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Abstract
Double-step scale splitting (DSS) iteration method is proved to be an unconditionally
convergent iteration method, which is also efficient and robust for solving a class of
large sparse complex symmetric systems of linear equations. In this paper, by mak-
ing use of the DSS iteration technique as the inner solver to approximately solve the
Newton equations, we establish a newmodified Newton-DSSmethod for solving sys-
tems of nonlinear equations whose Jacobian matrices are large, sparse, and complex
symmetric. Subsequently, we investigate the local and semilocal convergence prop-
erties of our method under some proper assumptions. Finally, numerical results on
some problems illustrate the superiority of our method over some previous methods.
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1 Introduction

We assume that F : D ⊂ C
n → C

n is a continuously differentiable mapping defined
on an open convex subset of n-dimensional complex linear space C

n and consider
the iteration solution of the large sparse system of nonlinear equations:

F(x) = 0. (1.1)

The Jacobian matrix of F(x) is large, sparse, and complex symmetric, i.e.,

F ′(x) = W(x) + iT (x) (1.2)

satisfies that matrices W(x) and T (x) are both symmetric and real positive definite,
which implies that the complex matrix F ′(x) is nonsingular. i = √−1 is the imagi-
nary unit. Actually, such nonlinear equations can be derived in many practical cases,
such as nonlinear waves, quantum mechanics, chemical oscillations, and turbulence
(see [1–4]).

To our knowledge, inexact Newton method [5] is the most classic and popular iter-
ation method for solving the system of nonlinear equations, which can be formulated
as:

F ′(xk)sk = −F(xk) + rk, with xk+1 := xk + sk,

where x0 ∈ D is a given initial vector and rk is a residual yielded by the inner iter-
ation. Obviously, it is the variant of Newton’s method where the so-called Newton
equation

F ′(xk)sk = −F(xk)

is solved approximately at each iteration. In particular, when the scale of problems is
large, linear iterative methods are commonly applied to compute the approximation
solution. For example, the Newton-Krylov subspace methods [6], which make use
of Krylov subspace methods as inner iterations to solve the Newton equations, have
been widely studied and successfully used.

Recently, based on the Hermitian and skew-Hermitian splitting (HSS) iteration
method [7] and the special structure of the complex matrix, Bai et al. have proposed
a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method [8]
and its preconditioned version which is called PMHSS iteration method [9] for the
complex linear systems. Because of the elegant properties and high efficiency, the
HSS-like iteration methods for complex linear systems have extended in many liter-
atures (see [10–16]). Thereinto, a double-step scale splitting (DSS) iteration scheme
[16] was established for solving the complex symmetric linear system

Ax = b, A = W + iT ∈ C
n×n and x, b ∈ C

n

with matrices W and T both symmetric and real positive definite. It not only is
convergent unconditionally but also behaves better than PMHSS iteration method.

By utilizing the HSS iteration method as the inner iteration, Bai and Guo [17]
have presented the Newton-HSS method for solving the system of nonlinear equa-
tions with non-Hermitian positive definite Jacobian matrices. Meanwhile, the local
convergence theorem of Newton-HSS method was proved. Since then, Guo et al. [18]
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analyzed the semilocal convergence properties of the above Newton-HSS method.
Focusing on the efficiency of the outer iteration method, Wu and Chen [19] have
established the modified Newton-HSS method by utilizing the modified Newton
method as the outer iteration instead of the Newton method, and given proof of the
local and semilocal convergence properties of the method. Subsequently, Chen et al.
[20] gave a new convergence theorem of the modified Newton-HSSmethod under the
Hölder continuous condition, which is weaker than the Lipschitz continuous condi-
tion. Up to now, there have been a series of literatures showing the feasibleness of the
combination of the modified Newton method and other HSS-like iteration methods
(see [21–26]).

Nevertheless, when the Jacobian matrices (1.2) are complex, the convergence
speed of Newton-HSS method reduces significantly since the resolution of the lin-
ear system needs a complex algorithm. In order to overcome this deficiency, Yang
et al. [27] and Zhong et al. [28] presented the Newton-MHSS method and the modi-
fied Newton-PMHSS method, respectively. Inspired by the above ideas, it is natural
to try to combine the DSS iteration method and the modified Newton method as
the inner solver and outer solver, respectively. As a result, we construct a modified
Newton-DSSmethod for the systems of nonlinear equations with complex symmetric
Jacobian matrices. Under some reasonable assumptions, the local and semilocal con-
vergence theorems of the modified Newton-DSS method are discussed. Finally, we
examine the feasibility and efficiency of our method by several numerical examples.

The organization of this paper is as follows. In Section 2, we introduce the mod-
ified Newton-DSS method. The local and semilocal convergence properties of the
MNDSS method are shown under some suitable assumptions in Sections 3 and 4,
respectively. Some numerical results are given in Section 5 to illustrate the advan-
tages of our method compared to the modified Newton-MHSS method even modified
Newton-PMHSS method. Finally, in Section 6, we give some brief conclusions.

2 Themodified Newton-DSSmethod

Firstly, let us review some of the standard facts on the double-step scale splitting
(DSS) iteration method [15]. Consider the iteration solution of the following linear
system

Ax = b, A ∈ C
n×n, x, b ∈ C

n, (2.1)

where A is a complex symmetric matrix of the form

A = W + iT ,

and W, T ∈ R
n×n are both positive definite and symmetric. Based on the special

structure of the coefficient matrix A, Bai et al. in [8] designed a modification of the
Hermitian and skew-Hermitian splitting (HSS) iteration method [7] which is called
MHSS iteration method. Subsequently, a preconditioned MHSS (PMHSS) iteration
method was derived in [9]. In order to improve the convergence rate of the PMHSS
method, lots of researchers have developed some efficient iteration methods.
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Recently, by picking up the idea of symmetry of the PMHSS method and using the
technique of scaling to reconstruct complex linear system, Zheng et al. [16] designed
a double-step scale splitting (DSS) iteration method. In this method, by multiply-
ing parameters (α − i) and (1 − iα) for both side of complex linear system (2.1),
respectively, we obtain two fixed point equations, i.e.,

(αW + T )x = i(W − αT )x + (α − i)b

and

(αT + W)x = i(αW − T )x + (1 − iα)b

Based on the above matrix splitting, there are two iteration formations that we can
construct:

(αW + T )x
k+ 1

2
= i(W − αT )xk + (α − i)b

and

(αT + W)xk+1 = i(αW − T )x
k+ 1

2
+ (1 − iα)b

Similar to the construction of the PMHSS iteration method, DSS iteration
method is proposed by alteranting between above iterations for solving the complex
symmetric linear system (2.1). It is described as follows:

Since W, T are symmetric and positive definite, and α ∈ R is positive, it implies
that matrices αW + T and αT + W are both symmetric and positive definite. There-
fore, the two subsystems involved in each step of the DSS iteration method (2.2)
can be effectively solved exactly by a sparse Cholesky factorization, or inexactly by
a preconditioned conjugate gradient (PCG) scheme. Theoretical analysis proved the
unconditional convergence of the DSS iteration method and presented two recipro-
cal optimal iteration parameters. Moreover, the DSS iteration method is superior to
the PMHSS iteration method in terms of the iteration counts and CPU time in some
numerical examples (for details, see [16]).
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After straightforward operations, the above DSS iteration method can be equiva-
lently reformulated as the standard form

xk+1 = M(α)xk + N(α)b

= M(α)k+1x0 +
k∑

j=0

M(α)jN(α)b, k = 0, 1, 2, . . . , (2.3)

where

M(α) = (αT + W)−1(αW − T )(αW + T )−1(αT − W),

N(α) = 2α(αT + W)−1(W − iT )(αW + T )−1.

M(α) = (αT + W)−1(αW − T )(αW + T )−1(αT − W),

N(α) = 2α(αT + W)−1(W − iT )(αW + T )−1.

Hence, the unconditional convergence property of the DSS iteration method given in
[16] can be described as follows.

Theorem 2.1 Let A = W + iT ∈ C
n×n be a nonsingular matrix with W and T

both symmetric and positive definite. Let α be a positive constant. Then the spectral
radius of the DSS iteration method satisfies

ρ(M(α)) = max
μ∈sp(W−1T )

∣∣∣∣∣
(α + 1

α
) − (μ + 1

μ
)

(α + 1
α
) + (μ + 1

μ
)

∣∣∣∣∣

where sp(W−1T ) denotes the spectrum of the matrix W−1T . Consequently,

ρ(M(α)) < 1, for ∀α > 0,

so the DSS iteration method converges to the unique solution of the linear system
(2.1) for any initial guess.

Now, inspired by the MN-HSS method [19] which utilizing the modified Newton
iteration

{
yk = xk − F ′(xk)

−1F(xk),

xk+1 = yk − F ′(xk)
−1F(yk),

as the outer iteration, which has R-order of convergence three at least, we can estab-
lish a new method named modified Newton-DSS method since the DSS iteration
method is applied as the inner iteration. It means that we employ the DSS iteration
method to the following linear systems:

F ′(xk)dk = −F(xk), yk = xk + dk,

F ′(xk)hk = −F(yk), xk+1 = yk + hk, (2.4)

Then, the MN-DSS method for solving the nonlinear sysytem (1.1) with complex
symmetric Jacobian matrices is obtained as Algorithm 2 shows.
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From the iterative scheme (2.3), the modified Newton-DSS method can be
rewritten as following equivalent form after uncomplicated derivations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yk = xk −
lk−1∑
j=0

M(α; xk)
jN(α; xk)F (xk),

xk+1 = yk −
mk−1∑
j=0

M(α; xk)
jN(α; xk)F (yk),

k = 0, 1, 2, . . . (2.7)

where
M(α; x) = (αT (x) + W(x))−1(αW(x) − T (x))(αW(x) + T (x))−1(αT (x) − W(x)),

N(α; x) = 2α(αT (x) + W(x))−1(W(x) − iT (x))(αW(x) + T (x))−1.

Define matrices B(α; x) and C(α; x) by

B(α; x) = 1

2α
(αW(x) + T (x))(W(x) − iT (x))−1(αT (x) + W(x)),

C(α; x) = 1

2α
(αW(x) − T (x))(W(x) − iT (x))−1(αT (x) − W(x)).
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An easy computation shows that the Jacobian matrix F ′(x) possesses a new
expression as

F ′(x) = B(α; x) − C(α; x),

and

M(α; x) = B(α; x)−1C(α; x),

N(α; x) = B(α; x)−1,

F ′(x)−1 = (I − M(α; x))−1N(α; x) (2.8)

Due to (2.7) and Neumann Lemma, the modified Newton-DSS method can be
equivalently expressed as the following form

{
yk = xk − (I − M(α; xk)

lk )F ′(xk)
−1F(xk),

xk+1 = yk − (I − M(α; xk)
mk )F ′(xk)

−1F(yk),
k = 0, 1, 2, . . . (2.9)

3 Local convergence theorem of themodified Newton-DSSmethod

In this section, we analyze the local convergence property of the modified Newton-
DSS method and prove the local convergence theorem. First of all, we summarize
without proofs the relevant definitions and lemmas.

Definition 3.1 A nonlinear mapping F : D ⊂ C
n → C

n is Gateaux differentiable
(or G-differentiable) at an interior point x of D if there exists a linear operator A ∈
L(Rn,Rm) such that

lim
t→0

1

t
‖F(x + th) − F(x) − tAh‖ = 0

for any h ∈ C
n. Moreover, F : D ⊂ C

n → C
n is said to be G-differentiable on an

open set D0 ⊂ D if it is G-differentiable at any point in D0

Lemma 3.1 (Neumann Lemma) Let A ∈ L(Rn) satisfy ‖A‖ < 1. Then (I − A)−1

exists and

(I − A)−1 = lim
k→∞

k∑

i=0

Ai .

Lemma 3.2 (Banach Lemma) Let A, B ∈ C
n×n satisfy ‖I − BA‖ < 1. Then the

matrices A, B are nonsingular. Moreover,

‖A−1‖ ≤ ‖B‖
1 − ‖I − BA‖ , ‖B−1‖ ≤ ‖A‖

1 − ‖I − BA‖ ,

and

‖A−1 − B‖ ≤ ‖B‖‖I − BA‖
1 − ‖I − BA‖ , ‖A − B−1‖ ≤ ‖A‖‖I − BA‖

1 − ‖I − BA‖
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Assume that F : D ⊂ C
n → C

n is G-differentiable on an open neighborhood
N0 ⊂ D of a point x∗ ∈ D at which the Jacobian matrix F ′(x) is continuous, positive
definite, complex symmetric and F(x∗) = 0. Let us split F ′(x) into the form F ′(x) =
W(x) + iT (x), where W(x) and T (x) are both real positive definite and symmetric
matrices for any x ∈ D, respectively. Denote with N(x∗, r) an open ball centered at
x∗ with radius r > 0.

Assumption 3.1 For all x ∈ N(x∗, r) ⊂ N0, suppose that the following conditions
hold. (THE BOUNDED CONDITION) there exist positive constants β, γ and δ such
that

max{‖W(x∗)‖, ‖T (x∗)‖} ≤ β, ‖F ′(x∗)−1‖ ≤ γ .

(THE LIPSCHITZ CONDITION) there exist nonnegative constants Lw and Lt such
that

‖W(x) − W(x∗)‖ ≤ Lw‖x − x∗‖,
‖T (x) − T (x∗)‖ ≤ Lt‖x − x∗‖.

In the following, we will prove the local convergence of our method.

Lemma 3.3 If r ∈ (0, 1
γL

) and Assumption 3.1 holds, then F ′(x)−1 exists for any
x ∈ N(x∗, r) ⊂ N0. Moreover, the following inequalities hold with L := Lw + Lt

for all x, y ∈ N(x∗, r):

‖F ′(x) − F ′(x∗)‖ ≤ L‖x − x∗‖,
‖F ′(x)−1‖ ≤ γ

1 − γL‖x − x∗‖ ,

‖F(y)‖ ≤ L

2
‖y − x∗‖2 + 2β‖y − x∗‖,

‖y − x∗ − F ′(x)−1F(y)‖ ≤ γ

1 − γL‖x − x∗‖ (
L

2
‖y − x∗‖+L‖x−x∗‖)‖y−x∗‖.

Proof From the Lipschitz condition, it is directly implied that

‖F ′(x) − F ′(x∗)‖ = ‖W(x) + iT (x) − W(x∗) − iT (x∗)‖
≤ ‖W(x) − W(x∗)‖ + ‖i(T (x) − T (x∗))‖
≤ (Lw + Lt)‖x − x∗‖ = L‖x − x∗‖.

Moreover, the condition r ∈ (0, 1/γL) suggests that

‖F ′(x∗)−1(F ′(x∗) − F ′(x))‖ ≤ ‖F ′(x∗)−1‖‖F ′(x∗) − F ′(x)‖ ≤ γL‖x − x∗‖ < 1.

It follows from Lemma 3.2 that F ′(x)−1 exists, and

‖F ′(x)−1‖ ≤ ‖F ′(x∗)−1‖
1 − ‖F ′(x∗)−1(F ′(x∗) − F ′(x))‖ ≤ γ

1 − γL‖x − x∗‖ .

Numerical Algorithms (2020) 85:951–975958



In addition, since the definition of integral shows

F(y) = F(y) − F(x∗) − F ′(x∗)(y − x∗) + F ′(x∗)(y − x∗)

=
∫ 1

0
(F ′(x∗ + t (y − x∗)) − F ′(x∗))dt (y − x∗) + F ′(x∗)(y − x∗),

and the bounded condition results in

‖F ′(x∗)‖ = ‖W(x∗) + iT (x∗)‖ ≤ ‖W(x∗)‖ + ‖T (x∗)‖ ≤ 2β,

we obtain

‖F(y)‖ ≤ ‖
∫ 1

0
(F ′(x∗ + t (y − x∗)) − F ′(x∗))dt (y − x∗)‖ + ‖F ′(x∗)(y − x∗)‖

≤ ‖y − x∗‖
∫ 1

0
‖(F ′(x∗ + t (y − x∗)) − F ′(x∗))‖dt + ‖F ′(x∗)(y − x∗)‖

≤ ‖y − x∗‖
∫ 1

0
‖Lt(y − x∗)‖dt + ‖F ′(x∗)(y − x∗)‖

≤ L

2
‖y − x∗‖2 + 2β‖y − x∗‖.

Clearly, it holds that

y − x∗ − F ′(x)−1F(y) = −F ′(x)−1(F (y) − F(x∗) − F ′(x)(y − x∗))
= −F ′(x)−1(F (y) − F(x∗) − F ′(x∗)(y − x∗))

+F ′(x)−1(F ′(x) − F ′(x∗))(y − x∗)

= −F ′(x)−1
∫ 1

0
(F ′(x∗ + t (y − x∗)) − F ′(x∗))dt (y − x∗)

+F ′(x)−1(F ′(x) − F ′(x∗))(y − x∗).

Hence,
‖y − x∗ − F ′(x)−1F(y)‖
≤ ‖ − F ′(x)−1‖(

∫ 1

0
‖F ′(x∗ + t (y − x∗)) − F ′(x∗)‖dt + ‖(F ′(x) − F ′(x∗)‖)‖y − x∗‖

≤ γ

1 − γL‖x − x∗‖ (
L

2
‖y − x∗‖ + L‖x − x∗‖)‖y − x∗‖.

The proof of Lemma 3.3 is completed.

Lemma 3.4 Under the conditions of Lemma 3.3, let r ∈ (0, r0) and define r0 :=
min{r1, r2}, where r1 is the minimal positive solution of the quadratic equation

2(α + 1)2γ 2(L2x2 + 2(1 + βγ )βLx)

2α(1 − γLx) − (α + 1)2γ 2(L2x2 + 2(1 + βγ )βLx)
= τθ .

and

r2 = 1 − 2βγ [(τ + 1)θ ]u
3γL

,
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with u = min{l∗, m∗}, l∗ = lim infk→∞ lk, m∗ = lim infk→∞ mk , and the constant
u satisfies

u > �− ln(2βγ )

ln((τ + 1)θ)
,

where the symbol �• is used to denote the smallest integer no less than the
corresponding real number, τ ∈ (0, 1−θ

θ
) a prescribed positive constant and

θ ≡ θ(α; x∗) = ‖M(α; x∗)‖ ≤
√

α2 + ξ2max

α + λmin
≡ σ(α; x∗)

with λmin = min
λj ∈sp(H)

{λj }, ξmax = max
iξj ∈sp(S)

{|ξj |}

In addition, we utilize the notation

g(t; v) = 2γ

1 − γLt
(Lt + β[(τ + 1)θ ]v).

Then, for any x ∈ N(x∗, r) ⊂ N0, t ∈ (0, r) and v > u, it holds that

‖M(α; x)‖ ≤ (τ + 1)θ < 1,

g(t; v) < g(r0; u) < 1.

Proof According to the bounded condition, the equality (2.8) and the fact

‖M(α; x∗)‖ ≤ σ(α; x∗) < 1

under some moderate conditions, it holds that

‖B(α; x∗)−1‖ = ‖(I − M(α; x∗))F ′(x∗)−1‖
≤ ‖I − M(α; x∗)‖‖F ′(x∗)−1‖
≤ (1 + ‖M(α; x∗)‖)‖F ′(x∗)−1‖ ≤ 2γ .

Firstly, from the bounded condition, we have

‖αW(x∗) + T(x∗)‖ ≤ α‖W(x∗)‖ + ‖T (x∗)‖ ≤ (α + 1)β

It follows from the Assumption 3.1 that we can further obtain

‖(αW(x) + T (x)) − (αW(x∗) + T (x∗))‖
≤ α‖W(x) − W(x∗)‖ + ‖T (x) − T (x∗)‖
≤ (αLw + Lt)‖x − x∗‖.

Moreover, we have

‖(αT (x) + W(x)) − (αT (x∗) + W(x∗))‖ ≤ (αLt + Lw)‖x − x∗‖,
and

‖αT (x) + W(x)‖ ≤ ‖(αT (x) + W(x)) − (αT (x∗) + W(x∗))‖ + ‖αT (x∗) + W(x∗)‖
≤ (αLt + Lw)‖x − x∗‖ + (α + 1)β.

Since

‖(W(x∗) − iT (x∗))−1‖ = ‖F ′(x∗)
−1‖ = ‖F ′(x∗)−1‖ ≤ γ,
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we see at once that

‖(W(x) − iT (x))−1‖ ≤ ‖(W(x∗) − iT (x∗))−1‖
1 − ‖I − (W(x∗) − iT (x∗))−1(W(x) − iT (x))‖

≤ ‖(W(x∗) − iT (x∗))−1‖
1 − ‖(W(x∗) − iT (x∗))−1‖‖(W(x∗) − iT (x∗)) − (W(x) − iT (x))‖

≤ γ

1 − γ (‖W(x) − W(x∗)‖ + ‖T (x) − T (x∗)‖)
≤ γ

1 − γL‖x − x∗‖ ,

provided r is small enough such that γL‖x − x∗‖ < 1 which resulting in ‖I −
(W(x∗) − iT (x∗))−1(W(x) − iT (x))‖ < 1. It follows immediately that

‖(W(x) − iT (x))−1 − (W(x∗) − iT (x∗))−1‖
≤ ‖(W(x∗) − iT (x∗))−1‖‖(W(x∗) − iT (x∗)) − (W(x) − iT (x))‖‖(W(x) − iT (x))−1‖
≤ γ 2

1 − γL‖x − x∗‖ (‖W(x) − W(x∗)‖ + ‖T (x) − T (x∗)‖)

≤ γ 2L‖x − x∗‖
1 − γL‖x − x∗‖ .

On account of the above proof, we can easily get

2α‖B(α; x) − B(α; x∗)‖
= ‖(αW(x) + T (x))(W(x) − iT (x))−1(αT (x) + W(x))

−(αW(x∗) + T (x∗))(W(x∗) − iT (x∗))−1(αT (x∗) + W(x∗))‖
≤ ‖[(αW(x) + T (x)) − (αW(x∗) + T (x∗))](W(x) − iT (x))−1(αT (x) + W(x))

+(αW(x∗) + T (x∗))[(W(x) − iT (x))−1 − (W(x∗) − iT (x∗))−1](αT (x) + W(x))

+(αW(x∗) + T (x∗))(W(x∗) − iT (x∗))−1[(αT (x) + W(x)) − (αT (x∗) + W(x∗))]
≤ (αLw + Lt)‖x − x∗‖ γ

1 − γL‖x − x∗‖ [(αLt + Lw)‖x − x∗‖ + (α + 1)β]

+[(α + 1)β] γ 2L‖x − x∗‖
1 − γL‖x − x∗‖ [(αLt + Lw)‖x − x∗‖ + (α + 1)β]

+[(α + 1)β]γ (αLt + Lw)‖x − x∗‖
≤

1
2 (α + 1)2γL2‖x − x∗‖2 + (α + 1)2(1 + βγ )βγL‖x − x∗‖

1 − γL‖x − x∗‖ .

Hence,

‖B(α; x) − B(α; x∗)‖ ≤ (α + 1)2γ (L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖)
4α(1 − γL‖x − x∗‖) . (3.1)

Likewise, we have

‖C(α; x) − C(α; x∗)‖ ≤ (α + 1)2γ (L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖)
4α(1 − γL‖x − x∗‖) . (3.2)
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Consequently, by making use of the Banach lemma, i.e., Lemma 3.2, it holds that

‖B(α; x)−1‖ ≤ ‖B(α; x∗)−1‖
1 − ‖I − B(α; x∗)−1B(α; x)‖

≤ ‖B(α; x∗)−1‖
1 − ‖B(α; x∗)−1‖‖B(α; x∗) − B(α; x)‖

≤ 4αγ (1 − γL‖x − x∗‖)
2α(1 − γL‖x − x∗‖) − (α + 1)2γ 2(L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖)

(3.3)

for all x ∈ N(x∗, r), provided r is small enough such that

(α + 1)2γ 2(L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖) < 2α(1 − γL‖x − x∗‖)
which resulting in ‖I − B(α; x∗)−1B(α; x)‖ < 1. From (2.8) we immediately get
the equality

M(α; x) − M(α; x∗)
= B(α; x)−1C(α; x) − B(α; x∗)−1C(α; x∗)
= B(α; x)−1((C(α; x) − C(α; x∗)) − (B(α; x) − B(α; x∗))M(α; x∗)).

Based on (3.1), (3.2), and (3.3), we can easily obtain that

‖M(α; x) − M(α; x∗)‖
≤ ‖B(α; x)−1‖(‖C(α; x) − C(α; x∗)‖ + ‖B(α; x) − B(α; x∗)‖‖M(α; x∗)‖)
≤ 2(α + 1)2γ 2(L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖)

2α(1 − γL‖x − x∗‖) − (α + 1)2γ 2(L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖) .

Meanwhile, r < r1 implies that

2(α + 1)2γ 2(L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖)
2α(1 − γL‖x − x∗‖) − (α + 1)2γ 2(L2‖x − x∗‖2 + 2(1 + βγ )βL‖x − x∗‖) < τθ .

Hence

‖M(α; x)‖ ≤ ‖M(α; x) − M(α; x∗)‖ + ‖M(α; x∗)‖ ≤ (τ + 1)θ .

Furthermore, since t ∈ (0, r) and r < r2, it is obvious that

g(t; v) = 2γ

1 − γLt
(Lt + β[(τ + 1)θ ]v) < g(r0; u) < 1.

Theorem 3.1 Under the conditions of Lemma 3.3 and 3.4, then for any x0 ∈
N(x∗, r) and any sequences {lk}∞k=0, {mk}∞k=0 of positive integers, the iteration
sequence {xk}∞k=0 generated by the modified Newton-DSS method is well-defined and
converges to x∗. Moreover, it holds that

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u)2.
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Proof From Lemma 3.3, Lemma 3.4, and (2.7), we can easily obtain that

‖yk − x∗‖ = ‖xk − x∗ − (I − M(α; xk)
lk )F ′(xk)

−1F(xk)‖
≤ ‖xk − x∗ − F ′(xk)

−1F(xk)‖ + ‖M(α; xk)
lk‖‖F ′(xk)

−1F(xk)‖
≤ γ

1 − γL‖x − x∗‖
3L

2
‖xk − x∗‖2

+ γ [(τ + 1)θ ]lk
1 − γL‖x − x∗‖ (

L

2
‖xk − x∗‖2 + 2β‖xk − x∗‖)

= (3 + [(τ + 1)θ ]lk )γL

2(1 − γL‖xk − x∗‖) ‖xk − x∗‖2 + 2βγ [(τ + 1)θ ]lk
1 − γL‖xk − x∗‖‖xk − x∗‖

≤ 2γ

1 − γL‖x − x∗‖ (L‖xk − x∗‖ + β[(τ + 1)θ ]lk )‖xk − x∗‖
= g(‖xk − x∗‖; lk)‖xk − x∗‖
< g(r0; u)‖xk − x∗‖ < ‖xk − x∗‖

and

‖xk+1 − x∗‖ = ‖yk − x∗ − (I − M(α; xk)
mk )F ′(xk)

−1F(yk)‖
≤ ‖yk − x∗ − F ′(xk)

−1F(yk)‖ + ‖M(α; xk)
mk‖‖F ′(xk)

−1F(yk)‖
≤ γ

1 − γL‖x − x∗‖ (
L

2
‖yk − x∗‖ + L‖xk − x∗‖)‖yk − x∗‖

+ γ [(τ + 1)θ ]mk

1 − γL‖x − x∗‖ (
L

2
‖yk − x∗‖2 + 2β‖yk − x∗‖)

≤ (
γL

1 − γL‖xk − x∗‖ (
1 + [(τ + 1)θ ]mk

2
‖yk − x∗‖ + ‖xk − x∗‖)

+ 2βγ [(τ + 1)θ ]mk

1 − γL‖xk − x∗‖ )‖yk − x∗‖

≤ 2γg(‖xk − x∗‖; lk)

1 − γL‖xk − x∗‖ (
1 + g(‖xk − x∗‖; lk)

2
L‖xk − x∗‖

+β[(τ + 1)θ ]mk )‖xk − x∗‖
<

2γg(‖xk − x∗‖; lk)

1 − γL‖xk − x∗‖ (L‖xk − x∗‖ + β[(τ + 1)θ ]mk )‖xk − x∗‖
= g(‖xk − x∗‖; lk)g(‖xk − x∗‖; mk)‖xk − x∗‖
< g(‖xk − x∗‖; u)2‖xk − x∗‖
< g(r0; u)2‖xk − x∗‖ < ‖xk − x∗‖.

We can further prove that {xk}∞k=0 ⊂ N(x∗, r) converges to x∗ by induction. In fact,
for k = 0, we can obtain ‖x0 − x∗‖ < r < r0 and

‖x1 − x∗‖ < g(‖x0 − x∗‖; u)2‖x0 − x∗‖ < ‖x0 − x∗‖ < r,
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as x0 ∈ N(x∗, r). Hence we have x1 ∈ N(x∗, r). Now, suppose that xn ∈ N(x∗, r) for
some positive integer k = n, then we can straightforwardly deduce the estimate

‖xn+1 − x∗‖ < g(‖xn − x∗‖; u)2‖xn − x∗‖
< g(r0; u)2‖xn − x∗‖ < g(r0; u)2(n+1)‖xo − x∗‖ < r,

which shows that xn+1 ∈ N(x∗, r) for k = n + 1. Moreover, xn+1 → x∗ when
n → ∞.

The proof of theorem is completed.

4 Semilocal convergence theorem of themodified Newton-DSS
method

In this section, we prove a Kantorovich-type semilocal convergence for the mod-
ified Newton-DSS method by utilizing the major function. That is, if we impose
some conditions on the initial vector x0 but do not require knowledge of the exis-
tence of a solution, the exact solution x∗ of the nonlinear system must exist in some
neighborhood of x0.

Assume that F : D ⊂ C
n → C

n is G-differentiable on an open neighborhood
N0 ⊂ D of a point x0 ∈ D at which the Jacobian matrix F ′(x) is continuous, positive
definite and complex symmetric. Suppose F ′(x) = W(x) + iT (x), where W(x)

and T (x) are both real positive definite and symmetric matrices for any x ∈ D,
respectively. Denote with N(x0, r) an open ball centered at x0 with radius r > 0.

Assumption 4.1 Let x0 ∈ C
n and suppose that the following conditions hold. (THE

BOUNDED CONDITION) there exist positive constants β, γ and ε such that

max{‖W(x0)‖, ‖T (x0)‖} ≤ β, ‖F ′(x0)−1‖ ≤ γ, ‖F(x0)‖ ≤ ε.

(THE LIPSCHITZ CONDITION) there exist nonnegative constants Lh and Ls such
that for all x, y ∈ N(x0, r) ⊂ N0,

‖W(x) − W(y)‖ ≤ Lw‖x − y‖,
‖T (x) − T (y)‖ ≤ Lt‖x − y‖.

From Assumption 4.1, Banach’s Lemma, and the integral mean-value theorem, let
L := Lw + Lt and we can easily get Lemma 4.1 without detailed proof as follows.
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Lemma 4.1 Under Assumption 4.1, for all x, y ∈ N(x0, r), if r ∈ (0, 1
γL

), then

F ′(x)−1 exists. And we have the following inequalities:

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖,
‖F ′(x)‖ ≤ L‖x − x0‖ + 2β,

‖F(x) − F(y) − F ′(y)(x − y)‖ ≤ L

2
‖x − y‖2,

‖F ′(x)−1‖ ≤ γ

1 − γL‖x − x0‖ .

Define

a = Lγ (1 + η), b = 1 − η, c = 2γ ε, where η = max
k

{max{ηk, η̃k}} < 1.

The iterative sequences {tk}, {sk} are generated by the following formulas
⎧
⎪⎨

⎪⎩

t0 = 0,
sk = tk − g(tk)

h(tk)
,

tk+1 = sk − g(sk)
h(tk)

,

(4.1)

where
{

g(t) = 1
2at2 − bt + c,

h(t) = at − 1.

Now, we claim that the sequences {tk}, {sk} converge monotone increasingly to some
number as shown by the following lemma.

Lemma 4.2 Assume that the constants satisfy

γ 2εL ≤ (1 − η)2

4(1 + η)
.

Denote t∗ = b−
√

b2−2ac
a

, then the the sequences {tk}, {sk}, generated by the formulas
(4.1), increase and converge to t∗. Moreover,

0 ≤ tk < sk < tk+1 < t∗,
tk+1 − sk < sk − tk .

Proof Details see Lemma 4.2 and Lemma 4.3 in [19].

Theorem 4.1 Under the assumptions of Lemmas 4.1 and 4.2, define r :=
min(r1, r2), where r1 is the minimal positive solution of the quadratic equation

2(α + 1)2γ 2(L2x2 + 2(1 + βγ )βLx)

2α(1 − γLx) − (α + 1)2γ 2(L2x2 + 2(1 + βγ )βLx)
= τθ .
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and

r2 = b − √
b2 − 2ac

a
,

and define u = min{l∗, m∗}, with l∗ = lim infk→∞ lk, m∗ = lim infk→∞ mk , and
the constant u satisfies

u > � ln η

ln((τ + 1)θ)
,

where the symbol �• is used to denote the smallest integer no less than the
corresponding real number, τ ∈ (0, 1−θ

θ
) a prescribed positive constant and

θ ≡ θ(α; x0) = ‖M(α; x0)‖ < 1

Then the iteration sequence {xk}∞k=0 generated by the modified Newton-DSS method
is well-defined and converges to x∗, which satisfies F(x∗) = 0.

Proof Firstly, analysis similar to that in the proof of Lemma 3.4 shows the estimate
about the iterative matrix M(α; x) of the linear solver: if x ∈ N(x0, r), then

‖M(α; x)‖ ≤ (τ + 1)θ < 1.

Now we prove following inequalities by induction
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖xk − x0‖ ≤ tk − t0

‖F(xk)‖ ≤ 1−γLtk
(1+η)γ

(sk − tk)

‖yk − xk‖ ≤ sk − tk

‖F(yk)‖ ≤ 1−γLtk
(1+η)γ

(tk+1 − sk)

‖xk+1 − yk‖ ≤ tk+1 − sk

(4.2)

Since

‖x0 − x0‖ = 0 ≤ t0 − t0,

‖F(x0)‖ ≤ ε ≤ 2γ ε

γ (1 + η)
= 1 − γLt0

(1 + η)
(s0 − t0),

‖y0 − x0‖ = ‖I − M(α; x0)
l0‖‖F ′(x0)−1F(x0)‖ ≤ (1 + θ l0)γ ε < 2γ ε = s0,

‖F(y0)‖ ≤ ‖F(y0) − F(x0) − F ′(x0)(y0 − x0)‖ + ‖F(x0) + F ′(x0)(y0 − x0)‖
≤ L

2
‖y0 − x0‖2 + η‖F(x0)‖ ≤ L

2
s20 + ηε ≤ 1 − γLt0

(1 + η)γ
(t1 − s0),

‖x1 − y0‖ ≤ ‖I − M(α; x0)
m0‖‖F ′(x0)−1F(y0)‖

≤ (1 + θm0)‖F ′(x0)−1‖‖F(y0)‖ < (1 + η)γ ‖F(y0)‖ ≤ t1 − s0,

the inequalities (4.2) are correct for k = 0. Suppose that (4.2) holds for all nonnega-
tive integers less than k. We need to prove that it holds for k. For the first inequality
in (4.2), we have

‖xk − x0‖ ≤ ‖xk − yk−1‖ + ‖yk−1 − xk−1‖ + ‖xk−1 − x0‖ ≤ tk − t0 < t∗ < r2.
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Since xk−1, yk−1 ∈ N(x0, r) and by the inequality(2.4) and the inequalities in Lemma
4.1, we have

(1 + η)γ ‖F(xk)‖ ≤ (1 + η)γ ‖F(xk) − F(yk−1) − F ′(xk−1)(xk − yk−1)‖
+(1 + η)γ ‖F(yk−1) + F ′(xk−1)(xk − yk−1)‖

≤ (1 + η)γL

2
‖xk − yk−1‖2 + η(1 + η)γ ‖F(yk−1)‖

≤ (1 + η)γL

2
(tk − sk−1)

2 + η(1 − γLtk−1)(tk − sk−1)

= g(tk) − g(sk−1) + b(tk − sk−1) − ask−1(tk − sk−1)

+η(1 − γLtk−1)(tk − sk−1)

= g(tk) − g(sk−1) + (1 − γL(1 + η)sk−1 − ηγLtk−1)
g(sk−1)

−h(tk − 1)

= g(tk) + (1 + η)γLsk−1 − γLtk−1

h(tk−1)
g(sk−1)

< g(tk) = −h(tk)(sk − tk) < (1 − γLtk)(sk − tk).

It follows that

‖F(xk)‖ ≤ (1 − γLtk)

(1 + η)γ
(sk − tk).

and then

‖yk − xk‖ ≤ ‖I − M(α; xk)
lk‖‖F ′(xk)

−1F(xk)‖
≤ (1 + ((1τ )θ)lk )‖F ′(xk)

−1‖‖F(xk)‖
≤ (1 + η)

γ

1 − γLtk
‖F(xk)‖

≤ sk − tk .

Likewise, we can prove that

‖F(yk)‖ ≤ 1 − γLtk

(1 + η)γ
(tk+1 − sk)

and

‖xk+1 − yk‖ ≤ tk+1 − sk .

Hence, the inequalities (4.2) hold for all k. Since the sequences {tk}, {sk} converge to
t∗ and

‖xk+1 − x0‖ ≤ ‖xk+1 − yk‖ + ‖yk − xk‖ + ‖xk − x0‖ ≤ tk+1 − t0 < t∗ < r2,

the sequence {xk} also converges, to say x∗. Since ‖M(α; x∗)‖ < 1, we have F(x∗) =
0 from the iteration (2.9).

The proof of theorem is completed.

5 Numerical examples

In this section, we present two examples which are of the complex nonlinear system
of the form (1.1) with its Jacobian matrix that has the form (1.2). By making use
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of these examples, we illustrate the efficiency of our modified Newton-DSS method
(MNDSS) compared with that of the modified Newton-MHSS method (MNMHSS)
and the modified Newton-PMHSS method (MNPMHSS), in the sense of both the
number of iteration steps (denoted as “IT”) and the elapsed CPU time in seconds
(denoted as “CPU time”). The optimal parameters used in actual computations are
obtained experimentally by minimizing the corresponding iteration steps and error
relative to the exact solution. The experimental results point to the conclusion that
MNDSS method outperforms both MNMHSS method and MNPMHSS method.

Example 1 We consider the following nonlinear equations [27]:
⎧
⎨

⎩
ut − (α1 + iβ1)(uxx + uyy) + �u = −(α2 + iβ2)u

4
3 , in (0, 1] × �,

u(0, x, y) = u0(x, y), in �,

u(t, x, y) = 0, on (0, 1] × ∂�,

where � = [0, 1] × [0, 1], ∂� is the boundary of �. The coefficients α1 = β1 = 1,
α2 = β2 = 1 and � is a positive constant used to control the magnitude of the
reaction term. By discretizing this equation with centered finite difference scheme
on the equidistant discretization grid �t = h = 1/(N + 1), at each temporal step of
the implicit scheme, we can obtain the system of nonlinear equations F(x) = 0 with
following form:

F(u) = Mu + (α2 + iβ2)h�t�)(u) = 0,

where

M = h(1 + ��t)In + (α1 + iβ1)
�t

h
(AN ⊗ IN + IN ⊗ AN),

�(u) = (u
4
3
1 , u

4
3
2 , . . . , u

4
3
n )T ,

with AN = tridiag(−1, 2, −1) and n = N × N . Here ⊗ is the Kronecker product
symbol.

In our computations, we choose the initial guess to be u0 = 1, the stopping
criterion for the outer Newton iteration is set to be

‖F(uk)‖
‖F(u0)‖ ≤ 10−6,

Table 1 The experimentally optimal values α for MNMHSS method

N � = 1 � = 10 � = 200

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

25 0.45 0.46 0.44 0.47 0.48 0.47 0.79 0.74 0.78

26 0.28 0.29 0.27 0.28 0.29 0.29 0.45 0.44 0.43

27 0.18 0.18 0.18 0.18 0.18 0.18 0.25 0.25 0.25
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Table 2 The experimentally optimal values α for MNPMHSS method

N � = 1 � = 10 � = 200

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

25 0.90 0.90 0.90 0.85 0.84 0.84 0.66 0.65 0.50

26 0.82 0.81 0.80 0.78 0.77 0.76 0.76 0.70 0.55

27 0.66 0.70 0.70 0.61 0.67 0.68 0.80 0.72 0.55

and the prescribed tolerance ηk and η̃k for controlling the accuracy of the iteration
methods are set to be the same value η.

Firstly, we finished some upfront work for the parameter α. There are some the-
oretical method about how to select the optimal parameter α. It is a interesting
topic in the future research. Here, we decide the choice based on experiment in
Tables 1, 2, and 3, in which we present the experimentally optimal parameter α

for MNMHSS, MNPMHSS and MNDSS methods, respectively. Subsequently, we
adopt these experimentally optimal parameters α for the three methods to solve the
nonlinear equation.

In Tables 4, 5, 6, 7, and 8, we display the experimental results about the mod-
ified Newton method incorporated with MHSS, PMHSS, and DSS, corresponding
to the scale of the problem N = 25, 26, 27, the inner tolerance η = 0.1, 0.2, 0.4
and the problem parameter � = 1, 10, 200, respectively. From these tables, we
can easily observe that all these iteration methods can compute an approximate
solution of the system of nonlinear equations. In particular, the modified Newton-
DSS method remarkably outperforms the modified Newton-MHSS even modified
Newton-PMHSS methods from the point of view of number of iterations and CPU
time. Here, the number of outer iteration and the total numbers of inner iterations are
denoted with Outer IT and Inner IT.

Moreover, we see that the Inner ITs for the MNDSS method almost remain
constant with problem size, which means the extensibility as the MNPMHSS
method possesses. Actually, the CPU time and Inner IT are both almost half of the
MNPMHSSmethods. Even though the two methods can deal with the problems more
efficiently than the MNMHSS method, the MNDSS method considerably works bet-
ter than the MNPMHSS method, both from aspects of iteration counts and CPU
time.

Table 3 The experimentally optimal values α for MNDSS method

N � = 1 � = 10 � = 200

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

25 1.8 1.8 1.8 2.1 2.0 2.0 4.6 4.7 4.7

26 2.3 2.4 2.3 2.0 2.5 2.5 4.8 4.8 4.4

27 3.2 3.2 3.2 3.3 3.3 3.3 5.2 5.1 5.2
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Table 4 Numerical results for the three methods with η = 0.1, N = 25 for Example 1

� Method Error CPU time (s) Outer IT Inner IT

1

MNMHSS 7.2790E−07 0.318 3 88

MNPMHSS 7.2882E−08 0.187 3 24

MNDSS 3.7506E−07 0.096 3 6

10

MNMHSS 7.4263E−07 0.250 3 84

MNPMHSS 8.7206E−08 0.107 3 24

MNDSS 8.0884E−08 0.059 2 8

200

MNMHSS 5.3905E−07 0.192 3 56

MNPMHSS 1.8192E−07 0.127 3 33

MNDSS 1.6813E−07 0.098 3 18

Table 5 Numerical results for the three methods with η = 0.2, N = 25 for Example 1

� Method Error CPU time (s) Outer IT Inner IT

1 MNMHSS 4.9280E−08 0.364 5 109

MNPMHSS 7.4718E−08 0.149 4 24

MNDSS 3.7506E−07 0.074 3 6

10

MNMHSS 5.0143E−08 0.343 5 104

MNPMHSS 9.3472E−08 0.126 4 24

MNDSS 3.6583E−08 0.088 4 8

200

MNMHSS 7.1307E−07 0.214 4 55

MNPMHSS 7.0172E−07 0.136 4 30

MNDSS 9.9273E−07 0.109 4 16

Table 6 Numerical results for the three methods with η = 0.4, N = 25 for Example 1

� Method Error CPU time (s) Outer IT Inner IT

1 MNMHSS 9.7372E−07 0.348 7 86

MNPMHSS 7.3461E−08 0.155 6 24

MNDSS 3.7506E−07 0.070 3 6

10

MNMHSS 9.5369E−07 0.339 7 82

MNPMHSS 9.2401E−08 0.157 6 24

MNDSS 3.6583E−08 0.089 4 8

200

MNMHSS 8.4941E−07 0.279 7 54

MNPMHSS 8.2641E−07 0.169 6 30

MNDSS 9.9273E−07 0.108 4 16
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Table 7 Numerical results for the three methods with η = 0.4, N = 26 for Example 1

� Method Error CPU time (s) Outer IT Inner IT

1 MNMHSS 9.1057E−07 3.408 7 133

MNPMHSS 1.1226E−07 1.562 6 24

MNDSS 5.8268E−07 0.999 4 8

10 MNMHSS 2.3714E−07 3.814 8 144

MNPMHSS 1.4335E−07 1.556 6 24

MNDSS 7.3948E−08 0.211 5 10

200 MNMHSS 9.6074E−07 2.997 7 86

MNPMHSS 7.8701E−07 1.607 6 29

MNDSS 7.5427E−07 1.288 5 18

Example 2 The second test is for the complex nonlinear Helmholtz equation:

−�u + σ1u + iσ2u = −eu,

with σ1 and σ2 being real coefficient functions. Here, u subjects to homogeneous
Dirichlet boundary conditions in the square � = [0, 1] × [0, 1]. We discretize the
problem with finite differences on a N ×N grid with mesh size h = 1/(N +1). This
leads to a system of nonlinear equations F(x) = 0 with following form:

F(x) = Mx + �(x) = 0,

where

M = (K + σ1I ) + iσ2I,

�(x) = (ex1 , ex2 , . . . , exn)T

Table 8 Numerical results for the three methods with η = 0.4, N = 27 for Example 1

� Method Error CPU time (s) Outer IT Inner IT

1 MNMHSS 2.3578E−07 180.937 8 222

MNPMHSS 2.6894E−07 101.909 6 24

MNDSS 2.3891E−07 54.442 6 12

10 MNMHSS 2.3230E−07 200.675 8 218

MNPMHSS 3.2313E−07 114.263 6 24

MNDSS 3.9163E−07 80.279 6 12

200 MNMHSS 1.9379E−07 209.818 8 162

MNPMHSS 9.0820E−07 100.215 6 28

MNDSS 2.4539E−07 66.009 5 20
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Table 9 The experimentally optimal values α

N MNMHSS MNPMHSS MNDSS

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 553 557 557 1.81 1.79 1.79 4.2 4.0 4.1

60 775 781 788 1.26 1.28 1.37 5.4 5.1 5.3

90 899 890 907 1.11 1.12 1.15 8.3 7.7 7.7

Table 10 Numerical results for the three methods with the scale N = 30 for Example 2

η Method Error CPU time (s) Outer IT Inner IT

0.1 MNMHSS 4.6502E−07 0.217 3 30

MNPMHSS 4.6503E−07 0.091 3 30

MNDSS 2.5060E−08 0.071 3 16

0.2 MNMHSS 1.7833E−07 0.122 4 32

MNPMHSS 1.7834E−07 0.115 4 32

MNDSS 1.8580E−08 0.091 4 16

0.4 MNMHSS 1.7833E−07 0.188 8 32

MNPMHSS 1.7834E−07 0.171 8 32

MNDSS 1.5430E−07 0.112 7 14

Table 11 Numerical results for the three methods with the scale N = 60 for Example 2

η Method error CPU time (s) Outer IT Inner IT

0.1 MNMHSS 4.4020E−07 0.894 3 31

MNPMHSS 6.9827E−07 0.765 3 30

MNDSS 1.9119E−07 0.656 3 19

0.2

MNMHSS 2.7986E−07 1.168 4 32

MNPMHSS 2.7986E−07 0.917 4 32

MNDSS 1.7124E−07 0.811 4 20

0.4

MNMHSS 1.7806E−07 2.121 8 33

MNPMHSS 7.0880E−07 1.359 7 30

MNDSS 5.8649E−07 0.938 5 17
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Table 12 Numerical results for the three methods with the scale N = 90 for Example 2

η Method Error CPU time (s) Outer IT Inner IT

0.1 MNMHSS 2.8124E−07 4.536 3 33

MNPMHSS 2.8126E−07 3.395 3 33

MNDSS 2.2823E−07 3.216 3 28

0.2 MNMHSS 4.3020E−07 5.190 4 32

MNPMHSS 4.3023E−07 4.115 4 32

MNDSS 3.1132E−07 3.925 4 27

0.4 MNMHSS 1.8412E−07 8.882 7 34

MNPMHSS 2.8390E−07 6.399 7 33

MNDSS 8.9406E−07 5.568 6 24

with the matrix K ∈ R
n×n possessing the tensor-product form

K = I ⊗ BN + BN ⊗ I and BN = 1

h2
tridiag(−1, 2, −1) ∈ R

N×N .

For the numerical tests, we set σ1 = 100 and σ2 = 1000. In addition, initial guess
is chosen as x0 = 0 and the iteration is terminated once the current xk satisfies

‖F(uk)‖
‖F(u0)‖ ≤ 10−6,

The prescribed tolerances ηk = η̃k ≡ η = 0.1, 0.2, 0.4 and the scale of problem
N = 30, 60, 90, respectively. Now we solve the nonlinear problem by MNMHSS,
MNPMHSS and MNDSS methods and show the experimental results. They are
compared in elapsed CPU times, the number of outer iterations and inner iterations.

We reselect the experimental optimal parameters α for three iteration methods
(see Table 9). The numerical results are displayed in Tables 10, 11, and 12. From
these tables, we can find the same conclusion as the previous instance: MNDSS and
MNPMHSS are far superior to MNMHSS method while our method performs more
efficiently than MNPMHSS method in the sense of CPU time and the number of
iterations.

6 Conclusion

In this paper, by utilizing the double-step scale splitting (DSS) iteration method as
inner iteration and employing the modified Newton method as outer iteration, we
have established a modified Newton-DSS (MNDSS) method for the solution of non-
linear complex systems, especially whose Jacobian matrices are large, sparse and
complex symmetric. There are many feasible techniques, such as MHSS, PMHSS
and some deformed methods for complex symmetric linear systems. Thereinto, DSS
method is competitive with the result that the combination of modified Newton
method and DSS method, i.e., MNDSS method can work better. We have also proved
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the local and semilocal convergence theorems of the modified Newton-DSS method.
At last, the numerical experiments with experimental choices for parameters demon-
strate its effectiveness. Actually, in the whole example section, we find that it does
take much time to determine the experimental optimal parameters α. In our future
studies, we are to rise to the challenges to the complicated headache, i.e., how to
choose the optimal parameters.
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