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Abstract
In this paper, two-grid methods (TGMs) are developed for a system of reaction-
diffusion equations of bacterial infection with initial and boundary conditions. The
backward Euler (B-E) and Crank–Nicolson (C-N) fully discrete schemes are estab-
lished, and the existence and uniqueness of the solutions of these schemes are proved.
Moreover, based on the combination technique of the interpolation and Ritz projec-
tion and derivative transfer trick which are important ingredients in the TGMs, the
superclose estimates of order 2 4 and 2 4 2 in 1-norm are
deduced for the above schemes, respectively, where is fine mesh size, is coarse
mesh size, and is time step size. Then, by the interpolated postprocessing approach,
the corresponding global superconvergence results are obtained. Finally, some other
popular finite elements are discussed and numerical results are provided to verify the
theoretical analysis, which show that the computing cost of TGMs are only half of
Galerkin finite element methods (FEMs) for the test problem.

Keywords Bacteria equations B-E and C-N schemes
Galerkin FEMs and TGMs Supercloseness and superconvergence

1 Introduction

We consider the following bacteria equations [1]:

1 11 12 x
2 22 x

x x 0 x
x 0 0 x x 0 0 x x

(1)
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where 2 is a rectangle with boundaries parallel to the axis, 0
0. Here, and represent the average concentration of bacteria and the infective
human, respectively. Hence, 11 describes the natural mortality rate of , 12
is the growth rate of due to , and 12 is the natural damping of due to the
finite duration of infectiousness of humans. represents the force of infection
of against , which is twice continuously differentiable functional and satisfies
the Lipschitz condition. We assume that the initial values 0 x and 0 x are given
smooth functions. At the same time, 1 2 11 12, and 22 are positive constants.

The problem (1) established the spatial transmission model of bacteria under the
environment pollution of human, which has important research significance and there
have been some works about it. For instance, the existence of periodic plane wave
solutions was analyzed in [2], and the asymptotic stability of plane wave solutions in
the bounded and unbounded domains were studied for 1D case in [3]. Moreover, the
nonconforming FEMwith EQrot

1 element was applied to this problem in [4], and opti-
mal error estimate with order of 2 in 2-norm and the superclose estimate with
order of 2 in 1-norm were deduced for the semi-discrete scheme, respectively.
Besides, the superclose estimate of order 2 for the C-N fully discrete scheme
was also obtained. The backward and central difference finite element schemes were
proposed and their priori error estimates in 2-norm were derived with order of

2 and 2 2 , respectively in [5]. Meanwhile, the existence, uniqueness
and stability of traditional solutions under different boundary conditions were stud-
ied in [6–9]. However, there is no consideration on the estimations of the solutions
and on the energy norm.

As we know, TGM is a very efficient algorithm for solving nonlinear PDEs [10–
12], in which the nonlinear problem is first solved on the coarse mesh with size

and then a simple linearized scheme (one Newton like iteration) is dealt with
on the fine mesh with size . Later on, some developments on this
aspect were also achieved, such as unconditional optimal error estimate of order

3 in 1-norm and order 2 3 in 2-norm were deduced
in [13] by introducing an auxiliary time discrete system, and the superclose esti-
mate in 1-norm was improved to order 2 4 in [14]. Furthermore,
TGM also has been applied to the reaction–diffusion problems [15, 16], Sobolev
problems [17], Navier–Stokes problems [18, 19], Maxwell’s problems [20], and
so on.

In this paper, we shall take the bilinear finite element, for example, to develop
two-grid algorithms for the problem (1), and then to investigate their superconvergent
behavior in 1-norm through the combination skill of the interpolation and Ritz
projection of [21] and derivative transfer trick.

The remainder of the paper is organized as follows. In Section 2, we give the
B-E and C-N schemes and their briefly proofs of the existence and uniqueness of
solutions, and then deduce the superclose estimates for the above two schemes in

1-norm, respectively. In Sections 3–4, we present the approximate schemes with
TGMs and study their superconvergence properties. In the last section, we provide
some numerical results to verify the theoretical analysis.

Through out this paper, without ambiguity, we use the standard Banach space
with norm and if 2 we can simply denote 2 by
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with the inner product . Then, we equip a function space with the

norm dt
1

and if the integral is replaced by
the essential supremum. The generic constant 0 is independent of (time level),

and , and may have different values in different places.

2 Superclose estimates for Galerkin FEMs

2.1 B-E scheme case

Let T be a regular rectangular partition of with and 0 be the bilinear finite
element space which vanishes on . We define the Ritz projection operator

1
0

0 as follows:

0 0. (2)

At the same time, let be the associated interpolation operator over 0, then, for
1
0

3 , we can obtain the following estimates according lemma 2
in [21]:

0 0
2

2 (3)

1
2

3. (4)

The weak formulation of the problem (1) is to find 1
0

1
0

such that

1 11 12 0 1
0

2 22
1
0

x 0 0 x x 0 0 x x .
(5)

Let 0 0 1 be a uniform partition on 0 with and
x for is a generalized function. Then, we may pose the following B-E fully

discrete scheme of the problem (1) to find 0 0 for 1 2
such that

1 11 12 0 0

2 22
0

0
0 x 0

0 x x
(6)

where 1 .
Now, we define a new finite element space W x

0 endowed with the scalar product x1 x2 1 2

1 2 where x 1 2 and the norm x 2 2
0

2
0. Then, let

x 1

2

11 12

22
x .
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Obviously, the function satisfies the Lipschitz condition, and the problem (6)
can be rewritten as to find x W for 1 2 such that

x x x W
x0 0 0 (7)

where diag 1 2 .
Throughout this paper, we assume that the solution to problem (1) exists

and satisfies the following:

3 3 2 2 2 2

tt 1 tt 1 ttt 1

ttt 1 (8)

Theorem 1 The problem (7) has a unique solution .

Proof It is similar to the proof of [22] (see pages 236–237).
Now, we consider the following theorem which gives the superclose estimate of

the problem (6).

Theorem 2 Let and be the solutions of (5) and (6), respectively,
then we have the following:

1 1
2 .

Proof Let in (5), we get the following:

1 11 12 1
0

2 22 2
0

(9)
where

1 and 1
2
0 tt

2
2

1
2 (10)

2 and 2
2
0 tt

2
2

1
2 . (11)

Denote
.

Then, subtracting (6) from (9), we obtain the following:

1 11 12

1 11 12 1 (12)

2 22

2 22

2 . (13)
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Noticing that,

2
0

1 2
0

1 2
0 2 (14)

2
0

1 2
0

1 2
0 2 . (15)

Then, let in (12) and in (13) to have the following:

2
0 1

2
0

1 2
0 2 11

2
0

1 2
0

1 11 12

1

5

1

(16)

2
0 2

2
0

1 2
0 2 22

2
0

1 2
0

2 22

2

5

1

. (17)

Here, by use of (2), we have 1 0 1 0. And observing that 2
0

1
1

2
0 ds (see [13]) and (3), we can get by Cauchy inequality and Young

inequality that,

4

2

3

2

4 2
11

2
2 2 2

12
2
22

2
2

1

1

2
2

2
2 ds

2 2
12

2
0

3

4
2
0

1

4
2
0

4 2
2

2
2

1

1

2
2

2
2 ds 2 2

12
2
0

3

4
2
0

1

4
2
0.

Considering (10)–(11), we find that

5 5 tt
2
2

1
2 tt

2
2

1
2

1

4
2
0

1

4
2
0.

Under the assumption of we have at once the following:

4 0 0 2 2 2
0

2
0

1

4
2
0

4 2
2 2 2 2

0
1

4
2
0.
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Then, substituting above results into (16)–(17), we can get the following:

0
2
1

1 2
1 2 0

2
1

1 2
1 2

4 1

1

2
2

2
2 ds 2

2
2
2

tt
2
2

1
2 tt

2
2

1
2

2 2
12

2
1 2 2 2

1 (18)

where 0 min 1 2 2 11 2 12 .
Multiplying (18) by 2 and summing from 1 1 we have

the following:

0
2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

2
tt

2
2 tt

2
2

4 2
12

1

2
1 4 2

1

2
1.

Thanks to discrete Gronwall’s lemma, when 0 4 2
12 0 and 0 4 2 0,

we have the following:

2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

2
tt

2
2 tt

2
2

4 2

which together with (4) completes the proof.

2.2 C-N scheme case

For the purpose of obtaining higher accuracy in time, we shall pose the following
C-N fully discrete scheme of the problem (1) to find 0 0 for
1 2 such that

1 11 12 0 0

2 22
0

0
0 x 0

0 x x
(19)

where 1 2.

Theorem 3 The problem (19) has a unique solution .
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Proof Similar to (7), we shall rewrite the problem (19) as to find x W for
1 2 such that

x x x W
x0 0 0 .

(20)

Here, we shall first multiply (20) by 2 and remark it as x 0
where W W is a continuous functional. Then, with the Lipschitz
continuous property of , we have for given x 1 as follows:

2 x 1 x 1

2
x 1

2

2 x 1
2

min 2

max x 1

0 x 1

1
3

2
2 1 x 1

2
0 2

min 2 max x 1

1
3

2
2 1 x 1 2 0 2

max

4 min
x 1 .

2 1
2 1 x 1

2
0 2

max

4 min x 1 to ensure

0 for , when 0
2
3 .

Further, by the Brouwer’s fixed point theorem, we see that the equation x 0
has a solution x W . In fact, if we assume that

0 in then the mapping is contin-
uous from to itself, and therefore has a fixed point with 2 2

which contradicts 0. So, there
exists a solution x of (20) in , namely the problem (19) has a solution .

Now, we give a briefly proof of the uniqueness of the solution of
the problem (19), when the solution of the problem (1) is smooth and is
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sufficiently small. In fact, let x1 1 1 and x2 2 2 be two solutions of
the problem (19). Then by subtraction, we have as follows:

2 x1 x2 x1 x2

2
x1 x 1

2

x2 x 1

2
.

Choosing x1 x2 we find the following:

2 x1 x2 2 min x1 x2 2 x1 x2 2.

When 0 we can conclude that x1 x2 0, thus, 1 2 1 2, and
the problem (19) has a unique solution . The proof is completed.

Theorem 4 Let and be the solutions of (5) and (19), respectively,
then we have the following:

1 1
2 2 .

Proof Let 1
2
in (5), then we can get the following:

1
1
2 11

1
2 12

1
2

1
2

1
0

2
1
2 22

1
2

1
2

1
2

2
0

(21)

where

1
2

1

1
2 and

1
2

1

2

0

3

64
ttt

2
2

1
2 (22)

1
2

2

1
2 and

1
2

2

2

0

3

64
ttt

2
2

1
2 . (23)

We write as before
.

Then subtracting (19) from (21) and choosing , , we can
get the following:

1 11

1 11 12
1
2

1 1
1
2 11

1
2

12
1
2

8

1

(24)
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2 22

2 22
1
2

2 2
1
2

22
1
2

1
2

8

1

. (25)

Collecting (24)–(25), the left side of the equation (LHS) can be estimated as follows
in the same way as (14)–(15):

LHS 2
0 1

2
0

1 2
0 2

11
2
0

1 2
0 2 2

0

2
2
0

1 2
0 2

22
2
0

1 2
0 2 . (26)

So, our purpose now is thus to drive error estimates of and 1 8 .
As in the estimation of 1 4 1 3 , we have the

following:

4

1

3

1

4 3

2 1

2
2

2
2 ds

3 2
11

2
2
2

3 2
12 2 2

22
2
2

3 2
12

2
2
0

1 2
0

1

2
2
0

1

3
2
0

4

1

2
2

2
2 ds 2

2
2
2

3 2
12

2
2
0

1 2
0

1

2
2
0

1

3
2
0

and by use of (22)–(23), we can get that

5 5

3

128
ttt

2
2

1
2 ttt

2
2

1
2

1

6
2
0

1

6
2
0.
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Then, we have the following estimation with
1
2 2

0
3

16 1 tt 0 ds

7 8 7
3 2

11
3

32 1

tt
2
0 tt

2
0 ds

1

3
2
0

1

6
2
0.

Furthermore, by the Lipschitz continuous property of , 4 and 8 can be
estimated as follow:

4 8 0 0
1
2

0
0

3 2 2
0

2
0

3 2 3

32 1

tt
2
0ds

1

3
2
0

4 2
2

3

1

tt
2
0ds

3 2

2
2
0

1 2
0

1

3
2
0.

Hence, substituting above results into (24)–(25), we can get the following:

0
2
1

1 2
1 2 0

2
1

1 2
1 2

3 2
12

2
0

1 2
0

3 2

2
2
0

1 2
0

4 1

1

2
2

2
2 ds 2

2
2
2

3

1

ttt
2
0 ttt

2
0

2
0

2
0 ds 6 6 . (27)

Then, multiplying (27) by 2 and summing from 1 1 we
have the following:

0
2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

4
ttt

2
2 ttt

2
2

3 2
12

1

2
0 3 2

1

2
0 2

1
6

2
1

6 . (28)
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By use of the derivative transfer trick, we can rewrite 2
1

6 as follows:

2
1

6 2
1

1
2

1
2 1

2
1

1
2 1 3

2 1

2
1

1
2 1 3

2 1

2
1
2

2
1

1
2 1 3

2 1 . (29)

With Taylor expansion, we have the following:

1
2

2

4

1

4 1
2

1
2

2
ttt ds

1

1
2

1
2

2
ttt ds (30)

1 3
2

2

4

1

4

1

3
2

3
2

2
ttt ds

2

3
2

3
2

2
ttt ds (31)

2

4

1
2

tt

3
2

tt

2

4

1
2

3
2

ttt ds. (32)

Then, by Cauchy inequality and Young inequality, we can get the following:

1

1
2 1 3

2 1

1

4
ttt

2
2

1
2

1 2
0

4
ttt

2
2

1

1 2
0. (33)
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So, we have the following:

2
1

6
4 1

1
tt

2
2 ttt

2
2

1
2
0 2

1

1 2
0. (34)

Similarly, we can get the estimate as follows:

2
1

6
4 1

2
tt

2
2 ttt

2
2 2

2
0

2
1

1 2
0. (35)

Substituting (34) and (35) into (28) with 0 2

0
2
1

2
1 2 4 2

2 2
2
2 2

2
2

2
2

4
ttt

2
1 ttt

2
1

tt
2

2 tt
2

2

1

1

2
1 2

1

2
1 (36)

where 1 3 2
12 2 2 3 2 2.

Thanks to discrete Gronwall’s lemma, when 0 2 1 0 and 0 2 2 0
we have the following:

2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

4
ttt

2
1 ttt

2
1

tt
2

2 tt
2

2

4 4

which together with (4) completes the proof.
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3 Superclose estimates for TGMs

3.1 B-E scheme case

We define another bilinear finite element space 0 0 1 on the
coarse grid. Then, TGM for the B-E scheme can be described as follows.

Step 1: On the coarse grid T for 1 solve 0 0

for the following nonlinear system, such that

1 11 12 0 0

2 22
0

0 0 0 0.
(37)

Step 2: On the fine grid T for 1 solve 0 0 for the
following linearized system, such that

1 11 12 0 0

2 22
0

0 0 0 0.
(38)

By the similar arguments to Theorem 2, we can easily prove that (38) has a unique
solution.
Now, we present the superclose estimate of the above TGM.

Theorem 5 Let , and be the solutions of (9), (37), and
(38), respectively. Then, we have the following:

2
1

2
1

4 2 (39)
2
1

2
1

4 8 2 . (40)

Proof From Theorem 2, (39) is true obviously. So, we only need to prove (40).
In fact, by Taylor expansion, we have the following:

2 2

0 1 .

Set
.

Then, subtracting (38) from (9), and choosing . We get that

1 11

1 11 12

1

5

1

(41)
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2 22

2 22

2

2 2
6

1

. (42)

We write as before, collecting (41)–(42), and we have the following:

LHS 2
0 1

2
0

1 2
0 2 11

2
0

1 2
0

2
0 2

2
0

1 2
0 2

22
2
0

1 2
0 . (43)

Here, in the same way as the estimates of (16) and (17), we can get the following
estimates:

5

1

5

1

2 2
12

2
0 2 2 2

0

4 1

1

2
2

2
2

2
2

2
2

tt
2

2 tt
2

2

2
0

1

2
2
0. (44)

Moreover, due to 1 4 interpolation theory, and (39), we have the following:

6
2
0 4 0

2
0 4

2
0 4 0

4 2
2 4

2
1 0

4 2
0

8 4 1

2
2
0. (45)

Altogether, we can see the following:

0
2
1

1 2
1 2 0

2
1

1 2
1 2

4 1

1

2
2

2
2 ds 2

2
2
2

2
tt

2
2 tt

2
2 2 2

12
2
0 2 2 2

0

8 4 . (46)
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Multiplying (46) by 2 and after integration, we have the following:

0
2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

8

2
tt

2
2 tt

2
2

4 2
12

1

2
1 4 2

1

2
1.

So, by discrete Gronwall’s lemma, when 0 4 2
12 0 and 0 4 2 0 we

have the following:

2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

8

2
tt

2
2 tt

2
2

4 8 2

which together with (4) completes the proof.

3.2 C-N scheme case

We first establish TGM for the C-N scheme of the problem (19) as follows.

Step 1: On the coarse grid T for 1 solve the following nonlinear
system for 0 0 , such that

1 11 12 0 0

2 22
0

0 0 0 0.
(47)

Step 2: On the fine grid T for 1 solve the following linear system
for 0 0 such that

1 11 12 0 0

2 22
0

0 0 0 0.
(48)

Similar to the proof of Theorem 3, we see that (48) has a unique solution.

Now, we present the superclose estimates of the above TGM of (47)–(48).
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Theorem 6 Let , and be the solutions of (21), (47),
and (48), respectively. Then, we have the following:

2
1

2
1

4 4 (49)
2
1

2
1

4 8 4 . (50)

Proof From Theorem 4, (49) is true obviously. So, we only need to prove (50).
In fact, by Taylor expansion, we have the following:

2
2

0 1 .

Let
.

Then, subtracting (48) from (19) and choosing we can
get error equations at once:

1 11

1 11

12

1
2

1 11
1
2

12
1
2 1

1
2

8

1

(51)

2 22

2 22
1
2

2 2
1
2 22

1
2

1
2

2
2

9

1

. (52)

Then, similar to the estimates of 1 5 7 8 in Theorem 4, we can
easily get the following:

7

1

6

1

3 2
12

2
2
0

1 2
0

7 2

4
2
0

1 2
0

4 1

1

2
2

2
2

2
2

2
2

3

1

ttt
2
0 ttt

2
0

2
0

2
0 ds

2
0

5

7
2
0 (53)
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Thanks to the Lipschitz continuous property of 8 can be bounded,

8 0 0
7 2

2

2

0

2

0

1

7
2
0

4 2
2

7 2

4

2

0

1
2

0

1

7
2
0. (54)

Moreover, with the help of 1 4 interpolation theory, and (49), we can get the
following:

9
2
0 4 0

2
0 4

2
0 4 0

4 2
2 4

2
1 0

4 2
0

8 4 1

7
2
0. (55)

Then, substituting (53)–(55) into (51)–(52), we have that

0
2
1

1 2
1 2 0

2
1

1 2
1 2

3 2
12

2
2
0

1 2
0

7 2

2
2
0

1 2
0

8

4 1

1

2
2

2
2 ds 2

2
2
2

3

1

ttt
2
0 ttt

2
0

2
0

2
0 ds 8 7. (56)

Multiplying (56) by 2 and summing from 1 1 , we have the
following:

0
2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

8

4
tt

2
2 tt

2
2

3 2
12

1

2
1 7 2

1

2
1

2
1

8 2
1

7. (57)
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Similar to the estimate of 2
1

6 and 2
1

6 , we can obtain the following:

2
1

8 2
1

7
4 1

3
tt

2
2 ttt

2
2

1

4
tt

2
2 ttt

2
2

3
2

4
2 2

1

1 2
0

2
1

1 2
0. (58)

So, substituting (58) into (57) with 3 4 0 2, we have as follows:

0
2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

8

4
tt

2
2 tt

2
2

1

1

2
1 2

1

2
1 (59)

where 1 3 2
12 2 2 7 2 2.

Then, by discrete Gronwall’s lemma, when 0 2 1 0 and 0 2 2 0
we have the following:

2
1

2
1

4 2
2 2

2
2 2

2
2

2
2

8

4
tt

2
2 tt

2
2

4 8 4

which together with (4) completes the proof.

4 Global superconvergence analysis of TGM

Now, we start to derive the superconvergence results by applying the interpolated
postprocessing operator 2

2 (see [24]), satisfying the following:

2
2

2
2

2
2 1

2
3

3

2
2 1 1 2

(60)

where 2 is the biquadratic finite element space.
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Theorem 7 Under the assumption of (8), we have the following:

2
2

2

1

2
2

2

1

4 8 2 for B-E scheme
4 8 4 for C-N scheme .

(61)

Proof We start to prove (61(a)), and (61(b)) can be treated in the same way. As usual,
we shall write the error as a sum of two terms: 2

2
2
2

2
2

2
2 then by use of (60), we have the following:

2
2

2

1

2
2

2

1
Ch4 3.

Again applying (60), with the help of Theorem 3, we obtain the following:

2
2

2
2

2

1

2
2

2

1
C 2

1

4 8 2 .

Together with the estimates above, it is easy to see that

2
2

2

1

2
2

2

1

2
2

2
2

2

1

4 8 2 .

Similarly, we can get desired result of as follows:

2
2

2

1

4 8 2 .

This completes the proof.

Remark 1 In Theorem 2, if we use alone, how to construct an interpolated post-
processing operator 2

2 to satisfy 2
2

2
2 is still an open problem. In

addition, if we only use the operator and the estimation
2

3 1 proved in [23], it will result in the following:

2
1

2
1

4 2
2 3

2
2 3

2
2

2
2

2
tt

2
2 tt

2
2 . (62)

Obviously, the requirement of 2 3 in (62) as well as [25] is higher
than that 2 2 in Theorem 2. This is the main reason why we use
the combination technique in our work.

On the other hand, in the proof of Theorem 4, the derivative transfer trick is crucial
to estimate 6 and 6 . Otherwise, how to get the superclose estimate of order 2

4 2 in 1-norm is also an open problem.
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Remark 2 Our analysis presented herein are also valid to some other popular finite
elements:

(i) For the conforming linear triangular element space 0 [23], we have the
following:

2
3 1

3 1
0

0. (63)

So, we can get the results of Theorems 2, 4–6 by use of (63) and applying the
combination technique as our paper.

(ii) For the nonconforming elements rot
1 [26, 27] on square mesh, EQrot

1 [28, 29]
and CNQrot

1 [30] on rectangular mesh, there holds for 3 1
0 as

follows:

0 0 for rot
1 EQrot

1 elements
2

3 1
0 for CNQrot

1 element
(64)

T

vds 2
3

0 (65)

where is the corresponding interpolator over 0 denotes the piecewise

gradient operator, and . . 21

1
2

is the norm on 0. So, we can also

get the results of Theorems 2, 4–6 through (64)–(65).
(iii) For the quasi-Wilson element [31] on rectangular mesh, the modified quasi-

Wilson element [32] on arbitrary quadrilateral mesh and the quasi-Carey
element [33] on triangular mesh, since their consistency error estima-
tions can reach order of 2 when the exact solution belongs to

1
0

3 it can be proved that Theorems 2, 4–6 are also valid to these
finite elements.

However, for the rectangular Wilson element [34] and the triangular Carey ele-
ment [35], how to get the desired results of our work still remains open, for their
consistency error estimations only can reach order of .

5 Numerical experiment

In this section, we present numerical example to demonstrate the theoretical analysis.
Setting the domain 0 1 0 1 , and the finial time 1. Then, we consider
the following problem:

1 11 12 1 x
2 22

2 1 2
2 x

x x 0 x
x 0 0 x x 0 0 x x .

(66)
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Fig. 1 Error reduction results of and at t = 0.1 for B-E scheme(left) and C-N scheme (right)
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Fig. 2 Error reduction results of and at t = 0.5 for B-E scheme(left) and C-N scheme (right)
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Fig. 3 Error reduction results of and at t = 1 for B-E scheme(left) and C-N scheme (right)
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Table 7 Errors and CPU cost of the Galerkin FEM and the TGM (B-E scheme)

2
2 1

2
2 1

CPU time 2
2 1

2
2 1

CPU time

(s) (Galerkin (s) (TGM)

FEM)

0.1 7.3715e-03 7.4505e-03 21.9 7.3719e-03 7.4629e-03 11.9

0.2 5.8580e-03 5.9655e-03 47.7 5.8585e-03 5.9716e-03 23.5

0.3 5.1876e-03 5.2924e-03 83.1 5.1876e-03 5.2872e-03 42.9

0.4 4.6783e-03 4.7756e-03 99.9 4.6778e-03 4.7609e-03 53.5

0.5 4.2310e-03 4.3218e-03 124.4 4.2301e-03 4.3005e-03 64.9

0.6 4.7970e-03 4.8831e-03 145.0 4.7959e-03 4.8578e-03 75.3

0.7 4.3407e-03 4.4226e-03 166.3 4.3395e-03 4.3956e-03 87.2

0.8 3.1346e-03 3.2126e-03 187.9 3.1333e-03 3.1857e-03 98.8

0.9 2.8365e-03 2.9113e-03 202.1 2.8353e-03 2.8856e-03 109.1

1 2.5668e-03 2.6386e-03 221.0 2.5656e-03 2.6147e-03 117.3

where 1 2 0, and 0 are computed from the exact solution as follows:

sin sin sin sin .

In order to confirm the superclose and superconvergence orders in Theo-
rems 2, 4–6, we choose 2 and use Newton iterations on coarse mesh
in our computation. It can be seen from Tables 1, 2, 3, 4, 5, and 6 that

1
2
2 1 1

, and 2
2 1

are convergent

Table 8 Errors and CPU cost of the Galerkin FEM and the TGM (C-N scheme)

2
2 1

2
2 1

CPU time 2
2 1

2
2 1

CPU time

(s) (Galerkin (s) (TGM)

FEM)

0.1 1.4415e-03 1.4573e-03 23.4 1.4416e-03 1.4601e-03 11.9

0.2 1.1426e-03 1.1642e-03 45.9 1.1427e-03 1.1660e-03 23.4

0.3 1.0116e-03 1.0327e-03 68.5 1.0117e-03 1.0321e-03 34.8

0.4 9.1232e-04 9.3186e-04 91.7 9.1224e-04 9.2922e-04 46.0

0.5 8.2510e-04 8.4331e-04 114.0 8.2494e-04 8.3920e-04 57.4

0.6 7.7106e-03 7.7279e-03 135.4 7.7104e-03 7.7229e-03 68.3

0.7 6.9769e-03 6.9933e-03 158.3 6.9766e-03 6.9879e-03 79.6

0.8 6.1129e-04 6.2694e-04 181.7 6.1103e-04 6.2141e-04 91.9

0.9 5.5317e-04 5.6817e-04 204.2 5.5290e-04 5.6283e-04 103.5

1 5.0057e-04 5.1496e-04 226.9 5.0032e-04 5.0997e-04 114.8
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at order of 2 for B-E and C-N schemes, respectively, which coincide with our
theoretical analysis. At the same time, we present the error reduction results at
0.1 0.5 and 1 in Figs. 1, 2, and 3, respectively,where errU stands for 2

2 1

and errV stands for 2
2 1.

On the other hand, we also compare the CPU cost of the Galerkin FEMs to the
TGMs for B-E scheme in Table 7 with the same partition 1 16 and for C-N
scheme in Table 8 with the same partition 1 36 on a different time level. We
can see that the TGMs take almost half as much CPU time as the Galerkin FEMs.
Therefore, the proposed TGMs are very efficient algorithms.
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