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Abstract
Extended Krylov subspace methods are attractive methods for computing approxi-
mations of matrix functions and other problems producing large-scale matrices. In
this work, we propose the extended nonsymmetric global Lanczos method for solv-
ing some matrix approximation problems. The derived algorithm uses short recursive
relations to generate bi-orthonormal bases, with respect to the Frobenius inner prod-
uct, of the corresponding extended Krylov subspaces Ke

m(A, V ) and Ke
m(AT , W).

Here, A is a large nonsymmetric matrix; V and W ∈ R
n×s are two blocks.

New algebraic properties of the proposed method are developed and applications
to approximation of both WT f (A)V and trace(WT f (A)V ) are given. Numerical
examples are presented to show the performance of the extended nonsymmetric
global Lanczos for these problems.
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1 Introduction

Let A ∈ R
n×n be a large nonsymmetric and nonsingular matrix, and let V and W ∈

R
n×s be two block vectors with 1 < s � n. We are interested in approximating

expressions of the form

Itr := trace(WT f (A)V ) and I := WT f (A)V, (1)

where f is a function such that f (A) is well defined. Evaluation of expressions
(1) arises in various applications such as in network analysis (f (t) = exp(t) or
f (t) = t3) [10], machine learning (f (t) = log(t)) [13, 20], theory of Quantum
Chromodynamics (f (t) = t1/2), electronic structure computation [3, 7, 22], and the
solution of ill-posed problems [11, 14]. The matrix function f (A) can be defined by
the spectral factorization of A; see, e.g., [14, 16] for discussions on several possible
definitions of matrix functions. In the present paper, we assume that the matrix A is
so large that it is impractical to evaluate its spectral factorization.

Approximation of Itr in the case when A is a symmetric matrix and W = V and
using global methods is well studied in [4]. Global Krylov subspace techniques were
first proposed in [17] for solving linear equations with multiple right hand sides and
Lyapunov equations. Consider the global Krylov subspace

K
gl
m (A, V ) = span{V, AV, . . . , Am−1V } = {p(A)V : p ∈ Πm−1}, (2)

where Πm−1 denotes the set of polynomials of degree at most m − 1. Using m steps
of the global Lanczos method [18] to A with the initial block vector V leads to the
decomposition

AVm = Vm(Tm ⊗ Is) + βmVm+1E
T
m, (3)

where ⊗ stands for the Kronecker product. The block columns V1, . . . , Vm of the
matrix Vm = [V1, . . . , Vm] ∈ R

n×ms form an F -orthonormal (with respect to the
Frobenius inner product) basis of the global Krylov subspace (2) which means that

〈Vj , Vk〉F := trace(V T
k Vj ) =

{
1 j = k,

0 j �= k.

Moreover, the matrix Tm ∈ R
m×m in (3) is symmetric and tridiagonal, Is ∈ R

s×s

denotes the identity matrix, βm ≥ 0 and Em ∈ R
ms×s is the mth block axis vector,

i.e., Em corresponds to the (m− 1)s + 1, . . . , ms columns of the identity matrix Ims .
As for the classical Krylov subspace methods and in the symmetric case, it is

attractive to approximate the expression Itr in (1) by

Gm(f ) := ‖V ‖2F ẽT
1 f (Tm)̃e1, (4)

where ẽ1 is the first vector of the canonical basis of Rm. One can show that the
approximation (4) is exact for polynomials of degree at most 2m − 1, i.e.,

Itr (p) = Gm(p), ∀p ∈ Π2m−1,

see, Bellalij et al. [4] for more details. When A is nonsymmetric, the F -orthonormal
basis Vm ofKgl

m (A, V ) cannot be generated with short recurrence relations. The non-
symmetric global Lanczos method [18] generates a pair of F -biorthonormal bases
Vm = [V1, . . . , Vm] and Wm = [W1, . . . , Wm] with short recurrence relations, for
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the Krylov subspaces Km(A, V ) and Km(AT , W), respectively. Application of m

steps of global Lanczos nonsymmetric algorithm yields the following relations:

AVm = Vm(T b
m ⊗ Is) + βmVm+1E

T
m,

AT
Wm = Wm(T b,T

m ⊗ Is) + γmWm+1E
T
m.

The block vectors Vis and Wis of Vm = [V1, . . . , Vm] and Wm = [W1, . . . , Wm]
elements Rn×s are said to be F -biorthonormal, if

〈Vj , Wk〉F := trace(WT
k Vj ) =

{
1 j = k,

0 j �= k.

Thematrix T b
m ∈ R

m×m is nonsymmetric and tridiagonal. The coefficients βm, γm ∈ R,
and Em is the matrix defined in (3). The expression Itr in (1) can be approximated by

Gb
m(f ) := 〈V, W 〉F ẽT

1 f (T b
m)̃e1.

In the same way as in [12], one can show that the approximation Gb
m is exact for

polynomials of degree at most 2m − 1, i.e.,

Itr (p) = Gb
m(p) ∀p ∈ Π2m−1.

Approximation ofWT f (A)V is well studied in the literature; see, e.g., [12, 21] and the
references therein. For the nonsymmetric matrices, Reichel et al. [21], approximate
I by performing m steps with the nonsymmetric block Lanczos method, applied to A

with initial block vectors W and V and this leads to the following algebraic relations:

A[V1, . . . , Vm] = [V1, . . . , Vm]Jm + Vm+1ΓmET
m,

AT [W1, . . . , Wm] = [W1, . . . , Wm]J T
m + Wm+1ΔmET

m,

where Wj, Vj ∈ R
n×s are bi-orthonormal, i.e.,

WT
k Vj :=

{
Is j = k,

Os j �= k.

Os denotes the zero matrix of order s. The matrix Jm ∈ R
ms×ms is a block nonsym-

metric tridiagonal matrix. The size of the block entries is s × s. Γm, Δm ∈ R
s×s , and

Em are the matrix defined in (3). In [21], it was shown that Gblock
m (f ) defined by

Gblock
m (f ) := ẼT

1 f (Jm)Ẽ1,

where Ẽ1 ∈ R
m×s corresponds to the first s columns of the identity matrix Im, can

be used to approximate I. Also Gblock
m is exact for polynomials of degree at most

2m − 1, i.e.,
I(p) = Gblock

m (p), ∀ p ∈ Π2m−1.

In the context of approximating expressions of the form f (A)b for some vector
b ∈ R

n, Druskin et al. [9, 19] computed approximation using the standard extended
Krylov subspace generated by the vectors A−mb, . . . , A−1b, b, Ab, . . . , Am−1b.

We are interested in exploring approximations of (1) by using a pair of F -
biorthonormal bases from the two extended global Krylov subspaces

K
e
m(A, V ) = span{V, A−1V, AV, . . . , Am−1V, A−mV },

K
e
m(AT , W) = span{W, A−T W, AT W, . . . , Am−1,T W, A−m,T W }. (5)
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This paper is organized as follows. Section 2 introduces the extended nonsymmetric
global Lanczos process, for generating a pair of F -biorthonormal bases for the two
extended global Krylov subspaces defined by (5). Section 3 describes the application
of this process to the approximation of the two matrix functions given in (1) and give
some properties. Section 4 presents some numerical experiments that illustrate the
quality of the computed approximations.

2 Some algebraic properties of the extended nonsymmetric global
Lanczos process

2.1 Preliminaries and notations

We begin by recalling some notations and definitions that will be used throughout
this paper. The Kronecker product satisfies the following properties:

1. (A ⊗ B)(C ⊗ D) = AC ⊗ BD.
2. (A ⊗ B)T = AT ⊗ BT .

Definition 1 Partition the matrices M = [M1, . . . , Mp] ∈ R
n×ps and N =

[N1, . . . , Nl] ∈ R
n×ls into block columns Mi, Nj ∈ R

n×s , and define the �-product
of the matrices M and N as

MT � N = [trace(MT
i Nj )]j=1,...,l

i=1,...,p ∈ R
p×l . (6)

The following proposition gives some properties satisfied by the above product.

Proposition 1 [5, 6] Let A, B, C ∈ R
n×ps , D ∈ R

n×n, L ∈ R
p×p, and α ∈ R

n×n.
Then, we have

1. (A + B)T � C = AT � C + BT � C

2. AT � (B + C) = AT � B + AT � C

3. (αA)T � C = α(AT � C)

4. (AT � B)T = BT � A

5. (DA)T � B = AT � (DT B)

6. AT � (B(L ⊗ Is)) = (AT � B)L

Definition 2 Let X be an n × s matrix. The vectorization of the matrix X, denoted
vec(X), is the ns × 1 column vector obtained by stacking the columns of the matrix
X, i.e.,

vec(X) = [X1,1, . . . , Xn,1, X1,2, . . . , Xn,2, . . . , X1,s , . . . , Xn,s]T .

vec satisfies the following properties:

1. vec(MXN) = (NT ⊗ M)vec(X), ∀A ∈ R
p×q, N ∈ R

r×s , X ∈ R
q×r .

2. vec(A)T vec(B) = trace(AT B), ∀A, B ∈ R
n×n.
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Let M = [M1, . . . , Mm] and N = [N1, . . . , Nm] ∈ R
n×ms , with Mi, Ni ∈

R
n×s . The following algorithm applied to the pair (M, N) allows us to obtain two

F -biorthonormal matrices V,W ∈ R
n×ms .

Proposition 2 Let M and N be the matrices defined above and let V and W ∈
R

n×ms be the corresponding matrices obtained from Algorithm 1. Then we have the
following decompositions:

M = V(H ⊗ Is), N = W(G ⊗ Is),

where H = [hi,j ] and G = [gi,j ] are the two m × m upper triangular matrices
determined by Algorithm 1 and satisfying

H = W
T � M and G = V

T � N .

Proof From Algorithm 1, the block vectors Vj and Wj are written as follows:

Mj =
j∑

i=1

hi,jVi, and Nj =
j∑

i=1

gi,jWi,

and because hi,j and gi,j vanish for i > j , we obtain

Mj =
m∑

i=1

Vi(hi,j ⊗ Is) and Nj =
m∑

i=1

Wi(gi,j ⊗ Is).

Then
M = V(H ⊗ Is) and N = W(G ⊗ Is).

Using the properties of �-product, it follows that
H = (WT � V)H = W

T � (V(H ⊗ Is)) = W
T � M .

G = (VT � W)G = V
T � (W(G ⊗ Is)) = V

T � N .
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2.2 Description of the process

In this section, we recall the standard extended nonsymmetric Lanczos method given
in [25]. Proofs in this section are formulated from results given in [25]. Let v

and w be two vectors in R
n. The standard extended nonsymmetric Lanczos algo-

rithm applied to the pairs (A, v) and (AT , w) determines two bi-orthonormal basis
V2m+2 = [v1, . . . , v2m+2] and W2m+2 = [w1, . . . , w2m+2] of dimensions n × 2m,
with vi, wi ∈ R

n (see [25, Algorithm 3]). Then the odd vectors v2j+1, w2j+1 verify
the following equations:

α = √|wT v|, v1 = v/α, β = wT v/α, w1 = w/β,

h2j+1,2j−1v2j+1 = Av2j−1 −
2j∑

i=2j−3
hi,2j−1vi = v̂2j+1,

g2j+1,2j−1w2j+1 = AT w2j−1 −
2j∑

i=2j−3
gi,2j−1wi = ŵ2j+1,

j = 1, . . . , m. (7)

where

hi,2j−1 = wT
i Av2j−1 and gi,2j−1 = vT

i AT w2j−1, for i = 1, . . . , 2j .

The h2j+1,2j−1, g2j+1,2j−1 are such that wT
2j+1v2j+1 = 1. Hence,

h2j+1,2j−1 =
√

|ŵT
2j+1v̂2j+1|, g2j+1,2j−1 = (ŵT

2j+1v̂2j+1)/h2j+1,2j−1.

Similarly, the even vectors v2j+2, w2j+2 are computed by the following relations:

v̂2 = A−1v − (wT
1 A−1v)v1, ŵ2 = A−T w − (vT

1 A−T w)w1

γ =
√

|ŵT
2 v̂2|, v2 = v̂2/γ, Γ = ŵT

2 v̂2/γ, w2 = ŵ2/Γ,

h2j+2,2j v2j+2 = A−1v2j −
2j+1∑

i=2j−2
hi,2j vi = v̂2j+2,

g2j+2,2jw2j+2 = A−T w2j −
2j+1∑

i=2j−2
gi,2jwi = ŵ2j+2,

j = 1, . . . , m. (8)

where

hi,2j = wT
i A−1v2j and gi,2j = vT

i A−T w2j , for i = 1, . . . , 2j + 1.

The h2j+2,2j , g2j+2,2j are such that wT
2j+2v2j+2 = 1. Hence,

h2j+2,2j =
√

|ŵT
2j+2v̂2j+2|, g2j+2,2j = ŵT

2j+2v̂2j+2/h2j+2,2j .

In the case where V and W are two blocks of size n × s, the implementa-
tion of the extended nonsymmetric global Lanczos algorithm applied to (A, V ) and
(AT , W) will be similar to the standard algorithm [25, Algorithm 3] except that
the standard inner product will be replaced by the Frobenius inner product 〈·, ·〉F .
This algorithm provides two F -biorthonormal bases V2m+2 = [v1, . . . , v2m+2] and
W2m+2 = [w1, . . . , w2m+2]. The dimension of these bases is n × 2(m + 1)s, where
vi, wi ∈ R

n×s are the ith block vector of V2m+2 and W2m+2, respectively. In addi-
tion, the block vectors vi and wi satisfy the relations (7) and (8). Following the idea
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in [24], the column vectors of the bases V2m+2 and W2m+2 can be computed two by
two blocks as follows. Introduce

Vj = [v2j−1 , v2j ], Wj = [w2j−1 , w2j ],
and

Hi,j =
[

h2i−1,2j−1 h2i−1,2j
h2i,2j−1 h2i,2j

]
, Gi,j =

[
g2i−1,2j−1 g2i−1,2j
g2i,2j−1 g2i,2j

]
, (9)

where Vj and Wj are the j th n × 2s block vectors of the matrices V2m+2 =
[V1, . . . , Vm+1] and W2m+2 = [W1, . . . , Wm+1], respectively; Hi,j and Gi,j are
2 × 2 matrices. The block vectors Vj and Wj are such that

[V , A−1V ] = V1(H0 ⊗ Is), [W , A−T W ] = W1(G0 ⊗ Is),

where H0 and G0 ∈ R
2×2 are computed by applying Algorithm 1 to [V, A−1V ] and

[W, A−T W ] ∈ R
n×2s . And

Vj+1(Hj+1,j ⊗ Is) = [Av2j−1, A
−1v2j ] − Vj−1(Hj−1,j ⊗ Is) − Vj (Hj,j ⊗ Is),

Wj+1(Gj+1,j ⊗ Is) = [AT w2j−1, A
−T w2j ]−Wj−1(Gj−1,j ⊗Is)−Wj(Gj,j ⊗Is).

Set

H0 =
(

α1,1 α1,2
0 α2,2,

)
G0 =

(
β1,1 β1,2
0 β2,2

)
. (10)

As the n × 2s blocks V1, . . . , Vm andW1, . . . , Wm are F-biorthonormal (with respect
to the Frobenius-product) and by using the properties of the �-product, it follows that

Hi,j = WT
i � [Av2j−1 , A−1v2j ] and Gi,j = V T

i � [AT w2j−1 , A−T w2j ].
The extended global nonsymmetric Lanczos is summarized in the following

algorithm (Algorithm 2).

Proposition 3 Let v1, v2, . . . , v2m+2 and w1, w2, . . . , w2m+2 be the F -biorthon
ormal block vectors determined by Algorithm 2. Then

v2j−1 = pV
j−1(A)V + qV

j−1(A
−1)V ,

v2j = rV
j−1(A

−1)A−1V + sV
j−1(A)V,

where deg(pj−1) = deg(rj−1) = j − 1, deg(qj−1) ≤ j − 1 and deg(sj−1) ≤ j − 1.
These relations also hold when V and A are replaced by W and AT , respectively.

Proof The result follows easily from Algorithm 2.

We notice here that in the previous proposition, the block vectors [V1, . . . , Vm+1]
and [W1, . . . , Wm+1] form a F -biorthonormal basis of K

e
m+1(A, V ) and

K
e
m+1(A

T , W), respectively. When inverting A or solving linear systems via the
LU decomposition is not easy, then we can compute matrix products of the form
A−1V and A−T W by using an efficient iterative linear solver such as the well-known
GMRES method.
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We now introduce the 2m × 2m matrices T2m and S2m, given by

T2m = W
T
2m � AV2m, S2m = W

T
2m � A−1

V2m, (11)

where V2m = [V1, . . . , Vm] andW2m = [W1, . . . , Wm].
An important result concerning the connection between the proposed method and the
standard extended nonsymmetric Lanczos method is given by the following theorem.

Theorem 1 Let V, W be the initial given block vectors of Rn×s . Set A = Is ⊗ A,
v = vec(V ), and w = vec(W) ∈ R

ns and perform m steps of the standard extended
nonsymmetric Lanczos applied to the pairs (A, v) and (AT , w). Then we obtain the
same F - biorthonormal basis V2m+2,W2m+2 as the one determined by the extended
nonsymmetric global Lanczos algorithm. Moreover, the basis V2m+2, W2m+2 satisfy
the following relations:

AV2m = V2m(T2m ⊗ Is) + v2m+1

([
t2m+1,2m−1, t2m+1,2m

]
ET

m ⊗ Is

)
,(12)

A−1
V2m = V2m(S2m ⊗ Is) + Vm+1

([
0 s2m+1,2m
0 s2m+2,2m

]
ET

m ⊗ Is

)
,

AT
W2m = W2m(T T

2m ⊗ Is) + w2m+1

([
t̃2m+1,2m−1, t̃2m+1,2m

]
ET

m⊗Is

)
,(13)

A−T
W2m = W2m(ST

2m ⊗ Is) + Wm+1

([
0 s̃2m+1,2m
0 s̃2m+2,2m

]
ET

m ⊗ Is

)
,

where [̃t2m+1,2m−1, t̃2m+1,2m] = [〈AT w2m−1, v2m+1〉F , 〈AT w2m, v2m+1〉F ], and
[̃s2m+1,2m, s̃2m+2,2m] = [〈A−T w2m, v2m+1〉F , 〈A−T w2m, v2m+2〉F ].

Em = [e2m−1, e2m] ∈ R
2m×2 corresponds to the last two columns of the identity

matrix I2m.
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Proof Perform m steps of the extended Lanczos algorithm applied to the pairs (A, v)

and (AT , w) yield two ns×(2m+2) bi-orthonormal bases V2m+2 = [x1, . . . , x2m+2],
W2m+2 = [y1, . . . , y2m+2]. These bases satisfy the relations (7) and (8) for the matrix
A. By setting, Xj , Yj ∈ R

n×s such that xj = vec(Xj ) and yj = vec(Yj ), we obtain

trace(Y T
i Xj ) = vec(Yi)

T vec(Xj ) = yT
i xj = δi,j ,

which means that Xj , Yj are F-biorthonormal. In addition, it follows that Xj = Vj

and Yj = Wj since

hi,2j−1 = yT
i Ax2j = vec(Yi)

T (Is ⊗ A)vec(X2j ).

= vec(Yi)
T vec(AX2j ) = 〈AX2j−1, Yi〉F .

gi,2j−1 = vT
i AT w2j−1 = 〈AT Y2j−1, Xi〉F .

hi,2j = wT
i A−1v2j = 〈A−1X2j , Yi〉F .

gi,2j = vT
i A−T w2j = 〈A−T Y2j , Xi〉F .

Using the same techniques as above, we obtain that T2m = WT
2mAV2m and S2m =

WT
2mA−1V2m. Let us prove the relation (12). Using [25, Lemma 3.1], it holds that

AV2m = V2mT2m + x2m+1[t2m+1,2m−1, t2m+1,2m]ET
m,

where T2m = WT
2mAV2m = T2m.

In other hand,

AV2m = (Is ⊗ A)[vec(v1), . . . , vec(v2m)],
= [vec(Av1), . . . , vec(Av2m)],

while

V2mT2m =
[

2m∑
i=1

[T2me1]ivec(vi), . . . ,
2m∑
i=1

[T2me2m]ivec(vi)

]

= [vec(V2m(T2me1 ⊗ Is)), . . . , vec(V2m(T2me2m ⊗ Is))].
Define τ = [t2m+1,2m−1, t2m+1,2m]ET

m, then

x2m+1τ = [vec(t2m+1,2m−1v2m+1), vec(t2m+1,2mv2m+1)]ET
m.

For i = 1, . . . , 2m − 2, it is shown that

vec(Avi) = vec(V2m(T2mei ⊗ Is))

and

vec(Av2m−1) = vec(V2m(T2me2m−1 ⊗ Is)) + vec(v2m+1(t2m+1,2m−1 ⊗ Is)),

vec(Av2m) = vec(V2m(T2me2m ⊗ Is)) + vec(v2m+1(t2m+1,2m ⊗ Is)).

Which completes the proof of (12). The proof of the other relations is similar.

The next two propositions express the entries of T2m and S2m in terms of the
recursion coefficients. This will allow us to compute the entries quite efficiently.
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Proposition 4 Let the coefficients hi,j and αi,j as defined in (9) and (10), respec-
tively. The matrix T2m = [ti,j ] in (11) is pentadiagonal with the nontrivial
entries,

ti,2j−1 = hi,2j−1 for i ∈ {2j − 3, . . . , 2j + 1},
t1,2 = 1

α2,2
(α1,1 − α1,2h1,1),

t2,2 = −1

α2,2
α1,2h2,1,

t3,2 = −1

α2,2
α1,2h3,1.

For j = 1, 2, . . . , m − 1,

t2j+1,2j+2 = −1

h2j+2,2j
t2j+1,2j−1:2j+1h2j−1:2j+1,2j ,

t2j+2,2j+2 = −1

h2j+2,2j
t2j+2,2j+1h2j+1,2j ,

t2j+3,2j+2 = −1

h2j+2,2j
t2j+3,2j+1h2j+1,2j .

Proof The proof is similar to the one given [25, Lemma 3.3].

Proposition 5 Let the coefficients hi,j as defined in (9). The matrix S2m = [si,j ] in
(11) is also pentadiagonal with the nontrivial entries, for j = 1, . . . , m − 1,

si,2j = hi,2j for i ∈ {2j − 2, . . . , 2j + 2},
s2j,2j+1 = −1

h2j+1,2j−1
s2j,2j−2:2j+1h2j−2:2j+1,2j−1,

s2j+1,2j+1 = −1

h2j+1,2j−1
[s2j+1,2j h2j,2j−1 + s2j+1,2j−1h2j+1,2j−1],

s2j+2,2j+1 = −1

h2j+1,2j−1
[s2j+2,2j h2j,2j−1 + s2j+2,2j+1h2j+1,2j+1].

Proof The proof is analogous to the proof of Proposition 4.

The following result relates positive powers of S2m to negative powers of T2m.

Lemma 1 Let T2m and S2m as given by (11) and let e1 = [1, 0, . . . , 0]T ∈ R
2m. Then

S
j

2me1 = T
−j

2m e1 for j = 1, 2, . . . , m.
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Lemma 2 Let the matrices T2m and S2m as defined by (11). Let V2m =
[v1, v2, . . . , v2m] be the matrix given in (12). Then for j = 1 . . . m − 1, we have

Ajv1 = V2m(T
j

2me1 ⊗ Is), j = 0, 1, . . . , m − 1, (14)

A−j v1 = V2m(S
j

2me1 ⊗ Is), j = 0, 1, . . . , m, (15)

A−j v1 = V2m(T
−j

2m e1 ⊗ Is), j = 0, 1, . . . , m. (16)

Proof It was shown in [25] that when performing m steps of standard extended
nonsymmetric Lanczos method to the pairs (A, v) and (AT , w), it holds that

Aj x1 = V2mT2me1, j = 0, . . . , m − 1,

by using the properties of the ⊗-product and the “vec” operation, we obtain

Aj x1 = vec(Ajv1) and V2mT2me1 =
2m∑
i=1

[T j

2me1]ivec(vi) = vec(V2m(T
j

2me1 ⊗ Is)),

which prove (14). Using the same techniques as above, we can prove (15). Finally,
(16) follows from (15) and Lemma 1.

Lemma 3 Let the matrices T2m and S2m as defined by (11). Let W2m =
[w1, w2, . . . , w2m] be the matrix given in (13). Then for j = 1 . . . m − 1, we have

Aj,T w1 = W2m(T
j,T

2m e1 ⊗ Is), j = 0, 1, . . . , m − 1,

A−j,T w1 = W2m(S
j,T

2m e1 ⊗ Is), j = 0, 1, . . . , m,

A−j,T w1 = W2m(T
−j,T

2m e1 ⊗ Is), j = 0, 1, . . . , m.

Proof The proof is similar to the ones given in Lemma 2.

3 Application to the approximation of matrix functions

3.1 Computing thematrix function trace(WT f (A)V)

The expression Itr defined in (1) can be approximated by

Ge
2m(f ) := 〈W, V 〉F eT

1 f (T2m)e1 (17)

Lemma 4 Let the matrices T2m and S2m as defined by (11). Let v1 and w1 be the
initial block vectors computed by Algorithm 2. Then the following equalities hold

trace(wT
1 Ajv1) = eT

1 T
j

2me1 for j = 0, 1, . . . , 2m − 1, (18)

trace(wT
1 A−j v1) = eT

1 T
−j

2m e1 for j = 0, 1, . . . , 2m.
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Proof We have trace(wT
1 Ajv1) = vec(w1)

T vec(Ajv1). From Theorem 1, we get
y1 = vec(w1) and x1 = vec(v1). By using the properties of the “vec” operation, it
follows that trace(wT

1 Ajv1) = yT
1 Aj x1. Then using the result given in [25, Lemma

4.1], we obtain yT
1 Aj x1 = eT

1 T2me1. This shows (18) since, T2m = T2m. The second
equation can be established by using the same techniques as above.

Theorem 2 After m steps of Algorithm 2 with initial block vectors V, W ∈ R
n×s , we

get

trace(WT p(A)V ) = 〈V, W 〉F eT
1 p(T2m)e1 ∀p ∈ Δ−2m,2m−1,

where

Δ−2m,2m−1 = span{x−2m, . . . , x−1, 1, x, . . . , x2m−1}.

Proof From Algorithm 2, V and W are collinear with V1 and W1, respectively,
i.e., V = αV1 and W = βW1 with αβ = 〈V, W 〉F . Which implies that
trace(WT p(A)V ) = 〈V, W 〉F trace(WT

1 p(A)V1). Using the results of Lemma 4, we
get trace(WT

1 p(A)V1) = eT
1 p(T2m)e1. This completes the proof.

3.2 Computing thematrix functionWT f (A)V

The aim of this subsection is to show how to use the extended nonsymmetric global
Lanczos algorithm to approximate I in (1) (see Algorithm 2). Before describing
the application of the proposed method, we notice that the extended nonsymmet-
ric block Lanczos method (ENBL) given in [2] can also be used to approximate I.
After m steps of this algorithm applied to the pairs (A, V ) and (AT , W), we obtain
two n × 2ms bi-orthonormal bases V2m and W2m, i.e., W T

2mV2m = I2ms . Then
the expression I can be approximated as follows: WT (V2mf (T2m)W T

2m)V where
T2m is 2ms × 2ms block tridiagonal matrix with 2s × 2s blocks. The matrix
T2m = W T

2mAV2m is computed recursively without requiring additional matrix-
vector products with A (see [2, Proposition 3]). The ENBL algorithm is expensive as
the number m of iterations increases and also for large values of s.

Now, let us come back to our proposed method. Applying Algorithm 2 to the pairs
(A, V ) and (AT , W) allows us to obtain two F -biorthonormal bases V2m and W2m

Numerical Algorithms (2020) 84:145 –147991470



such that V = αv1 and W = βw1. It is clear that W
+
2mV2m = I2ms ; and then, we

can consider the projector P2m defined as

P2m : Rn×s −→ K
e
m(A, V )

X �−→ V2mW
+
2mX.

Applying the projector P2m to I gives the reduced matrix function

Be
2m(f ) = CT

2mf (A2m)B2m, (19)

where A2m = W
+
2mAV2m ∈ R

2ms×2ms , B2m = W
+
2mV ∈ R

2ms×s and C2m =
V

T
2mW ∈ R

2ms×s .
The next proposition will allow us to compute A2m and B2m from the recursion

matrix T2m without requiring the computation of theW+
2m and AV2m.

Proposition 6 Let V , W be the initial block vectors where V = α V1. Then the
matrices A2m and B2m defined above are computed as follows:

A2m = (T2m ⊗ Is) + W
+
2mv2m+1(

[
t2m+1,2m−1, t2m+1,2m

]
ET

m ⊗ Is),

B2m = α E1,

where
[
t2m+1,2m−1, t2m+1,2m

]
is defined by (12), and E1 corresponds to the first s

columns of the identity matrix In.

Proof Let Ej = [e2j−1, e2j ] ∈ R
2m×2, for j = 1, . . . , m. Multiplying the matrix

A2m from the right by Ej ⊗ Is gives

A2m(Ej ⊗ Is) = W
+
2mAV2m(Ej ⊗ Is).

Using (12) , we get

A2m(Ej ⊗Is) = (T2mEj ⊗Is)+W
+
2mv2m+1

([
t2m+1,2m−1, t2m+1,2m

]
ET

mEj ⊗Is

)
.

It follows that j = 1, . . . , m − 1,

A2m(Ej ⊗ Is) = T2mEj ⊗ Is,

while for j = m, it results that

A2m(Em ⊗ Is) = (T2mEm ⊗ Is) + W
+
2mv2m+1

([
t2m+1,2m−1, t2m+1,2m

] ⊗ Is

)
.

Therefore,

A2m = (T2m ⊗ Is) + W
+
2mv2m+1

([
t2m+1,2m−1, t2m+1,2m

]
ET

m ⊗ Is

)
.
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To show the expression of B2m, we use the fact that V = α v1, which implies that

B2m = W
+
2mV = αW

+
2mv1

= αW
+
2mV2mE1 = α E1.

Lemma 5 LetA2m be the matrix be defined in (19). LetV2m = [v1, . . . , v2m] defined
by (12). Then

Ajv1 = V2mA
j

2mE1 for j = 0, . . . , m − 1, (20)

A−j v1 = V2mA
−j

2mE1 for j = 0, . . . , m.

Proof The first equation is shown by induction. Av1 and v1 are two elements of
K

e
m(A, v1) and then

Av1 = V2mW
+
2mAv1 = V2mW

+
2mAV2mW

+
2mv1 = V2mA2mE1.

The equality is true for j = 1. Let j = 2, . . . , m − 1, and assume that

Akv1 = V2mAk
2mE1 k = 1, . . . , j − 1.

Since Ajv1 ∈ K
e
m(A, v1), it follows that Ajv1 = V2mW

+
2mAjv1. By induction, we

have

Ajv1 = V2mW
+
2mAV2mA

j−1
2m E1,

which completes the proof of (20).
The second equation follows from the fact that V2mW

+
2mA−j v1 = A−j v1 ∀ j =

1, . . . , m and by using same technique induction as above.

Lemma 6 Let A2m be the matrix defined by (19) and let W2m = [w1, . . . , w2m] be
the matrix in (13). Then

Aj,T w1 = W
+,T
2m A

j,T

2m V
T
2mw1 for j = 0, . . . , m − 1,

A−j,T w1 = W
+,T
2m A

−j,T

2m V
T
2mw1 for j = 0, . . . , m.

Proof We have Aj,T w1 ∈ K
e
m(AT , W), which means that W+,T

2m V
T
2mAj,T w1 =

Aj,T w1 for any integer j such that −m ≤ j ≤ m − 1. According to the previous
equality, and by the same techniques as the proof of Lemma 5, then both equations
are shown.

Proposition 7 After m steps of the process, we have

WT A−jV = CT
2mA

−j

2mB2m, for j = 0, . . . , 2m,

WT AjV = CT
2mA

j

2mB2m, for j = 0, . . . , 2m − 1.
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Proof The proof is based on an application of results of Lemmas 5 and 6. Let
j = j1 + j2 with j1, j2 ∈ {0, . . . , m}. We have V = α v1 and W = β w1, then

WT A−jV = αβwT
1 A−j1A−j2v1

= αβ(A−j1,T w1)
T (A−j2v1)

Using equations of Lemmas 5 and 6, we obtain

= αβ(W
+,T
2m A

−j1,T

2m V
T
2mw1)

T (V2mA
−j2
2m E1)

= WT
V2mA

−j

2mW
+
2mV

= CT
2mA

−j

2mB2m,

which completes the proof of the first relation. The proof of the second relation is
similar.

Now, we compare the operations requirements for the extended block Lanc-
zos method ENBL and the extended global Lanczos method ENGL. Both methods
require the same cost of computing matrix-matrix products AV for some V ∈ R

n×s ;
they also require the same cost of solving linear systems. The ENBL method requires
4ns2 operations to compute the n × 2s matrix V H and 4ns2 for computing the
2s × 2s matrix WT V , while the ENGL method only needs 4ns operations to com-
pute WT � V and 4ns to compute V (H ⊗ Is). To update the new bases Vj+1 and
Wj+1, the ENBL method has to perform the bi-orthonormalization decomposition of
V̂j+1 and Ŵj+1 that costs 16ns2 in every step, while the global bi-orthonormalization
decomposition costs only 16ns. To compute T2m using [2, Proposition 3], we need
to 2s(4ns +n+1)(m+1) operations, while for ENGL method, computing T2m costs
only (10ns + 2)(m + 1). Moreover, the computation of T2m requires solving linear
systems of size s × s for every step, while ENGL method only needs the division
by a scalar (see Proposition 4). In Table 1, we summarize the number of operations
after m iterations of the ENBL algorithm and the ENGL algorithm. As we observed,
the ENGL algorithm is less expensive than the ENBL algorithm, when the number
of iteration m increases and the block size s is not small.
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Table 1 Comparison of the extended nonsymmetric block Lanczos (ENBL) and the extended nonsym-
metric global Lanczos (ENGL) algorithms

Flops ENBL ENGL

Matrix matrix multiplication 4n2ms 4n2ms

n × n with n × 2s matrices Line 6 Line 8, 9

AV and AT W

Solution of linear systems 4n2(m + 1)s 4n2(m + 1)s

A−1V and A−T W Line 3, 6 Line 2, 8, 9

Matrix matrix multiplication, 16nms2 16nms

resp. the product diamond of Line 7 Line 11, 12

2s × n and n × 2s matrices

WT V resp. WT � V

Matrix matrix multiplication 16nms2 16nms

n × 2s with 2s × 2s matrices Line 8 Line 13, 14

resp. the Kroncker product

V H resp. V (H ⊗ Is)

Bi-orthogonalization decomp- 16n(m + 1)s2 16n(m + 1)s

osition n × 2s of with n × 2s Line 3,9 Line 3, 16

matrices resp. global bi-ortho-

gonalization decomposition

Computation of 2s(4ns + n + 1) (10ns + 2)

T b
2m = W

T
2mAV2m resp. (m + 1) (m + 1)

T2m = W
T
2m � AV2m [2, Proposition 3] Proposition 4

Computation of 4(ms)2(n + 1) + 2ms2n

A2m = W
+
2mAV2m Proposition 6

4 Numerical experiments

In this section, we give some numerical examples to show the performance of the
extended nonsymmetric global Lanczos (ENGL) method . In the selected examples,
the proposed method is applied to the approximation of expressions of the form Itr

and I given in (1). All experiments were carried out in MATLAB R2015a on a com-
puter with an Intel Core i-3 processor and 3.89 GBytes of RAM. The computations
were done with about 15 significant decimal digits.

As mentioned in the second section, we did not have to compute explicitly A−1.
In all examples, the matrix products with A−1 and A−T in lines 2 − 8 − 9 of Algo-
rithm 4 are computed via an LU factorization or by using an iterative solver. We
used a preconditioned block biconjugate gradient (PBBiCG) method as described in
Algorithm 5.
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4.1 Examples for approximations of trace(WT f (A)V)

Example 1 In this experiment, we compared the performance of the ENGL algo-
rithm with the performance of extended global Arnoldi algorithm (EGA) described
in [1, 15]. We approximate trace(ET

1 exp(A)E1) where A is the nonsymmetric adja-
cency matrix pesa of order n = 11738. This matrix was obtained from the Suite
Sparse Matrix Collection[8]. E1 ∈ R

n×s corresponds to the first s columns of iden-
tity matrix In. Results for several choices of the block size s and number of iterations
m are reported in Table 2. We notice that in the ENGL and EGA algorithms, we
used the PBBiCG algorithm defined by Algorithm 5 with an ILU preconditionner. As
observed from this table, the approximate errors determined by ENGL have higher
accuracy as compared with the approximations obtained by the EGA method.

Example 2 In this example, we used a diagonalizable matrix of order n = 1000
whose eigenvalues are log-uniformly distributed in the interval [10−1, 104] and ran-
dom eigenvectors. We computed approximations of trace(ET

1 f (A)E1) given by
ENGL and by the standard nonsymmetric global Lanczos method (SNGL). Here we
used s = 6. In Table 3, we reported the number of iterations, the relative errors,
and the required CPU times obtained with different functions. Here we used the LU
factorization to compute products of the form A−1V and A−T W . The results show
that the ENGL algorithm is faster and give better relative errors, while SNGL algo-
rithm is unable to determine an accurate approximation for all functions f used in
this example.
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Table 2 Example 1: A ∈ R
n×n

is the nonsymmetric adjacency
pesa matrix with n = 11738

Relative error of ENGL Relative error of EGA

s = 2

m = 10 2.2 × 10−4 0.81

m = 15 1.38 × 10−9 5.3 × 10−4

m = 20 1.63 × 10−14 3.69 × 10−5

m = 25 1.3 × 10−16 3.42 × 10−8

s = 6

m = 10 2.84 × 10−4 0.33

m = 15 6.45 × 10−11 0.07

m = 20 2.16 × 10−15 2.21 × 10−5

m = 25 1.08 × 10−15 7.31 × 10−9

4.2 Examples for the approximation of WT f (A)V

In this subsection, we present some results to approximate WT f (A)V using the
ENGL algorithm. In the following experiments, we used the functions: f (x) = √

x

and f (x) = x−1/3. The blocks W and V were generated randomly with entries
uniformly distributed on [0, 1]. The matrix A was obtained from the centered finite
difference discretization (CFDD) of the elliptic operators given by (21) on the unit
square [0, 1] × [0, 1] with Dirichlet homogeneous boundary conditions. The number
of inner grid points in each direction was n0 and the dimension of matrices is n = n20.

L1(u) = −100uxx − uyy + 10xux,

L2(u) = −e−xyuxx − exyuyy + 1/(x + y)ux .
(21)

Example 3 We consider the approximation of WT A1/2V and WT B1/2V where the
matrices A, B ∈ R

4900×4900 are nonsymmetric matrices coming from CFDD of the
operators L1(u) and L2(u), respectively, and given by (21). The block size s was
s = 4. In Fig. 1, we reported the relative errors of ENBL, ENGL, and SNBL
algorithms versus the dimension of the projected subspace using the matrix A on the
left and on the right part of this figure, we give the results corresponding to the matrix

Table 3 Example 2: A ∈ R
n×n has eigenvalues distributed in the interval [10−1, 104] and a random

eigenvector matrix. The block size s = 6

f (x) ENGL SNBL

Dim Relative error Time(s) Dim Relative error Time(s)

e−x 59 5.02 × 10−6 4.59 250 6.84 × 10−5 26√
x 55 1.11 × 10−6 5.05 250 5.74 × 10−5 78.5

x−1/4 57 1.08 × 10−6 6.12 250 3.5 × 10−3 161

log(x) 53 3.33 × 10−7 6.18 250 8.66 × 10−4 212
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Fig. 1 Approximation of ET
1 A1/2E1(left plot) and ET

1 B1/2E1(right plot)

B. Both plots show that ENGL and ENBL algorithms yield significantly smaller
errors than the SNBL algorithm.

Example 4 In this example, we consider nonsymmetric matrices coming from CFDD
of the same operators as in Example 3. In Tables 4 and 5, we reported results for the
ENGL and ENBL algorithms when approximating I. We used different values of the
dimension n ({2500, 4900, 7225, 10000}) and two different block sizes s = 10, 20

Table 4 Example 4: Approximation of WT f (A)V for two functions and different matrix dimensions for
the operators given by (21)

Oper. f (x) n m Relative error of ENGL Relative error of ENBL

L1(x) x−1/3 2500 15 6.11 · 10−11 1.61 · 10−8

s = 10 4900 15 1.88 · 10−10 2.48 · 10−8

7225 20 5.57 · 10−10 1.37 · 10−8

10000 20 3.44 · 10−10 1.7 · 10−8

√
x 2500 15 1.88 · 10−10 2.23 · 10−7

s = 20 4900 15 2.48 · 10−9 1.99 · 10−7

7225 20 4.27 · 10−10 1.83 · 10−7

10000 20 8.47 · 10−11 7.78 · 10−7

L2(x) x−1/3 2500 15 5.10 · 10−10 5.98 · 10−10

s = 10 4900 15 2.91 · 10−11 1.11 · 10−8

7225 20 8.51 · 10−11 5.59 · 10−8

10000 20 1.87 · 10−11 4.50 · 10−8

√
x 2500 15 2.64 · 10−12 2.47 · 10−10

s = 20 4900 15 3.45 · 10−11 4.17 · 10−11

7225 20 5.98 · 10−12 3.26 · 10−10

10000 20 4.18 · 10−11 2.15 · 10−9
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Table 5 Example 4: Approximation of WT f (A)V for two functions and different matrix dimensions for
the operators given by (21)

Oper. f (x) n m Relative error of ENGL Relative error of ENBL

L1(x) x−1/3 2500 15 1.67 · 10−10 3.39 · 10−6

s = 30 4900 15 1.22 · 10−10 1.06 · 10−6

7225 20 1.55 · 10−10 5.45 · 10−8

10000 20 1.20 · 10−10 4.37 · 10−6

√
x 2500 15 1.50 · 10−9 1.45 · 10−4

s = 40 4900 15 1.97 · 10−10 1.34 · 10−4

7225 20 1.63 · 10−10 6.28 · 10−4

10000 20 2.20 · 10−10 4.16 · 10−4

L2(x) x−1/3 2500 15 1.28 · 10−10 5.30 · 10−7

s = 40 4900 15 7.44 · 10−11 1.66 · 10−8

7225 20 1.50 · 10−11 4.55 · 10−6

10000 20 2.64 · 10−11 2.37 · 10−6

√
x 2500 15 3.10 · 10−12 1.50 · 10−6

s = 30 4900 15 1.02 · 10−11 1.17 · 10−6

7225 20 3.35 · 10−12 3.31 · 10−7

10000 20 2.25 · 10−9 3.40 · 10−5

in Table 4, and s = 30, 40 in Table 5. For the last two values of n, we used PBBiCG
preconditioned by the block ILU preconditioner (see [23]). As shown in Tables 4
and 5, when the block size s increases, the approximations of I computed with ENGL
are more accurate than the approximations produced by the ENBL algorithm.

5 Conclusion

This paper describes an extended nonsymmetric global Lanczos method for the
approximation of trace(WT f (A)V ) and WT f (A)V . Two F -biorthonormal bases of
the extended Krylov subspaces given by (5) are computed by short recurrence for-
mulas. We gave some suitable algebraic relations. The numerical results show that
the nonsymmetric extended global Lanczos method requires fewer iterations and
CPU time as compared with the standard nonsymmetric global Lanczos method and
to the extended global Arnoldi method when approximating trace(WT f (A)V ) and
WT f (A)V .
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