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Abstract
The main contribution of this article is to introduce new compact fourth-order, stan-
dard fourth-order, and standard second-order finite difference schemes for solving
the Kawahara equation, the fifth-order partial derivative equation. The conserva-
tion of mass only of the numerical solution obtained by the compact fourth-order
finite difference scheme is proven. However, the standard fourth-order and standard
second-order finite difference schemes can preserve both mass and energy. The sta-
bility is also proven by von Neumann analysis. According to analysis for numerical
experiments, the order of accuracy for each scheme and the computational efficiency
of the compact scheme are presented. To validate the potential of the presented meth-
ods, we also consider long-time behavior. Finally, results obtained from the compact
scheme are superior than those from the non-compact schemes.
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1 Introduction

In the past, Kakutani and Ono [1] investigated the type of a mathematical model
for an analysis of magnet-acoustic waves in cold collision–free plasma. Conse-
quently, Hasimoto [2, 3] derived a higher order Korteweg–de Vries equation with an
additional fifth-order derivative term as the Kawahara equation. The equation was
constructed to study capillary–gravity waves in an infinitely long canal over a flat
bottom in long waves when the Bond number is almost one third. Moreover, many
physical phenomena, such as the blowing of the wind over an ocean surface and the
propagation of a shallow water wave were also studied by using the Kawahara equa-
tion. Then, Kawahara [4] numerically investigated and noticed that this type of the
equation generates both oscillatory and monotone solitary wave solutions.

Using adjacent grid points, a derivative is approximated by the numerical tech-
niques, such as finite difference, finite volume, and finite element methods, and
the methods are much more effective for controlling complicated boundary condi-
tions and geometries. With grid refinement, their sluggish convergence to the exact
solution which requires many more grid points to execute a targeted accuracy level
is the major difficulty of these methods. Regarding the mentioned problem, then
researchers have developed compact higher order finite difference schemes because
they can furnish a productive way of merging the accuracy and robustness of the
numerical methods [5–7]. The main benefits of the developed schemes are less com-
putational cost and robustness because of the effective completeness of the solution
to the resulting multidiagonal sparse system. As of the same order of accuracy, com-
pact schemes generally employ a fewer stencil and present more suitable resolution
when compared with the finite difference schemes.

In recent years, many numerical methods have been proposed to solve for an
approximated solution to varieties of nonlinear partial differential equations. Many
numerical schemes inherit some physical structures from the original problem, so,
in these cases, they are called structure preserving numerical schemes. Examples
of physical properties which usually can be inherited are energy, mass conserva-
tion laws, and entropy increasing laws. Recently, a number of structure preserving
numerical schemes were proposed. For example, Miyatake [8, 9] proposed conser-
vative finite difference schemes for the Degasperis–Procesi equation, a completely
integrable shallow water equation. In this case, the schemes preserve two invariants
associated with the bi-hamiltonian form. Later, Poochinapan et al. [10] proposed the
compact fourth-order and standard fourth-order finite difference schemes in order to
solve the KdV equation. The schemes are unconditionally stable and preserve mass.
In this paper, a class of structure preserving finite difference schemes with spatial
orders of accuracy is presented for the Kawahara equation

ut + βuxxx + γ uxxxxx + η(u2)x = 0, x ∈ (xL, xR), t > 0 (1)

where the subscript t (or x respectively) denotes the differentiation with respect to
time (or space) variable t (or x). The parameters β, γ , and η are constants.

Yuan et al. [11] proposed the numerical scheme of both the Kawahara and the
modified Kawahara equations by using the dual-Petrov–Galerkin method and the
Crank–Nicholson-leap-frog to approximate in space and in time, respectively. It was
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shown that the scheme is second-order accurate in time. In 2011, Ezzati et al. [12]
used the multiquadric quasi-interpolation method that does not require solving any
system of equations. In the same year, Bibi et al. [13] used the meshless method
of lines, and numerical results were shown that utilizing multiquadric and Gaussian
is better than the Crank–Nicolson differential quadrature algorithm. Besides, Suarez
and Morales [14] applied Strang’s splitting method to the Kawahara and the gener-
alized Kawahara equations; hence, the numerical solutions were shown to coincide
with known analytical results. Karakoc et al. [15] proposed a septic B-spline collo-
cation method which was proved to be unconditionally stable by the von Neumann
stability analysis. Korkmaz and Dag [16] applied both the polynomial-based differen-
tial quadrature method (PDQ) and the cosine expansion-based differential quadrature
method (CDQ) for the space discretization method of the Kawahara equation. Also,
Bashan [17] obtained the numerical solution via the Crank–Nikolson differential
quadrature method based on modified cubic B-splines (MCBC-DQM).

A finite difference approach for approximating a solution of the KdV–Kawahara
equation in the past has also been considered. Sepulveda and Villagran [18] proposed
the implicit finite difference scheme which was proven to be unconditionally stable.
Consequently, Ceballos et al. [19] presented the second-order implicit finite differ-
ence scheme and proved its unconditional stability result. Also, Koley [20] investi-
gated the semi-implicit scheme and the fully implicit Crank–Nicolson scheme, which
were proved convergent. Results were shown that the fully implicit Crank–Nicolson
scheme works far better than the semi-implicit scheme.

This paper is organized as follows. In Section 2, we briefly examine the nota-
tions of the finite differences schemes and also present the proposed finite-difference
schemes. Proofs of the structure preserving for three schemes are also presented. In
Section 3, some numerical results are provided. Concluding remarks and comments
are presented in Section 4.

2 Finite difference schemes

This section describes a complete description of how structure preserving methods
can be modeled for the Kawahara equation. To begin with, an explanation about a
computational domain will be discovered. First, we introduce the solution domain to
be as follows:

Q = {(x, t)| xL ≤ x ≤ xR, 0 ≤ t ≤ T },
which is covered by a uniform grid as follows:

Qh = {(xj , tn)| xj = xL + jh, tn = nτ, j = 0, . . . , M, n = 0, . . . , N}.
The time domain uniformly identified by tn = nτ is discretized, and here, τ is a
time step length. In the same way, the spatial domain [xL, xR] is discretized by using
function values on a finite set of the points {xj }Mj=0 ⊂ [xL, xR], where the grid size
h = (xR − xL)/M is the uniform distance between two points. According to values
of j and n, points can be located, so difference equations are commonly written in a
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term of the point (j, n). The notation un
j is utilized for a value of a function u at the

point (xL + jh, nτ), and the space Z0
h is introduced:

Z0
h = {u = (uj )| u−4 = u−3 = u−2 = u−1 = u0 = u1 = uM−1 = uM = uM+1

= uM+2 = uM+3 = uM+4 = 0, j = −4, −3, −2, ..., M + 2, M + 3, M + 4}.
For completeness, the following notations will be used:

ūn
j = un+1

j + un−1
j

2
, (un

j )t̂ = un+1
j − un−1

j

2τ
,

(un
j )x = un

j+1 − un
j

h
, (un

j )x̄ = un
j − un

j−1

h
,

(un
j )x̂ = un

j+1 − un
j−1

2h
, (un

j )ẍ = un
j+2 − un

j−2

4h
,

||un||2 = h

M−1∑

j=1

(un
j )

2, ‖un||∞ = max
1≤j≤M−1

|un
j |.

In the view of numerical examples, let us consider the Kawahara equation with
boundary conditions as follows:

u(xL, t) = u(xR, t) = 0, ux(xL, t) = ux(xR, t) = 0,

uxx(xL, t) = uxx(xR, t) = 0, t > 0

and the initial condition u(x, 0) = u0(x), x ∈ [xL, xR]. The solution and its deriva-
tives for the solitary wave are supposed to have the following asymptotic values,
∂nu
∂xn → 0 as x → ±∞ for n ≥ 0. For that reason, if xL 	 0 and xR 
 0,

the initial–boundary value problem is in agreement with the Cauchy problem of
(1). Besides, the central difference approximations can be used to treat boundary
conditions significantly for numerical algorithms in this paper.

2.1 Compact finite difference scheme

By setting

w = −βuxxx − γ uxxxxx − η(u2)x,

it follows that w = ut . Substituting

γ (∂7
xu)nj = −β(∂5

xu)nj − η(∂3
xu2)nj − (∂2

xw)nj

into

wn
j = −β

[
(un

j )xx̄x̂ − h2

4
(∂5

xu)nj

]
− γ

[
(un

j )xxx̄x̄x̂ − h2

3
(∂7

xu)nj

]

−η

[
[(un

j )
2]x̂ − h2

6
(∂3

xu2)nj

]
+ O(h4),

Numerical Algorithms (2020) 85:523–541526



we obtain the following:

wn
j = −β(un

j )xx̄x̂ + βh2

4
(∂5

xu)nj − γ (un
j )xxx̄x̄x̂ + h2

3

[
−β(∂5

xu)nj − η(∂3
xu2)nj

−(∂2
xw)nj

]
− η[(un

j )
2]x̂ + ηh2

6
(∂3

xu2)nj + O(h4).

By applying second-order accuracy for approximations, it leads to the following:

wn
j = (∂tu)nj = (un

j )t̂ + O(τ 2), (∂5
xu)nj = (un

j )xxx̄x̄x̂ + O(h2),

(∂3
xu2)nj = [(un

j )
2]xx̄x̂ + O(h2), (∂2

xw)nj = (wn
j )xx̄ + O(h2).

As a result, we obtain a compact fourth-order finite difference scheme to solve the
problem (1):

(un
j )t̂ + h2

3
(un

j )xx̄t̂ + β(ūn
j )xx̄x̂ + (γ + βh2

12
)(ūn

j )xxx̄x̄x̂ + η[(un
j )(ū

n
j )]x̂

+ ηh2

6
[(un

j )(ū
n
j )]xx̄x̂ = 0, (2)

where
u0

j = u0(xj ), 0 ≤ j ≤ M .

Since the boundary conditions are homogeneous, they give the following:

un
0 = un

M = 0, (un
0)x̂ = (un

M)x̂ = 0, (un
0)xx̄ = (un

M)xx̄ = 0, 1 ≤ n ≤ N . (3)

Let en
i = vn

i −un
i where vn

i and un
i are the solutions of (1) and (2), respectively. Thus,

the truncation error of the finite difference scheme (2) can be written as follows:

rn
j = (en

j )t̂ + h2

3
(en

j )xx̄t̂ + β(ēn
j )xx̄x̂ + (γ + βh2

12
)(ēn

j )xxx̄x̄x̂ + η[(vn
j )(v̄n

j )]x̂

−η[(un
j )(ū

n
j )]x̂ + ηh2

6
[(vn

j )(v̄n
j )]xx̄x̂ − ηh2

6
[(un

j )(ū
n
j )]xx̄x̂.

By applying the Taylor expansion, it is easy to see that rn
i = O(τ 2 + h4) holds as

τ, h → 0.

Theorem 1 The scheme (2) is unconditionally stable in the linearized sense.

Proof The linear form of (2) is as follows:

(un
j )t̂ + h2

3
(un

j )xx̄t̂ + β(ūn
j )xx̄x̂ + (γ + βh2

12
)(ūn

j )xxx̄x̄x̂ + η[U(ūn
j )]x̂

+ηh2

6
[U(ūn

j )]xx̄x̂ = 0. (4)

At this time, the von Neumann stability analysis of (2) with un
j = ξneikjh, where

i2 = −1 and k is a wave number, gives the following amplification factor

ξ2 = A − iτB

A + iτB
,
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where

A = 4h5 + 8h5cos(kh)

and

B =
(

60γ − 19βh2
)

sin(kh) −
(

48γ − 8βh2
)

sin(2kh) +
(

12γ + βh2
)

sin(3kh)

+2ηh4U (4 sin(2kh) + sin(4kh)) .

We can see that the amplification factor which is a complex number has modulus
equal to one. Hence, the compact finite difference scheme is unconditionally stable.

Theorem 2 Let un be the solution of the finite difference scheme (2). Then,

Qn = h

2

M−1∑

j=1

(
un+1

j + un
j

)
= Qn−1 = . . . = Q0. (5)

Proof By multiplying (2) by h, summing up for j from 1 to M − 1, and considering
the boundary conditions (3), we get the following:

h

2τ

M−1∑

j=1

(
un+1

j − un−1
j

)
= 0.

Then, this gives (5).

In the next subsection, we present a standard forth-order finite difference scheme.
Also, similar to the previous section, the stability and structure preserving properties
are proven.

2.2 Standard fourth-order finite difference scheme

Now, following the relation [21–25]

(u2)x = 2

3

[
uux + (u2)x

]
,

Equation (1) can be immediately obtained that

ut + βuxxx + γ uxxxxx + η
2

3

[
uux + (u2)x

]
= 0. (6)
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We can easily extend a fourth-order finite difference scheme by utilizing standard
fourth-order accurate central difference approximations to (6):

(∂xu)nj = −un
j+2 + 8un

j+1 − 8un
j−1 + un

j−2

12h
+ O(h4)

= 4

3
(un

i )x̂ − 1

3
(un

i )ẍ + O(h4),

(∂3
xu)nj = −un

j+3 + 8un
j+2 − 13un

j+1 + 13un
j−1 − 8un

j−2 + un
j−3

8h3
+ O(h4)

= 3

2
(un

i )xx̄x̂ − 1

2
(un

i )xx̄ẍ + O(h4),

(∂5
xu)nj = −un

j+4+9un
j+3−26un

j+2+29un
j+1−29un

j−1+26un
j−2−9un

j−3+un
j−4

6h5
+O(h4)

= 5

3
(un

i )xxx̄x̄x̂ − 2

3
(un

i )xxx̄x̄ẍ + O(h4).

By using an average value ūn
j , the approximation in the nonlinear term ([uux +(u2)x]

at the point (xj , tn)

uux + (u2)x =
[(

4

3
un

j (ū
n
j )x̂ − 1

3
un

j (ū
n
j )ẍ

)
+

(
4

3
(un

j ū
n
j )x̂ − 1

3
(un

j ū
n
j )ẍ

)]
+ O(h4).

With an application of central differences to spatial derivatives and second-order
accurate central difference approximation in time, we propose a standard nine-point
implicit difference scheme for the problem (6) as follows:

(un
j )t̂ + β

(
3

2
(ūn

j )xx̄x̂ − 1

2
(ūn

j )xx̄ẍ

)
+ γ

(
5

3
(ūn

j )xxx̄x̄x̂ − 2

3
(ūn

j )xxx̄x̄ẍ

)

+η

[
8

9

(
un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂

)
− 2

9

(
un

j (ū
n
j )ẍ + (un

j ū
n
j )ẍ

)]
= 0, (7)

where

u0
j = u0(xj ), 0 ≤ j ≤ M .

Since the boundary conditions are homogeneous, we obtain the following:

un
0 = un

M = 0, 4(un
0)x̂ − (un

0)ẍ = 4(un
M)x̂ − (un

M)ẍ = 0, (8)

− (un
−1)xx̄ + 14(un

0)xx̄ − (un
1)xx̄ = −(un

M−1)xx̄ + 14(un
M)xx̄ − (un

M+1)xx̄ = 0, (9)

3(un
0)xx̄x̂ − (un

0)xx̄ẍ = 3(un
M)xx̄x̂ − (un

M)xx̄ẍ = 0, 1 ≤ n ≤ N . (10)

According to the boundary conditions, u, ux , uxx, and uxxx are required by a standard
fourth-order technique to be zero at the upstream and downstream boundaries since
the method utilizes a nine-point finite difference scheme for the approximation of
the solution u. Through the analytical technique of contrasting, (2) requires only
three homogeneous boundary conditions. Then, similar to the compact fourth-order
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scheme, we obtain the convergent result. The truncation error of the finite difference
scheme (2) can be written as follows:

rn
j = (en

j )t̂ + β

(
3

2
(ēn

j )xx̄x̂ − 1

2
(ēn

j )xx̄ẍ

)
+ γ

(
5

3
(ēn

j )xxx̄x̄x̂ − 2

3
(ēn

j )xxx̄x̄ẍ

)

+η

[
8

9

(
vn
j (v̄n

j )x̂ + (vn
j v̄n

j )x̂

)
− 2

9

(
vn
j (v̄n

j )ẍ + (vn
j v̄n

j )ẍ

)]

−η

[
8

9

(
un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂

)
− 2

9

(
un

j (ū
n
j )ẍ + (un

j ū
n
j )ẍ

)]
.

By taking the Taylor expansion, it is easy to see that rn
j = O(τ 2 + h4) holds as

τ, h → 0.

Theorem 3 The scheme (7) is unconditionally stable in the linearized sense.

Proof The linear form of (7) is a follows:

(un
j )t̂ + β

(
3

2
(ūn

j )xx̄x̂ − 1

2
(ūn

j )xx̄ẍ

)
+ γ

(
5

3
(ūn

j )xxx̄x̄x̂ − 2

3
(ūn

j )xxx̄x̄ẍ

)

+η

[
8

9

(
U(ūn

j )x̂ + (Uūn
j )x̂

)
− 2

9

(
U(ūn

j )ẍ + (Uūn
j )ẍ

)]
= 0. (11)

The von Neumann stability analysis of (7) with un
j = ξneikjh gives the following

amplification factor

ξ2 = 36h5 − iτA

36h5 + iτA
,

where

A =
(

116γ −39βh2
)

sin(kh)−
(

104γ − 24βh2
)

sin(2kh)+
(

36γ −3βh2
)

sin(3kh)

−4γ sin(4kh) + 4ηh4U (8 sin(kh) + 7 sin(2kh) − sin(4kh)) .

The amplification factor which is a complex number has its modulus equal to one;
therefore, the finite difference scheme is unconditionally stable.

Lemma 1 [25, 26] For any two mesh functions u, v ∈ Z0
h, one has the following:

(ux̂, v) = −(u, vx̂), (ux, v) = −(u, vx̄), (uẍ, v) = −(u, vẍ).

Lemma 2 [25, 26] For any mesh function u ∈ Z0
h, one has the following:

(ux̂, u) = 0, (uxx̄x̂, u) = 0, (uxxx̄x̄x̂, u) = 0.

Lemma 3 [25, 26] For any mesh function u ∈ Z0
h, one has the following:

(uxx̄ẍ, u) = 0, (uxxx̄x̄ẍ , u) = 0.
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Theorem 4 Let un be the solution of the finite difference scheme (7). Then,

Qn = h

2

M−1∑

j=1

(
un+1

j + un
j

)
+ τhη

M−1∑

j=1

[
4

9
un

j

(
un+1

j

)

x̂
− 1

9
un

j

(
un+1

j

)

ẍ

]

= Qn−1 = · · · = Q0. (12)

Moreover, the scheme (7) is conservative in a sense:

En = 1

2
||un+1||2 + 1

2
||un||2 = En−1 = · · · = E0. (13)

Proof As a result, we have the following:

h

2

M−1∑

j=1

(
un+1

j −un−1
j

)
+τhη

M−1∑

j=1

[
4

9

(
un

j

(
un+1

j

)

x̂
−un−1

j

(
un

j

)

x̂

)
− 1

9

(
un

j

(
un+1

j

)

ẍ
−un−1

j

(
un

j

)

ẍ

)]
=0.

By multiplying (7) by h and summing up for j from 1 to M − 1, we have the
following:

τh

M−1∑

j=1

[
8

9

(
un

j

(
ūn

j

)

x̂

)
− 2

9

(
un

j

(
ūn

j

)

ẍ

)]

= τh

M−1∑

j=1

[
4

9

(
un

j

(
un+1

j

)

x̂
− un−1

j

(
un

j

)

x̂

)
− 1

9

(
un

j

(
un+1

j

)

ẍ
− un−1

j

(
un

j

)

ẍ

)]
.

Equation (12) follows easily by using similar argument as of (5). We then take an
inner product between (7) and 2ūn. We obtain the following:

1

2τ

(
||un+1||2 − ||un−1||2

)
+ 3β

2
(ūn

xx̄x̂, 2ūn) − β

2
(ūn

xx̄ẍ, 2ūn)

+5γ

3
(ūn

xxx̄x̄x̂, 2ūn) − 2γ

3
(ūn

xxx̄x̄ẍ , 2ūn) + 2η(ψn(un, ūn), 2ūn) = 0,

where

ψn(un, ūn) = 4

9
(un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂) − 1

9
(un

j (ū
n
j )ẍ + (un

j ū
n
j )ẍ).

By considering the boundary conditions (8)–(10) and according to Lemmas 3 and 3,

(ūn
xx̄x̂, ū

n) = 0, (ūn
xx̄ẍ, ū

n) = 0, (ūn
xxx̄x̄x̂, ū

n) = 0, (ūn
xxx̄x̄ẍ, ū

n) = 0.
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Indeed, by simple direct calculations and Lemma 1,

(ψn(un, ūn), 2ūn)

= 4h

9

⎛

⎝
M−1∑

j=1

[
un

j (u
n+1
j )x̂ + (un

j u
n+1
j )x̂

]
un+1

j +
M−1∑

j=1

(
un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂

)
un−1

j

⎞

⎠

−2h

9

⎛

⎝
M−1∑

j=1

(
un

j (ū
n
j )ẍ + (un

j ū
n
j )ẍ

)
un+1

j +
M−1∑

j=1

(
un

j (ū
n
j )ẍ + (un

j ū
n
j )ẍ

)
un−1

j

⎞

⎠

= 4h

9

⎛

⎝
M−1∑

j=1

(
un

j (u
n+1
j )x̂ + (un

j u
n+1
j )x̂

)
un+1

j +
M−1∑

j=1

(
un

j (u
n−1
j )x̂ + (un

j u
n−1
j )x̂

)
un−1

j

+
M−1∑

j=1

(
un

j (u
n+1
j )

x̂
un−1

j + (un
j u

n−1
j )x̂un+1

j

)

+
M−1∑

j=1

(
un

j (u
n−1
j )x̂un+1

j + (un
j u

n+1
j )x̂un−1

j

)
⎞

⎠

−h

9

⎛

⎝
M−1∑

j=1

(
un

j (u
n+1
j )ẍ + (un

j u
n+1
j )ẍ

)
un+1

j +
M−1∑

j=1

(
un

j (u
n−1
j )ẍ + (un

j u
n−1
j )ẍ

)
un−1

j

+
M−1∑

j=1

(
un

j (u
n+1
j )ẍun−1

j + (un
j u

n−1
j )ẍun+1

j

)

+
M−1∑

j=1

(
un

j (u
n−1
j )ẍun+1

j + (un
j u

n+1
j )ẍun−1

j

)
⎞

⎠

= 0.

Therefore,
1

2τ

(
||un+1||2 − ||un−1||2

)
= 0.

Then, this gives (13).

The conservative approximation confirms that the energy would not increase in
time, which allows us to also conclude that the scheme is stable.

2.3 Standard second-order finite difference scheme

The standard second-order finite difference scheme is also considered, and it will
be used as a benchmark of the compact forth-order finite difference scheme since
both schemes apply to the same number of nodes. That is, the system of linear equa-
tions are similar and of the same complexity. As before, we notice that (u2)x =
(2/3)[uux + (u2)x] and using an implicit finite difference method, we propose a
standard seven-point implicit difference scheme for the problem (1):

(un
j )t̂ + β(ūn

j )xx̄x̂ + γ (ūn
j )xxx̄x̄x̂ + 2η

3

(
un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂

)
= 0, (14)
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where

u0
j = u0(xj ), 0 ≤ j ≤ M .

Since the boundary conditions are homogeneous, we obtain the following:

un
0 = un

M = 0, (un
0)x̂ = (un

M)x̂ = 0, (un
0)xx̄ = (un

M)xx̄ = 0, 1 ≤ n ≤ N . (15)

Just like in two previous schemes, the order of accuracy and stability results can be
proven by using a similar argument and calculations.

Theorem 5 The scheme (14) is unconditionally stable in the linearized sense.

Theorem 6 Let un be the solution of the finite difference scheme (14). Then,

Qn = h

2

M−1∑

j=1

(
un+1

j + un
j

)
+ τhη

3

M−1∑

j=1

(un
j (u

n+1
j )x̂) = Qn−1 = · · · = Q0. (16)

Moreover, the scheme (14) is conservative in a sense:

En = 1

2
||un+1||2 + 1

2
||un||2 = En−1 = · · · = E0. (17)

Proof As a result, we have the following:

h

2

M−1∑

j=1

(un+1
j − un−1

j ) + τhη

3

M−1∑

j=1

[(un
j (u

n+1
j )x̂ − un−1

j (un
j )x̂)] = 0.

By multiplying (14) by h and summing up for j from 1 to M − 1, we have the
following:

τh

3

M−1∑

j=1

(un
j )(ū

n
j )x̂ = τh

3

M−1∑

j=1

(un
j (u

n+1
j )x̂ − un−1

j (un
j )x̂).

Then, this give (16). We then take an inner product between (14) and 2ūn to obtain
the following:

1

2τ

(
||un+1||2 − ||un−1||2

)
+ β(ūn

xx̄x̂, 2ūn)

+γ (ūn
xxx̄x̄x̂, 2ūn) + η(ψn(un, ūn), 2ūn) = 0,

where

ψn(un, ūn) = 2

3
(un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂).

By considering the boundary conditions (15) and according to Lemma 3,

(ūn
xx̄x̂, ū

n) = 0, (ūn
xxx̄x̄x̂, ū

n) = 0,
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we have the following:

(ψn(un, ūn), 2ūn)

= 2h

3

⎛

⎝
M−1∑

j=1

(
un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂

)
un+1

j +
M−1∑

j=1

(
un

j (ū
n
j )x̂ + (un

j ū
n
j )x̂

)
un−1

j

⎞

⎠

= h

3

⎛

⎝
M−1∑

j=1

(
un

j (u
n+1
j )x̂ +(un

ju
n+1
j )x̂

)
un+1

j +
M−1∑

j=1

(
un

j (u
n−1
j )x̂ + (un

ju
n−1
j )x̂

)
un−1

j

+
M−1∑

j=1

(
un

j (u
n+1
j )x̂u

n−1
j + (un

ju
n−1
j )x̂u

n+1
j

)

+
M−1∑

j=1

(
un

j (u
n−1
j )x̂u

n+1
j + (un

ju
n+1
j )x̂u

n−1
j

)
⎞

⎠

= 0

when Lemma 1 is used. Therefore,

1

2τ

(
||un+1||2 − ||un−1||2

)
= 0.

Then, this gives (17).

3 Numerical experiments

The numerical methods discussed in the previous section are applied to the Kawahara
equation when β = 1, γ = −1, and η = 0.5, which has an analytical solution as
follows:

u(x, t) = 105

169
sech4

(
1

2
√

13

(
x − 36

169
t

))
.

The accuracy of methods is measured by a comparison of numerical solutions with
the exact solution by using discrete norms defined as follows:

∥∥en
∥∥ = ∥∥uexact − un

∥∥ =
⎛

⎝h

M−1∑

j=1

∣∣∣uexact
j − un

j

∣∣∣
2

⎞

⎠
1/2

and ∥∥en
∥∥∞ = ∥∥uexact − un

∥∥∞ = max
1≤j≤M−1

∣∣∣uexact
j − un

j

∣∣∣ .

The initial condition for each model is chosen in such a way that the exact solution
can be explicitly computed. The performance of each of numerical models was eval-
uated for test cases involving different mesh size, long time behavior, and structure
preserving. For simplicity, we call the Scheme I, Scheme II, and Scheme III to rep-
resent the compact fourth-order finite difference scheme, the standard fourth-order
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finite difference scheme, and the standard second-order finite difference scheme,
respectively. Since the accuracy of the compact scheme (Scheme I) presented here
is of second- and fourth-orders in time and in space, respectively, and a three-level
approximation in time is used in the algorithm together with the initial condition, we
need u1 as a known condition. Therefore, we first choose a two-level scheme which is
an available fourth-order accuracy method for calculation u1. For this reason, we can
determine u2 by the new three-level finite difference schemes (Scheme I, Scheme II,
and Scheme III). In order to show the accuracy in space of schemes proposed here,
we do not allow the error in time which is absorbing accuracy in space. Therefore,
we decide the temporal step by choosing τ = h2. The rate of convergence from the
calculations coincides with the one from theoretical results. That is, the Scheme I and
Scheme II are fourth order of accuracy, but the Scheme III is second order of accu-
racy, as presented in Table 1. The Scheme I and Scheme II can make errors dropped
to 10−7 by using h = 0.125 while the Scheme III can make the ones dropped to just
only 10−4. According to the results, the Scheme I and Scheme II can increase in the
speedup of the convergence rate compared to the Scheme III.

The numerical models generate very similar results in most cases, which compared
to the exact solution. Excellent agreement between numerical and exact solutions
was observed; however, only moderately good agreement was seen in the error result
from the Scheme III as seen in Fig. 1. Moreover, if we use the Scheme I instead
of the Scheme II, then the error of numerical results can be reduced. Regarding an
observation on Figs. 2 and 3, we can see that the solitary wave performed by the
Scheme III propagates slower than the wave generated by the exact solution signifi-
cantly in a long time. Besides, Figs. 2 and 3 illustrate that the expanded left-tail figure
exhibits fluctuation of numerical approximations on x ∈ [−50, 100]. As observed,
the Scheme I offers the fit resolution of wave structure at the left tail. Next, a solution
of the Kawahara equation has the following conservative properties [27]:

Q(t) =
∫ xR

xL

u(x, t)dx =
∫ xR

xL

u0(x)dx = Q(0)

Table 1 The errors of numerical solutions and rate of convergence at t = 120 using τ = h2, xL = −60,
and xR = 100

Scheme I Scheme II Scheme III

‖en‖ Rate ‖en‖ Rate ‖en‖ Rate

h = 0.5 3.13763 × 10−4 – 4.38079 × 10−4 – 1.60893 × 10−2 –

h = 0.25 1.95235 × 10−5 4.00639 2.74453 × 10−5 3.99656 3.95547 × 10−3 2.02418

h = 0.125 1.21851 × 10−6 4.00202 1.71492 × 10−6 4.00035 9.84607 × 10−4 2.00623

‖en‖∞ Rate ‖en‖∞ Rate ‖en‖∞ Rate

h = 0.5 1.13208 × 10−4 – 1.80154 × 10−4 – 5.74163 × 10−3 –

h = 0.25 7.09973 × 10−6 3.99507 1.14781 × 10−5 3.97228 1.44709 × 10−3 1.98830

h = 0.125 4.43428 × 10−7 4.00099 7.27979 × 10−7 3.97884 3.59946 × 10−4 2.00730
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Fig. 1 The distribution of
absolute errors, |uexact

j − un
j |,

using h = 0.5, τ = h2,
xL = −60, and xR = 100 (top)
Scheme I, (middle) Scheme II,
and (bottom) Scheme III

and

E(t) =
∫ xR

xL

u2(x, t)dx =
∫ xR

xL

u2
0(x)dx = E(0).

Then, by using discrete forms, we can approximate two conservative quantities as
follows:

Qn = h

2

M−1∑

j=1

(
un+1

j + un
j

)
and En = h

2

M−1∑

j=1

((
un+1

j

)2 +
(
un

j

)2
)

which are related to mass and energy, respectively. Figures 4 and 5 show log10|Qn −
Q0| and log10|En −E0| distributions for t ∈ [0, 500]. Obviously, there are numerous
oscillations occurring in the results. These are due to the theoretical result. That is,
the Scheme I does not guarantee energy preserving, but the other two schemes do.
Nevertheless, all three schemes guarantee mass preserving, but the obtained results
shown Figs. 4 and 5 show that Scheme I and Scheme II give the better result which
is caused by using higher order of accuracy.
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Fig. 2 The expanded left-tail oscillation of numerical solutions at t = 2000 using h = 0.5, τ = h2, xL =
−60, and xR = 600

Next, numerical simulations are designed to confirm the efficiency of the compact
finite difference scheme. The results are reported here, and the initial condition is set
to be as follows:

u(x, 0) = 105

169
sech4

(
1

2
√

13

(
x − 36

169
− x0

))
,
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Fig. 3 The long-time behavior of numerical solutions at t = 2000 using h = 0.5, τ = h2, xL = −60, and
xR = 600
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Fig. 4 The distribution of log10|Qn − Q0| using h = 0.5, τ = h2, xL = −60, and xR = 500

where x0 is the center of the solitary wave. We model a single solitary wave with
x0 = 2, β = 1, γ = −1, and η = 0.5 as in [13, 15–17] and with the spatial
step size h = 0.2 as in [15] in order to make a comparison to those given in the
references. The motion of a solitary wave is simulated with the range [−40, 50],
and the simalutions run up to t = 25. We decide the temporal step by choosing
τ = 0.1 and τ = 0.01 as one can see in Table 2. The tests show that the error from

0 50 100 150 200 250 300 350 400 450 500
−16
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g 10

|E
n −

E
0 |

 

 

Scheme I
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Fig. 5 The distribution of log10|En − E0| for t ∈ [0, 500] using h = 0.5, τ = h2, xL = −60, and
xR = 250.
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Table 2 Error comparison and change in invariants

τ T ‖ · ‖ × 10−4 ‖ · ‖∞ × 10−4 Qn En

t = 0 5.97369 1.27250

Scheme I 0.1 5 0.10433 0.03930 5.97369 1.27250

15 0.16684 0.05237 5.97369 1.27250

25 0.18379 0.05376 5.97370 1.27250

0.01 5 0.01147 0.00499 5.97369 1.27250

15 0.02383 0.00948 5.97369 1.27250

25 0.30781 0.01216 5.97369 1.27250

Scheme II 0.1 5 0.12036 0.04212 5.97369 1.27250

15 0.18030 0.05321 5.97369 1.27250

25 0.20497 0.06545 5.97370 1.27250

0.01 5 0.02125 0.00780 5.97369 1.27250

15 0.02312 0.00727 5.97369 1.27250

25 0.02184 0.00702 5.97369 1.27250

Scheme III 0.1 5 3.07513 1.06962 5.97372 1.27250

15 4.73801 1.90469 5.97370 1.27250

25 6.36299 2.48659 5.97380 1.27250

0.01 5 2.85426 1.02518 5.97369 1.27250

15 4.52481 1.76969 5.97369 1.27250

25 6.16321 2.43811 5.97376 1.27250

MQ [13] 0.001 5 0.95 0.46 5.97348 1.27250

15 1.54 0.59 5.97343 1.27250

25 1.68 0.47 5.97355 1.27250

GA [13] 0.001 5 1.01 0.34 5.97366 1.27250

15 1.01 0.38 5.97367 1.27250

25 1.32 0.40 5.97353 1.27250

Collocation [15] 0.001 5 3.25 1.12 5.97385 1.27250

15 1.81 0.74 5.97378 1.27250

25 1.40 0.51 5.97373 1.27250

CDQ [16] 0.1 5 1.51 0.43 5.97372 1.27250

15 1.56 0.49 5.97364 1.27250

25 1.59 0.76 5.97350 1.27250

PDQ [16] 0.1 5 19.86 9.21 5.97060 1.27250

15 25.43 10.45 5.97014 1.27250

25 28.51 8.63 5.97353 1.27250

MCBC-DQM [17] 0.01 5 0.63 0.28 5.97360 1.27250

15 0.56 0.19 5.97360 1.27250

25 0.72 0.29 5.97360 1.27250
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the Scheme I is improved about 90% compared with methods in [13, 15, 16] when
τ = 0.1 is used. Numerical solutions obtained by the Scheme I have 2-digit more
accuracy comparing with the PDQ method [16]. Moreover, the tests show that the
error from the Scheme I is improved about 50% comparing with the MCBC-DQM
method [16] when τ = 0.01 and t = 25 are used. The invariants are compared with
results from [13, 15–17] to guarantee the performance of the present methods until
the final time t = 25 is reached. For observation, the invariants Qn and En whose
reference values are gained as Q0 = 5.97369 and E0 = 1.27250 are listed in Table 2.
The tests show that, at t = 25, the quantities Qn obtained from Scheme I and Scheme
II are about 1–2 digits better than that of the Scheme III and the schemes in [13, 15–
17]. As seen, the values En obtained from Scheme I, Scheme II, and Scheme III are
conserved in our simulations with at least 5-digit correctness for values of τ = 0.1
and τ = 0.01.

4 Concluding remarks

The calculation results for a long-time behavior with the second-order scheme
(Scheme III) used in numerical experiments showed need of higher accuracy. As a
result, it was replaced by the fourth-order Schemes I and II discussed in Section 2.
This modification is straightforward, but special attention must be taken at the bound-
ary of the computational domain for the Scheme II as the computational stencil is
larger than the one in the Scheme III. However, the computational stencil of the
Scheme I is equal to the one of the Scheme III. When compared to the standard finite
difference schemes, the compact scheme normally use a fewer stencil and indicate
more appropriate resolution as of the same order of accuracy. Because of the effective
completeness of the solution to the resulting multidiagonal sparse system, the com-
putational cost of the developed compact scheme is very less when compared to the
standard schemes. Moreover, the numerical solutions should reproduce the properties
of the original problem, which is an important factor for improving the efficiency of
a numerical method. This is a considerable challenge to the computational technique
community. For this reason, the numerical algorithms in the paper have been devel-
oped to preserve the structure of the original equation—i.e., conservation of mass
and energy.
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