are attractive methods for computing approxi-
mations of matrix functions and other problems producing large-scale matrices. In
this work, we propose the extended nonsymmetric global Lanczos method for solv-
ing some matrix approximation problems. The derived algorithm uses short recursive
relations to generate bi-orthonormal bases, with respect to the Frobenius inner prod-
uct, of the corresponding extended Krylov subspaces K¢ (A, V) and K¢ (AT, W).
Here, A is a large nonsymmetric matrix; V and W e R"** are two blocks.
New algebraic properties of the proposed method are developed and applications
to approximation of both W f(A)V and trace(W” f(A)V) are given. Numerical
examples are presented to show the performance of the extended nonsymmetric
global Lanczos for these problems.
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1 Introduction

Let A € R"*" be a large nonsymmetric and nonsingular matrix, and let V and W €
RS be two block vectors with 1 < s <« n. We are interested in approximating
expressions of the form

T, :=trace(W! f(A)V) and Z:=WTfA)V, )

where f is a function such that f(A) is well defined. Evaluation of expressions
(1) arises in various applications such as in network analysis (f(f) = exp(t) or
f(t) = ¢3) [10], machine learning (f(r) = log(?)) [13, 20], theory of Quantum
Chromodynamics (f(¢) = t/ 2), electronic structure computation [3, 7, 22], and the
solution of ill-posed problems [11, 14]. The matrix function f(A) can be defined by
the spectral factorization of A; see, e.g., [14, 16] for discussions on several possible
definitions of matrix functions. In the present paper, we assume that the matrix A is
so large that it is impractical to evaluate its spectral factorization.

Approximation of Z;, in the case when A is a symmetric matrix and W = V and
using global methods is well studied in [4]. Global Krylov subspace techniques were
first proposed in [17] for solving linear equations with multiple right hand sides and
Lyapunov equations. Consider the global Krylov subspace

K& (A, V) =span{V, AV, ..., A" 'V} = {p(A)V : pelu_1}). (2

where I1,,_1 denotes the set of polynomials of degree at most m — 1. Using m steps
of the global Lanczos method [18] to A with the initial block vector V leads to the
decomposition

AV = V(T ® I5) + B Vi EJ. 3)

where ® stands for the Kronecker product. The block columns Vi, ..., V,, of the
matrix V,, = [V1, ..., V] € R™ form an F-orthonormal (with respect to the
Frobenius inner product) basis of the global Krylov subspace (2) which means that

1 j=k,
0j#k.
Moreover, the matrix 7, € R™* in (3) is symmetric and tridiagonal, I; € R%**
denotes the identity matrix, 8,, > 0 and E,, € R™** is the mth block axis vector,
i.e., Ey, corresponds to the (m — 1)s + 1, ..., ms columns of the identity matrix I,,;s.

As for the classical Krylov subspace methods and in the symmetric case, it is
attractive to approximate the expression Z;, in (1) by

G (f) = IVIIFE] f(Tw)er, )
where ¢ is the first vector of the canonical basis of R™. One can show that the

approximation (4) is exact for polynomials of degree at most 2m — 1, i.e.,

Zir(p) =Gm(p), Vp € Moy,

see, Bellalij et al. [4] for more details. When A is nonsymmetric, the F-orthonormal
basis V,,, of K,gnl (A, V) cannot be generated with short recurrence relations. The non-
symmetric global Lanczos method [18] generates a pair of F-biorthonormal bases
Vi =[Vi,..., Vuland W,,, = [W, ..., W,,] with short recurrence relations, for

Vi, Vilp == trace(VkT Vi) = {
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the Krylov subspaces K,,(A, V) and K,, (AT, W), respectively. Application of m
steps of global Lanczos nonsymmetric algorithm yields the following relations:

AV = V(T2 @ I5) + B Vi1 Efy,
ATW, = Wy (T © L) + Y W1 E,.
The block vectors V;s and W;s of V,,, = [Vq,..., V] and W, = [Wq,..., W, ]
elements R"*S are said to be F-biorthonormal, if
1 j=k,
0j#k.

The matrix T,Z € R"™*™ js nonsymmetric and tridiagonal. The coefficients 8, ym € R,
and E,, is the matrix defined in (3). The expression Z;, in (1) can be approximated by

GE(f) == (V,W)reT f(Th)e,.

In the same way as in [12], one can show that the approximation g,’:, is exact for
polynomials of degree at most 2m — 1, i.e.,

Zir(p) = Go(p) Vp € Moy

Approximation of wT f(A)V is well studied in the literature; see, e.g., [12, 21] and the
references therein. For the nonsymmetric matrices, Reichel et al. [21], approximate
7 by performing m steps with the nonsymmetric block Lanczos method, applied to A
with initial block vectors W and V and this leads to the following algebraic relations:

AV, oo Vil = Vi, oo, Vidldi + Vet T EL,
AT[Wy, o, Wl = W, o, Wil I D + Wi A EL,

(Vi, Wi)p = trace(WkT Vi) = {

where W;, V; € R™*S are bi-orthonormal, i.e.,

Iy j=k,

Os j #k.

O; denotes the zero matrix of order s. The matrix J;,, € R™ ™S is a block nonsym-

metric tridiagonal matrix. The size of the block entries is s x s. [,, A, € R***, and
E,, are the matrix defined in (3). In [21], it was shown that Q,?}"Ck( f) defined by

Golock () := ET f(Jm)En,

where E| € RS corresponds to the first s columns of the identity matrix /,,, can
be used to approximate Z. Also GPI°°k is exact for polynomials of degree at most
2m — 1, i.e.,

WkTVj ::{

Z(p) = Gn**(P). ¥ p € Mo-1.
In the context of approximating expressions of the form f(A)b for some vector
b € R", Druskin et al. [9, 19] computed approximation using the standard extended
Krylov subspace generated by the vectors A~"b, ..., A~Yb, b, Ab, ..., A" 1p,
We are interested in exploring approximations of (1) by using a pair of F-
biorthonormal bases from the two extended global Krylov subspaces

K¢ (A, V) =span{V, A"V, AV, ... A"~V A=V},

K¢ (AT, W) = span{W, A=TW, ATW, ... A"~ LTw, A-mTw, )

@ Springer



1462 Numerical Algorithms (2020) 84:1459-1479

This paper is organized as follows. Section 2 introduces the extended nonsymmetric
global Lanczos process, for generating a pair of F-biorthonormal bases for the two
extended global Krylov subspaces defined by (5). Section 3 describes the application
of this process to the approximation of the two matrix functions given in (1) and give
some properties. Section 4 presents some numerical experiments that illustrate the
quality of the computed approximations.

2 Some algebraic properties of the extended nonsymmetric global
Lanczos process

2.1 Preliminaries and notations

We begin by recalling some notations and definitions that will be used throughout
this paper. The Kronecker product satisfies the following properties:

1. (A®B)(C®D)=AC® BD.
2. (A®@ BT =4AT @ BT.

Definition 1 Partition the matrices M = [My,...,M,] € R"P and N =
[N, ..., N;] € R jnto block columns M;, N; € R"™*, and define the o-product
of the matrices M and N as

MT o N = [trace(M] Nj)I/=/ ) e RPX (6)

The following proposition gives some properties satisfied by the above product.

Proposition 1 [5, 6] Let A, B,C € R"*PS, D € R"", L € RP*?, and a € R™".
Then, we have

A+BToCc=AToC+BToC
ATo(B+C)=AToB+ AT o C
(@A) o C=a(AT 0 )
AToB)T =BTo A

(DA o B= AT o (DTB)

AT o (B(L® I)) = (AT o B)L

A S e

Definition 2 Let X be an n x s matrix. The vectorization of the matrix X, denoted
vec(X), is the ns x 1 column vector obtained by stacking the columns of the matrix
X, i.e.,

VeC(X) = [Xl,ls ML) Xn,ls X1,27 AL Xn,27 AL Xl,Sv L) X}’l,S]T'

vec satisfies the following properties:

1. vec(MXN)= (NT ® M)vec(X), VA € RP*4 N e R"™*S X € R?*",
2. vec(A)Tvec(B) = trace(AT B), VA, B € R"",

@ Springer



Numerical Algorithms (2020) 84:1459-1479 1463

Let M = [My,...,My,] and N = [Ny,...,N,] € R with M;, N; €
R™“_ The following algorithm applied to the pair (M, N) allows us to obtain two
F-biorthonormal matrices V, W e R"*/S,

Algorithm 1 The global bi-orthonormalization decomposition.

1: Input: M = [M1,...,My,] and N = [Ny,..., Np,] € R?X™ms,
2: for j=1tom

3: ‘/;J:MWW]:NJ,

4: fori=1toj—1

5: hi,j :trace(WZT\’Zj);

6: 9i,j :trace(ViTWj);

7 Vi =V, — hi;Vi;

8: W\]‘ :Wj—gi,jwi;

9: end for

10: hji =1/ trace(/WjT\A/j)‘; 9j,; = trace(W]T\?}-)/h]-,j;

1 Vi =Vj/hy g Wi =Wj/g55;

12: end for

13: Output: F-biorthonormal matrices V,W € R"*™3 and H = [h; ;],G = [g;,;] are
two m X m upper triangular matrices.

Proposition 2 Let M and N be the matrices defined above and let V and W €
R ™S pe the corresponding matrices obtained from Algorithm 1. Then we have the
following decompositions:

M=VH®IL), N=WGQI),

where H = [h; j] and G = [g; ;] are the two m x m upper triangular matrices
determined by Algorithm 1 and satisfying

H=W' oM and G=VT'oN.

Proof From Algorithm 1, the block vectors V; and W; are written as follows:

J J
Mj= Zhi,/’Vi, and Nj = Zgi,jWi,
i=1 i=1
and because h; ; and g; ; vanish fori > j, we obtain

m m
M= Z Vi(hij ® I;) and N = Z Wi(gi,j ® I).

i=1 i=1
Then
M=VHQ®IL)and N = W(G Q I).

Using the properties of o-product, it follows that
H=W'oV)H=Wo(V(H®IL)) =W oM.
G=WV'oeW)G=Vo(WG®I)=V"oN.

O
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2.2 Description of the process

In this section, we recall the standard extended nonsymmetric Lanczos method given
in [25]. Proofs in this section are formulated from results given in [25]. Let v
and w be two vectors in R”. The standard extended nonsymmetric Lanczos algo-
rithm applied to the pairs (A, v) and (AT, w) determines two bi-orthonormal basis
Vom+2 = [v1, ..., vomy2] and Woy 40 = [wy, ..., wyy42] of dimensions n x 2m,
with v;, w; € R" (see [25, Algorithm 3]). Then the odd vectors v3 41, w41 verify
the following equations:

a=+/|wlv|,vy =v/a, f=wlv/a, w =w/p,

2j
hoj12j—1v2j41 = Avaj_1— Y hi2j—1v; = V2j41, .
i=2j-3 j=1....m. (7)
T 2
Q2j+12j—1w2jp1 = AT w1 — ) gi2j—1w; = W41,
i=2j—3
where
T T AT . .
hi,2j—l = w; Aij—l and g,',gj_l =v; A U)2j_1, fori = 1, ey 2].

T —
The h2j+1,2j—1’ 82j+1,2j—1 are such that w2j+1U2j+1 = 1. Hence,

~T ~ AT~
hajy12j—1 = /1Wy; V2411 82j41.2j—1 = (Waj V2j41)/ h2j1.2j-1-

Similarly, the even vectors v, 2, w212 are computed by the following relations:
o =A"ly— (wlTA_lv)m, W =ATw-— (vlTA_Tw)wl

y =10l 0l va="/y, I =wity/y,wy=a/T,

2j+1
-1 ~
hajy22jv2j42 = A7 v2j — Y hinjvi =V2j42,
i=2j-2 .
2t j=1....,m. (8
. . . — AfT A R
82j422jW2j42 = w2 Y &i2jwi = W2jq2,
i=2j-2
where
hi,Zj = wiTAilvzj andg,-,gj = viTAiTwzj, fori =1,...,2j + 1.

T _
The h3j 122, 82j+2,2; are such that W) 4pV2j42 = 1. Hence,

_ =T = . T s . .
haji22j = \/1W; ;1 p02)42ls 82j42,.2) = W)j40V2j+2/ haj12.2)-

In the case where V and W are two blocks of size n x s, the implementa-
tion of the extended nonsymmetric global Lanczos algorithm applied to (A, V) and
(AT, W) will be similar to the standard algorithm [25, Algorithm 3] except that
the standard inner product will be replaced by the Frobenius inner product (-, -) .
This algorithm provides two F-biorthonormal bases V5,42 = [v1, ..., v2;+2] and
Womt2 = [wi, ..., wamt2]. The dimension of these bases is n x 2(m + 1)s, where
v;, w; € R are the ith block vector of V5,12 and W, 12, respectively. In addi-
tion, the block vectors v; and w; satisfy the relations (7) and (8). Following the idea
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in [24], the column vectors of the bases V5,12 and W»,, 4> can be computed two by
two blocks as follows. Introduce

Vi=1l[vj—1,v2;], W;=[wzj_1, wyjl,

and

Ho = hoi—12j-1 hoi—1,2; G, . — | 82i-1.2j-1 82i-12j )
i,j — i,j =
/ hainj—1  haipj ’ / 822j—-1  82i2j ’

where V; and W; are the jth n x 2s block vectors of the matrices Vo142 =
[(Vi,..., Viur1] and Wop 0 = [Wy, ..., Wy 1], respectively; H; ; and G; ; are
2 x 2 matrices. The block vectors V; and W; are such that

[V, A"'WIl=Vi(Hy ® L), [W, A TW]=Wi(Go ® L),

where Hy and Gy € R?*? are computed by applying Algorithm 1 to [V, A~V ] and
(W, A=TW] e R™%. And

Vie1(Hjp1,j ® L) = [Avaj_1, A o1 = Vis((Hj—1, ® 1) — Vi(H; j ® 1),
Wis1(Gji1 ® L) = [ATwaj1, AT waj 1= Wi—1(G -1, ® L) —W; (G ;i ®I).

Set
a1 o2 Bi1 Bi2
Hy = ’ ’ Gy = ’ <. 10
0 (0 0!2,2,> 0 <0 ,32,2> (10)
Asthen x 2sblocks Vi, ..., V,, and Wy, ..., W, are F-biorthonormal (with respect
to the Frobenius-product) and by using the properties of the ¢-product, it follows that
H; ;= WiT <& [szj—l R A_lvzj] and Gi,j = ViT <& [ATwzj_l s A_Twzj].

The extended global nonsymmetric Lanczos is summarized in the following
algorithm (Algorithm 2).

Proposition 3 Let vy, vo, ..., vtz and wi, wa, ..., Way42 be the F-biorthon
ormal block vectors determined by Algorithm 2. Then
V21 = P}/_l(A)V + qj‘-/_l(A_l)V,

v = er_l(A—l)A—lv +s].V_1(A)v,

where deg(pj—1) = deg(rj—1) = j — 1, deg(qj—1) < j — land deg(sj—1) < j — L.
These relations also hold when V and A are replaced by W and AT, respectively.

Proof The result follows easily from Algorithm 2. O

We notice here that in the previous proposition, the block vectors [V7, ..., Vj41]
and [Wy,..., Wy41] form a F-biorthonormal basis of KJ (A, V) and
K +1(AT, W), respectively. When inverting A or solving linear systems via the
LU decomposition is not easy, then we can compute matrix products of the form
A~V and A~T W by using an efficient iterative linear solver such as the well-known
GMRES method.
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Algorithm 2 The extended nonsymmetric global Lanczos algorithm (ENGL)

Input: Matrix A, initial n X s blocks V and W.
Set V1 = [V, A~1V] and W) = [W, A= TW].
Apply Algorithm 1 onto \71,1//1/\1 to obtain Vi, W7.
Set a = /[(V,W)p| and 8 = (V,W)p/a.
for j=1tom
Set Vj(l) : first s columns of Vj; and Vj<2) : second s columns of Vj;
And W;l) : first s columns of W;; and W]@) : second s columns of Wj;
‘7j+1 _ [A\/j(D,A*lV]-(Z)];
Wi = [ATWD A-Tw ),
fori=j—-1%oj
Hij=wW[T o Vit
Gij = Vf o Wijy1;
13: Yi'-o-l = V/}iq —Vi(H;j ® Is);
14: Wj+1 = Wj+1 — Wi(Gz’,j & Is);
15: end for . e
16: Apply Algorithm 1 to Vj1, W;41 to compute Vjy1, Wit1, Hjyr1,5 and Gjq1,;.
17: end for
18: Output: F-biorthonormal basis Vg,,42 and Wy, 4.

© 0 N O 0w N

o
= O

e
N

We now introduce the 2m x 2m matrices T»,, and S»,,, given by
Tom = WS © AV,  Som = W1 o A7V, (11)

where Vy,, = [V1, ..., V] and Wy, = [Wq, ..., W,].
An important result concerning the connection between the proposed method and the
standard extended nonsymmetric Lanczos method is given by the following theorem.

Theorem 1 Let V, W be the initial given block vectors of R"*5. Set A = I; ® A,
v = vec(V), and w = vec(W) € R™ and perform m steps of the standard extended
nonsymmetric Lanczos applied to the pairs (A, v) and (AT, w). Then we obtain the
same F - biorthonormal basis V12, Wo,, 12 as the one determined by the extended
nonsymmetric global Lanczos algorithm. Moreover, the basis V42, Wop,42 satisfy
the following relations:

AV, = Vo, (Tom ® 1) + V2m+1 ( Dm+1,2m—1> 2m+1,2m ] E; ® Is) ,(12)

B 0
AW = Vo (S ® 1) + Vi ([0 Sam+1,2m } £ ® Is),
S2m+2,2m

ATWZm = WZm(TQZ,; ® I) + W2m+1 [Em+1,2m71, 5m+1,2m ] EYE@IY) ,(13)

0 S2m41,2 T
AW, = Wou (ST @ I,) + W, mtlam  plgy g,
2m 2m( 2m by s) + m+1 0 Somt2.9m m Q Iy
where [fm+12m—1, amr1.2m) = [{ATwam—1, vams1) F, (AT Wom, Vams1)Fl, and
(S2m+1,2m» S2am+2,2m1 = AT wom, vams1) £y (A" o, vami2) F.
En = [eam—1, €2m] € R¥"*2 corresponds to the last two columns of the identity
matrix Ip,,.
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Proof Perform m steps of the extended Lanczos algorithm applied to the pairs (A, v)
and (AT, w) yield two ns x (2m+2) bi-orthonormal bases V42 = [x1, ..., Xam+2],
Wom+2 = [V1, - - - » Yam+2]- These bases satisfy the relations (7) and (8) for the matrix
A. By setting, X ;, Y; € R"*¥ such that x; = vec(X) and y; = vec(Y;), we obtain
trace(YiTXj) = vec(Yi)Tvec(Xj) = yl-ij =& j»
which means that X ;, Y; are F-biorthonormal. In addition, it follows that X; = V;
and Y; = W; since
hisj—1 = yl Axaj = vec(Y;)T (I; ® A)vec(X2)).
vee(Y;) vec(AX2)) = (AXaj—1, Vi) F.
gi2j—1 = v} Alwaj_1 = (AT Y1, Xi) P
hipj = wl A v = (A7 Xa;, Vi) P
gi2j = v] A Twy; = (AT Yo, Xi)p.

Using the same techniques as above, we obtain that 7>, = WszAVzm and Sy, =
WI A=V, Let us prove the relation (12). Using [25, Lemma 3.1], it holds that

T
AVa = Vo Tom + Xom+1ltom+1,2m—1 tom+1,2m1E s

where T2, = WZTm AVay = Tom.
In other hand,

AV = (I; ® A)[vec(vy), ..., vec(vam)],
= [vec(Avy), ..., vec(Avyy)],

while

VomTom = [g[szel]iVec(vi), s %Zml[T2m€2m]iVCC(Ui)i|
i= i=
= [vec(Vo (Tomer ® Iy)), ..., vec(Voy (Tomerm ® I5))].
Define t = [t2m+1.2m—1., tzm+1,2m]EnT1, then
Xomp1 T = [Vec(tami1 2m—1V2m+1), VeCtamr1,2mVam+1)1Epp.
Fori =1,...,2m — 2, it is shown that
vec(Av;) = vec(Voy (Tamei @ 1))

and

vec(Avay—1) = vec(Voy (Tomern—1 ® Iy)) + vec(vam+1 Cam+1,2m—1 ® Iy)),
vec(Avyy) = vee(Vo (Tomerm ® 1)) + Vec(v2m+l(t2m+l,2m ® Iy)).

Which completes the proof of (12). The proof of the other relations is similar. O

The next two propositions express the entries of 73, and Sz, in terms of the
recursion coefficients. This will allow us to compute the entries quite efficiently.
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Proposition 4 Let the coefficients h; ;j and «; ; as defined in (9) and (10), respec-
tively. The matrix To,, = [t;;] in (11) is pentadiagonal with the nontrivial
entries,

tinj—1 = hizj—1 forie{2j—3,...,2j+1},

t1p = —(ar,1 —a12h1,1),
22
-1
o = —ainhy 1,
2,2
-1
32 = —a2h3 1.
22
Forj=1,2,...,m—1,
—1
Djr12j+2 = ———0j+1,2j—1:2j+112j-1:2j+1,2)
hajt2.2)
-1
Dj+2.2j+2 = Dj+2.2j+1h2j+1.2;,
haj+2.2;
-1
0j+32j+2 = ————hj132j+1h2j+12;-
hajy2,2j
Proof The proof is similar to the one given [25, Lemma 3.3]. O

Proposition 5 Let the coefficients h; ; as defined in (9). The matrix Sy, = [s; ;] in

(11) is also pentadiagonal with the nontrivial entries, for j =1,...,m — 1,
sioj = hipj forie{2j—2,...,2j+2},
-1
$2j2j+1 = —————582j2j-22j+1h2j22j412j-1,
haj+1,2j-1
-1
$2j41,2j41 = ———[s2j41,2jh2j2j—1 + 82j+1,2j-1h2j+1,2j-1],
h2j+1,2j-1
-1
$2j42,2j+1 = ————[s2j42,2jh2j2j—1 + $2j+2,2j+1h2j+1,2j+1]
h2jy1,2j-1
Proof The proof is analogous to the proof of Proposition 4. O

The following result relates positive powers of Sz, to negative powers of To,y,.

Lemmal Let T»,, and Sy, as given by (11)andlete; =[1,0, ..., 017 € R?". Then

S§m61 = Tz;ljel for j=1,2,...,m.
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Lemma 2 Let the matrices Try, and Sy, as defined by (11). Let Vo, =

[vi, va, ..., von,] be the matrix given in (12). Then for j = 1...m — 1, we have
Aoy = Vo (T) ey @ 1), j=0,1,....,m—1, (14)
AT v = Vo, (8] e ® 1), j=0,1,....m, (15)
A7 = V(T er ® 1), j=0,1,....m. (16)

Proof Tt was shown in [25] that when performing m steps of standard extended
nonsymmetric Lanczos method to the pairs (A, v) and (AT, w), it holds that

Alx; =V Tamer, j=0,...,m—1,

by using the properties of the ®-product and the “vec” operation, we obtain

2m

Alxy = vee(Alvy) and Vo Tamer = Y (T3 erlivec(vi) = vee(Vou (T3, e1 ® 1)),
i=1

which prove (14). Using the same techniques as above, we can prove (15). Finally,
(16) follows from (15) and Lemma 1. L]

Lemma 3 Ler the matrices Ty, and Sy, as defined by (11). Let Wy, =
[wy, wa, ..., way] be the matrix given in (13). Then for j = 1...m — 1, we have

AT wy = Wo (Tl e @ 1), j=0,1,...,m—1,
AT wy = Wo (S5 e ® 1), j=0.1,....m,
ATy = Wzm(sznj’Tel ®IL), j=01,....m.

Proof The proof is similar to the ones given in Lemma 2. O

3 Application to the approximation of matrix functions
3.1 Computing the matrix function trace(WTf(A)V)

The expression Z;, defined in (1) can be approximated by
G5, (f) i= (W, V) el f(Tam)er (17)

Lemma 4 Let the matrices Tz, and Sy, as defined by (11). Let vy and w be the
initial block vectors computed by Algorithm 2. Then the following equalities hold

trace(wlTAjm) = elTTZJ;ne] forj=0,1,...,2m —1, (18)

trace(wlTA_jvl) = elTT2 er forj=0,1,...,2m.

J
m
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Proof We have trace(wlTAjvl) = vec(w;)! vec(A/v;). From Theorem 1, we get
y1 = vec(wy) and x; = vec(vy). By using the properties of the “vec” operation, it
follows that trace(wlTAf V) = leAf x1. Then using the result given in [25, Lemma
4.1], we obtain le.ijl = elTszel. This shows (18) since, T2, = T5,,. The second
equation can be established by using the same techniques as above. [

Theorem 2 After m steps of Algorithm 2 with initial block vectors V, W € R"*5, we
get

trace(W! p(A)V) = (V, W)r el p(Tam)er VP € Ao om—1,

where

m

Ay am—1 = span{x_2 coox U x, ., xzm_l}.

Proof From Algorithm 2, V and W are collinear with V; and Wi, respectively,
ie, V. = aVy and W = BW; with ¢f = (V, W)r. Which implies that
trace(WTp(A)V) = (V, W)Ftrace(WlTp(A)Vl). Using the results of Lemma 4, we
get trace(WlTp(A) Vi) = elTp(sz)el. This completes the proof. O

Algorithm 3 Approximation of trace(W” f(A)V) by the extended global
Lanczos method.

Input: Matrix A € R™*"™_ initial block vectors V, W € R"*5 and function f
Compute Va,, and Wy, by Algorithm 2.

Compute matrix T, = WQTm o AVa,, using Proposition 4.

Compute G5, (f) = (V, W) pel f(Tam)er given by (17).

Output: Approximation G5,,(f) of trace(W7T f(A)V)

a oD W N

3.2 Computing the matrix function WTFA)V

The aim of this subsection is to show how to use the extended nonsymmetric global
Lanczos algorithm to approximate Z in (1) (see Algorithm 2). Before describing
the application of the proposed method, we notice that the extended nonsymmet-
ric block Lanczos method (ENBL) given in [2] can also be used to approximate Z.
After m steps of this algorithm applied to the pairs (A, V) and (AT, W), we obtain
two n x 2ms bi-orthonormal bases %5, and #5,,, i.e., 7//2,Tn“//2m = Ipys. Then
the expression Z can be approximated as follows: W7 (%5, f (%m)%’;)v where
Do is 2ms x 2ms block tridiagonal matrix with 2s x 2s blocks. The matrix
Tom = %@A%m is computed recursively without requiring additional matrix-
vector products with A (see [2, Proposition 3]). The ENBL algorithm is expensive as
the number m of iterations increases and also for large values of s.

Now, let us come back to our proposed method. Applying Algorithm 2 to the pairs
(A, V) and (AT, W) allows us to obtain two F-biorthonormal bases V5, and W,
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suchthat V. = «aviand W = Bwj. Itis clear that W;rmVZm = Dy and then, we
can consider the projector P, defined as

Pom : R — K¢ (A, V)
X +— Vsz;mX.

Applying the projector Py, to Z gives the reduced matrix function
B3, (f) = C3, f (Aow) Bow, (19)

where Ay, = W3 AVa, € R¥™X2m5 By, = W3 V e R and Cpy =
T 2

Vo, W € RTmSXS, N . .
The next proposition will allow us to compute Ay, and By, from the recursion

matrix 73, without requiring the computation of the W;m and AVy,.

Proposition 6 Let V, W be the initial block vectors where V. = « V\. Then the
matrices Az and By, defined above are computed as follows:

A = (Tom ® I5) + W;mv2m+l([t2m+l,2mflv Dm+1,2m ] EZ,; ® Iy),
By = aél,

where [t2m+1,2m,1, Dm+1,2m ] is defined by (12), and & corresponds to the first s
columns of the identity matrix I,,.

Proof Let E; = [e2j_1,e25] € R¥*2 for j = 1,...,m. Multiplying the matrix
Apy, from the right by E; ® I gives

Ao (E; @ Iy) = Wi AV, (E; ® I).
Using (12) , we get
Ao (E;® L) = (TomEj @ L) + W3 voms ([t2m+l,2m—l» Dmt1.2m | E£Ej®ls) .
It followsthat j =1,...,m — 1,
A (Ej @ Iy) = TomEj ® I,
while for j = m, it results that
Ao (Em ® Iy) = (TomEm ® Is) + W3, vomst ([ 2mt1.2m—1. Loms12m | ® L) .

Therefore,

Ao = (Tom ® I5) + W;mv2m+l ([ Dm+1,2m—1 2m+1,2m ] E; 02y ]s) .
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To show the expression of By, we use the fact that V. = « vy, which implies that
By, = W;mV = aW;mvl
= otW;szmé"] =ad.
O

Lemma5 Let Ay, be the matrix be defined in (19). Let Vo, = [v1, .. ., va] defined
by (12). Then

Aoy = Vo, AL & forj=0,...,m—1, (20)
Ay = VZmAZ_W{é'l for j=0,...,m.

Proof The first equation is shown by induction. Av; and v; are two elements of
K¢, (A, v1) and then

Avy = Vo, WS Avy =V, W

2m

AVsz;mvl = VoA &l.
The equality is true for j = 1.Letj = 2,...,m — 1, and assume that
ARvy =V, A8 &1 k=1,...,j -1

Since A/v; € K& (A, vy), it follows that AJv; = V5, W] AJv|. By induction, we
have
Ajvl = Vsz;mAVQmAén:lgl .
which completes the proof of (20). _ '
The second equation follows from the fact that Vzmwg wATu=AT 0 V=

1, ..., m and by using same technique induction as above. O
Lemma 6 Let Ay, be the matrix defined by (19) and let Wy, = [wyq, ..., wy,] be
the matrix in (13). Then
i i, T .
AMTwy =WhTALIVE wi forj=0,...,m—1,
—; T =i T .
ATy, = W;‘m Azri Vszwl for j=0,...,m.

Proof We have AlTw, e Kfn(AT, W), which means that W;,;ITVszAf’Twl =
ATy, for any integer j such that —m < j < m — 1. According to the previous
equality, and by the same techniques as the proof of Lemma 5, then both equations
are shown. O

Proposition 7 After m steps of the process, we have
WTA=lV = C} Ay By, forj=0,...,2m,
wlAlv = cl Al By, forj=0,....2m—1.

2m
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Proof The proof is based on an application of results of Lemmas 5 and 6. Let
j = j1+ jowith ji, jo €{0,...,m}. Wehave V = aviand W = g wji, then

WIATV = apwl A=11 A2y,
= af(A M Tw) (A0

Using equations of Lemmas 5 and 6, we obtain
T .
= aB(W3, AL TV w))T (Va,A32E0)
= WiV, Ay WE v
= C;m A2_n€ Bom,

which completes the proof of the first relation. The proof of the second relation is
similar. O

Now, we compare the operations requirements for the extended block Lanc-
zos method ENBL and the extended global Lanczos method ENGL. Both methods
require the same cost of computing matrix-matrix products AV for some V € R"*%;
they also require the same cost of solving linear systems. The ENBL method requires
4ns* operations to compute the n x 2s matrix VH and 4ns? for computing the
2s x 2s matrix W7V, while the ENGL method only needs 4ns operations to com-
pute W7 o V and 4ns to compute V(H ® I). To update the new bases Vi1 and
W]+1 , the ENBL method has to perform the bi-orthonormalization decomposition of
Vit1 and W]+  that costs 16ns2 in every step, while the global bi-orthonormalization
decomposition costs only 16ns. To compute 5, using [2, Proposition 3], we need
to 2s(4ns +n+ 1)(m + 1) operations, while for ENGL method, computing 7>, costs
only (10ns + 2)(m + 1). Moreover, the computation of %, requires solving linear
systems of size s x s for every step, while ENGL method only needs the division
by a scalar (see Proposition 4). In Table 1, we summarize the number of operations
after m iterations of the ENBL algorithm and the ENGL algorithm. As we observed,
the ENGL algorithm is less expensive than the ENBL algorithm, when the number
of iteration m increases and the block size s is not small.

Algorithm 4 Approximation of W7 f(A)V by the extended global Lanczos
method.

Input: Matrix A € R®*™ initial block vectors VW € R"*5 and a function f

Compute Vo, ng, vam+1 and a by Algorithm 2.

Compute To,, = W2 o AVa,, using Proposition 4.

UQmSEQmSZQmS =W, Vo, a singular value decomposition of W m Vom.

r = rank(Xoms).

Set Up = [u1,...,uy] € RZMsX" G = diag(X(1,1),...,5X(r,7)) € R™", and
— [217 o Z'r'} c R2m5><'r_

Az = (Tom ® Is) + Zp[S; " (UTWE vam 1) (Trmg1,mEL ® I6).

Bom = a & and Cop, = VE W.

Compute BS,, (f) = CL f(A2m)Bam.
10: Output: Approximation Bgrs (f) of WT f(A)YV

2m

DO W N

N

© 0 N
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Table 1 Comparison of the extended nonsymmetric block Lanczos (ENBL) and the extended nonsym-
metric global Lanczos (ENGL) algorithms

Flops ENBL ENGL
Matrix matrix multiplication 4n’ms 4nms

n x nwithn x 2s matrices Line 6 Line 8,9
AV and ATW

Solution of linear systems 4n%(m + 1)s 4n%(m + 1)s
A7'Vand A”TW Line 3,6 Line 2, 8,9
Matrix matrix multiplication, 16nms? 16nms

resp. the product diamond of Line 7 Line 11, 12
2s x nandn X 2s matrices

WTV resp. WT oV

Matrix matrix multiplication 16nms? 16nms

n x 2s with 2s x 2s matrices Line 8 Line 13, 14
resp. the Kroncker product

VHresp. V(H® I)

Bi-orthogonalization decomp- 16n(m + 1)s? 16n(m + 1)s
ositionn x 2s of withn x 2s Line 3,9 Line 3, 16
matrices resp. global bi-ortho-

gonalization decomposition

Computation of 2s(4ns +n+1) (10ns +2)
T} =W5 AV, tesp. (m+1) (m+1)

Tom = W1 o AV,

Computation of
Axm = W3, AV,

[2, Proposition 3]

Proposition 4

4(ms)*(n + 1) + 2ms®n

Proposition 6

4 Numerical experiments

In this section, we give some numerical examples to show the performance of the
extended nonsymmetric global Lanczos (ENGL) method . In the selected examples,
the proposed method is applied to the approximation of expressions of the form Z;,
and Z given in (1). All experiments were carried out in MATLAB R2015a on a com-
puter with an Intel Core i-3 processor and 3.89 GBytes of RAM. The computations
were done with about 15 significant decimal digits.

As mentioned in the second section, we did not have to compute explicitly A~!.
In all examples, the matrix products with A~' and A=7 in lines 2 — 8 — 9 of Algo-
rithm 4 are computed via an LU factorization or by using an iterative solver. We
used a preconditioned block biconjugate gradient (PBBiCG) method as described in

Algorithm 5.
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Algorithm 5 Preconditioned block biconjugate gradient algorithm (PBBiCG)

1: Input: Matrix A € R™*X™_ initial block vectors B,C € R"*%, and inital solutions
Xo, X
Compute Ry = B— AXp and R = C — ATX(’)‘;
Orthogonalize Rgp = Q1R1 and Rf = Q2R2;
Set Ro = M~1Q1, Py = Ro; and Py = Rj;
for £k =0,1,..., until convergence do
Ap = (RYTM~YAP)~ Y (R*T Ry);
Ay = (RE (M~ AT P~ (R Ry)T;
X1 = X + Py
Xp = X5+ Prag
Rk+1 = Rk — MﬁlAPk.Ak;
Ry = Ry — (M AT P AL
if max{|[Re 41, IRL, I} < ¢ then
Break ;
end if
Bry1 = (BT Re)H(R;T Ry 1);
Bit1 = (RZTRk)fT(RZJTrleH)T;
Pit1 = Ri+1 + PeBryr;
oy = Ry + Pifig
k=k+1;
: end for
: X = Xo+ Xp41Ra;
2 X = MTTIXG + XL Rel;
: Output: X and X'*;

© 00 N O O WwN

=
= O

e
LS VU V)

NN NN =
W NP O O 0 N O

4.1 Examples for approximations of trace( WTf(A)V)

Example 1 In this experiment, we compared the performance of the ENGL algo-
rithm with the performance of extended global Arnoldi algorithm (EGA) described
in [1, 15]. We approximate trace(E lTexp(A)E 1) where A is the nonsymmetric adja-
cency matrix pesa of order n = 11738. This matrix was obtained from the Suite
Sparse Matrix Collection[8]. E; € R"*S corresponds to the first s columns of iden-
tity matrix I,,. Results for several choices of the block size s and number of iterations
m are reported in Table 2. We notice that in the ENGL and EGA algorithms, we
used the PBBiCG algorithm defined by Algorithm 5 with an ILU preconditionner. As
observed from this table, the approximate errors determined by ENGL have higher
accuracy as compared with the approximations obtained by the EGA method.

Example 2 In this example, we used a diagonalizable matrix of order n = 1000
whose eigenvalues are log-uniformly distributed in the interval [10~!, 10*] and ran-
dom eigenvectors. We computed approximations of trace(E lT f(A)Ey) given by
ENGL and by the standard nonsymmetric global Lanczos method (SNGL). Here we
used s = 6. In Table 3, we reported the number of iterations, the relative errors,
and the required CPU times obtained with different functions. Here we used the LU
factorization to compute products of the form A~!'V and A=T W. The results show
that the ENGL algorithm is faster and give better relative errors, while SNGL algo-
rithm is unable to determine an accurate approximation for all functions f used in
this example.
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Table2 Example 1: A € R**"

is the nonsymmetric adjacency Relative error of ENGL Relative error of EGA
pesa matrix withn = 11738
s =2
m = 10 22 x 1074 0.81
m = 15 1.38 x 107° 53 x 1074
m = 20 1.63 x 10714 3.69 x 1073
m = 25 1.3 x 10710 342 x 1078
s =6
m = 10 2.84 x 1074 0.33
m = 15 6.45 x 1071 0.07
m = 20 2.16 x 10715 221 x 1073
m = 25 1.08 x 10715 7.31 x 1072

4.2 Examples for the approximation of WTf(A)V

In this subsection, we present some results to approximate W’ f(A)V using the
ENGL algorithm. In the following experiments, we used the functions: f(x) = /x
and f(x) = x~!/3. The blocks W and V were generated randomly with entries
uniformly distributed on [0, 1]. The matrix A was obtained from the centered finite
difference discretization (CFDD) of the elliptic operators given by (21) on the unit
square [0, 1] x [0, 1] with Dirichlet homogeneous boundary conditions. The number
of inner grid points in each direction was n¢ and the dimension of matrices is n = n%.

L1(u) = —100uy, — tyy + 10xuy,

Low) = —eVupy —eVuyy + 1/(x + y)uy. @h

Example 3 We consider the approximation of W7 A2V and W7 B1/2V where the
matrices A, B € R400%4%00 are nonsymmetric matrices coming from CFDD of the
operators L1(u) and L>(u), respectively, and given by (21). The block size s was
s = 4. 1In Fig. 1, we reported the relative errors of ENBL, ENGL, and SNBL
algorithms versus the dimension of the projected subspace using the matrix A on the
left and on the right part of this figure, we give the results corresponding to the matrix

Table 3 Example 2: A € R" " has eigenvalues distributed in the interval [10~!, 10*] and a random
eigenvector matrix. The block sizes = 6
f ) ENGL SNBL

Dim Relative error Time(s) Dim Relative error Time(s)
e " 59 5.02 x 107° 4.59 250 6.84 x 107 26
Jx 55 1.11 x 107 5.05 250 574 x 107 78.5
x4 57 1.08 x 1076 6.12 250 3.5 x 1073 161
log(x) 53 333 x 1077 6.18 250 8.66 x 1074 212
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ENBL ENBL
ENGL| ] Hh ENGL| |
SNBL SNBL

norm of relative error
norm of relative error

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
dimension of approximation space dimension of approximation space

Fig.1 Approximation of EIT A2 E{(left plot) and EIT B'/2 E|(right plot)

B. Both plots show that ENGL and ENBL algorithms yield significantly smaller
errors than the SNBL algorithm.

Example 4 In this example, we consider nonsymmetric matrices coming from CFDD
of the same operators as in Example 3. In Tables 4 and 5, we reported results for the
ENGL and ENBL algorithms when approximating Z. We used different values of the
dimension n ({2500, 4900, 7225, 10000}) and two different block sizes s = 10, 20

Table 4 Example 4: Approximation of W f(A)V for two functions and different matrix dimensions for
the operators given by (21)

Oper. f(x) n m Relative error of ENGL Relative error of ENBL
L1(x) x~13 2500 15 6.11-10~ 1 1.61-1078
s =10 4900 15 1.88-10710 2481078
7225 20 5.57-10710 1.37-1078
10000 20 3.44.10710 1.7-1078
Jx 2500 15 1.88- 10710 2.23-1077
s =20 4900 15 2.48-107° 1.99-1077
7225 20 42710710 1.83-1077
10000 20 8.47.10~1 7.78 - 1077
L2(x) x~13 2500 15 5.10- 10710 5.98.10710
s=10 4900 15 2.91-10~ M 1.11-1078
7225 20 85110~ 5.59.1078
10000 20 1.87- 10711 450-1078
Jx 2500 15 2.64- 10712 2.47.10710
s =20 4900 15 3.45.1071 4.17-10711
7225 20 5.98-10712 3.26-10710
10000 20 4.18-107 1 2.15-107°
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Table 5 Example 4: Approximation of W’ f(A)V for two functions and different matrix dimensions for
the operators given by (21)

Oper. fx) n m Relative error of ENGL Relative error of ENBL
L1(x) x~13 2500 15 1.67-10710 3.39-107°
s =30 4900 15 1.22-10710 1.06 - 107©
7225 20 1.55-10710 5.45-1078
10000 20 1.20- 10710 437107
Jx 2500 15 1.50-107° 1.45-1074
s =40 4900 15 1.97 - 10710 134107
7225 20 1.63-10710 6.28-10~*
10000 20 22010710 4.16-1074
Lo(x) x~13 2500 15 1.28-10710 5.30-1077
s =40 4900 15 7.44 .10~ 1 1.66- 1078
7225 20 1.50 - 10711 4551070
10000 20 2.64 1071 2.37-107°
Jx 2500 15 3.10- 10712 1.50-107°
s =30 4900 15 1.02-10711 1.17-107°
7225 20 3.35.10712 3.31-1077
10000 20 225-107° 3.40-107°

in Table 4, and s = 30, 40 in Table 5. For the last two values of n, we used PBBiCG
preconditioned by the block ILU preconditioner (see [23]). As shown in Tables 4
and 5, when the block size s increases, the approximations of Z computed with ENGL
are more accurate than the approximations produced by the ENBL algorithm.

5 Conclusion

This paper describes an extended nonsymmetric global Lanczos method for the
approximation of trace(W7 f(A)V) and wT f(A)V. Two F-biorthonormal bases of
the extended Krylov subspaces given by (5) are computed by short recurrence for-
mulas. We gave some suitable algebraic relations. The numerical results show that
the nonsymmetric extended global Lanczos method requires fewer iterations and
CPU time as compared with the standard nonsymmetric global Lanczos method and
to the extended global Arnoldi method when approximating trace(W” f(A)V) and
wT fAV.
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