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Abstract
Motivated by the effectiveness of Krylov projection methods and the CP decom-
position of tensors, which is a low rank decomposition, we propose Arnoldi-based
methods (block and global) to solve Sylvester tensor equation with low rank right-
hand sides. We apply a standard Krylov subspace method to each coefficient matrix,
in order to reduce the main problem to a projected Sylvester tensor equation, which
can be solved by a global iterative scheme. We show how to extract approximate
solutions via matrix Krylov subspaces basis. Several theoretical results such as
expressions of residual and its norm are presented. To show the performance of the
proposed approaches, some numerical experiments are given.

Keywords Sylvester tensor equation · CP decomposition · Krylov subspace ·
Block and global Arnoldi

1 Introduction

A tensor is a multi-dimensional array, in which the order is the number of dimensions,
also known as ways or modes. In the past few years, tensors have attracted significant
attention in several applications, such as image processing, machine learning, and
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scientific computing [15, 20]. One of the popular problems in tensor-based modeling
is the following equation, known as the Sylvester tensor equation

X ×1 A(1) + X ×2 A(2) + · · · + X ×N A(N) = B, (1)

where the matrices A(n) ∈ R
In×In , n = 1, 2, · · · , N , the right-hand side tensor

B ∈ R
I1×I2×···×IN are known, and X ∈ R

I1×I2×···×IN is the unknown tensor. The
product ×i , i = 1, . . . , N , and some notations related to the concept of tensors will
be specified in the next section. For simplicity, in the sequel, we define the following
linear operator

M : RI1×···×IN −→ R
I1×···×IN

X �−→ M (X ) := ∑N
i=1 X ×i A(i).

(2)

It is easy to verify that (1) is equivalent to the following linear system of equations

Ax = b, (3)

with A = ∑N
n=1 IIN

⊗ · · · ⊗ IIn+1 ⊗ A(n) ⊗ IIn−1 ⊗ · · · II1 , x = vec (X ) , and
b = vec (B) , where ⊗ denotes the Kronecker product (defined in the next section),
IIn stands for the identity matrix of order In and the operator vec rearranges tensor’s
elements in a vector. It is well known that the Sylvester tensor equation (1) has a
unique solution if and only if λ1 + λ2 + . . . + λN �= 0, for all λi ∈ σ(A(i)), where
σ(A(i)) denotes the spectrum of A(i) (Lemma 4.2 [6]).

Note that the coefficient matrix of the linear system (3) is of order
N∏

i=1

Ii , which

may become too large even for moderate values of I1, . . . , IN and solving this linear
system can be a real challenge. When X is a tensor of order two, i.e., a matrix, (1) is
reduced to

A(1)X + XA(2)T = B, (4)

which is exactly the well-known Sylvester matrix equation, it has been widely used
in control and communication theory, image restoration, and numerical methods for
ordinary differential equations (see [4] and the references therein). Sylvester tensor
equation (1) can arise when discretizing high dimensional linear partial differential
equations using finite difference or spectral method [19, 21, 24]; a survey of the
tensor-structured numerical methods in applications to multidimensional problems in
scientific computing is given in [15]. As an example of the applications of (1), one
can think of some Laplace-like operator L in an N−dimensional domain

Lu = f in �

u = 0 on ∂�.

In this paper, we are interested in the case where the discretized right-hand side in
(1) is of low rank—this is possible when the function f is sufficiently smooth to
be well approximated by a short sum of separable functions (see, e.g., [3, 11]). In
general, the right-hand side tensor B can be approximated by a low rank tensor using
CP decomposition [16].
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In recent years, various methods have been proposed in order to solve (1). For
instance, the tensor format of the GMRES method (GMRES-BTF) has been estab-
lished by Chen and Lu [6]. In [7], gradient-based iterative algorithms have been
proposed for solving (1); they are based on the hierarchical identification prin-
ciple [9] and tensor arithmetic concepts. Kressner and Tobler proposed a tensor
Krylov subspace method to solve (3) when the right-hand side is given in a ten-
sor product structure, i.e., is of rank one. The idea based on applying a standard
Krylov subspace method to the coefficient matrices, in order to approximate the
solution by a vector of low tensor rank [17]. Ballani and Grasedyck presented an
iterative scheme similar to Krylov subspace method to solve (3), relying on trun-
cation operator, whereas the operator is implemented by hierarchical Tucker format
[16], to allow applications in high dimensions [2]. Some well-known Krylov sub-
space methods have been studied in their tensor format by Beik et al. in [1];
the authors have described the tensor format of the full orthogonalization method
(FOM-BTF) and conjugate gradient (CG-BTF)–type iterative algorithms. These
methods are attractive if the coefficient matrices are not large, since they are based
on the use of the tensor Krylov subspace associated to the operator M defined
by (2).

In the concept of Krylov subspace methods, we apply an Arnoldi-based algorithm
to the coefficient matrices to get a reduced Sylvester tensor equation which can be
solved by a global iterative scheme. The approximate solution is then constructed
from the solution of the reduced equation and the Krylov subspaces basis associated
to the coefficient matrices.

The rest of this paper is organized as follows. In Section 2, we give notations
adopted in this paper and some basic definitions and properties related to tensors.
Section 3 is dedicated to theoretical results when the right-hand side tensor in (1) is
of rank one. In Section 4, we present our approaches to solve (1) with a right-hand
side tensor of a specific rank; we give the block Krylov approach in Section 4.1 and
the global Krylov approach in Section 4.2. Some numerical examples are presented
in Section 5 to evaluate the performance of our approaches. Finally, in Section 6, we
give a brief conclusion and perspectives.

2 Notations and preliminary concepts

In this section, we introduce some basic definitions, tensor notations, and com-
mon operations related to tensors adopted in this paper (for more details, see [16]).
Throughout this paper, vectors (tensors of order one), matrices (tensors of order
two), and higher order tensors (order three or higher) are signified by lower-case let-
ter, capital letters, and Euler script letters respectively. A tensor X is an element in
R

I1×I2×···×IN , where I1, I2, · · · , IN ∈ N; its entries are denoted by Xi1i2···iN , with
in ∈ {1, · · · , In}, for every 1 ≤ n ≤ N . Fibers are the higher order analogue of
matrix rows and columns. A fiber is defined by fixing every index but one. The n-
mode fiber is denoted byXi1,···in−1,:,in+1,··· ,iN ∈ R

In , where the indices ij are fixed for
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j = 1, · · · , n−1, n+1, · · · , N . The notation i1 . . . iN corresponds to a multi-index,
which is obtained as follows

i1 . . . iN = iN + (iN−1 − 1)IN + . . . + (i1 − 1)I2 . . . IN .

The inner product of two same size tensors A,B ∈ R
I1×I2×···×IN is defined by

< A,B >:=
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

Ai1···iNBi1···iN ,

and the norm induced by this inner product is

‖ A ‖ =
√

< A,A >.

Definition 1 [16, 18]
Let A ∈ R

I1×I2×···×IN be an Nth-order tensor and U ∈ R
J×In be a matrix. The

n-mode product of A and U , denoted by A ×n U , is a tensor of size

I1 × I2 × · · · × In−1 × J × In+1 × · · · × IN ,

whose entries are given by

(A ×n U)i1···in−1jin+1···iN =
In∑

in=1

Ai1···iN Ujin .

For X ∈ R
I1×···IN and {A} a set of matrices An ∈ R

In×In , n = 1, 2, · · · , N , their
multiplication in all possible modes (n = 1, 2, ..., N) is denoted as

X × {A} := X ×1 A1 ×2 A2 · · · ×N AN,

and

X × {A}T := X ×1 AT
1 ×2 AT

2 · · · ×N AT
N .

Proposition 1 [16, 18]
Let A ∈ R

I1×···×IN be an Nth-order tensor, U ∈ R
J×Im , V ∈ R

K×In and W ∈
R

In×In be three matrices, then for distinct modes in a series of multiplication, the
order of the multiplication is irrelevant, i.e.,

A ×m U ×n V = A ×n V ×m U .

If the modes are the same, then

A ×n W ×n V = A ×n V W .

Definition 2 [16]
The outer product of two tensors A ∈ R

I1×I2×...×IN and B ∈ R
J1×J2×···×JM is a

tensor denoted by A ◦ B = C ∈ R
I1×I2×···×IN×J1×J2×···×JM .

Elementwise,

Ci1...iN j1...jM
= Ai1,...,iNBj1,...,jM

.
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If v1, v2, . . . , vN are N vectors of sizes Ii, i = 1, . . . , N , their outer product is an
Nth-order tensor of size I1 × . . . × IN and we have

v1 ◦ . . . ◦ vN i1,··· ,iN = v1(i1) . . . vn(iN )

Definition 3 [16]
An Nth-order tensor A ∈ R

I1×I2×···×IN is of rank one if it can be written as the
outer product of N vectors vk ∈ R

Ik , k = 1, 2, · · · , N , i.e.,

A = v1 ◦ v2 ◦ · · · ◦ vN .

A tensor is of rank R ∈ N if it could be written as the sum of R rank one tensors.

Definition 4 [16, 18]
The Kronecker product of two matrices A ∈ R

I1×I2 and B ∈ R
J1×J2 is a matrix

of size I1J1 × I1J2 denoted by A ⊗ B, where

A ⊗ B =
⎛

⎜
⎝

a11B · · · a1I2B
...

. . .
...

aI11B · · · aI1I2B

⎞

⎟
⎠ .

The Kronecker product of two tensorsA ∈ R
I1×···×IN and B ∈ R

J1×···×JN is defined
by

C = A ⊗ B ∈ RI1J1×···×INJN ,

where

Ci1j1,··· ,iN jN
= Ai1,··· ,iNBj1,··· ,jN

,

for in = 1, · · · , In, jn = 1, · · · , Jn, n = 1, · · · , N .

In the following remark, we state the link between Kronecker product of 3 vectors
and their outer product

Remark 1 [8, Page 33]
Let v1, v2, and v3 be 3 vectors of sizes I1, I2, and I3, respectively, we have

vec(v1 ◦ v2 ◦ v3) = v3 ⊗ v2 ⊗ v1

It is easy to verify that the above remark still available for N vectors. This prop-
erty shows that the idea in Section 3 of the current paper can be considered as a
reformulation of the one in [17].

Proposition 2 [18]
LetA = a1 ◦ a2 ◦ · · · ◦ aN and B = b1 ◦ b2 ◦ · · · ◦ bN denote two rank one tensors,

then, the Kronecker product A ⊗ B can be expressed by

A ⊗ B = (a1 ⊗ b1) ◦ · · · ◦ (aN ⊗ bN).
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It is well known that if A, B, C, and D are four matrices, we have

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

We give an elegant generalization of this property to tensors as follows

Proposition 3 LetA ∈ R
I1×···×IN , B ∈ R

J1×···×JN be two tensors, and A ∈ R
Kn×In

and B ∈ R
Ln×Jn be two matrices, then

(A ⊗ B) ×n (A ⊗ B) = (A ×n A) ⊗ (B ×n B) .

Proof

((A ×n A) ⊗ (B ×n B))i1j1···knln···iN jN
= (A ×n A)i1···kn···in (B ×n B)j1···ln···jn

=
In∑

in=1

Ai1···in···inAknin

Jn∑

jn=1

Bj1···jn···jnBlnjn

=
In∑

in=1

Jn∑

jn=1

(A ⊗ B)i1j1···injn···iN jN
(A ⊗ B)knln,injn

= ((A ⊗ B) ×n (A ⊗ B))i1j1···knln···iN jN
.

It is easy to verify the following result

Proposition 4 Let A = a1 ◦ a2 ◦ · · · ◦ aN a rank one tensor and {V } a set of N

matrices {V1, V2, . . . , VN }, then we have
A × {V } = V1a1 ◦ . . . ◦ VNaN .

Definition 5 (CP decomposition [16]) LetA ∈ R
I1×I2×···×IN be an Nth-order tensor.

The CP decomposition of A is

A =
R∑

r=1

a(1)
r ◦ a(2)

r · · · ◦ a(N)
r ,

where a
(k)
r are vectors of size Ik with 1 ≤ k ≤ N . If we define An =[

a
(n)
1 a

(n)
2 · · · a(n)

R

]
for n ∈ {1, · · · , N}, the CP decomposition can be symbolically

written as
A = A1 ◦ A2 ◦ · · · ◦ AN,

the matricesAn ∈ R
In×R are called factor matrices. Often, the vectors a

(n)
r are chosen

such that ‖a(n)
r ‖ = 1. In this case, the CP decomposition is written as

A =
R∑

r=1

λra
(1)
r ◦ a(2)

r · · · ◦ a(N)
r ,

where λr is a scalar that compensates for the magnitudes of vectors a
(n)
r .
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In the following, we denote by m = (m1, m2, · · · , mN) a multi-index that rep-
resents all the Krylov subspaces dimensions, emi

= [0, . . . , 0, 1]T ∈ R
mi ,

e
(mi)
1 = [1, 0, . . . , 0]T ∈ R

mi , Emi
= [0R, . . . , 0R, IR]T ∈ R

Rmi×R , E
(mi)
1 =

[IR, 0R . . . , 0R]T ∈ R
Rmi×R and e

(R)
r ∈ R

R the rth vector from the canonical basis
of RR , where 0R and IR correspond to the square matrix full of zeros and the identity
matrix of size R respectively.

3 Rank one right-hand side tensor

In this section, we assume that the right-hand side tensor in (1) is of rank one; i.e., it
can be written as follows

B = b1 ◦ b2 ◦ · · · ◦ bN

where bi ∈ R
Ii , i = 1, . . . , N . Applying the Arnoldi algorithm (section 6.3 in

[23]) to the pairs (A(i), bi), i = 1, . . . , N , leads to the following relations, for i =
1, . . . , N ,

A(i)Vmi
= Vmi

Hmi
+ hmi+1vmi+1e

T
mi

, (5)

and
V T

mi
A(i)Vmi

= Hmi
, (6)

where the first vector of each basis Vmi
is exactly the normalized vector

v
(i)
1 = bi

‖bi‖ .

We consider the following approximate solution of (1)

Xm = Ym × {Vm},
where Ym ∈ R

m1×···×mN and {Vm} is the set of matrices {Vm1, · · · , VmN
}.

The associated residual tensor is given by

Rm = B − M (Xm)

= B −
N∑

i=1

Ym ×1 Vm1 · · · ×i A(i)Vmi
· · · ×N VmN

.

We consider the Petrov-Galerkin condition on its tensor format as follows

Rm × {Vm}T = 0,

hence

0 = B × {Vm}T −
N∑

i=1
Ym ×1 Vm1 · · · ×i A(i)Vmi

· · · ×N VmN
×1 V T

m1
· · · ×N V T

mN

= V T
m1

b1 ◦ V T
m2

b2 ◦ · · · ◦ V T
mN

bN −
N∑

i=1
Ym ×i Hmi

= βe
(m1)
1 ◦ e

(m2)
1 ◦ · · · ◦ e

(mN)
1 −

N∑

i=1
Ym ×i Hmi
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where β =
N∏

i=1

‖bi‖. Thus, the reduced Sylvester tensor equation is given as follows

N∑

i=1

Ym ×i Hmi
= βEm, (7)

where Em = e
(m1)
1 ◦e

(m2)
1 ◦· · ·◦e

(mN)
1 . The following proposition gives the associated

residual tensor

Proposition 5 Let Ym be the solution of (7) and for i = 1, . . . , N , Vmi
are the basis

obtained by applying Arnoldi algorithm to the pairs (A(i), bi), then

Rm = −
N∑

i=1

hmi+1Ym ×1 Vm1 · · · ×i vmi+1e
T
mi

· · · ×N VmN
.

Proof We have

Rm = B − M (Xm)

= B −
N∑

i=1

Ym ×1 Vm1 · · · ×i A(i)Vmi
· · · ×N VmN

.

Using the relations (5) and the expression of the right-hand side B, we obtain

Rm = b1 ◦ b2 ◦ · · · ◦ bN −
N∑

i=1
Ym ×i Hmi

× {Vm}

−
N∑

i=1
hmi+1Ym ×1 Vm1 · · · ×i vmi+1e

T
mi

· · · ×N VmN
.

Taking in consideration the fact that bi = ‖bi‖v(i)
1 = ‖bi‖Vmi

e
(mi)
1 and using the

proposition (4), it results

Rm =
(

βe
(m1)
1 ◦ e

(m2)
1 ◦ · · · ◦ e

(mN)
1 −

N∑

i=1
Ym ×i Hmi

)

× {Vm}

−
N∑

i=1
hmi+1Ym ×1 Vm1 · · · ×i vmi+1e

T
mi

· · · ×N VmN
.

Invoking (7), the result achieved.

Theorem 1 Let Rm be the corresponding residual, then

‖Rm‖ =
(

N∑

i=1

|hmi+1|2‖Ym ×i eT
mi

‖2
)1/2

.

where Ym is the solution of (7) and emi
= [0, . . . , 0, 1]T ∈ R

mi .
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Proof

‖Rm‖2 = 〈Rm,Rm〉

=
N∑

i=1

|hmi+1|2‖Ym ×1 Vm1 · · · ×i vmi+1e
T
mi

· · · ×N VmN
‖2

=
N∑

i=1

|hmi+1|2〈Ym ×i emi
eT
mi

,Ym〉

=
N∑

i=1

|hmi+1|2〈Ym ×i eT
mi

,Ym ×i eT
mi

〉

=
N∑

i=1

|hmi+1|2‖Ym ×i eT
mi

‖2.

4 Rank R right-hand side tensor

Inspired by the work addressed the Sylvester matrix equation in [10, 12], and the fact
that anNth-order tensor can be decomposable using the CP decomposition mentioned
in the definition 5, we propose two approaches to extract approximate solutions to
(1) with low rank right-hand sides; by this means, we assume in the following that
the right-hand side is of rank R, i.e.,

B =
R∑

r=1

b
(r)
1 ◦ · · · ◦ b

(r)
N ,

where b
(r)
i ∈ R

Ii , for i ∈ {1, . . . , N}, and r ∈ {1, . . . , R}. We set for i = 1, 2, · · · , N

B(i) =
[
b

(1)
i , b

(2)
i , · · · , b

(R)
i

]
.

Straightforward computations show that the right-hand side tensor can also be written
as follows

B = IR ×1 B(1) · · · ×N B(N),

where IR , called identity tensor, is the Nth-order tensor of size R × . . . × R with
ones along the super-diagonal. In the following two paragraphs, we will show how to
extract approximate solutions to (1), via block and global Krylov methods (for more
details about the block and global Arnoldi algorithms, we refer the reader to section
6.1 in [23] and [13] respectively).

4.1 Block Krylov approach

Let Umi
=

[
U

(i)
1 , . . . , U

(i)
mi

]
and Hmi

be the matrices obtained by applying block

Arnoldi algorithm to the pairs (A(i), B(i)), i = 1, 2, . . . , N , starting with U
(i)
1 =

Q(i), where Q(i) is obtained from the QR factorisation of B(i), i.e., B(i) = Q(i)Ri ,
then the following relation holds, for i = 1, . . . , N ,

A(i)
Umi

= Umi
Hmi

+ Umi+1Hmi+1,mi
ET

mi
. (8)
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An approximate solution is given by

Xm = Ym × {Um},
where Ym ∈ R

Rm1×···×RmN and {Um} = {Um1 , . . . ,UmN
}.

We consider the following Petrov-Galerkin condition of orthogonality

Rm × {Um}T = 0, (9)

with Rm the residual tensor, which is given by

Rm = B − M(Xm)

= B −
N∑

i=1

Ym × {Um} ×i A(i)

= B −
N∑

i=1

Ym ×1 Um1 · · · ×i A(i)
Umi

· · · ×N UmN
.

Using the relation (8) and the condition (9), we obtain

0 = B × {Um}T −
N∑

i=1

Ym ×i Hmi
.

Using the expression of the right-hand side tensor B and the fact that U
(i)
1 , i =

1, . . . , N , are obtained from QR factorizations of B(i), i = 1, . . . , N , we have

B × {Um}T = IR ×1 U
T
m1

B(1) · · · ×N U
T
mN

B(N)

= IR ×1 U
T
m1

U
(m1)
1 R(1) · · · ×N U

T
mN

U
(mN)
1 R(N)

= IR ×1 E
(m1)
1 R(1) · · · ×N E

(mN)
1 R(N)

= IR ×1 R̃(1) · · · ×N R̃(N),

where R̃(i) = E
(mi)
1 R(i).

Then, the low dimensional Sylvester tensor equation is given as follows

N∑

i=1

Ym ×i Hmi
= Bm, (10)

where Bm = IR ×1 R̃(1) · · · ×N R̃(N).

Proposition 6 Let Ym be the solution of (10), the associated residual tensor to the
approximate solution Xm = Ym × {Um} is

Rm = −
N∑

i=1

Ym ×1 Um1 · · · ×i Umi+1Hmi+1,mi
ET

mi
· · · ×N UmN

.
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Proof We have

Rm = B −
N∑

i=1

Ym ×1 Um1 · · · ×i A(i)
Umi

· · · ×N UmN
.

Since U
(i)
1 , i = 1, . . . , N , are obtained from QR factorizations of B(i), i = 1, . . . , N ,

the right-hand side tensor B can be written as follows

B = IR ×1 B(1) · · · ×N B(N)

= IR ×1 U
(1)
1 R1 · · · ×N U

(N)
1 RN

= IR ×1 Um1E
(m1)
1 R1 · · · ×N UmN

E
(mN)
1 RN

= IR ×1 R̃(1) · · · ×N R̃(N) × {Um}
= Bm × {Um}.

Using the expression below and the relation (11), we obtain

Rm =
(

Bm −
N∑

i=1

Ym ×i Hmi

)

× {Um}

−
N∑

i=1

Ym ×1 Um1 · · · ×i Umi+1Hmi+1,mi
ET

mi
· · · ×N UmN

.

Invoking (13), the result in the proposition achieved.

The following theorem can be established in the same way as theorem 1 in
Section 2

Theorem 2 Let Rm be the corresponding residual to the approximate solution
obtained by the block Arnoldi approach, then

‖Rm‖ =
(

N∑

i=1

‖Ym ×i Hmi+1,mi
ET

mi
‖2

)1/2

.

where Ym is the solution of (10) and Emi
= [0R, . . . , 0R, IR]T ∈ R

Rmi×R .

The block Arnoldi algorithm for Sylvester tensor equation is summarized in algo-
rithm 1. By the end of this section, we point out that the solution of (10) is of size
Rm1×Rm2× . . . RmN , which may become large even for moderate values of R and
mi . Solving (10) required in step (3), Algorithm (1), can be then challenging; by this
means, we propose the method in the following section.
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4.2 Global Krylov approach

The previous block Krylov approach reduced (1) to a low dimensional Sylvester ten-
sor equation, where the solution is of size Rm1 × Rm2 × . . . RmN , while the global
Krylov approach constructs an approximate solution from an m1 × . . . × mN tensor.

Let Vmi
=

[
V

(i)
1 , · · · , V

(i)
mi

]
be the matrices obtained by applying the global

Arnoldi algorithm to the pairs (A(i), B(i)), i = 1, 2, . . . , N , starting with V
(i)
1 =

B(i)/‖B(i)‖, then the following relations hold, for i = 1, . . . , N ,

A(i)
Vmi

= Vmi

(
Hmi

⊗ IR

) + hmi+1,mi
Vmi+1E

T
mi
. (11)

A(i)
Vmi

= Vmi+1

(
H̃mi

⊗ IR

)
. (12)

An approximate solution is given by

Xm = (Ym ⊗ IR) × {Vm},

where Ym is the m1 × · · · × mN tensor, satisfying the low dimensional Sylvester
tensor equation

N∑

i=1

Ym ×i Hmi
= βEm, (13)

with Em = e
(m1)
1 ◦ · · · ◦ e

(mN)
1 and β =

N∏

i=1

‖B(i)‖.
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Proposition 7 Let Xm be the approximate solution obtained by the global Arnoldi
approach and Rm be the corresponding residual, then

Rm = −
N∑

i=1

hmi+1,mi

(
Ym ×i eT

mi

)
⊗ IR ×1 Vm1 · · · ×i Vmi+1 · · · ×N VmN

. (14)

where Ym is the solution of (13) and emi
= [0, . . . , 0, 1]T ∈ R

mi .

Proof We have
Rm = B − M (Xm)

= B −
N∑

i=1

(Ym ⊗ IR) × {Vm} ×i A(i)

= B −
N∑

i=1

(Ym ⊗ IR) ×i

(
Hmi

⊗ IR

) × {Vm}

−
N∑

i=1

hmi+1,mi (Ym ⊗ IR) ×1 Vm1 · · · ×i Vmi+1E
T
mi

· · · ×N VmN
.

Using the proposition (3) and the fact that Emi
= emi

⊗ IR , we obtain

Rm = B −
N∑

i=1

(
Ym ×i Hmi

) ⊗ IR × {Vm}

−
N∑

i=1

hmi+1,mi

(
Ym ×i eT

mi

)
⊗ IR ×1 Vm1 · · · ×i Vmi+1 · · · ×N VmN

.

Since the first blocks in each basis are taken from the right-hand side tensorB, we have

B =
R∑

r=1

b
(r)
1 ◦ · · · ◦ b

(r)
N

=
R∑

r=1

‖B(1)‖V (1)
m1

(:, r) ◦ · · · ◦ ‖B(N)‖V (1)
mN

(:, r)

= β
R∑

r=1

E
(m1)
1 e(R)

r ◦ · · · ◦ E
(mN)
1 e(R)

r × {Vm}.

where β =
N∏

i=1

‖B(i)‖.

Using the fact that E(mi)
1 e

(R)
r = e

(Rmi)
r = e

(mi)
1 ⊗ e

(R)
r and the proposition (2), we

obtain

B = β
R∑

r=1
(e

(m1)
1 ◦ · · · ◦ e

(mN)
1 ) ⊗ (e

(R)
r ◦ · · · ◦ e

(R)
r ) × {Vm}

= β(e
(m1)
1 ◦ · · · ◦ e

(mN)
1 ) ⊗

R∑

r=1
(e

(R)
r ◦ · · · ◦ e

(R)
r ) × {Vm},
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then
B = βEm ⊗ IR × { Vm}. (15)

Now, we obtain

Rm =
(

βEm −
N∑

i=1

Ym ×i Hmi

)

⊗ IR × {Vm}

−
N∑

i=1

hmi+1,mi (Ym ⊗ IR) ×1 Vm1 · · · ×i Vmi+1E
T
mi

· · · ×N VmN
.

Invoking (13) the result achieved.

Lemma 1 Let Vmi
be the basis generated by the global Arnoldi algorithm applied

to the pairs (A(i), B(i)) and X ∈ R
J1×···×JN with Ji = Rmi and Z ∈ R

K1×···×KN

with Ki = mi . Then ‖X ×i Vmi
‖ ≤ ‖X‖, (16)

‖ (Z ⊗ IR) ×i Vmi
‖ = ‖Z‖. (17)

Proof We set P = X ×i Vmi
, the ith mode fiber of the tensor P can be written as

follows

P(j1,...,:,...,jN ) = Vmi
X(j1,...,:,...,jN )

=
mi∑

k=1

Vk

[
X(j1,...,(k−1)R+1,...,jN ), . . . ,X(j1,...,kR+1,...,jN )

]T .

As the norm of a tensor can be expressed as the sum of the norm of all its i-mode
fibers, it results that

‖P‖2=
∑

j1,...,jn−1,jn+1,...,jN

‖P(j1,...,:,...,jn)‖2

=
∑

j1,...,jn−1,jn+1,...,jN

‖
mi∑

k=1

Vk

[
X(j1,...,(k−1)R+1,...,jn), . . . ,X(j1,...,kR+1,...,jN )

]T ‖2

Since Vmi
= [

V1, . . . , Vmi

]
is orthonormal, we obtain

‖P‖2 ≤
∑

j1,...,jn−1,jn+1,...,jN

mi∑

k=1

‖ [
X(j1,...,(k−1)R+1,...,jn), . . . ,X(j1,...,kR+1,...,jN )

]T ‖2

≤ ‖X‖2,
therefore (16) is achieved.

We set Q = (Z ⊗ IR) ×i Vmi
, if Q(r1j1,...,:,...,rN jN ), Z(j1,...,:,...,jN ) and

IR(r1,...,:,...,rN ) denotes the ith-mode fibers of Q, Z , and IR , respectively, we have

Q(r1j1,...,:,...,rN jN ) = Vmi

(
Z(j1,...,:,...,jN ) ⊗ IR(r1,...,:,...,rN )

)

=
mi∑

k=1
VkZ(j1,...,k,...,jN ) ⊗ IR(r1,...,:,...,rN )

=
mi∑

k=1
Z(j1,...,k,...,jN )Vk ⊗ IR(r1,...,:,...,rN ).
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As Vmi
= [

V1, . . . , Vmi

]
is orthonormal, we obtain

‖Q(r1j1,...,:,...,rN jN )‖2 =
mi∑

k=1

|Z(j1,...,k,...,jN )|2‖Vk ⊗ IR(r1,...,:,...,rN )‖2

= ‖Z(j1,...,k,...,jN )‖2,
then (17) is achieved.

In the following theorem, we give an upper bound for the residual norm

Theorem 3 Let Xm be the approximate solution obtained by the global Arnoldi
approach and Rm be the corresponding residual, then

‖Rm‖ ≤
(

N∑

i=1

|hmi+1,mi
|2‖Ym ×i eT

mi
‖2

)1/2

, (18)

where Ym is the solution of (13) and emi
= [0, . . . , 0, 1]T ∈ R

mi .

Proof We have

Rm = B −
N∑

i=1

(Ym ⊗ IR) × {Vm} ×i A(i)

= B −
N∑

i=1

(Ym ⊗ IR) ×1 Vm1 . . . ×i A(i)
Vmi

. . . ×N VmN
.

Using the relations (12) and (15), we obtain

Rm = βEm ⊗IR ×{Vm}−
N∑

i=1

(
Ym ×i H̃mi

)
⊗IR ×1Vm1 . . .×i Vmi+1 . . .×N VmN

.

Let the tensor Z(i)
m ∈ R

(m1+1)×···×(mN+1), for i = 1, . . . , N , defined by
⎧
⎪⎨

⎪⎩

Z(i)
m j1,...,jN

= (
Ym ×i Hmi

)
j1,...,jN

, jk ∈ {1, . . . , mk}, (k = 1, . . . , N)

Z(i)
m j1,...,jN

= hmi+1,mi
Ym ×i eT

mi
, jk = 1, (k = 1, . . . , N)

Z(i)
m j1,...,jN

= 0, jl = 1, (l �= k)

and the tensor Fm ∈ R
(m1+1)×···×(mN+1), defined by

{
Fmj1,...,jN

= Em, jk ∈ {1, . . . , mk}, (k = 1, . . . , N)

Fmj1,...,jN
= 0, jk = 1, (k = 1, . . . , N)

Then

Rm = βFm ⊗IR ×{Vm+1}−
N∑

i=1

Z(i)
m ⊗IR ×1Vm1+1 . . .×i Vmi+1 . . .×N VmN+1.

By setting Z̃m = ∑N
i=1Z

(i)
m , we obtain

Rm =
(

βFm − Z̃m

)
⊗ IR × {Vm+1}.
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We set Z(0)
m = βFm − Z̃m, we have
{
Z(0)

m j1,...,jN
= 0 jk ∈ {1, . . . , mk}, (k = 1, . . . , N)

Z(0)
m j1,...,jN

= −hmi+1,mi
Ym ×i eT

mi
, jk = 1, (k = 1, . . . , N)

and
Rm = Z(0)

m ⊗ IR × {Vm+1}.
By applying the relation (16) of lemma 1 (N − 1) times to ‖Rm‖, we obtain

‖Rm‖2 ≤ ‖Z(0)
m ⊗ IR ×1 Vm1+1‖2.

Then, the relation (17) of lemma 1 leads to

‖Rm‖2 ≤ ‖Z(0)
m ‖2

≤
N∑

i=1

|hmi+1,mi
|2‖Ym ×i eT

mi
‖2.

TheGlobalArnoldi algorithm for Sylvester tensor equation is summarized as follows

4.3 Complexity consideration

In this section, we present the required number of operations to apply the global
or block Arnoldi algorithm to the coefficient matrices. For sake of simplicity, we
consider the 3-mode case, i.e., B ∈ R

n×n×n and A(i) ∈ R
n×n, i = 1, 2, 3. The

associated number of operations in the Arnoldi process while computing A(i)V
(i)
j is

determined by
(2nz(A

(i)) − 1)R,

where nz(A
(i)) refer to the number of non-zero entries of the matrix A(i). So for 3

matrices and after m iterations, the total cost is

mR[2(nz(A(1)) + nz(A(2)) + nz(A(3))) − 3],
which is 3mR(2n2 − 1) in the worst case when A(i), i = 1, 2, 3, are full matrices.
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5 Numerical examples

In this section, we present three numerical examples to show the effectiveness of our
approaches for solving (1), with large-scale coefficient matrices (Example 1). The
low dimensional Sylvester tensor (10) and (13) will be solved by the GLS-BTF algo-
rithm given in [14] when the size of the reduced equation is small, or by the recursive
algorithm presented in [5]. The numerical results were performed on a 2.7-GHz Intel
Core i5 and 8 Go 1600-MHz DDR3 with Matlab R2016a. In all the examples, the
right-hand side tensor is either constructed randomly or constructed so that the exact
solution X ∗ is given. Note that each cycle corresponds to k′ = 5 iterations in all
examples. The used stopping criterion is

‖Rm‖ < ε,

where ε is a given tolerance and Rm is the mth residual associated with the
approximated solution Xm.

5.1 Example 1

We point out that this section is restricted to the special case of the Sylvester tensor
equation with N = 3, i.e.,

X ×1 A(1) + X ×2 A(2) + X ×N A(3) = B.
In this first example, the coefficient matrices are taken from [25, Example 35.1], and
have the same size n. They are generated by the Matlab-commands eye and rand
as follows

A(i) = eye(n) + 0.5

sqrt (n)
rand(n) for i = 1, 2, 3,

and the right-hand side tensor B is chosen so that the exact solution X ∗ is a random
tensor of rank r , i.e.,

X ∗ =
r∑

k=1

x
(k)
1 ◦ x

(k)
2 ◦ x

(k)
3 ,

where x
(k)
i = rand(n, 1), for i = 1, 2, 3, and k = 1, . . . , r . Notice, in this case, that

straightforward computations show that the right-hand side tensor is of rank R = 3r .
We point out that the Krylov subspace dimensions are chosen to be the same, i.e.,
m1 = m2 = m3 = m, since the coefficient matrices are the same. We take n in the set
{500, 10, 000}, and the tolerance ε in the set {10−12, 10−9} respectively. The numer-
ical results are reported in Table 1. We point out that the CPU time does not cover
the construction of the approximate solution; it covers only the construction of the
Krylov subspaces basis and the solution of the reduced Sylvester tensor equation. For
n = 500, we gave the exact error and the residual norm, where for n = 10, 000, we
gave only the residual norm due to the time needed to construct the whole approxi-
mate solution tensor. The larger CPU time needed for the block method is caused by
the computational expenses of the block Arnoldi algorithm and to the computation
of the solution of the reduced Sylvester tensor equation of order mR ×mR ×mR for
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Table 1 Example 1

n R Cycles ‖Rm‖ ‖X ∗ − Xm‖ CPU time

Block 500 3 2 1.13 · 10−12 3.47 · 10−9 2.03

9 2 2.83 · 10−12 7.80 · 10−9 30.6

10,000 3 2 2.58 · 10−11 – 4.04

9 2 2.13 · 10−10 – 54.5

Global 500 3 3 9.40 · 10−12 6.86 · 10−9 1.59

9 3 5.24 · 10−11 3.56 · 10−8 2.45

10,000 3 3 1.73 · 10−9 – 3.97

3 9 9.02 · 10−9 – 5.41

increasing m; for this reason, we will compute the following examples using only the
global method.

5.2 Example 2

In this example, the coefficient matrices A(i), i = 1, . . . , N, are obtained from the
5-point discretization of the Poisson equation on an n0−by−n0 mesh, with homo-
geneous Dirichlet boundary conditions. We use the following Matlab command to
generate A(i), i = 1, . . . , N,

A(i) = gallery(′poisson′, n0)
A(i) are then of size n20×n20. For this experiment, we take n in the set {400, 121, 100}
and N in the set {3, 4}, the tolerance ε is set to 10−6. We construct the right-hand
side tensor so that all the components of the exact solution X ∗ are one (the numerical
examples are reported in Table 2). We run the same example with a random rank R

right-hand side tensor (see Table 3).

5.3 Example 3

Here, we keep the same data as the previous example, except for the coefficient
matrices A(i), i = 1, . . . , N, which are obtained from the discretization of the
operator

Lu := �u − f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂y
+ g(x, y),

Table 2 X ∗ = ones(n, n, n) for N = 3, n = 400 and X ∗ = ones(n, n, n, n) for N = 4, n = 100

Matrices N n Cycles ‖Rm‖ ‖X ∗ − Xm‖ CPU time

Example 2 3 400 8 4.410−8 1.510−8 4.01

4 100 5 210−10 7.4210−11 3.44

Example 3 3 400 15 5.510−6 1.1510−8 26.6

4 100 7 8.9310−6 2.7810−8 24.9
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Table 3 The right-hand side B is a random tensor of rank R = 5

Matrices N n Cycles ‖Rm‖ CPU time

Example 2 3 400 14 2.8210−6 14.5

4 121 8 5.710−6 26.54

Example 3 3 400 16 1.4510−6 56.0

4 121 9 7.210−6 36.09

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions.
The number of inner grid points in each direction is n0 for the operator L. The
dimensions of the matrices A(i), i = 1, . . . , N, are Ii = n20. The discretization of
the operator L yields matrices extracted from the Lyapack packag [22], using the
command fdm and denoted as

A(i) = f dm(n0, f1(x, y), f2(x, y), g(x, y)),

with f1(x, y) = exy, f2(x, y) = sin(xy), g(x, y) = y2 − x2. The numerical
results for this example are reported in Tables 2 and 3.

6 Conclusion

In this paper, we have proposed new approaches to extract approximate solutions
to (1) with low rank right-hand sides. The first approach is based on the use of the
block Arnoldi algorithm for the coefficient matrices in (1), which leads to the reduced
Sylvester tensor (10). The second approach is based on the use of the global Arnoldi
algorithm in order to obtain the low dimensional Sylvester tensor (13). We gave the
expressions of the residuals and the residual norms for each approach. Numerical
examples show that our approaches lead to satisfactory results when applied to (1).
Combining our approaches with some tensors decompositions in order to work with
full rank right-hand sides is a future project.
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