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Abstract
We present a radial basis function-based local collocation method for solving time
fractional nonlinear diffusion wave equation.The main beauty of the local colloca-
tion method is that only the nodes located in the subdomain, surrounding the local
collocation point, need to be considered when we are calculating the numerical solu-
tion at this point. We also prove the unconditional stability and convergence of the
proposed scheme. Some numerical experiments are carried out and numerical results
are compared with an analytical solution to confirm the efficiency and reliability of
the proposed method.

Keywords Radial basis function · Local collocation · Time fractional ·
Diffusion wave equation

1 Introduction

In the last few decades, there has been growing interest observed in fractional cal-
culus due to its capabilities to model various phenomenon in the fields of applied
science, physics, engineering, and finance [1, 3, 5, 6]. The wide applicability of frac-
tional equations attract the researcher to find its reliable and accurate solutions using
the suitable technique such as collocation method [33], finite difference method [19,
41, 44], collocation method [2], finite element method [11, 27], spectral method [17],
element-free Galerkin (EFG) method [7], and homotopy analysis method [15].
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In last two decades, special attention has been devoted to solving differential
equations by meshfree methods, more precise methods based on radial basis func-
tion (RBF). The main feature of the method is they avoid the use of meshes hence
known as meshfree and applicable on irregular domain as well. In [30], Mardani
et al. developed meshless method for time fractional advection-diffusion equation
with variable coefficients, Wen Chen et al. [5] developed Kansa method for time
fractional diffusion equations,Yang et al. [43] developed MLS meshless method for
time fractional diffusion-wave equation, Dehghan et al. [14] developed element-free
Galerkin method for time fractional diffusion wave equation, Dehghan et al. [12]
presented collocation method for time fractional nonlinear sine-Gordon and Klein-
Gordon equations, Salehi [35] introduced meshless point collocation method for
multiterm diffusion wave equation, Tayebi et al. [39] presented meshless methods
for solving two-dimensional variable-order time fractional advection-diffusion equa-
tion, Hosseini et al. [25] solve fractional telegraph equation by using radial basis
functions collocation method, Pinghui, et al. [45] extended meshless MLS method
for time-dependent fractional advection-diffusion equations, Liu et al. [29] presented
collocation method for time fractal mobile/immobile transport model, and Sun et al.
[37] presented an fast Kansa collocation method for spatiotemporal fractional diffu-
sion equation. For more application of meshfree method refer [4, 8, 9, 20, 22–24, 31,
32, 40, 42] and references therein. Generally, the global version of meshfree method
suffered the stability issue and in fact there is trade off observation in RBF collo-
cation method. To avoid these issue, several local versions of meshfree methods are
proposed. In [28], Kumar et al. presented local collocation method for time fractional
diffusion wave equation, Ghehsareh et al. [21] presented local weak form mesh-
less method to simulate a variable order time-fractional mobile-immobile transport
model, and Hosseini et al. [26] presented a local radial point interpolation (MLRPI)
method for solving time fractional diffusion-wave equation with damping term. The
selection of optimal shape parameter is not an easy task, during the implementation
of the collocation method, but there are some strategies are available for selecting
suitable value of the shape parameter in local RBF base methods, for more details,
we refer Sarra [36], Dehghan [10, 13, 16, 18], and reference therein.

In this paper, we consider the following fractional diffusion-wave equation
⎧
⎪⎨

⎪⎩

c
0D

α
t u(x, t) = Δu(x, t) − F(u(x, t)) + f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) = ξ(x),
∂u(x, 0)

∂t
= ψ(x), x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω,

(1)

where T > 0, 1 < α < 2, and f (x, t) is sufficiently smooth function. The function
F(u(x, t)) satisfies the Lipschitz condition with respect u(x,t) with Lipschitz constant
L. Furthermore for any positive integer k, the c

0D
α
t u(x, t) is Caputo’s differential

operator define as

c
0D

α
t u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1

Γ (k − α)

∫ t

0
∂ku(x, s)

∂sk

ds

(t − s)α−(k−1)
, k − 1 < α < k,

∂ku(x, t)
∂tk

, α = k.

(2)
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In present work, a meshless radial basis function-based local collocation method for
spatial approximation and a finite difference approximation for Caputo’s time deriva-
tives is employed for numerical solution of time fractional nonlinear diffusion wave
equation presented.

The rest of this paper is organized as follows: In Section 2, time discretization
scheme is presented; furthermore, this section is also devoted to prove the stability
and convergence of the numerical scheme in semi-discrete form. Section 3 give us
brief discussion of local collocation method and numerical implementation of the
proposed method. In Section 4, we did some numerical experiments on test prob-
lems and provide computational results to prove the efficiency and accuracy of the
proposed method. Finally, Section 5 end with some concluding remark.

2 The time discretization

This section devoted for development and analysis of time semi-discretization of the
proposed problem (1).

The Caputo’s fractional derivative c
0D

α
t u(x, t) could be rewritten as follows

c
0D

α
t u(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

Γ (2 − α)

t∫

0

∂2u(x, s)
∂s2

ds

(t − s)α−1
, 1 < α < 2,

∂2u(x, t)
∂t2

, α = 2.

(3)

For any positive integer N , we let δt = T
N
, be the time step, and tn = nδt, n =

0, 1, . . . , N be temporal mesh points.

Let us introduced the notation un− 1
2 = 1

2 (u
n+un−1), and δtu

n− 1
2 = 1

δt
(un−un−1),

where un is the abbreviation of u(x, tn).

Lemma 1 Suppose 1 < α < 2, and g(t) ∈ C2[0, T ], it holds that
tn∫

0

g′(s)(tn − s)1−αds =
n∑

k=1

g(tk) − g(tk−1)

δt

tk∫

tk−1

(tn − s)1−αds + Rn, 1 ≤ n ≤ N

(4)
and

|Rn| ≤
(

1

2(2 − α)
+ 1

2

)

δt3−α max
0≤t≤tn

|g′′(t)|. (5)

Proof See [38].
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Lemma 2 Let 1 < α < 2, a0 = 1
δtΓ (2−α)

, and bk = δt2−α

(2−α)

[
(k + 1)2−α − (k)2−α

]
,

k = 0, 1, 2, . . ., then
∣
∣
∣
∣
∣
∣

1

Γ (2−α)

tn∫

0

g′(s)
(tn − s)α−1

ds−a0

[

b0g(tn) −
n−1∑

k=1

(bn−k−1−bn−k)g(tk) − bn−1g(0)

]∣∣
∣
∣
∣
∣

≤ 1

Γ (2 − α)

(
1

2(2 − α)
+ 1

2

)

δt3−α max
0≤t≤tn

|g′′(t)|. (6)

Proof See [38].

Lemma 3 Let 1 < α < 2, and bk = δt2−α

(2−α)

[
(k + 1)2−α − (k)2−α

]
, k = 0, 1, 2, . . .,

then

b0 > b1 > b2 > . . . > bk → 0, as k → ∞.

Proof See [38].

Now let us define

v(x, t) = ∂u(x, t)
∂t

(7)

w(x, t) = 1

Γ (2 − α)

t∫

0

∂v(x, s)
∂s

ds

(t − s)α−1
. (8)

Now application of Taylor expansion and (7) yields

vn− 1
2 = δtu

n− 1
2 + r

n− 1
2

1 (9)

and define the numerical scheme as

wn− 1
2 = Δun− 1

2 − F
(
un−1
)

+ f n− 1
2 + r

n− 1
2

2 , n ≥ 1, (10)

where

|rn− 1
2

1 | ≤ C1δt
2, |rn− 1

2
2 | ≤ C2δt . (11)

From (8), we have

w(x, tn) = 1

Γ (2 − α)

tn∫

0

∂v(x, t)
∂t

dt

(tn − t)α−1

using Lemma 2, we have

wn = a0

[

b0v
n −

n−1∑

k=1

(bn−k−1 − bn−k)v
k − bn−1v

0

]

+ O(δt3−α). (12)

Numerical Algorithms (2020) 85:1311–13341314



Now define the operator

P(vn, q) =
[

b0v
n −

n−1∑

k=1

(bn−k−1 − bn−k)v
k − bn−1q

]

and using condition v0 = v(x, 0) = ψ(x) = ψ , we have

wn− 1
2 = a0P

(
vn− 1

2 , ψ
)

+ r
n− 1

2
3 (13)

where

|rn− 1
2

3 | ≤ C3δt
3−α . (14)

Now substituting (9) into (13), we have

wn− 1
2 = a0P(δtu

n− 1
2 , ψ) + a0P

(

r
n− 1

2
1 , 0

)

+ r
n− 1

2
3 , (15)

now substituting above expression in (10), we have

a0P
(
δtu

n− 1
2 , ψ
)
+a0P

(

r
n− 1

2
1 , 0

)

+ r
n− 1

2
3 = Δun− 1

2 − F
(
un−1
)

+ f n− 1
2 + r

n− 1
2

2

a0P
(
δtu

n− 1
2 , ψ
)

= Δun− 1
2 − F

(
un−1
)

+ f n− 1
2 + Rn− 1

2 (16)

where

Rn− 1
2 = −

{

a0P
(

r
n− 1

2
1 , 0

)

+ r
n− 1

2
3

}

+ r
n− 1

2
2

|Rn− 1
2 | ≤
{

a0

[

b0r
n− 1

2
1 +

n−1∑

k=1

(bn−k−1 − bn−k)r
k− 1

2
1

]

+ r
n− 1

2
3

}

+ r
n− 1

2
2

≤
{

a0

[

b0C1δt
2 +

n−1∑

k=1

(bn−k−1 − bn−k)C1δt
2

]

+ C3δt
3−α

}

+ C2δt

=
{
a0

[
b0C1δt

2 + (b0 − bn−1)C1δt
2
]

+ C3δt
3−α
}

+ C2δt

≤
{
a0

[
2b0C1δt

2
]

+ C3δt
3−α
}

+ C2δt

=
{

1

δtΓ (2 − α)

[

2
δt2−α

(2 − α)
C1δt

2
]

+ C3δt
3−α

}

+ C2δt

≤ Cδt .

where C =
{

2C1
(2−α)Γ (2−α)

+ C2 + C3

}
.

Now omitting the truncation error term Rn− 1
2 , and approximating exact value un

by its numerical approximation Un, we have following discrete scheme

a0P(δtU
n− 1

2 , ψ) = ΔUn− 1
2 − F(Un−1) + f n− 1

2 , 1 ≤ n ≤ N, (17)

or equivalently we have
L Un = b (18)
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where L is linear differential operator and b is function that contained contribution
from previous time level and given as:

L Un = a0
b0

δt
Un − 1

2
ΔUn

b = a0
b0

δt
Un−1 + 1

2
ΔUn−1 + a0

n−1∑

k=1

(bn−k−1 − bn−k)δtU
k− 1

2

+a0bn−1U
0
t − F(Un−1) + f n− 1

2

2.1 Error analysis: convergence and stability

Nowwe discuss the convergence and stability of the time discrete scheme in L2 norm.

Lemma 4 For any G = {G1, G2, . . .}, and q, we have
m∑

n=1

P(Gn, q)Gn ≥ t1−α
m

2
δt

m∑

n=1

G2
n − t2−α

m

2(2 − α)
q2

Proof See [38].

Lemma 5 (Discrete Gronwall Lemma) Assume that xn is nonnegative sequence, and
that the sequence yn satisfies

⎧
⎨

⎩

y0 ≤ δ0,

yn ≤ δ0 +
n−1∑

k=0
zk +

n−1∑

k=0
xkyk n ≥ 1,

then yn satisfies
⎧
⎨

⎩

y1 ≤ δ0(1 + x0) + z0,

yn ≤ δ0
n−1∏

k=0
(1 + xk) +

n−2∑

k=0
zk

n−1∏

s=k+1
(1 + xs) + zn−1 n ≥ 2.

Moreover, if δ0 ≥ 0 and zn ≥ 0 for n ≥ 0, it follows

yn ≤
(

δ0 +
n−1∑

k=0

zk

)

exp

(
n−1∑

k=0

xk

)

, n ≥ 1.

Proof See [34].

Theorem 1 Let Un and Ũn be the exact and approximated solution of the (17)
respectively, both belonging to H 1

0 . Then the time discrete scheme (17) is uncondi-
tionally stable and have the following inequality:

‖en‖ ≤ C‖∇e0‖
where en = Un − Ũn.
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Proof The error equation is

a0

[

b0δt e
n− 1

2 −
n−1∑

k=1

(bn−k−1 − bn−k)δt e
k− 1

2

]

= Δen− 1
2 −
[
F(Un−1) − F(Ũn−1)

]
,

(19)
now multiplying above equation with by δt e

n− 1
2 , and integrating over Ω , we have

a0

{

b0

(
δt e

n− 1
2 , δt e

n− 1
2

)
−

n−1∑

k=1

(bn−k−1 − bn−k)
(
δt e

k− 1
2 , δt e

n− 1
2

)
}

=
(
Δen− 1

2 , δt e
n− 1

2

)
−
([

F(Un−1) − F(Ũn−1)
]
, δt e

n− 1
2

)
, (20)

now using the fact
(
Δen− 1

2 , δt e
n− 1

2

)
= −
(
∇en− 1

2 , ∇δt e
n− 1

2

)

= −
∫

Ω

(∇en + ∇en−1

2

)(∇en − ∇en−1

δt

)

dΩ

= − 1

2δt

∫

Ω

[
(∇en)2 − ∇en−1)2

]

= − 1

2δt

(
‖∇en‖2 − ‖∇en−1‖2

)
,

we have

a0

{

b0‖δt e
n− 1

2 ‖2 −
n−1∑

k=1

(bn−k−1 − bn−k) ‖δt e
k− 1

2 ‖‖δt e
n− 1

2 ‖
}

≤ − 1

2δt

(
‖∇en‖2 − ‖∇en−1‖2

)
−
([

F(Un−1) − F(Ũn−1)
]
, δt e

n− 1
2

)
, (21)

now summing up both side of the above inequality from n = 1 to n = m, we have

a0

m∑

n=1

{

b0‖δt e
n− 1

2 ‖ −
n−1∑

k=1

(bn−k−1 − bn−k) ‖δt e
k− 1

2 ‖
}

‖δt e
n− 1

2 ‖

≤ − 1

2δt

(
‖∇em‖2 − ‖∇e0‖2

)
−

m∑

n=1

([
F(Un−1) − F(Ũn−1)

]
, δt e

n− 1
2

)
. (22)

Now since F(u) satisfies Lipschitz condition with Lipschitz constant L, so we have

−
m∑

n=1

([
F(Un−1) − F(Ũn−1)

]
, δt e

n− 1
2

)
≤ L

m∑

n=1

(
|en−1|, |δt e

n− 1
2 |
)

,
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also using inequality |xy| ≤ 1
2θ x2 + θ

2y2, together with θ = t1−α
m

Γ (2−α)
, we have

−
m∑

n=1

([
F(Un−1) − F

(
Ũn−1
)]

, δt e
n− 1

2

)
≤ L2Γ (2 − α)

2t1−α
m

m∑

n=1

‖en−1‖2

+ t1−α
m

2Γ (2 − α)

m∑

n=1

‖δt e
n− 1

2 ‖2.

Now using above relation together with Lemma 4, we have

a0
t1−α
m

2
δt

m∑

n=1

‖δt e
n− 1

2 ‖2 ≤ − 1

2δt

(
‖∇em‖2 − ‖∇e0‖2

)

+L2Γ (2−α)

2t1−α
m

m∑

n=1

‖en−1‖2+ t1−α
m

2Γ (2−α)

m∑

n=1

‖δt e
n− 1

2 ‖2.

Now simplifying above relation and changing index from m to n, we have

‖∇en‖2 ≤ ‖∇e0‖2 + L2Γ (2 − α)tα−1
n δt

n−1∑

j=0

‖ej‖2 (23)

Finally, using Poincare inequality [7], ‖en‖2 ≤ C2
Ω‖∇en‖2, we have

‖en‖2 ≤ C2
Ω‖∇e0‖2 + L2C2

ΩΓ (2 − α)tα−1
n δt

n−1∑

j=0

‖ej‖2. (24)

The application of Discrete Gronwall Lemma 5, with parameters zk = 0, δ0 =
C2

Ω‖∇e0‖2, xk = δtL2C2
ΩΓ (2 − α)tα−1

n , and yk = ‖ek‖2, we have

‖en‖2 ≤ C2
Ω‖∇e0‖2

n−1∏

k=0

(1 + L2C2
ΩΓ (2 − α)δt tα−1

n )

≤ C2
Ω‖∇e0‖2 exp

(
n−1∑

k=0

(L2C2
ΩΓ (2 − α)δt tα−1

n )

)

≤ C2
Ω exp
(
L2C2

ΩΓ (2 − α)nδt tα−1
n

)
‖∇e0‖2

= C2
Ω exp
(
L2C2

ΩΓ (2 − α)tαn

)
‖∇e0‖2

≤ C2
Ω exp
(
L2C2

ΩΓ (2 − α)T 2
)

‖∇e0‖2

Therefore we have
‖en‖ ≤ C‖∇e0‖,

where C = CΩ

√

exp
(
L2C2

ΩΓ (2 − α)T 2
)
.

Theorem 2 Let un and Un be the solution of (16) and (17), respectively, such
that both belonging to H 1

0 . Then time semi-discrete scheme (17) is convergent with
convergence order O(δt).
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Proof Let us define En = un −Un for n ≥ 1, together with E0 = 0. Now subtracting
(17) from (16), we have

a0P(δtEn− 1
2 , 0) = ΔEn− 1

2 −
[
F(un−1) − F(Un−1)

]
+ Rn− 1

2 , (25)

multiplying above equation by δtEn− 1
2 , and integrating over Ω , we get

a0

{

b0‖δtEn− 1
2 ‖ −

n−1∑

k=1

(bn−k−1 − bn−k)‖δtEk− 1
2 ‖
}

‖δtEn− 1
2 ‖

= − 1

2δt

(
‖∇En‖2 − ‖∇En−1‖2

)

−
([

F(un−1) − F(Un−1)
]
, δtEn− 1

2

)
+
(
Rn− 1

2 , δtEn− 1
2

)

Now summing the above relation from n = 1 to m, we have

a0

m∑

n=1

{

b0‖δtEn− 1
2 ‖ −

n−1∑

k=1

(bn−k−1 − bn−k)‖δtEk− 1
2 ‖
}

‖δtEn− 1
2 ‖

≤ − 1

2δt

(
‖∇Em‖2 − ‖∇E0‖2

)

−
m∑

n=1

([
F(un−1) − F(Un−1)

]
, δtEn− 1

2

)
+

m∑

n=1

‖Rn− 1
2 ‖‖δtEn− 1

2 ‖,

now application of Lemma 4, yields

a0
t1−α
m

2
δt

m∑

n=1

‖δtEn− 1
2 ‖2+ 1

2δt
‖∇Em‖2 ≤ −

m∑

n=1

([
F(un−1) − F(Un−1)

]
, δtEn− 1

2

)

+
m∑

n=1

‖Rn− 1
2 ‖‖δtEn− 1

2 ‖. (26)

Using inequality |xy| ≤ 1
2θ x2 + θ

2y2, together with θ = t1−α
m

2Γ (2−α)
, we have

−
m∑

n=1

([
F(un−1) − F(Un−1)

]
, δtEn− 1

2

)
≤ L2Γ (2 − α)

t1−α
m

m∑

n=1

‖En−1‖2

+ t1−α
m

4Γ (2 − α)

m∑

n=1

‖δtEn− 1
2 ‖2

m∑

n=1

‖Rn− 1
2 ‖‖δtEn− 1

2 ‖ ≤ Γ (2 − α)

t1−α
m

m∑

n=1

‖Rn− 1
2 ‖2

+ t1−α
m

4Γ (2 − α)

m∑

n=1

‖δtEn− 1
2 ‖2.
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Using above relation into (26), we have

t1−α
m

2Γ (2 − α)

m∑

n=1

‖δtEn− 1
2 ‖2 + 1

2δt
‖∇Em‖2 ≤ L2Γ (2 − α)

t1−α
m

m∑

n=1

‖En−1‖2

+ t1−α
m

4Γ (2 − α)

m∑

n=1

‖δtEn− 1
2 ‖2

+Γ (2 − α)

t1−α
m

m∑

n=1

‖Rn− 1
2 ‖2

+ t1−α
m

4Γ (2 − α)

m∑

n=1

‖δtEn− 1
2 ‖2,

changing index from m to n, multiplying both sides by 2δt , and after simplification
we get

‖∇En‖2 ≤ 2δtL2Γ (2 − α)tα−1
n

n−1∑

j=0

‖Ej‖2 + 2δtΓ (2 − α)tα−1
n

n∑

j=1

‖Rj− 1
2 ‖2

≤ 2δtL2Γ (2 − α)tα−1
n

n−1∑

j=0

‖Ej‖2 + 2nδtΓ (2 − α)tα−1
n max

1≤j≤n
‖Rj− 1

2 ‖2.

Now using Poincare inequality [7], we have

‖En‖2 ≤ C2
ΩδtL2Γ (2 − α)tα−1

n

n−1∑

j=0

‖Ej‖2 + C2
ΩΓ (2 − α)T C2δt2, (27)

now using Lemma 5, with parameters zk = 0, δ0 = C2
ΩC2T Γ (2 − α)δt2, xk =

δtL2C2
ΩΓ (2 − α)tα−1

n , and yk = ‖Ek‖2 yields:

‖En‖2 ≤ T C2C2
ΩΓ (2 − α)δt2 exp

(
n−1∑

k=0

(L2C2
ΩΓ (2 − α)δt tα−1

n )

)

≤ T C2C2
ΩΓ (2 − α)δt2 exp

(
L2C2

ΩΓ (2 − α)nδt tα−1
n

)

= T C2C2
ΩΓ (2 − α)δt2 exp

(
L2C2

ΩΓ (2 − α)tαn

)

≤ T C2C2
ΩΓ (2 − α)δt2 exp

(
L2C2

ΩΓ (2 − α)T 2
)

≤ C(T , α, CΩ)δt2.

Therefore, we have

‖En‖ ≤ C′(T , α, CΩ)δt,

which completes the proof.
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3 Spatial discretization by the local collocationmethod

In local collocation method, the computational domain Ω , containing M collocation

points, is partitioned into M overlapping sub domains Ωi , such that
M⋃

i=1
Ωi = Ω . For

each x[i]
k ∈ Ωi , the influence points of x

[i]
k are
{
x[i]
1 , x[i]

2 , x[i]
3 , . . . , x[i]

mi

}
are mi closest

points of x[i]
k in sub domain Ωi .

The numerical approximation of u(x, tn) in local interpolation form can be given
as

û(x, tn) =
mi∑

j=1

λjφ
(
‖x − x[i]

j ‖
)

+
l∑

j=1

γjpj (x), (28)

where {λj } and {γj } are unknown coefficients at nth time level, φ is considered radial
basis function, ‖ · ‖ is the Euclidean norm, and {pj (x)}lj=1 denotes basis for the l =
(
m−1+d

m−1

)
dimensional linear space of d-variate polynomials of total degree ≤ m − 1.

The interpolation condition on sub-domain Ωi

û
(
x[i]
k , tn

)
= u
(
x[i]
k , tn

)
, ∀ 1 ≤ k ≤ mi, (29)

is supported with extra l regularization conditions

mi∑

j=1

λjpk

(
x[i]
j

)
= 0 ∀ 1 ≤ k ≤ l. (30)

Imposing conditions (29)–(30) on û(x, tn), at each stencil, we obtain following linear
system

[
Φ P

P t O

] [
λ

γ

]

=
[

u |Ωi

O

]

(31)

where Φ :=
[
φ‖x[i]

j − x[i]
k ‖
]

1≤j,k≤mi

, P :=
[
pk(x

[i]
j )
]

1≤j≤mi,1≤k≤l
.

The above system can be written in matrix form as

ΛΩi
= A−1

Ωi
Un

Ωi
, (32)

whereΛ=
Ωi

[λ1, . . . , λmi
, γ1, . . . , λl]ᵀ,Un

Ωi
=
[
u(x[i]

1 , tn), . . . , u
(
x[i]
mi

, tn

)
, 0, . . . , 0

]ᵀ
,

and AΩi
is coefficient matrix of the system (31).

Suppose φ is a conditionally positive definite function of order m on R
d and the

points Ωi = {x1, x2, . . . , xni
} form (m−1) unisolvent set of centers. Then the system

(31) is uniquely solvable.
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For a linear differential operator D , at each stencil x[i]
k ∈ Ωi , we have approxima-

tion for Du(x, tn) as;

D û(x[i]
k , tn) =

mi∑

j=1

λjDφ
(
‖x[i]

k − x[i]
j ‖
)

+
l∑

j=1

γjDpj (x
[i]
k ),

=
[
Dφ
(
‖x[i]

k −x[i]
1 ‖
)

, . . . , Dφ
(
‖x[i]

k −x[i]
mi

‖
)

, Dp1

(
x[i]
k

)
, . . .Dpl

(
x[i]
k

)]
ΛΩi

= D�Ωi
A−1

Ωi
Un

Ωi
, (33)

where �Ωi
=
[
φ
(
‖x[i]

k − x[i]
1 ‖
)

, . . . , φ
(
‖x[i]

k − x[i]
mi

‖
)

, p1

(
x[i]
k

)
, . . . pl

(
x[i]
k

)]
.

For each k, the local operator D�Ωi
A−1

Ωi
is a 1 × mi row vector.

Now for each collocation points xi ∈ Ω , applying the local collocation method
described through (33) to the linear operator L defined in (18), we have

L �Ωi
A−1

Ωi
Un

Ωi
= bi, xi ∈ Ω . (34)

For each arbitrary i, the L �Ωi
A−1

Ωi
is a 1 × mi row vector, that going to store in

M×M matrix, by filling extra spaces by zeros. Thus, we have following linear system

LUn = b. (35)

The resulting system is sparse having only mi nonzero entries in each rows, and
hence can be calculate efficiently.

4 Numerical simulation and discussion

In this section, we present several numerical experiments to illustrate the efficiency
and accuracy of proposed method. The accuracy of the proposed method is measured
against two different error measurement viz maximum absolute error L∞, and root
mean square error Lrms , defined by using following definition

L∞ = max
1≤i≤M

|u(xi , T ) − U(xi , T )|, Lrms =
√
√
√
√ 1

M

M∑

i=1

|u(xi , T ) − U(xi , T )|2,

where u(xi , T ) and U(xi , T ) represent analytical and numerical solution and M is
number of collocation points inside the domain Ω .

Since accuracy of RBF-based methods is highly influenced by shape parameter ε,
choosing an optimal value of ε is itself a crucial task. To overcome this complication,
we will use the second-order thin plate spline r2β ln(r), with β = 2, in our all numer-
ical experiments; however, a higher-order function can be used for better accuracy.
To show the efficiency of meshless nature of the proposed method, some irregular
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domain is also considered (see Fig. 1). The boundary Γk of irregular domain Ωk , for
k = 1, 2 is defined by the parametric equations

Γ1 =
{

(r cos(θ), r sin(θ)) : r = 1

64
[81 − 9 cos(8θ)]

}

Γ2 =
{

(r cos(θ), r sin(θ)) : r = 1

9
[17 − 8 cos(3θ)]

}

.

−1.5 −1 −0.5 0 0.5 1 1.5
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Ω
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Fig. 1 The considered irregular domains for two-dimensional test problem
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Now we will deal with some numerical experiments for validating our proposed
method. We consider two different cases as

Case I F(u(x, t)) = sin(u(x, t)), Sine Gordon

Case II F(u(x, t)) = u(x, t)3, Klein Gordon.

Example 1 Consider following test problem

c
0D

α
t u(x, y, t) = Δu(x, y, t) − F(u(x, y, t)) + f (x, y, t).

The initial conditions and boundary conditions are extracted from the analytic
solutions

u(x, y, t) = t2 sin(x + y).

The linear source terms read f (x, y, t) =
(

2t2−α

Γ (3−α)
+ 2t2
)
sin(x+y)+F(u(x, y, t)).

First, we deal for case I, the Sine-Gordon equation. We solve the present problem
in the computation domain [−1, 1]2, with 21×21 uniform points for different values
of α and δt . The computational results for thin plate spline r4 ln r with m = 5 are
reported in Table 1. In Fig. 2, we plotted the numerical solution and absolute error at
T = 1.

We also extended the same numerical experiment setup on the irregular domain
Ω1 and Ω2. The numerical results for computational domain Ω1 with 645 internal
points and 70 boundary points that is total collocation points M = 715 and m = 9
are reported in Table 2. Finally, in Table 3, we did same numerical experiment on
experimental domain Ω2. In this numerical experiment, we considered 798 internal
points and 90 boundary points.

From all these tables, we can conclude that both errors are decreasing as δt

decreases and experimental convergence in time is approximate toO(δt). Finally, we
also compared our method with collocation method presented by Dehghan et al. [12]
and comparison results are reported in Table 4. From the table, we can observe that
method presented in [12] is accurate up to three decimal place using 320 temporal

Table 1 The value of errors with different values of α and δt on domain [−1, 1]2 at time T = 1.0 s for
Example 1 with case I

α = 1.25 α = 1.75

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/10 6.1465e−03 − 2.9672e−03 − 7.4024e−03 − 3.5206e−03 − 0.371

1/20 3.1227e−03 0.99 1.5077e−03 0.99 3.8275e−03 0.95 1.8176e−03 0.95 0.403

1/40 1.6145e−03 0.98 7.8001e−04 0.98 1.9820e−03 0.95 9.4142e−04 0.95 0.453

1/80 8.6143e−04 0.96 4.1637e−04 0.96 1.0446e−03 0.93 4.9710e−04 0.93 0.673

1/160 4.8547e−04 0.92 2.3457e−04 0.91 5.7332e−04 0.90 2.7352e−04 0.90 1.197

Numerical Algorithms (2020) 85:1311–13341324



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.5

0

0.5

x
y

U
(x

,y
,T

)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

x 10
−4

x
y

A
b

s
o

lu
te

 e
rr

o
r

Fig. 2 Numerical solution and absolute error at T = 1 for α = 1.25, and N = 441 on domain [−1, 1]2
for Example 1 with case I

points, although the proposed method reached better accuracy only in 160 temporal
points.

Now we extended our numerical experiments for same test problem with case II,
the Klein Gordon equations. We did same numerical experiments on domain [0, 1]2
with 21×21 and two different errors for different values of α are reported in Table 5.
Finally, In Fig. 3, we plotted absolute error for different values of time and α for test
case II.

Example 2 Consider following test problem
c
0D

α
t u(x, y, t) = Δu(x, y, t) − F(u(x, y, t)) + f (x, y, t).
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Table 2 The value of errors with different values of α and δt on domain Ω1 at time T = 1.0 s for Example
1 with case I

α = 1.25 α = 1.75

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/10 7.2699e−03 − 3.6303e−03 − 8.7526e−03 − 4.3112e−03 − 0.749
1/20 3.4584e−03 1.07 1.7233e−03 1.07 4.3212e−03 1.02 2.1168e−03 1.02 0.827
1/40 1.5570e−03 1.15 7.7202e−04 1.15 2.0337e−03 1.10 9.8877e−04 1.10 0.999
1/80 6.0737e−04 1.37 2.9714e−04 1.37 8.7234e−04 1.20 4.1763e−04 1.20 1.363
1/160 1.4006e−04 2.11 6.3810e−05 2.11 2.8881e−04 1.50 1.3224e−04 1.50 2.395

Table 3 The value of errors with different values of α and δt on domain Ω2 at time T = 1.0 s for Example
1 with case I

α = 1.25 α = 1.75

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/10 1.5694e−02 − 7.4645e−03 − 1.5537e−02 − 7.4946e−03 − 0.724
1/20 7.2768e−03 1.10 3.4700e−03 1.10 7.3858e−03 1.07 3.5663e−03 1.07 0.810
1/40 3.0532e−03 1.25 1.4708e−03 1.24 3.2821e−03 1.16 1.5922e−03 1.17 0.854
1/80 9.3850e−04 1.70 4.8604e−04 1.60 1.2236e−03 1.42 6.1196e−04 1.37 0.892
1/160 3.1719e−04 1.50 1.6619e−04 1.55 6.3644e−04 1.04 1.7952e−04 1.40 0.937

Table 4 Absolute error comparison of proposed method with Dehghan et al. [12] for Example 1 with case I

α = 1.25 α = 1.75

δt Dehghan et al. [12] Present method Dehghan et al. [12] Present method

1/10 1.6803e−02 6.4470e−03 1.1295e−02 7.6510e−03
1/20 8.4912e−03 3.4316e−03 4.8061e−03 4.0967e−03
1/40 4.2901e−03 1.9274e−03 2.2178e−03 2.2614e−03
1/80 2.1780e−03 1.1757e−03 1.7179e−03 1.3294e−03
1/160 1.6190e−03 7.9985e−04 1.4745e−03 8.6004e−04
1/320 1.4288e−03 6.1192e−04 1.3831e−03 6.2466e−04

Table 5 The value of errors with different values of α and δt on domain [0, 1]2 at time T = 1.0 s for
Example 1 with case II

α = 1.3 α = 1.7

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/10 9.7153e−03 − 4.8882e−03 − 7.7454e−03 − 3.8907e−03 − 0.392
1/20 4.9045e−03 0.98 2.4684e−03 0.98 3.8178e−03 1.02 1.9160e−03 1.02 0.405
1/40 2.4666e−03 0.99 1.2418e−03 0.99 1.9000e−03 1.00 9.5361e−04 1.00 0.480
1/80 1.2445e−03 0.99 6.2682e−04 0.99 9.5560e−04 1.00 4.8010e−04 1.00 0.694
1/160 6.3315e−04 0.97 3.1921e−04 0.97 4.8700e−04 1.01 2.4525e−04 1.01 1.302
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Fig. 3 Numerical solution and absolute error at T = 1 for α = 1.3, for Example 1 and test case II

Table 6 The value of errors with different values of α and δt on domain [0, 1]2 at time T = 1.0 s for
Example 2 with case I

α = 1.4 α = 1.8

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/5 7.9545e−03 − 4.0107e−03 − 2.7225e−02 − 1.3681e−02 − 2.208
1/10 3.2422e−03 1.21 1.6389e−03 1.21 1.2445e−02 1.12 6.2551e−03 1.12 2.213
1/20 1.4002e−03 1.21 7.0898e−04 1.21 5.6499e−03 1.13 2.8399e−03 1.13 2.956
1/40 6.5482e−04 1.10 3.3179e−04 1.10 2.5781e−03 1.13 1.2960e−03 1.13 3.372
1/80 3.4063e−04 1.00 1.7252e−04 1.00 1.1987e−03 1.11 6.0258e−04 1.11 5.265
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The initial conditions and boundary conditions are extracted from the analytic
solutions

u(x, y, t) = cos(πx) cos(πy)t3+α .

The source terms is f (x, y, t) =
(

Γ (4+α)
6 t3 + 2π2t3+α

)
cos(πx) cos(πy) +

F(u(x, y, t)).
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Fig. 4 Numerical solution and absolute error for α = 1.8, at T = 1 s on domain [0, 1]2 for Example 2
with case I
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We solve the present problem in the computation domain [0, 1]2, with 41 × 41
uniform points for different values of α and δt . The computational results withm = 5
are reported in Table 6.

The graph of numerical approximation of the solution and absolute error is plotted
in Fig. 4 respectively. From Table 6, we can observe that for this test problem, also
experimental convergence in time achieved is approximate to O(δt).

We are now extended our experiment to solve case II, and the experimental data
are reported in Table 7. From the table, we observe the convergence achieved in time
is approximate to O(δt). Finally, in Fig. 5, we plotted absolute errors at different
values of α.

Example 3 Consider following test problem

c
0D

α
t u(x, y, t) = Δu(x, y, t) − F(u(x, y, t)) + f (x, y, t).

The initial conditions and boundary conditions are extracted from the analytic
solutions

u(x, y, t) = t2e
−(x−0.5)2−(y−0.5)2

β .

The source terms is f (x, y, t) =
(

2t2−α

Γ (3−α)
+ t2 4

β
− t2

4(x−0.5)2

β2 − t2
4(y−0.5)2

β2

)

e
−(x−0.5)2−(y−0.5)2

β + F(u(x, y, t)).

This example is adopted from Dehghan et al. [8]. In [8], consider this example
to validate the element-free Galerkin method for numerical solution of 2D fractional
Tricomi-type equation. The proposed problem is solved in computational domain

Table 7 The value of errors with different values of α and δt on domain [0, 1]2 at time T = 1.0 s for
Example 2 with case II

α = 1.25 α = 1.75

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/5 5.6468e−03 − 2.6135e−03 − 2.2188e−02 − 1.1044e−02 − 2.050

1/10 2.8517e−03 0.99 1.2614e−03 1.05 1.0013e−02 1.15 4.9448e−03 1.16 2.164

1/20 1.4010e−03 1.02 6.0786e−04 1.05 4.4255e−03 1.18 2.1738e−03 1.19 2.585

1/40 7.0931e−04 0.98 3.0723e−04 0.98 1.9704e−03 1.17 9.6366e−04 1.17 3.274

1/80 3.8371e−04 0.89 1.6875e−04 0.89 9.0380e−04 1.12 4.4044e−04 1.13 4.948
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Fig. 5 Absolute error at time T = 1 s for different values of α = 1.25 and α = 1.75, on domain [0, 1]2
for Example 2 with case II

[0, 1]2, with 55 × 55 spatial points for different values of α. The different error at
time T = 1 s with β = 0.1 is reported in Tables 8 and 9, for Sine Gordon and
Klein Gordon equations respectively. From the table, we observe the convergence
achieved in time is approximate to O(δt). Finally, in Fig. 6, we present the graphs
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Table 8 The value of errors with different values of α and δt on domain [0, 1]2 at time T = 1.0 s for
Example 3 with case I

α = 1.5 α = 1.8

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/5 6.2323e−03 − 3.1311e−03 − 6.8385e−03 − 3.4227e−03 − 5.919

1/10 2.8527e−03 1.12 1.4828e−03 1.07 3.2588e−03 1.06 1.6780e−03 1.03 8.934

1/20 1.1899e−03 1.26 6.7153e−04 1.14 1.4219e−03 1.19 7.8225e−04 1.10 9.086

1/40 4.9328e−04 1.27 2.7574e−04 1.28 5.7392e−04 1.30 3.3168e−04 1.23 15.718

1/80 2.6525e−04 0.91 1.1081e−04 1.31 2.9353e−04 0.97 1.2838e−04 1.36 16.455

of approximate solution and absolute error using the proposed method for α = 1.8,
δt = 0.001, and β = 0.005 for 80 × 80 spatial points at time T = 1 s.

5 Conclusion

In this work, we have employed the radial basis function-based meshless local collo-
cation method for the numerical solution of time fractional nonlinear diffusion wave
equation. Basically we solve two family of equations sine Gordon and Klein Gordon
equation. The time semi-discretization was done by finite difference method and spa-
tial discretization was done by meshless method. To overcome the stability issue due
to shape parameter, the thin plate spline is used as basis of the collocation method.
The numerical experiments for different values of α are carried out. Numerical meth-
ods are employed on both regular and irregular domain. Numerical results show that
the computation order of convergence in time is close to theoretical order.

Table 9 The value of errors with different values of α and δt on domain [0, 1]2 at time T = 1.0 s for
Example 3 with case II

α = 1.5 α = 1.8

δt L∞ Rate Lrms Rate L∞ Rate Lrms Rate cpu (s)

1/5 8.6115e−03 − 3.1452e−03 − 7.6310e−03 − 2.7067e−03 − 6.623

1/10 4.1832e−03 1.04 1.5274e−03 1.04 3.5135e−03 1.11 1.2286e−03 1.13 6.985

1/20 1.8638e−03 1.16 6.9260e−04 1.14 1.4799e−03 1.24 5.2310e−04 1.23 7.934

1/40 6.9862e−04 1.41 2.8260e−04 1.29 4.9360e−04 1.58 1.9854e−04 1.39 10.608

1/80 2.2121e−04 1.65 1.0846e−04 1.38 2.0036e−04 1.30 9.2610e−05 1.10 16.310
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Fig. 6 Graph of numerical solution and absolute error for Example 2 with case II

Acknowledgements We would like to thank reviewers for their comments and suggestions that really
improved the quality of the paper.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Bagley, R.L., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity.
J. Rheol. 27(3), 201–210 (1983)

Numerical Algorithms (2020) 85:1311–13341332



2. Bhrawy, A., Abdelkawy, M.: A fully spectral collocation approximation for multi-dimensional
fractional schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

3. Cen, Z., Huang, J., Xu, A., Le, A.: Numerical approximation of a time-fractional black–scholes
equation. Comput. Math. Appl. 75(8), 2874–2887 (2018)

4. Chandhini, G., Prashanthi, K., Vijesh, V.A.: A radial basis function method for fractional darboux
problems. Engineering Analysis with Boundary Elements 86, 1–18 (2018)

5. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the kansa method. Comput. Math. Appl.
59(5), 1614–1620 (2010)

6. De Staelen, R., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional black–
scholes model. Comput. Math. Appl. 74(6), 1166–1175 (2017)

7. Dehghan, M., Abbaszadeh, M.: Analysis of the element free galerkin (efg) method for solving
fractional cable equation with dirichlet boundary condition. Appl. Numer. Math. 109, 208–234 (2016)

8. Dehghan, M., Abbaszadeh, M.: Element free galerkin approach based on the reproducing kernel par-
ticle method for solving 2d fractional tricomi-type equation with robin boundary condition. Comput.
Math. Appl. 73(6), 1270–1285 (2017)

9. Dehghan, M., Abbaszadeh, M.: Two meshless procedures: moving kriging interpolation and element-
free galerkin for fractional pdes. Appl. Anal. 96(6), 936–969 (2017)

10. Dehghan, M., Abbaszadeh, M.: The use of proper orthogonal decomposition (pod) meshless rbf-fd
technique to simulate the shallow water equations. J. Comput. Phys. 351, 478–510 (2017)

11. Dehghan, M., Abbaszadeh, M.: An efficient technique based on finite difference/finite element
method for solution of two-dimensional space/multi-time fractional bloch–torrey equations. Appl.
Numer. Math. 131, 190–206 (2018)

12. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit rbf meshless approach for solving the time
fractional nonlinear sine-gordon and klein–gordon equations. Engineering Analysis with Boundary
Elements 50, 412–434 (2015)

13. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis
functions collocation method for solving parabolic–parabolic patlak–keller–segel chemotaxis model.
Engineering Analysis with Boundary Elements 56, 129–144 (2015)

14. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional
diffusion-wave equation. Numerical Algorithms 73(2), 445–476 (2016)

15. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equa-
tions using the homotopy analysis method. Numerical Methods for Partial Differential Equations: An
International Journal 26(2), 448–479 (2010)

16. Dehghan, M., Mohammadi, V.: Two-dimensional simulation of the damped kuramoto–sivashinsky
equation via radial basis function-generated finite difference scheme combined with an exponential
time discretization. Engineering Analysis with Boundary Elements 107, 168–184 (2019)

17. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the
multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

18. Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-gordon
equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)

19. Gao, G.H., Sun, Z.Z., Zhang, Y.N.: A finite difference scheme for fractional sub-diffusion equations
on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231(7), 2865–2879
(2012)

20. Ghehsareh, H.R., Bateni, S.H., Zaghian, A.: A meshfree method based on the radial basis functions
for solution of two-dimensional fractional evolution equation. Engineering Analysis with Boundary
Elements 61, 52–60 (2015)

21. Ghehsareh, H.R., Zaghian, A., Raei, M.: A local weak form meshless method to simulate a vari-
able order time-fractional mobile–immobile transport model. Engineering Analysis with Boundary
Elements 90, 63–75 (2018)

22. Golbabai, A., Nikpour, A.: Computing a numerical solution of two dimensional non-linear
schrödinger equation on complexly shaped domains by rbf based differential quadrature method. J.
Comput. Phys. 322, 586–602 (2016)

23. Gu, Y., Zhuang, P.: Anomalous sub-diffusion equations by the meshless collocation method. Aust. J.
Mech. Eng. 10(1), 1–8 (2012)

24. Gu, Y., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int.
J. Comput. Methods 8(04), 653–665 (2011)

Numerical Algorithms (2020) 85:1311–1334 1333



25. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using
radial basis functions. Engineering Analysis with Boundary Elements 38, 31–39 (2014)

26. Hosseini, V.R., Shivanian, E., Chen, W.: Local radial point interpolation (mlrpi) method for solving
time fractional diffusion-wave equation with damping. J. Comput. Phys. 312, 307–332 (2016)

27. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The galerkin finite element method for a multi-term time-
fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

28. Kumar, A., Bhardwaj, A., Kumar, B.V.R.: A meshless local collocation method for time fractional
diffusion wave equation. Comput. Math. Appl. 78(6), 1851–1861 (2019)

29. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.: A rbf meshless approach for modeling a fractal
mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

30. Mardani, A., Hooshmandasl, M., Heydari, M., Cattani, C.: A meshless method for solving the time
fractional advection–diffusion equation with variable coefficients. Comput. Math. Appl. 75(1), 122–
133 (2018)

31. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation
and radial basis functions for solving the time fractional nonlinear schrödinger equation arising in
quantum mechanics. Engineering Analysis with Boundary Elements 37(2), 475–485 (2013)

32. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Solution of two-dimensional modified anomalous frac-
tional sub-diffusion equation via radial basis functions (rbf) meshless method. Engineering Analysis
with Boundary Elements 38, 72–82 (2014)

33. Nagy, A.: Numerical solution of time fractional nonlinear klein–gordon equation using sinc–
chebyshev collocation method. Appl. Math. Comput. 310, 139–148 (2017)

34. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations, vol. 23. Springer
Science & Business Media (2008)

35. Salehi, R.: A meshless point collocation method for 2-d multi-term time fractional diffusion-wave
equation. Numerical Algorithms 74(4), 1145–1168 (2017)

36. Sarra, S.A.: A local radial basis function method for advection–diffusion–reaction equations on
complexly shaped domains. Appl. Math. Comput. 218(19), 9853–9865 (2012)

37. Sun, H., Liu, X., Zhang, Y., Pang, G., Garrard, R.: A fast semi-discrete kansa method to solve the
two-dimensional spatiotemporal fractional diffusion equation. J. Comput. Phys. 345, 74–90 (2017)

38. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer.
Math. 56(2), 193–209 (2006)

39. Tayebi, A., Shekari, Y., Heydari, M.: A meshless method for solving two-dimensional variable-order
time fractional advection–diffusion equation. J. Comput. Phys. 340, 655–669 (2017)

40. Uddin, M., Haq, S.: Rbfs approximation method for time fractional partial differential equations.
Commun. Nonlinear Sci. Numer. Simul. 16(11), 4208–4214 (2011)

41. Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional klein–gordon
equation with neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)

42. Yan, L., Yang, F.: Efficient kansa-type mfs algorithm for time-fractional inverse diffusion problems.
Comput. Math. Appl.s 67(8), 1507–1520 (2014)

43. Yang, J., Zhao, Y., Liu, N., Bu, W., Xu, T., Tang, Y.: An implicit mls meshless method for 2-d time
dependent fractional diffusion–wave equation. Appl. Math. Model. 39(3-4), 1229–1240 (2015)

44. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-
fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

45. Zhuang, P., Gu, Y., Liu, F., Turner, I., Yarlagadda, P.: Time-dependent fractional advection–diffusion
equations by an implicit mls meshless method. Int. J. Numer. Methods Eng. 88(13), 1346–1362 (2011)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Numerical Algorithms (2020) 85:1311–13341334


	A local meshless method for time fractional nonlinear diffusion wave equation
	Abstract
	Introduction
	The time discretization
	Error analysis: convergence and stability

	Spatial discretization by the local collocation method
	Numerical simulation and discussion
	Conclusion
	References


