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Abstract
In this work we are interested in the numerical approximation of the solutions to
1D semilinear parabolic singularly perturbed systems of reaction-diffusion type, in
the general case where the diffusion parameters for each equation can have differ-
ent orders of magnitude. The numerical method combines the classical central finite
differences scheme to discretize in space and a linearized fractional implicit Euler
method together with a splitting by components technique to integrate in time. In
this way, only tridiagonal linear systems must be solved to compute the numerical
solution; consequently, the computational cost of the algorithm is considerably less
than that of classical schemes. If the spatial discretization is defined on appropri-
ate nonuniform meshes, the method is uniformly convergent of first order in time
and almost second order in space. Numerical results for some test problems are pre-
sented which corroborate in practice the uniform convergence and the efficiency of
the algorithm.
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1 Introduction

In this paper we consider the numerical resolution of parabolic initial and boundary
value problems posed as follows: Find u(x, t) : [0, 1] × [0, T ] → Rn solution of

{
Lε(u) ≡ ∂u

∂t
(x, t) + Lx,εu(x, t)+A(x, t,u) = 0, (x, t) ∈ Q ≡ Ω × (0, T ],

u(0, t) = g0(t), u(1, t) = g1(t), ∀ t ∈ [0, T ], u(x, 0) = ϕ(x), ∀ x ∈ Ω,

(1)
where Ω = (0, 1) and the spatial differential operator Lx,ε is defined by

Lx,ε ≡ −Dε

∂2

∂x2
, with Dε = diag (ε1, ε2, . . . , εn). (2)

Let us denote by u = (u1, u2, . . . , un)
T the exact solution of the continuous prob-

lem, g0 = (g10, g20, . . . , gn0)
T , g1 = (g11, g21, . . . , gn1)

T the boundary data,
A(x, t,u) = (a1(x, t,u), a2(x, t,u), . . . , an(x, t,u))T the reaction term and ε =
(ε1, ε2, . . . , εn)

T . We assume that the εk, k = 1, . . . , n, can be very small, they can
have different orders of magnitude and satisfy 0 < ε1 ≤ ε2 ≤ . . . ≤ εn ≤ 1. As
well, we assume that the terms ak(x, t,u), k = 1, . . . , n, are composed of suffi-
ciently smooth functions and that sufficient compatibility conditions among the data
of the problem hold, in order to u ∈ C4,2([0, 1] × [0, T ]), (see [15, 17] for a detailed
discussion).

In many previous works (see [4, 6, 8, 10–12, 18, 19] and references therein), a
linear version of problem (1) was considered. In those works, different numerical
methods were proposed and their uniform convergence was proven. Our main interest
here is to develop similar studies for the semilinear problem given in (1).

Less often, semilinear problems have been considered in the context of singularly
perturbed problems. In [2, 14], scalar one-dimensional elliptic problems with a semi-
linear reaction term were studied, with and without interior layers in their solutions
respectively. In [3], the case of a scalar three-dimensional semilinear elliptic reaction-
diffusion problem was analyzed. In [13], a one-dimensional semilinear parabolic
reaction-diffusion problem was considered. In all of these works, efficient numerical
methods were developed to solve the considered problems. To our knowledge, the
analysis of parameter robust methods used to solve problems of type (1) was firstly
considered in [1]; in that work, a nonlinear finite difference scheme is defined and a
monotone iterative method, which constructs sequences of ordered upper and lower
solutions, is used to construct a numerical solution; moreover, the method is a first
order in time and almost first order in space uniformly convergent scheme.

In general, the computational cost of the numerical methods used to solve sin-
gularly perturbed systems is high due to the coupling of the components of the
discrete solution. To reduce this computational cost, in [4, 5] additive schemes were
used to solve parabolic linear systems of reaction-diffusion type for one- and two-
dimensional linear problems respectively, and in [7] a decomposition technique,
named splitting by components, was used for parabolic one-dimensional linear sys-
tems of reaction-diffusion type. Both techniques permit one to decouple the process
of approximating the components of the discrete solution. On the other hand, in the
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case of considering nonlinear systems, the computational cost of fully implicit meth-
ods increases because iterative methods must be used to solve the nonlinear systems
involved in the time integration processes.

To compute more efficient solutions, we combine two techniques: on the one hand,
we perform a splitting by components following the ideas proposed in [7]; on the
other hand, we use a local linearization of the nonlinear reaction term, which permits
us to obtain the numerical solution without using any iterative method.

For simplicity, we only give the full details for the case n = 2; nevertheless, as we
show in the last section, the technique can be applied for coupled systems having an
arbitrary number of equations. In fact, the numerical method proposed here becomes
more advantageous as long as the number of equations in the system increases.

The paper is structured as follows. In Section 2, we describe in detail the asymp-
totic behavior of the exact solution of the continuous problem with respect to the
diffusion parameters in the case n = 2 and we give appropriate bounds of its deriva-
tives. In Section 3, we define the spatial discretization of (1) and we prove that if
suitable nonuniform meshes are used for it, then the scheme is uniformly convergent.
In Section 4, we describe the time integration process, which combines a locally lin-
earized fractional implicit Euler method joint to a splitting by components of the
discrete diffusion-reaction operator. We prove that this integration process is uni-
formly convergent of first order. Moreover, we prove that the fully discrete algorithm,
which results of combining both the space and time discretizations, is a uniformly
convergent method. In Section 5, we show the numerical results obtained for some
test problems. We finish with some concluding remarks.

Henceforth, C denotes a generic positive constant independent of the diffusion
parameters εk, k = 1, . . . , n, and also of the discretization parameters N and M . As
well, v ≤ w will means that vk ≤ wk, k = 1, . . . , n, |v| = (|v1|, . . . , |vn|)T and
‖f‖G = max{‖f1‖G, . . . , ‖fn‖G}, where ‖f ‖G is the maximum norm of f on the
closed set G; we will use v ≤ C meaning that vk ≤ C, k = 1, . . . , n.

2 Asymptotic behavior of the exact solution

In this section we describe the asymptotic behavior of the solution of (1), deducing
some estimates for it and its derivatives which are useful below for the analysis of
the uniform convergence of the numerical method. To do that, we assume that the
coefficients of the reaction matrix satisfy

∂ak

∂uk
(x, t, v) ≥ β > 0, ∂ak

∂uj
(x, t, v) ≤ 0, k 	= j, k, j = 1, . . . , n,

min−∞≤v≤∞
n∑

j=1

∂ak

∂uj
(x, t, v) ≥ α > 0, k = 1, . . . , n.

(3)

Then, problem (1) has a unique solution (see Theorem 3.1, Chap. 8 in [17]).
Moreover, following [1], by using the mean-value theorem, we have

ak(x, t,u) = ak(x, t, 0) +
n∑

j=1

∂ak

∂uj

(x, t, vk)uj , k = 1, . . . , n. (4)
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Using this result, it is immediate that u can be described as the solution of a linear
reaction-diffusion system and, taking into account the hypotheses (3), the following
two results are deduced (see [7] for more details).

Lemma 1 If −A(x, t, 0), g0(t), g1(t), ϕ(x) have non-negative components, then
u(x, t) has non-negative components.

Lemma 2 The solution of (1) satisfies

‖u(x, t)‖ ≤ max{‖g0‖, ‖g1‖, ‖ϕ‖, ‖A(x, t, 0)‖
α

}

Analogously, the time derivatives of u are solution of suitable linear parabolic
systems of reaction-diffusion type and the following bounds can be deduced∥∥∥∥∂lu(x, t)

∂t l

∥∥∥∥ ≤ C, (x, t) ∈ Q, l = 0, 1, 2. (5)

The same reasonings can be applied to obtain suitable bounds for the spatial
derivatives of u (see [12] for more details). For simplicity, we only describe in detail
the asymptotic behavior of u for the case n = 2.

In this case, using (4), problem (1) can be rewritten as⎧⎪⎨
⎪⎩

∂u1
∂t

(x, t) − ε1
∂2u1
∂x2

(x, t) + ∂a1
∂u1

(x, t, v1)u1 + ∂a1
∂u2

(x, t, v1)u2 = −a1(x, t, 0),
∂u2
∂t

(x, t) − ε2
∂2u2
∂x2

(x, t) + ∂a2
∂u1

(x, t, v2)u1 + ∂a2
∂u2

(x, t, v2)u2 = −a2(x, t, 0),
u(0, t) = g0(t), u(1, t) = g1(t), ∀ t ∈ [0, T ], u(x, 0) = ϕ(x), ∀ x ∈ Ω .

(6)
Now, taking into account the hypotheses (3), we can follow [11] to decompose the
solution of (6) as u = v + w where v is the regular component and w is the singular
component; both of them are bounded vector functions with bounded time derivatives
up to second order. Moreover, for v = (v1, v2)

T it holds∣∣∣∣∂
lvk(x, t)

∂xl

∣∣∣∣ ≤ C, l = 0, 1, 2, (7)

∣∣∣∣∂
lvk(x, t)

∂xl

∣∣∣∣ ≤ Cε
1−k/2
k , l = 3, 4, k = 1, 2. (8)

As well, the singular component, w = (w1, w2)
T satisfies

|wk| ≤ CBε2(x), k = 1, 2,∣∣∣ ∂w1(x,t)
∂x

∣∣∣ ≤ C
(
ε
−1/2
1 Bε1(x) + ε

−1/2
2 Bε2(x)

)
,

∣∣∣ ∂w2(x,t)
∂x

∣∣∣ ≤ Cε
−1/2
2 Bε2(x),∣∣∣ ∂2w1(x,t)

∂x2

∣∣∣ ≤ C
(
ε−1
1 Bε1(x) + ε−1

2 Bε2(x)
)

,

∣∣∣ ∂2w2(x,t)

∂x2

∣∣∣ ≤ Cε−1
2 Bε2(x),∣∣∣ ∂lw1(x,t)

∂xl

∣∣∣ ≤ C
(
ε
−l/2
1 Bε1(x) + ε

−l/2
2 Bε2(x)

)
, l = 3, 4,∣∣∣ ∂lw2(x,t)

∂xl

∣∣∣ ≤ Cε−1
2

(
ε
(l−2)/2
1 Bε1(x) + ε

(l−2)/2
2 Bε2(x)

)
, l = 3, 4,

(9)

where
Bγ (x) = e−x

√
α/γ + e−(1−x)

√
α/γ , (10)
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where γ is a generic positive constant and α is the parameter defined in (3).

3 The spatial discretization on a Shishkin mesh

To construct the fully discrete method, which discretizes the continuous problem (1),
first we discretize in space. From (7)–(9) it follows that, in the case n = 2, two
overlapping parabolic boundary layers can appear at x = 0 and x = 1. Because of
this, we consider special nonuniform meshes which concentrate the grid points in the
boundary layer regions. Concretely, we use piecewise uniform meshes of Shishkin
type, which are defined as follows. Let N be a positive integer multiple of 8; then,
the grid points of the mesh ΩN ≡ {0 = x0 < x1 < . . . < xN = 1} are given by

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ihε1, i = 0, . . . , N/8,
xN/8 + (i − N/8)hε2 , i = N/8 + 1, . . . , N/4,
xN/4 + (i − N/4)H, i = N/4 + 1, . . . , 3N/4,
x3N/4 + (i − 3N/4)hε2 , i = 3N/4 + 1, . . . , 7N/8,
x7N/8 + (i − 7N/8)hε1 , i = 7N/8 + 1, . . . , N,

(11)

where hε1 = 8σε1/N, hε2 = 8(σε2 − σε1)/N, H = 2(1 − 2σε2)/N , and

σε2 = min
{
1/4, σ0

√
ε2 lnN

}
, σε1 = min

{
σε2/2, σ0

√
ε1 lnN

}
, (12)

are the transition parameters which separate the coarser and the finer parts of the
nonuniform mesh, being σ0 a constant which will be fixed later on. Below we denote
by hi = xi − xi−1, i = 1, . . . , N , the step sizes of the mesh and by hi = (hi +
hi+1)/2, i = 1, . . . , N − 1.

On the mesh just defined, to approximate u(xi, t) ≡ (u1(xi, t), u2(xi, t))
T , for

xi ∈ ΩN and t ∈ [0, T ], we use the semidiscrete functions

UN(t) ≡ (UN,0(t),UN,1(t), . . . ,UN,N(t)),

where UN,i(t) = (UN,i,1(t), UN,i,2(t))
T : [0, T ] → R2, i = 0, 1, . . . , N .

Let LN,εUN(t) ≡ (LN,ε,1UN(t),LN,ε,2UN(t))T , where

(LN,ε,kUN(t))i ≡ −εk(δxxUN,k)i =
− εk

hi

(
UN,i+1,k−UN,i,k

hi+1
− UN,i,k−UN,i−1,k

hi

)
, i = 1, . . . N − 1, k = 1, 2,

are central differences which discretize the diffusion terms of (1) on the nonuniform
mesh ΩN . We define the operator

(LN .ε(UN(t)))i ≡ d

dt
UN,i(t) + (LN,εUN(t))i + A(xi, t,UN,i(t)), i = 1, . . . , N − 1.

Then, UN,i(t) are the solutions of the family of initial value problems
⎧⎨
⎩

(LN .ε(UN(t)))i = 0, i = 1, . . . , N − 1,
UN,0(t) = g0(t), UN,N(t) = g1(t),
UN(0) = (ϕ(x0), . . . , ϕ(xN))T .

(13)
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Again we can make use of the mean-value theorem to rewrite the nonlinear
reaction terms in the form

ak(xi, t,UN,i(t)) = ak(xi, t, 0)+ ∂ak

∂u1
(xi, t,Vk)UN,i,1(t)+ ∂ak

∂u2
(xi, t,Vk)UN,i,2(t)

(14)
for k = 1, 2 and, following [7], we can prove the next result which is the discrete
analogue of Lemma 1.

Lemma 3 Assuming that all of the data (−A(xi, t, 0), g0(t), g1(t), ϕ(xi)), i =
0, . . . , N , of problem (13) have non-negative values in their components then, the
components of UN(t) has only non-negative values.

From Lemma 3, choosing suitable semidiscrete barrier functions on a linearized
rewriting of (13), making use of (14), it follows

‖UN(t)‖ΩN
≤

max{‖g0(t)‖[0,T ], ‖g1(t)‖[0,T ], ‖[ϕ(x)]N‖ΩN
,

‖[−A(x,t,0)]N‖ΩN ×[0,T ]
α

}, (15)

∀t ∈ [0, T ], where [.]N denotes the restriction of a function defined on Ω to ΩN .
Therefore, problem (13) is well-posed independently of ε and N . This result can be
viewed as a uniform stability property of the spatial discretization process.

As well, by deriving in time problem (13), we can describe VN(t) = dUN

dt
as the

solution of a linear initial value problem of the form
⎧⎨
⎩

d
dt
VN(t) + LN,εVN(t) + ∂AN

∂u (t,UN)VN(t) + ∂AN

∂t
(t,UN) = 0,

VN,0(t) = g′
0(t), VN,N(t) = g′

1(t),

VN(0) = −LN,ε[ϕ]N − AN(0, [ϕ]N),

(16)

being AN,i(t,UN) = A(xi, t,UN,i), i = 1, 2, . . . , N − 1. Now, we can use
the same reasonings developed in [7] for spatial discretizations of suitable linear
reaction-diffusion systems for proving that

‖VN(t)‖ΩN
≤ C.

In similar way, it is proven that d2UN

dt2
is uniformly bounded.

To prove the uniform convergence of the spatial discretization, first we study the
local error at any time t ∈ [0, T ], at the grid point xi ∈ ΩN, i = 1, . . . , N − 1,
which is given by

υN,i(t) ≡ Lε(u)(xi, t) − (Lε,N([u(x, t)]N))i . (17)

Clearly the contributions of the time derivatives and the reaction terms in the local
error are zero; therefore,

υN,i(t) = −Dε

(
∂2u
∂x2

(xi) − (δxx[u]N)i

)
.
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In the simplest case, when σε1 = 1/8, σε2 = 1/4, the mesh is uniform and it

holds ε
−1/2
k ≤ C lnN, k = 1, 2. Then, using appropriate Taylor expansions and the

estimates (8)–(9), for the first component u1(x, t) we have

|υN,i,1(t)| ≤ Cε1h
2
i

∥∥∥ ∂4u1
∂x4

∥∥∥[xi−1,xi+1]
≤

Cε1h
2
i

(
ε−1
1 + ε−2

1 Bε1(xi−1) + ε−2
2 Bε2(xi−1)

)
≤ CN−2 ln2 N,

and similarly for the second component u2(x, t) we have

|υN,i,2(t)| ≤ Cε2h
2
i

∥∥∥ ∂4u2
∂x4

∥∥∥[xi−1,xi+1]
≤

Cε2h
2
i

(
ε−1
2 + ε−1

2 (ε−1
1 Bε1(xi−1) + ε−1

2 Bε2(xi−1))
)

≤ CN−2 ln2 N .

In second place, we assume that σε1 = σ0
√

ε1 lnN, σε2 = σ0
√

ε2 lnN which
is the most interesting case in practice. Let us assume that σ0 is chosen satisfying
that σ0

√
α ≥ 2. We only show the details for grid points xi, 1 ≤ i ≤ N/2, and

similarly we can proceed for xi, N/2 ≤ i ≤ N −1. Note that for these points, in (10)
the exponentials which have large influence in the local error are e−x

√
α/εk , because

ε−l
k e−(1−xi+1)

√
α/εk ≤ N−σ0

√
α for k = 1, 2 and l any positive integer.

We distinguish five cases depending on the location of the mesh point xi .
Case 1. We assume that 0 < xi < σε1 . Then, hi = hi+1 = 8σ0

√
ε1N

−1 lnN , and
therefore

|υN,i,1(t)| ≤ Cε1h
2
i

∣∣∣ ∂4u1
∂x4

∣∣∣ ≤
Ch2i

(
1 + ε−1

1 e−xi−1
√

α/ε1 + ε1ε
−2
2 e−xi−1

√
α/ε2

)
+ CN−σ0

√
α ≤ CN−2 ln2 N,

and

|υN,i,2(t)| ≤ Cε2h
2
i

∣∣∣ ∂4u2
∂x4

∣∣∣ ≤
Ch2i

(
1 + ε−1

1 e−xi−1
√

α/ε1 + ε−1
2 e−xi−1

√
α/ε2

)
+ CN−σ0

√
α ≤ CN−2 ln2 N,

Case 2. We assume that σε2 < xi ≤ 1/2. Then, xi−1 ≥ σε2 , xi−1 − hi ≥ σε2 −
hN/4 ≥ σε1 and therefore it holds

e−xi−1
√

α/εk ≤ N−σ0
√

α, e−(xi−1−hi)
√

α/εk ≤ N−σ0
√

α, k = 1, 2. (18)

Using (18) it follows

|υN,i,1(t)| ≤ Cε1h
2
i

∣∣∣ ∂4u1
∂x4

∣∣∣ ≤
Ch2i

(
1 + ε−1

1 e−xi−1
√

α/ε1 + ε1ε
−2
2 e−xi−1

√
α/ε2

)
+ CN−σ0

√
α ≤ CN−2,

and

|υN,i,2(t)| ≤ Cε2h
2
i

∣∣∣ ∂4u2
∂x4

∣∣∣ ≤
Ch2i

(
1 + ε−1

1 e−xi−1
√

α/ε1 + ε−1
2 e−xi−1

√
α/ε2

)
+ CN−σ0

√
α ≤ CN−2,
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taking into account that ple−√
αp ≤ C for p any positive number and l any positive

integer.
To find appropriate estimates in the other three cases we decompose the local

error of (13) as υN,i(t) = υv,N,i(t)+υw,N,i(t) where υv,N,i(t) and υw,N,i(t) are the
contributions of the regular and singular components (v and w) of u respectively, i.e.,
(see [11] for details)

υv,N,i(t) = −Dε

(
∂2v
∂x2

(xi, t) − (δxx[v]N)i

)
,

υw,N,i(t) = −Dε

(
∂2w
∂x2

(xi, t) − (δxx[w]N)i

)
.

Case 3. We assume that σε1 < xi < σε2 . For the regular component, from (8)
easily we can obtain

|υv,N,i,k(t)| ≤ Cεkh
2
i

∣∣∣∣∂
4vk

∂x4

∣∣∣∣ ≤ CN−2, k = 1, 2.

For the singular component w we follow [16], where two more precise decompo-
sitions are made; concretely, the first one is w = w̃ε1 + w̃ε2 and it holds

ε1

∣∣∣∣∂
2w̃ε1,1

∂x2

∣∣∣∣ + ε2

∣∣∣∣∂
2w̃ε1,2

∂x2

∣∣∣∣ ≤ CBε1(x),

∣∣∣∣∂
3w̃ε2,1

∂x3

∣∣∣∣ +
∣∣∣∣∂

3w̃ε2,2

∂x3

∣∣∣∣ ≤ Cε
−3/2
2 Bε2(x),

(19)
and the second one w = w̄ε1 + w̄ε2 and it holds

ε1

∣∣∣∣∂
2w̄ε1,1

∂x2

∣∣∣∣+ε2

∣∣∣∣∂
2w̄ε1,2

∂x2

∣∣∣∣ ≤ CBε1(x), ε1

∣∣∣∣∂
4w̄ε2,1

∂x4

∣∣∣∣+ε2

∣∣∣∣∂
4w̄ε2,2

∂x4

∣∣∣∣ ≤ Cε−1
2 Bε2(x),

(20)
For the first component, using the second decomposition and (20) it holds

|υw̄ε1,1,N,i(t)| ≤ Cε1

∣∣∣∣ ∂2w̄ε1,1

∂x2

∣∣∣∣ ≤ CN−2,

and

|υw̄ε2,1,N,i(t)| ≤ Cε1h
2
i

∣∣∣∣ ∂4w̄ε2,1

∂x4

∣∣∣∣ ≤ CN−2 ln2 N,

using that hi/
√

ε2 ≤ CN−1 lnN . Similarly, for the second component, using the first
decomposition and (19) it holds

|υw̃ε1,2,N,i(t)| ≤ Cε2

∣∣∣∣ ∂2w̃ε1,1

∂x2

∣∣∣∣ ≤ CN−2,

and

|υw̃ε2,2,N,i(t)| ≤ Cε2hi

∣∣∣∣ ∂3w̃ε2,2

∂x3

∣∣∣∣ ≤ CN−2 ln2 N .

Case 4. We assume that xi = σε2 . Again we use the decomposition u = v + w of
the exact solution. For the regular component, from (8) easily we can obtain

|υv,N,i,k(t)| ≤ Cεkhi

∣∣∣∣∂
3vk

∂x3

∣∣∣∣ ≤ Cε
1/2
k N−1, k = 1, 2. (21)
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For the singular component, using (9)we have

|υw,N,i,1(t)| ≤ Cε1

∣∣∣∣∂
2w1

∂x2

∣∣∣∣ ≤ C(Bε1(xi−1) + Bε2(xi−1)) ≤ CN−2,

and

|υw,N,i,2(t)| ≤ Cε1

∣∣∣∣∂
2w2

∂x2

∣∣∣∣ ≤ CBε2(xi−1) ≤ CN−2.

Case 5. We assume that xi = σε1 . We again use the decomposition u = v + w
of the exact solution. Then, for the regular component, as in Case 4 we obtain the
estimates (21).

For the singular component we decompose w = w̃ε1 + w̃ε2 . So, proceeding as in
Case 4 it holds

|υw̃ε1,k,N,i(t)| ≤ Cεk

∣∣∣∣ ∂2w̃ε1,k

∂x2

∣∣∣∣ ≤ CN−2, k = 1, 2

and

|υw̃ε2,k,N,i(t)| ≤ Cεk(hi + hi+1)

∣∣∣∣ ∂3w̃ε2,k

∂x3

∣∣∣∣ ≤ Cεkε
−1
3−kN

−1, k = 1, 2.

Theorem 1 The global error espN(t) ≡ [u(x, t)]N −UN(t), associated to the spatial
discretization (13) on the Shishkin mesh, satisfies

‖espN(t)‖ΩN
≤ CN−2 ln2 N, ∀ t ∈ [0, T ], (22)

where C is a positive constant independent of ε and the discretization parameter N .

Proof Firstly, let us prove that the global error espN(t) is the solution of a parabolic
linear system of the form(

d

dt
− Dεδxx + ∂A

∂u

)
espN(t) = υN(t), (23)

where the right-hand side is the local error and the term ∂A
∂u is anM-matrix which con-

tains derivatives of the reaction terms, with initial and boundary conditions obviously
equal to zero. To see that, we consider the operators

L̃ε ≡ ∂u
∂t

− Dε

∂2

∂x2
, L̃ε,N ≡ du

dt
− Dεδxx .

Then, UN(t) satisfies the differential system

L̃ε,NUN(t) + AN(t,UN(t)) = 0,

where AN(t,UN(t)) contains the evaluations of the reaction term in the mesh points.
Using the mean-value theorem we decompose such evaluations as

ak(xi , t,UN,i(t)) = ak(xi , t,u(xi , t))+[
∂ak

∂u1
(xi , t, ξN,i,k)

(
UN,i,1(t) − u1(xi , t)

) + ∂ak

∂u2
(xi , t, ξN,i,k,)

(
UN,i,2(t) − u2(xi , t)

)]
,

k = 1, 2, i = 1, . . . N − 1.
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In this way, regrouping these evaluations, we denote

AN(t,UN(t)) = AN(t, [u]N) + ∂AN

∂u
(t, ξN) (UN(t) − [u]N)

On the other hand, from the continuous problem it follows

AN(t, [u]N) = − [
L̃ε[u]]

N
,

and therefore, it holds

L̃ε,NUN(t) − [
L̃ε[u]]

N
+ ∂AN

∂u
(t, ξN) (UN(t) − [u]N) = 0.

Adding and subtracting L̃ε,N [u]N to this equation we have

L̃ε,NUN(t) (UN(t) − [u]N) − [
L̃ε[u]]

N
+

L̃ε,N [u]N + ∂AN

∂u (t, ξN) (UN(t) − [u]N) = 0.

From this, (23) follows.
Using the decomposition of the exact solution in its regular and singular compo-

nents, we split the global error in the form espN(t) = esp,v
N(t) + esp,w

N(t), where
esp,v

N(t) ≡ [v(x, t)]N −VN(t) and esp,w
N(t) ≡ [w(x, t)]N −WN(t) are the solution

of the linear systems(
d
dt

− Dεδxx + ∂AN

∂u

)
esp,v

N(t) = υv,N(t),(
d
dt

− Dεδxx + ∂AN

∂u

)
esp,w

N(t) = υw,N(t),

where the υv,N(t) and υw,N(t) are the local errors associated to the regular and sin-
gular components respectively, joint to initial and boundary conditions equal to 0.
Then, using that the operator (

d

dt
− Dεδxx + ∂AN

∂u

)
,

satisfies a semidiscrete maximum principle (see [7] for more details), it is proven that
all of the estimates satisfied for the local errors υv,N(t) and υw,N(t) are also satisfied
for the global errors esp,v

N(t) and esp,w
N(t). Moreover, taking appropriate barrier

functions, in the same way as in the case of linear systems of reaction-diffusion type
(see [11, 16] for full details), these estimates can be refined and the result of the
theorem follows.

4 The fully discrete scheme: uniform convergence

The second step to construct our numerical algorithm consists of integrating in time,
with appropriate ODE solvers, the families of initial value problems of type (13)
described in previous sections. In fact, in this section we describe such integration
processes for a generalization to n components of these initial value problems which
can be written as follows:
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Find UN(t) ≡ (UN,0(t),UN,1(t), . . . ,UN,N(t)), with UN,i(t) : [0, T ] →
Rn, i = 0, 1, . . . , N , solution of the following initial value problem⎧⎨

⎩
d
dt
UN,i(t) + (LN,εUN(t))i + A(xi, t,UN,i(t)) = 0, i = 1, . . . , N − 1,

UN,0(t) = g0(t), UN,N(t) = g1(t),
UN(0) = (ϕ(x0), . . . , ϕ(xN))T

(24)

Here, the semidiscrete solutions UN,i(t) = (UN,i,1(t), . . . , UN,i,n(t))
T are

approximations of u(xi, t), being xi the grid points of the Shishkin mesh defined in
the previous section and LN,εUN(t) ≡ (LN,ε,1UN(t), . . . ,LN,ε,nUN(t))T is the dis-
cretization, via central differences, of the diffusion term Lx,εu(x, t). Let us assume
that the Shishkin mesh ΩN has been chosen appropriately, in such way that (22) is
satisfied. Notice that in the previous section we have constructed an appropriate ΩN

and proven (22) only for the case n = 2.
Now, let us denote by Um

N = (Um
N,1, U

m
N,2, . . . , U

m
N,n)

T the approximations to

u(tm) = (u1(tm), u2(tm), . . . , un(tm))T on the grid points of ΩN at each time level
tm, m = 0, 1, . . . , M , where, for the sake of simplicity, we consider a uniform mesh
wM = {tm = mτ, m = 0, 1, . . . , M} , with τ = T/M .

Then, our fully discrete scheme can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0
N = (ϕ(x0), . . . , ϕ(xN))T ,

For m = 0, 1, . . . , M − 1,
For j = 1, . . . , n⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U
m+j/n

N,0,j = gj0(tm+1),

U
m+j/n
N,i,j −U

m+(j−1)/n
N,i,j

τ
+ (LN,ε,jU

m+j/n
N )i + aj

(
xi, tm+1,U

m+(j−1)/n
N,i

)
+

∂aj

∂uj

(
xi, tm+1,U

m+(j−1)/n
N,i

) (
U

m+j/n
N,i,j − U

m+(j−1)/n
N,i,j

)
= 0, i =1, . . . , N − 1,

U
m+j/n
N,N,j = gj1tm+1),

U
m+j/n
N,i,k = U

m+(j−1)/n
N,i,k , i = 0, . . . , N, k = 1, . . . , n, k 	= j .

(25)
This scheme combines the technique of splitting by components proposed in [7]

and a local linearization of the nonlinear reaction terms. To clarify the qualities of the
method as well as to complete the analysis in a simpler form, we rewrite it as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0
N = (ϕ(x0), . . . , ϕ(xN))T ,

For m = 0, 1, . . . , M − 1, ! M time steps
For j = 1, . . . , n ! n fractional steps,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
m+j/n

N,0,j = gj0(tm+1),

U
m+j/n
N,i,j + τ(LN,ε,jU

m+j/n
N )i + τ

∂aj

∂uj

(
xi, tm+1,U

m+(j−1)/n
N,i

)
U

m+j/n
N,i,j =

U
m+(j−1)/n
N,i,j − τaj

(
xi, tm+1,U

m+(j−1)/n
N,i

)
+

τ
∂aj

∂uj

(
xi, tm+1,U

m+(j−1)/n
N,i

)
U

m+(j−1)/n
N,i,j , i = 1, . . . , N − 1,

U
m+j/n
N,N,j = gj1(tm+1),

U
m+j/n
N,i,k = U

m+(j−1)/n
N,i,k , i = 0, . . . , N, k = 1, . . . , n, k 	= j .

(26)
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Now, our algorithm shows clearly many advantages from a numerical point of
view. On the one hand, the linearization process which we have chosen avoids having
to solve any nonlinear system to find the numerical solution at each time level; on
the other hand, this splitting decouples the approximation of the components of the
solution, in such way that only a tridiagonal linear system of sizeN−1 must be solved
at each fractional step. The combination of these facts makes that the computational
cost of the algorithm is considerably smaller than the associated one to classical
implicit schemes, specially when the number of components n is large.

Next, we state the main theoretical results which permit one to prove that this
method is unconditionally and uniformly convergent of first order in time.

Lemma 4 Under the assumptions (3), the resolution of the fractional steps defined
in (26) involves linear systems of the form

MN,jU
m+j/n
N,j = bN,j , j = 1, 2, . . . , n,

where MN,j ∈ RN−1×N−1 are tridiagonal, inverse positive and they satisfy

‖(MN,j )
−1‖∞ ≤ 1

1 + βτ
, j = 1, 2, . . . , n. (27)

This result plays a main role to obtain the uniform and unconditional stability, as
well as the uniform and unconditional consistency of first order for method given by
(25). Such properties are stated in the following three Lemmas.

Lemma 5 Assuming (3) and the following Lipschitz type restrictions on the reaction
terms

∂aj

∂uj
(x, t,u) ≤ c1, − ∂aj

∂uk
(x, t,u) ≤ c2, j, k = 1, 2, . . . , n, k 	= j, (28)

it holds
‖Um

N(t)‖ΩN
≤ C, (29)

where the constant C depends on c1, c2, ‖[ϕ(x)]N‖ΩN
, max
1≤m≤M

{‖g0(tm)‖, ‖g1(tm)‖}
and max

1≤m≤M
‖[−A(x, tm, 0)]N‖ΩN

.

Proof To prove (29), we use an inductive reasoning on the fractional steps. We only
show full details to obtain suitable estimates for the first fractional step; for the rest
of fractional steps the reasoning is completely analogue.

Firstly, U1/n
N is the solution of the linear system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U
1/n

N,0,1 = g10(t1),

U
1/n

N,i,1 + τ(LN,ε,jU
1/n
N )i + τ ∂a1

∂u1
(xi, t1, ϕ(xi)) U

1/n

N,i,1 =
ϕ1(xi) − τa1 (xi, t1, ϕ(xi)) +τ ∂a1

∂u1
(xi, t1, ϕ(xi)) ϕ1(xi), i = 1, . . . , N − 1,

U
m+j/n

N,N,1 = g11(t1),

U
1/n
N,i,k = ϕk(xi), i = 0, . . . , N, k = 2, . . . , n.,

(30)
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where t1 = τ . Now, we can resort again to the mean-value theorem to rewrite the
term a1 (xi, t1, ϕ(xi)) in the form

a1(xi, t1, ϕ(xi)) = a1(xi, t1, 0) +
n∑

j=1

∂a1

∂uj

(xi, t1, ϕ̃)ϕj (xi). (31)

From it, taking into account (3) and (28) , it follows

|a1(xi, t1, ϕ(xi))| ≤ |a1(xi, t1, 0)| + c‖ϕ(xi)‖
and now, using classical discrete barrier function techniques, we can prove that it
holds

‖U1/n

N,1‖ ≤ max{|g10(t1)|, |g11(t1)|, (1 + cτ)‖[ϕ]N‖ + τ‖[a1(x, t1, 0)]N‖ΩN

1 + βτ
},

and
‖U1/n

N,k‖ ≤ ‖[ϕ]N‖, k = 2, . . . n.

From these last two bounds, as c > β, we can deduce the coarser but simpler bound

‖U1/n
N ‖ ≤

max{‖g0(t1)‖, ‖g1(t1)‖, (1+cτ)‖[ϕ]N‖+τ‖[A(x,t1,0)]N‖ΩN

1+βτ
}.

Analogously, for the rest of fractional steps we deduce

‖Um+j/n
N ‖ ≤

max{‖g0(tm+1)‖, ‖g1(tm+1)‖, (1+cτ)‖Um+(j−1)/n
N ‖+τ‖[A(x,tm+1,0)]N‖ΩN

1+βτ
}.

From this estimate the required result follows.

Lemma 6 (Uniform stability) . Assuming (3), (28) and∣∣∣ ∂2aj

∂uk∂uj
(x, t,u)

∣∣∣ ≤ c3, j, k = 1, 2, . . . , n, (32)

two solutions of (26), obtained with τ ∈ (0, τ0] from different initial conditions U0
N

and Ũ0
N , satisfy

‖Um+1
N − Ũm+1

N ‖ΩN
≤

(
1 + cτ

1 + βτ

)n

‖Um
N − Ũm

N‖ΩN
, (33)

where c (c > β) depends of c1, c2 and c3 and it is independent of τ , N and ε.

Proof We proceed by induction on the fractional steps j . Let j = 1 be. On the one
hand, it is obvious that U

m+1/n
N,k = Um

N,k and Ũ
m+1/n
N,k = Ũm

N,k for k = 2, . . . , n;

therefore, U
m+1/n
N,k − Ũ

m+1/n
N,k = Um

N,k − Ũm
N,k for k = 2, . . . , n. On the other one,

using (28), (32),Um+1/n

N,1 −Ũ
m+1/n

N,1 can be described as the solution of a linear system
of the form

MN,1(U
m+1/n

N,1 − Ũ
m+1/n

N,1 ) = Um
N,1 − Ũm

N,1 + τ O(Um
N,1 − Ũm

N,1).
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Combining these two facts and (27), it is immediate that

‖Um+1/n
N − Ũm+1/n

N ‖ΩN
≤ 1 + cτ

1 + βτ
‖Um

N − Ũm
N‖ΩN

.

Now, let us suppose that for 1 < j < n it holds

‖Um+j/n
N − Ũm+j/n

N ‖ΩN
≤

(
1 + cτ

1 + βτ

)j

‖Um
N − Ũm

N‖ΩN
.

Again, it is obvious that U
m+(j+1)/n
N,k − Ũ

m+(j+1)/n
N,k = U

m+j/n
N,k − Ũ

m+j/n
N,k for

k = 1, . . . , n, k 	= j + 1. Moreover, from (28) and (32) it follows U
m+(j+1)/n

N,j+1 −
Ũ

m+(j+1)/n

N,j+1 can be described as the solution of a linear system of the form

MN,j+1(U
m+(j+1)/n

N,1 −Ũ
m+(j+1)/n

N,j+1 ) = U
m+j/n

N,j+1 −Ũ
m+j/n

N,j+1 +τ O(U
m+j/n

N,j+1 −Ũ
m+j/n

N,j+1 ).

Combining these two facts and (27), it holds

‖Um+(j+1)/n
N − Ũm+(j+1)/n

N ‖ΩN
≤

(
1 + cτ

1 + βτ

)j+1

‖Um
N − Ũm

N‖ΩN
,

which is the required result.

To study the consistency of the time discretization, we introduce in a standard
way the concept of the local error at time tm+1, denoted by em+1

N , as the difference
UN(tm+1) − Ûm+1

N , being Ûm+1
N the result of the (m + 1)-th step of scheme (25), but

changing Um
N by UN(tm). Then, the following consistency result follows.

Lemma 7 Under the smoothness and compatibility assumptions made for the data
of (1), it holds

‖em+1
N ‖ΩN

≤ CM−2, ∀τ ∈ (0, τ0], m = 0, 1, . . . ,M − 1. (34)

Proof To simplify, we introduce the following notation

Ũm+j/n
N ≡ (Ũ

m+j/n

N,1 , Ũ
m+j/n

N,2 , . . . , Ũ
m+j/n
N,n )T ,

where Ũ
m+j/n
N,k = UN,k(tm+1), k = 1, . . . , j, Ũ

m+j/n
N,k = UN,k(tm), k = j +

1, . . . , n. Clearly, Ũm
N = UN(tm) and Ũm+1

N = UN(tm+1).
Using Taylor’s expansion we obtain

UN,i,1(tm) = UN,i,1(tm+1) − τ
dUN,i,1(tm+1)

dt
+ O(τ 2), i = 1, . . . , N − 1,

where, for i = 1, . . . , N − 1, we have

dUN,i,1(tm+1)

dt
= −(LN,ε,1UN(tm+1))i − a1(xi, tm+1,UN,i(tm+1)) =

−(LN,ε,1UN(tm+1))i − a1(xi, tm+1,UN,i(tm))−
∂a1(xi ,tm+1,UN,i (tm))

∂u1

(
UN,i,1(tm+1) − UN,i,1(tm)

) + O(τ 2).
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Therefore, UN,1(tm+1) ≡ Ũ
m+1/n

N,1 can be described as solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ũ
m+1/n

N,0,1 = g10(tm+1),

Ũ
m+1/n

N,i,1 + τ(LN,ε,1Ũ
m+1/n
N )i + τ ∂a1

∂u1

(
xi, tm+1, Ũm

N,i

)
Ũ

m+1/n

N,i,1 = Ũm
N,i,1−

τa1

(
xi, tm+1, Ũm

N,i

)
+ τ ∂a1

∂u1

(
xi, tm+1, Ũm

N,i

)
Ũm

N,i,1 + O(τ 2), i =1, . . . , N−1,

Ũ
m+1/n

N,N,1 = g11(tm+1).

A similar reasoning applied to UN,j (tm+1) ≡ Ũ
m+1/n
N,j , j = 2, . . . , n, permits one

to deduce that UN(tm+1) ≡ Ũm+1
N can be described as solution of the following

algorithm:

For j = 1, . . . , n,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũ
m+j/n

N,0,j = gj0(tm+1),

Ũ
m+j/n
N,i,j + τ(LN,ε,j Ũ

m+j/n
N )i + τ

∂aj

∂uj

(
xi, tm+1, Ũ

m+(j−1)/n
N,i

)
Ũ

m+j/n
N,i,j =

Ũ
m+(j−1)/n
N,i,j − τaj

(
xi, tm+1, Ũ

m+(j−1)/n
N,i

)
+

τ
∂aj

∂uj

(
xi, tm+1, Ũ

m+(j−1)/n
N,i

)
Ũ

m+(j−1)/n
N,i,j + O(τ 2), i = 1, . . . , N − 1,

Ũ
m+j/n
N,N,j = gj1(tm+1),

Ũ
m+j/n
N,i,k = Ũ

m+(j−1)/n
N,i,k , i = 0, . . . , N, k = 1, . . . , n, k 	= j .

(35)

Finally, comparing this algorithm and the one which defines Ûm+1
N , we deduce that

the local error em+1
N can be defined as the solution of

For j = 1, . . . , n,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
m+j/n

N,0,j = 0,

e
m+j/n
N,i,j + τ(LN,ε,j e

m+j/n
N )i + τ

∂aj

∂uj

(
xi, tm+1, Ũ

m+(j−1)/n
N,i

)
e
m+j/n
N,i,j =

e
m+(j−1)/n
N,i,j + O(τ 2), i = 1, . . . , N − 1,

e
m+j/n
N,N,j = 0,

e
m+j/n
N,i,k = e

m+(j−1)/n
N,i,k , i = 0, . . . , N, k = 1, . . . , n, k 	= j,

(36)

being em
N = 0 only in this formula; applying now (27), the required result follows.

To conclude the analysis of the time integration process we introduce the global
error in time at time level tm+1 as Em+1

N ≡ UN(tm+1) − Um+1
N . Then, combining

the last two results, the following uniform and unconditional first order convergence
result can be deduced.

Theorem 2 Under the hypotheses of Lemmas 6 and 7, the global error of the time
discretization satisfies

‖Em+1
N ‖ΩN

≤ CM−1, m = 0, 1, . . . ,M − 1. (37)

Finally, taking into account. the results (22) and (37), we are ready to state the
main result for our numerical algorithm.
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Theorem 3 Under the same hypotheses of the previous Theorem, the global errors
for the fully discrete method (25) satisfy

max
1≤m≤M, 1≤i≤N−1

‖Um
N,i − u(xi, tm)‖ ≤ C

(
N−2 ln2 N + M−1

)
, (38)

being C a positive constant independent of ε and the discretization parameters N

and M .

5 Numerical results

In this section we show the numerical results obtained with the proposed algorithm to
solve successfully some problems of type (1). All results have been obtained in a PC
with an Intel(R) Core(TM) i5-3470 running @3.20 GHz processor with four cores.
The computations have been performed in only one core using GNU Fortran with
optimization -O2. The tridiagonal linear systems involved in our method are solved
by using our own implementation of the Thomas algorithm.

The data for the first test problem are

n = 2, T = 1,

a1(x, t,u) = 3u1 − 2u2 + t2(e−u21 + sin(u2)) + t (1 − e3t ) sin(πx),

a2(x, t,u) = −t2u1(1 + 1
1+u21

) + 3u2 − 10t2(1 − cos(2πx)),

ϕ(x) = (1, 1)T ,

g0(t) = (8t3 − 1.5t2 + t + 1, 4.5t2 + 3t + 1)T , g1(t) = (20t3 + et − 2t2, e3t )T .
(39)

Figure 1 displays the numerical approximation for both components, showing the
boundary layers at x = 0 and x = 1.

As the exact solution is unknown, to approximate the maximum errors for each
component uk , given by

max
0≤m≤M

max
0≤i≤N

|Um
N,i,k − uk(xi, tm)|, k = 1, 2,
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Fig. 1 Components 1 (left) and 2 (right) of problem (39) for ε1 = 10−6, ε2 = 10−4 with N = M = 32
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we use a variant of the double-mesh principle (see [9] for instance); we calculate

d
N,M
ε,k = max

0≤m≤M
max
0≤i≤N

|Um
N,i,k − Û2m

2N,2i,k|, d
N,M
k = max

ε
d

N,M
ε,k , k = 1, 2, (40)

where {Ûm
2N,j } is the numerical solution on a finer mesh {(x̂j , t̂m)} that consists

of the mesh points of the coarse mesh and their midpoints. From the double-mesh
differences computed in (40), we obtain the corresponding orders of convergence by

pk = log(dN,M
ε,k /d

2N,2M
ε,k )/ log 2, puni

k = log(dN,M
k /d

2N,2M
k )/ log 2, k = 1, 2. (41)

Table 1 shows the maximum errors and their corresponding orders of convergence
for some values of diffusion parameter ε2, for all of the values of ε1 which belong to
the set R = {ε1; ε1 = ε2, 2−2ε2, . . . , 2−32} and for different values of the discretiza-
tion parameters N and M = N/2, taking σ0 = 2 in (12). Concretely, for each value
of ε2 the first two rows show errors and numerical orders associated with u1 and the

Table 1 Maximum errors and orders of convergence for problem (39)

ε2 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

4.4712E−1 2.2800E−1 1.1691E−1 5.9190E−2 2.9780E−2 1.4937E−2

2−6 0.9716 0.9637 0.9820 0.9910 0.9955

2.0788E−1 8.0890E−2 3.2455E−2 1.4156E−2 6.6740E−3 3.2668E−3

1.3617 1.3175 1.1970 1.0848 1.0307

5.2714E−1 2.4811E−1 1.1693E−1 5.9139E−2 2.9741E−2 1.4915E−2

2−8 1.0872 1.0853 0.9835 0.9916 0.9957

6.0267E−1 1.6645E−1 5.6524E−2 1.9897E−2 7.8180E−3 3.3633E−3

1.8563 1.5582 1.5063 1.3476 1.2169

8.3962E−1 3.5312E−1 1.5142E−1 6.4130E−2 2.9744E−2 1.4892E−2

2−10 1.2496 1.2216 1.2395 1.1084 0.9981

1.9904E+0 6.5169E−1 1.8333E−1 4.6582E−2 1.3988E−2 4.8728E−3

1.6108 1.8297 1.9766 1.7356 1.5214

8.4061E−1 5.0600E−1 2.4994E−1 1.0848E−1 4.4932E−2 1.8415E−2

2−12 0.7323 1.0176 1.2042 1.2716 1.2868

1.9915E+0 1.2068E+0 5.5215E−1 2.0927E−1 6.9831E−2 2.1528E−2

0.7226 1.1281 1.3997 1.5834 1.6977

... ... ... ... ... ... ...

... ... ... ... ... ... ...

5.7516E−1 3.3677E−1 1.5069E−1 5.1423E−2 2.3214E−2 1.1814E−2

2−24 0.7722 1.1602 1.5511 1.1474 0.9745

1.3393E+0 7.3938E−1 2.9396E−1 8.9848E−2 2.2968E−2 6.5908E−3

0.8571 1.3307 1.7101 1.9679 1.8011

d
N,M
1 8.4134E−1 5.0659E−1 2.5018E−1 1.0854E−1 4.4961E−2 1.8430E−2

puni
1 0.7319 1.0179 1.2048 1.2714 1.2866

d
N,M
2 1.9920E+0 1.2075E+0 5.5245E−1 2.0939E−1 6.9882E−2 2.1551E−2

puni
2 0.7222 1.1281 1.3996 1.5832 1.6972
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following two rows to u2. From it, we see that the order of convergence for each
value of ε2 is one in the first component; in the second component, for large values
of ε2 the order is also one and for small values of ε2 the order is almost two.

To show the efficiency of our algorithm, we compare the CPU times when solving
(39) with a classical method and our algorithm for some values of N, M = N/2 and
fixed values of the diffusion parameters. Such classical method combines the implicit
Euler method to discretize in time, which does not decouple the components of the
system, with the central differences scheme defined on the same Shishkin mesh.
Besides, to compute the numerical approximation of both components at each time

Table 2 Maximum errors and orders of convergence for problem (39) using the classical method

ε2 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

1.7024E−1 9.8688E−2 5.1141E−2 2.0918E−2 8.5472E−3 3.9086E−3

2−6 0.7866 0.9484 1.2898 1.2912 1.1288

3.3098E−1 1.7099E−1 8.6885E−2 4.3762E−2 2.1959E−2 1.1003E−2

0.9528 0.9768 0.9894 0.9948 0.9970

2.1160E−1 9.8475E−2 5.1960E−2 2.1418E−2 8.6380E−3 4.3119E−3

2−8 1.1035 0.9224 1.2786 1.3101 1.0024

7.7193E−1 2.5980E−1 1.0159E−1 5.1189E−2 2.5696E−2 1.2879E−2

1.5711 1.3547 0.9888 0.9943 0.9965

7.6048E−1 2.4707E−1 7.2399E−2 2.5125E−2 1.0610E−2 5.0118E−3

2−10 1.6220 1.7709 1.5268 1.2437 1.0820

2.1794E+0 7.3956E−1 2.3571E−1 7.1460E−2 2.7903E−2 1.3982E−2

1.5592 1.6497 1.7218 1.3567 0.9968

7.6096E−1 4.4042E−1 1.9328E−1 6.7411E−2 2.2876E−2 7.7750E−3

2−12 0.7890 1.1882 1.5196 1.5592 1.5569

2.1814E+0 1.2799E+0 5.8527E−1 2.2554E−1 7.9244E−2 2.6757E−2

0.7692 1.1289 1.3757 1.5090 1.5664

... ... ... ... ... ... ...

... ... ... ... ... ... ...

6.5423E−1 3.6442E−1 1.6352E−1 6.1120E−2 2.1457E−2 7.9185E−3

2−24 0.8442 1.1561 1.4198 1.5102 1.4381

1.6611E+0 8.8803E−1 3.7338E−1 1.3474E−1 4.7748E−2 1.8271E−2

0.9034 1.2500 1.4704 1.4967 1.3859

d
N,M
1 7.6117E−1 4.4042E−1 1.9328E−1 6.7411E−2 2.3030E−2 7.9185E−3

puni
1 0.7894 1.1882 1.5196 1.5495 1.5402

d
N,M
2 2.1826E+0 1.2815E+0 5.8642E−1 2.2585E−1 7.9371E−2 2.6823E−2

puni
2 0.7683 1.1278 1.3766 1.5087 1.5652
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Table 3 CPU time for problem (39) with ε2 = 2−16 and ε1 = 2−20

N = 128 N = 256 N = 512 N = 1024 N = 2048

Splitting 0.03120 0.09360 0.34320 1.34161 5.28843

Classical 0.18720 0.73320 2.74562 10.51447 40.82546

step, a nonlinear system must be solved. For that, we use Newton’s method with the
following stopping criterion

‖Um,k+1
N − Um,k

N ‖ ≤ 10−1 min{M−2, M−1N−2 ln2 N}, (42)

being Um,k
N the approximation of Um

N given by the iteration k of Newton’s method. In

all cases, the initial iteration of Newton’s method is taken as Um,0
N = Um−1

N .
Table 2 shows the maximum errors and their corresponding orders of convergence

obtained, for the same values of the diffusion parameters as before, but now using
the classical method. If we compare Tables 1 and 2, we observe that the computed
errors and the numerical orders of convergence for both methods are similar. In this
example comparing most of the cells, mainly those ones related to not very small
values of ε2, the classical method give smaller errors for the first component and the
new method gives smaller errors for the second one. Nevertheless, in other examples
the opposite occurs. The important fact to note here is that both methods always show
a similar behavior with respect to the order of uniform convergence with respect to
the diffusion parameters.

Table 3 shows the required CPU time in seconds using our algorithm and the
classical method described previously. From it, we see that our algorithm is faster
than the classical one as it was expected.

For a second test, we have chosen a system with three equations, given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u1
∂t

− ε1
∂2u1
∂x2

+ 4u1 − u2 − u3 + cos(u2 + u3) − 2t (x − x2 + sin(πx)) − 4 = 0,
∂u2
∂t

− ε2
∂2u2
∂x2

− (u1 + sin(u1)) + 7u2 + sin2(u2) − (u3 − cos(u3)) − (1 + xt) = 0,
∂u3
∂t

− ε3
∂2u3
∂x2

− u1 − u2 + 4u3 − sin(u3) + 8(et − 1)x = 0,
u(0, t) = u(1, t) = (10t sin(t), 10 cos(t)(1 − e−t ), 10 sin2(t))T , t ∈ [0, 1],
u(x, 0) = 0, x ∈ [0, 1],

(43)

whose exact solution is again unknown. Figure 2 displays the numerical approx-
imation for the three components, showing boundary layers at x = 0 and x =
1.

Now, in general, three overlapping boundary layers appear in the exact solution of
the continuous problem; because of that, the Shishkin mesh is constructed as follows.
We define three transition parameters by

σε3 = min
{
1/4, σ0

√
ε3 lnN

}
, σε2 = min

{
σε3/2, σ0

√
ε2 lnN

}
,

σε1 = min
{
σε2/2, σ0

√
ε1 lnN

}
,

(44)

Numerical Algorithms (2020) 85:1005–1027 1023



0
0 0

2

0.2 0.2

4

0.4

nu
m

er
ic

al
 s

ol
ut

io
n

0.4

time

6

space

0.6 0.6

8

0.8 0.8

10

1 1

0
00

1

0.20.2

2

0.40.4

nu
m

er
ic

al
 s

ol
ut

io
n

spacetime

3

0.60.6
0.80.8

4

11

0
0

00.2

2

0.2
0.4

time

0.4

space

4

0.6

nu
m

er
ic

al
 s

ol
ut

io
n

0.6
0.8 0.8

6

1 1

8

Fig. 2 Components of problem (43) for ε1 = 10−6 ε2 = 10−4, ε3 = 10−2, with N = 36,M = 32 (left
up u1, right up u2, bottom u3)

and, taking N a positive integer multiple of 12, the grid points are given by

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ihε1 , i = 0, . . . , N/12,
xN/12 + (i − N/12)hε2 , i = N/12 + 1, . . . , N/6,
xN/6 + (i − N/6)hε3 , i = N/6 + 1, . . . , N/4,
xN/4 + (i − N/4)H, i = N/4 + 1, . . . , 3N/4,
x3N/4 + (i − 3N/4)hε3 , i = 3N/4 + 1, . . . , 10N/12,
x10N/12 + (i − 10N/12)hε2, i = 10N/12 + 1, . . . , 11N/12,
x11N/12 + (i − 11N/12)hε1, i = 11N/12 + 1, . . . , N,

where hε1 = 12σε1/N, hε2 = 12(σε2 − σε1)/N, hε3 = 12(σε3 − σε2)/N, H =
2(1 − 2σε3)/N .

We use again the double-mesh principle to estimate the maximum errors. Table 4
shows the maximum errors and their corresponding numerical orders of convergence
for the three components, choosing some values of ε3, of the discretization parame-
ters N and M = N/2 and σ0 = 2 in (44). Besides ε2 covers the set R2 = {ε2; ε2 =
ε3, 2−2ε3, . . . , 2−22} and ε1 the set R1 = {ε1; ε1 = ε2, 2−2ε2, . . . , 2−26}. For each
value of ε3, the first and second rows correspond to errors and orders for the first com-
ponent, the third and the fourth ones to the second component and the fifth and sixth
ones to the third component. From it, we observe uniform convergence of almost
second order.

We compare again the CPU times of our method and the same classical method as
in the first example, when solving the problem (43) for some values of N, M = N/2
and fixed values for the diffusion parameters εi, i = 1, 2, 3. We have used the same
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Table 4 Maximum errors and orders of convergence for problem (43)

ε3 N = 36 N = 72 N = 144 N = 288 N = 576

2.1581E−1 1.3817E−1 1.2942E−1 6.8559E−2 2.2127E−2

0.6433 0.0943 0.9167 1.6315

4.8666E−1 3.3986E−1 1.8692E−1 7.9027E−2 2.7815E−2

2−6 0.5180 0.8625 1.2420 1.5065

2.0175E−1 5.7365E−2 1.4771E−2 4.2012E−3 1.2789E−3

1.8143 1.9574 1.8140 1.7158

2.2523E−1 1.4799E−1 1.2933E−1 6.8542E−2 2.2120E−2

0.6060 0.1944 0.9160 1.6316

4.8742E−1 3.3938E−1 1.8664E−1 7.8897E−2 2.7750E−2

2−8 0.5223 0.8626 1.2422 1.5075

5.1129E−1 2.0836E−1 6.0727E−2 1.6210E−2 4.4035E−3

1.2951 1.7787 1.9054 1.8802

2.7208E−1 1.7595E−1 1.2888E−1 6.8711E−2 2.2094E−2

0.6289 0.4491 0.9074 1.6369

4.9959E−1 3.3914E−1 1.8621E−1 7.8664E−2 2.7637E−2

2−10 0.5588 0.8650 1.2431 1.5091

8.1619E−1 5.3046E−1 2.2115E−1 6.5722E−2 1.7366E−2

0.6217 1.2622 1.7505 1.9201

2.7196E−1 1.7608E−1 1.2809E−1 6.8713E−2 2.2469E−2

0.6271 0.4591 0.8985 1.6127

4.9958E−1 3.4342E−1 1.8677E−1 7.8546E−2 2.7527E−2

2−12 0.5407 0.8788 1.2496 1.5127

7.5357E−1 5.2092E−1 2.7600E−1 1.1199E−1 3.7128E−2

0.5327 0.9164 1.3013 1.5927

... ... ... ... ... ...

... ... ... ...

1.9767E−1 1.7647E−1 1.2718E−1 6.8720E−2 2.2472E−2

0.1637 0.4725 0.8881 1.6126

2.0346E−1 8.9912E−2 3.7251E−2 1.2239E−2 4.2506E−3

2−18 1.1782 1.2712 1.6058 1.5257

2.8627E−1 1.2518E−1 4.3103E−2 1.2981E−2 3.7508E−3

1.1934 1.5381 1.7314 1.7912

d
N,M
1 2.7208E−1 1.7647E−1 1.2942E−1 6.8720E−2 2.2472E−2

puni
1 0.6246 0.4473 0.9133 1.6126

d
N,M
2 4.9959E−1 3.4342E−1 1.8692E−1 7.9027E−2 2.7815E−2

puni
2 0.5408 0.8776 1.2420 1.5065

d
N,M
3 8.1619E−1 5.3046E−1 2.7600E−1 1.1199E−1 3.7128E−2

puni
3 0.6217 0.9426 1.3013 1.5927
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Table 5 CPU time for problem (43) with ε3 = 2−12, ε2 = 2−16 and ε1 = 2−20

N = 144 N = 288 N = 576 N = 1152 N = 2304

splitting 0.06240 0.21840 0.81120 3.26042 12.96368

classical 0.78000 3.10442 12.10568 48.82831 192.92644

stopping criterion given in (42) for Newton’s method. Table 5 shows the required
CPU time in seconds using our algorithm and the classical method. From it, we see
a speedup for our algorithm respect to the classical one, due to the increase of n, as
it was expected.

6 Conclusions

In this work, we have designed and analyzed an efficient and uniformly conver-
gent numerical method for solving semilinear parabolic singularly perturbed systems
of reaction-diffusion type. The method combines central differences on Shishkin
meshes to discretize in space and a splitting linearly implicit method to integrate in
time, in such way that only small linear tridiagonal systems must be solved to advance
in time. The numerical algorithm has uniform and unconditional convergence of first
order in time and almost second order in space. Some numerical experiences show
its approximation qualities as well as its computational advantages, compared with
other classical choice. Such advantages are more remarkable when the number of
components of the system is large.

Funding information This research was partially supported by the projects MTM2014-52859-P and
MTM2017-83490-P and the Aragón Government and European Social Fund (group E24-17R).
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