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Abstract
In this paper, a full-Newton step infeasible interior-point method for solving lin-
ear optimization problems is presented. In each iteration, the algorithm uses only
one so-called feasibility step and computes the feasibility search directions by using
a trigonometric kernel function with a double barrier term. Convergence of the
algorithm is proved and it is shown that the complexity bound of the algorithm
matches the currently best known iteration bound for infeasible interior-point meth-
ods. Finally, some numerical results are provided to illustrate the performance of the
proposed algorithm.
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1 Introduction

Among proposed approaches for solving linear optimization (LO) problems, interior-
point methods (IPMs) gained more attention than others because they were successful
in practice and theory. The primal-dual IPMs for LO problems was first suggested
by Kojima et al. [17] and Megiddo [21]. Primal-dual IPMs can be classified into two
categories: feasible IPMs and infeasible IPMs (IIPMs). The first category requires a
strictly feasible starting point and maintains feasibility during the solution process.
Usually such a starting point is not at hand. In that case the second category should
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be used which start with an arbitrary positive point and feasibility is reached as opti-
mality is approached. The first IIPM was proposed for LO by Lustig [20]. Kojima
et al. [16] gave the first theoretical results on IIPMs.

In 2006, Roos [23] introduced the first full-Newton step IIPM for LO and derived
the currently best known iteration bound. Instead of using damped steps in the line
search, the key feature of his method is that it uses only full-Newton steps at each iter-
ation. Kheirfam and Mahdavi-Amiri [14] generalized the proposed algorithm in [23]
to linear complementarity problems over symmetric cone (SCLCP) using Euclidean
Jordan algebras. Some variants of Roos’ algorithm can be found in [5–7, 27].

El Ghami et al. [3] first introduced a trigonometric kernel function for primal-dual
IPM for LO problems. Kheirfam [8] proposed a primal-dual IPM for semidefinite
optimization (SDO) problems based a new trigonometric kernel function. Kheir-
fam [4] suggested a large update IPM with a new trigonometric kernel function for
SCLCP problems and showed that the proposed algorithm enjoys the best-known
iteration bound for such methods. Based on using a kernel function, Liu et al. [19]
proposed a full-Newton step infeasible interior-point algorithm for LO problems and
proved that the result complexity coincides with the best result for IIPMs. Recently,
Kheirfam and Haghighi [13] presented a full-Newton step infeasible interior-point
algorithm based on the trigonometric kernel function introduced in [15] for LO
problems.

All the above-mentioned infeasible interior-point algorithms consisted of one so-
called feasibility step and several centering steps to get an ε-optimal solution of the
underlying problem. Very recently, Roos [24] proposed an infeasible interior-point
algorithm for LO so that his algorithm does not need centering steps and takes only
one feasibility step in order to get a new iterate close enough to the central path.
Kheirfam [9–12] respectively extended this algorithm to HLCP, the Cartesian P∗(κ)-
LCP, the convex quadratic symmetric cone optimization (CQSCO), and symmetric
optimization (SO) problems.

Motivated by Roos [24], Kheirfam [9–12] and Kheirfam and Haghighi [13], we
propose a full-Newton step infeasible interior-point algorithm for solving LO prob-
lems. Each iteration of algorithm consists of only one feasibility step and computes
the search directions using the barrier function based on the trigonometric kernel
function

φ(t) = (t − 1)2

2
+ (t − 1)2

2t
+ 1

8
tan2(h(t)), where h(t) = π(1 − t)

4t + 2
.

Moreover, we prove that the proposed algorithm enjoys the best-known iteration
complexity for IIPMs.

Let us consider the LO problem in the standard form

min{cT x : Ax = b, x ≥ 0}, (P)

where c, x ∈ Rn, b ∈ Rm, and A ∈ Rm×n with rank(A) = m. The corresponding
dual to (P) can be expressed as follows:

max{bT y : AT y + s = c, s ≥ 0}, (D)
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where s ∈ Rn and y ∈ Rm. Without loss of generality, we assume that both (P) and
(D) satisfy interior-point condition (IPC). In accordance with the available results
on infeasible IPMs (IIPMs), e.g., see [23], let (x∗, y∗, s∗) be an optimal solution of
the problem pair (P) and (D) that ‖x∗ + s∗‖∞ ≤ ζ , and consider the starting point
(x0, y0, s0) = (ζ e, 0, ζ e) which satisfies x0s0 = μ0e with μ0 = ζ 2 and e is the all-
one vector. It is worth noting that since x∗, s∗ ≥ 0, and (x∗)T s∗ = 0, ‖x∗+s∗‖∞ ≤ ζ

holds if and only if

0 ≤ x∗ ≤ ζe, 0 ≤ s∗ ≤ ζe. (1)

The rest of the paper is structured as follows. Section 2 presents the infeasible full-
Newton step IPM for solving LO problems. In Section 2.1, we recall the perturbed
problem pair previously presented in [23]. Section 2.2 describes an iteration of our
algorithm, and then we give new search directions in Section 2.3. In Section 2.4,
a framework of the algorithm is presented. Section 3 is devoted to some technical
results. Section 4 contains the analysis of the proposed algorithm. Section 4.1 gives
an upper bound for the proximity measure after a main iteration of the algorithm.
Section 4.2 serves to derive an upper bound for ω. In Section 4.3, we fix values for the
parameters τ and θ . In Section 4.4, we state that the algorithm is well defined for the
chosen values of τ and θ , provided that n ≥ 2. Some numerical results are presented
in Section 5. Finally, we conclude the paper and outline some future research lines in
Section 6.

2 Infeasible full-Newton step IPM

In the case of an infeasible method, we call the triple (x, y, s) an ε-solution of (P)
and (D) if the norm of the residual vectors do not exceed ε, and also xT s ≤ ε.

2.1 The perturbed problem

Let r0b = b − Ax0 and r0c = c − AT y0 − s0 denote the initial residual vectors of (P)
and (D), respectively. For any ν with 0 < ν ≤ 1, we consider the perturbed problem
pair (Pν) and (Dν)

and

Note that (x, y, s) = (x0, y0, s0) yields a strictly feasible solution of the perturbed
problem pair (Pν) and (Dν) when ν = 1.We conclude that if ν = 1, then the perturbed
problem pair (Pν) and (Dν) satisfies the interior-point condition (IPC).

Lemma 1 ([26, Theorem 5.13]) The problems (P) and (D) are feasible if and only
if the perturbed problems (Pν) and (Dν) satisfy the IPC for every ν satisfying 0 < ν

≤ 1.
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Due to Lemma 1, we conclude that the central path of the perturbed problem pair
(Pν) and (Dν) exists. That is, the following system

b − Ax = νr0b , x ≥ 0, (2)

c − AT y − s = νr0c , s ≥ 0, (3)

xs = μe, (4)

has a unique solution (x(μ, ν), y(μ, ν), s(μ, ν)) for every μ > 0 as the μ-center
of the perturbed problem pair (Pν) and (Dν). In what follows, we assume that
the parameters μ and ν always satisfy the relation μ = νμ0 and we denote
(x(μ, ν), y(μ, ν), s(μ, ν)) = (x(ν), y(ν), s(ν)). We measure the distance of the
iterate (x, y, s) to the μ-center of the perturbed pair (Pν) and (Dν) by the quantity

δ(x, s; μ) := δ(v) := 1

2
‖v−1 − v‖, where v :=

√
xs

μ
. (5)

As an immediate consequence, we have the following lemma.

Lemma 2 ([25, Lemma II.62]) Let δ := δ(x, s; μ) and ρ(δ) := δ + √
1 + δ2. Then

1

ρ(δ)
≤ vi ≤ ρ(δ), i = 1, . . . , n.

2.2 An iteration of our algorithm

Here, we describe one (main) iteration of our algorithm. Suppose that for some
μ ∈ (0, μ0], the algorithm starts from an arbitrary point (x, y, s) which satisfies the
feasibility conditions (2) and (3) for ν = μ

μ0 and such that δ(x, s; μ) ≤ τ , where
τ is a threshold value. This is certainly true at the start of the first iteration. The
algorithm finds a new iterate (x+, y+, s+) that satisfies the feasibility conditions (2)
and (3) with ν replaced by ν+ = (1 − θ)ν with θ ∈ (0, 1). Then μ is reduced to
μ+ = (1 − θ)μ and such that δ(x+, s+; μ+) ≤ τ .

To generate the feasibility solution (x+, y+, s+) = (x +Δx, y +Δy, s +Δs), we
need the displacement (Δx, Δy, Δs)which obtained by solving the following system

AΔx = θνr0b ,

AT Δy + Δs = θνr0c ,

sΔx + xΔs = μe − xs. (6)

2.3 New search directions

Defining the scaled search directions

dx := vΔx

x
, ds := vΔs

s
, (7)
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where v is defined in (5), one can easily verify that the feasibility search direction
system (6) can be written in terms of the scaled search directions dx and ds as follows:

Ādx = θνr0b ,

ĀT Δy

μ
+ ds = θνvs−1r0c ,

dx + ds = v−1 − v, (8)

where Ā := AV −1X, V := diag(v) and X := diag(x).

Definition 1 A twice differentiable function ψ(t) : (0, ∞) → (0, ∞) is called a
kernel function if

ψ(1) = ψ ′(1) = 0, ψ ′′(t) ≥ 0, ∀t > 0.

Note that the right-hand side of the third equation in (8) is the negative gradient of

the logarithmic barrier function Ψ (v) = ∑n
i=1 ψ(vi) where ψ(t) = t2−1

2 − log t . In
this paper, the new search direction is obtained by the following system

Ādx = θνr0b ,

ĀT Δy

μ
+ ds = θνvs−1r0c ,

dx + ds = −∇Φ(v), (9)

where the kernel function of φ(v) is

φ(t) = (t − 1)2

2
+ (t − 1)2

2t
+ 1

8
tan2(h(t)), h(t) = π(1 − t)

4t + 2
. (10)

The above kernel function was first introduced in [18] for feasible IPMs based on
the kernel functions. Since φ′(t) = 2t3−t2−1

2t2
+ 1

4h
′(t) tan(h(t))

(
1 + tan2(h(t))

)
, the

third equation of (9) can be written as

dx + ds = e + v2 − 2v3

2v2
− 1

4
h′(v) tan(h(v)) sec2(h(v)). (11)

We define

σ(x, s; μ) := σ(v) := ‖∇Φ(v)‖=
∥∥∥∥e + v2 − 2v3

2v2
− 1

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥∥ .
One easily verifies that

σ(v) = 0 ⇔ e + v2 − 2v3

2v2
− 1

4
h′(v) tan(h(v)) sec2(h(v)) = 0 ⇔ v = e.

Thus σ(v) is a suitable proximity.

2.4 The algorithm

A more formal description of the algorithm is presented in Fig. 1.
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Fig. 1 The algorithm

3 Technical results

In this section, we give some lemmas which are used in the analysis later.

Lemma 3 For t > 0, we have

1 + t2

2t
− t

4
h′(t) tan(h(t)) sec2(h(t)) > 0.

Proof Since h′(t) = −6π
(2+4t)2

, for f (t) := tan(h(t)) sec2(h(t)) we have

f ′(t) = −6π

(2 + 4t)2

[
sec4(h(t)) + 2 tan2(h(t)) sec2(h(t))

]
< 0.

That is, the function f (t) is monotonically decreasing with respect to t . So, it follows
that

tan(h(t)) sec2(h(t)) > lim
t→+∞ tan(h(t)) sec2(h(t)) = −2.

Hence, we obtain

1 + t2

2t
− t

4
h′(t) tan(h(t)) sec2(h(t)) = 1 + t2

2t
+ 3πt

2(2 + 4t)2
tan(h(t)) sec2(h(t))

>
1 + t2

2t
− 3πt

(2 + 4t)2

= 16t4 + 16t3+(20−6π)t2 + 16t + 4

2t (2 + 4t)2
> 0.

The proof is complete.

Lemma 4 For t > 0, we have∣∣∣∣ th
′(t)
4

tan(h(t)) sec2(h(t))

∣∣∣∣ ≤
∣∣∣∣ 18t

(
t − 1

t

)∣∣∣∣ .
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Proof If 0 < t ≤ 1, then we have h(t) ∈ [0, π
2 ) and tan(h(t)) > 0. Thus,

∣∣∣∣ th
′(t)
4

tan(h(t)) sec2(h(t))

∣∣∣∣ = 3πt

2(2 + 4t)2
tan(h(t)) sec2(h(t)). (12)

Using cos(x) ≥ 1 − 2
π
x and sin(x) ≤ 4

π
x − 4

π2 x
2 for x ∈ [0, π

2 ] [22], we get

cos(h(t)) ≥ 6t

2 + 4t
, sin(h(t)) ≤ 4(1 − t)(1 + 5t)

(2 + 4t)2
.

Therefore,

1

8t

(
1

t
− t

)
− 3πt

2(2 + 4t)2
tan(h(t)) sec2(h(t))

= 1

8t

(
1

t
− t

)
− 3πt sin(h(t))

2(2 + 4t)2 cos3(h(t))

≥ 1

8t

(
1

t
− t

)
− π(1 − t)(1 + 5t)

36t2(2 + 4t)
= 1 − t2

8t2
− π(1 − t)(1 + 5t)

36t2(2 + 4t)

= (1 − t)
[
(18 − 2π) + (54 − 10π)t + 36t2

]
72t2(2 + 4t)

≥ 0.

The above inequality and (12) imply that
∣∣∣∣ th

′(t)
4

tan(h(t)) sec2(h(t))

∣∣∣∣ ≤ 1

8t

(
1

t
− t

)
=

∣∣∣∣ 18t
(

t − 1

t

)∣∣∣∣ .
If t > 1, then h(t) ∈ (−π

4 , 0] and tan(h(t)) < 0. Therefore, we obtain
∣∣∣∣ th

′(t)
4

tan(h(t)) sec2(h(t))

∣∣∣∣ =
∣∣∣∣ 3πt

2(2 + 4t)2
tan(h(t)) sec2(h(t))

∣∣∣∣
= − 3πt

2(2 + 4t)2
tan(h(t)) sec2(h(t)). (13)

From cos(x) ≥ 1 − 2
π
x, x ∈ [

0, π
2

]
and tan(x) < π2x

π2−4x2
, x ∈ (

0, π
2

)
[1], and the

fact that cos(−x) = cos(x) and tan(−x) = − tan(x), we have

cos(x) ≥ 1 + 2

π
x, x ∈

[
−π

2
, 0

]
, tan(x) >

π2x

π2 − 4x2
, x ∈

(
−π

2
, 0

)
.

Thus, we get

cos(h(t)) ≥ 2(2 + t)

2 + 4t
, tan(h(t)) ≥ π(1 − t)(2 + 4t)

12t (2 + t)
, t > 1.

These two inequalities imply that

tan(h(t)) sec2(h(t)) ≥ −π(t − 1)(2 + 4t)

12t (2 + t) cos2(h(t))
≥ −π(t − 1)(2 + 4t)3

48t (t + 2)3
. (14)
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Now, using (13) and (14) for t > 1, we obtain∣∣∣∣ 18t
(

t − 1

t

)∣∣∣∣ −
∣∣∣∣ th

′(t)
4

tan(h(t)) sec2(h(t))

∣∣∣∣ = 1

8t

(
t − 1

t

)

+ 3πt

2(2 + 4t)2
tan(h(t)) sec2(h(t))

≥ t2 − 1

8t2
− π2(t − 1)(2 + 4t)

32(2 + t)3

= t − 1

8

(
t + 1

t2
− π2(2 + 4t)

4(2 + t)3

)

= t − 1

8

(
4t4 + (28 − 4π2)t3 + (72 − 2π2)t2 + 80t + 32

4t2(2 + t)3

)
> 0.

This proves the lemma for t > 1. Therefore, the proof is complete.

Lemma 5 For t > 0, we have∣∣∣∣1 + t2 − 2t3

2t2

∣∣∣∣ ≤
∣∣∣∣
(
1 + 1

2t

)(
t − 1

t

)∣∣∣∣ .

Proof If 0 < t ≤ 1, then we have 1
t
− t ≥ 0 and 1+ t2 − 2t3 ≥ 0. Therefore, we get

(
1 + 1

2t

) (
1

t
− t

)
− 1 + t2 − 2t3

2t2
= 1 − t

t
≥ 0.

If t > 1, then t − 1
t

> 0 and 1 + t2 − 2t3 < 0. In this case, we have

(
1 + 1

2t

) (
t − 1

t

)
+ 1 + t2 − 2t3

2t2
= t − 1

t
≥ 0.

These two inequalities imply the desired result.

4 Analysis of the algorithm

In this section, we investigate the proposed algorithm in Fig. 1 is well defined. The
main part of our analysis is to find some values for the parameters τ and θ such that
after a full-Newton step, the iterate (x+, y+, s+) is strictly feasible for the perturbed
problem pair (Pν+) and (Dν+), and also δ(x+, s+; μ+) ≤ τ .

4.1 Upper bound for δ(v+)

The following lemma guarantees the strict feasibility of the iterate (x+, y+, s+) for
the perturbed pair (Pν+) and (Dν+).
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Lemma 6 The new iterate (x+, y+, s+) is strictly feasible if

e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds > 0.

Proof Defining

x(α) := x + αΔx, s(α) := s + αΔs, α ∈ [0, 1],
and using (7) and (11), we have

x(α)s(α) = (x + αΔx)(s + αΔs) = μ(v + αdx)(v + αds)

= μ(v2 + αv(dx + ds) + α2dxds)

= μ

(
v2 + αv

(
e + v2 − 2v3

2v2
− 1

4
h′(v) tan(h(v)) sec2(h(v))

)
+α2dxds

)

> μ

(
v2 + α

(
e + v2 − 2v3

2v
− v

4
h′(v) tan(h(v)) sec2(h(v))

)

− α2
(

e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v))

))

= μ

(
(1−α)v2 + α(1−α)

(
e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v))

))
≥0,

where the last inequality is due to Lemma 3 and v > 0. Hence, none of the entries
of x(α) and s(α)vanishes for 0 ≤ α ≤ 1. Since x(0) = x > 0 and s(0) = s > 0
and x(α) and s(α) depend linearly on α, this implies that x(α) > 0 and s(α) > 0
for 0 ≤ α ≤ 1. Hence, x(1) = x+ and s(1) = s+ must be positive. This proves the
lemma.

In the sequel, we use the notation ω := 1
2 (‖dx‖2 + ‖ds‖2), and we have the

following inequality:

‖dxds‖∞ ≤ ‖dxds‖ ≤ ‖dx‖‖ds‖ ≤ 1

2
(‖dx‖2 + ‖ds‖2) = ω. (15)

Lemma 7 If ω <
1+ρ(δ)2

2ρ(δ)3
− 1

4δρ(δ), then the iterate (x+, y+, s+) is strictly feasible.

Proof By Lemma 6, the iterates (x+, y+, s+) are strictly feasible if

e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds > 0.

The last inequality certainly holds if

min

(
e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds

)
≥ 1 + v2min

2vmax

−
∥∥∥v

4
h′(v) tan h(v) sec2 h(v)

∥∥∥∞
− ‖dxds‖∞ > 0. (16)
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Using Lemma 4, Lemma 2, and the definition of δ, we obtain∥∥∥v

4
h′(v) tan h(v) sec2 h(v)

∥∥∥∞
≤ 1

8

∥∥∥v−1(v − v−1)

∥∥∥∞

≤ 1

8
‖v−1‖∞‖v − v−1‖ ≤ δ

4vmin
≤ 1

4
δρ(δ).(17)

By Lemma 2, (17) and (15), we obtain

1 + v2min

2vmax
−

∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥∞
− ‖dxds‖∞

≥ 1 + ρ(δ)2

2ρ(δ)3
− 1

4
δρ(δ) − ω > 0.

This means that (16) holds, and the proof is complete.

Assuming v+ as the variance vector of the iterate (x+, y+, s+) with respect to μ+,
i.e., v+ =

√
x+s+
μ+ , the following lemma gives a lower bound for the components of

v+.

Lemma 8 Let v+ be the variance vector related to the iterate (x+, y+, s+) with
respect to μ+, then

v+
min ≥

√
1

1 − θ

(
1 + ρ(δ)2

2ρ(δ)3
− 1

4
δρ(δ) − ω

)
.

Proof Using (7) and (11), we have

x+s+ = (x + Δx)(s + Δs) = μ
(
v2 + v(dx + ds) + dxds

)

= μ

(
e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds

)
.

Dividing both sides the above equality by μ+ = (1 − θ)μ, we obtain

(v+)2 = 1

1 − θ

(
e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds

)
, (18)

which implies by Lemma 2, (15) and (17),

(v+
min)

2 = 1

1 − θ
min

(
e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds

)

≥ 1

1 − θ

(
1 + v2min

2vmax
−

∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥∞
− ‖dxds‖∞

)

≥ 1

1 − θ

(
1 + ρ(δ)2

2ρ(δ)3
− 1

4
δρ(δ) − ω

)
.

Taking square roots gives the desired result.
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We proceed by deriving an upper bound for δ(x+, s+; μ+). By definition (5), we
have

δ(v+) := δ(x+, s+; μ+), where v+ =
√

x+s+
μ+ .

Lemma 9 If ω <
1+ρ(δ)2

2ρ(δ)3
− 1

4δρ(δ), then

δ(v+) ≤ θ
√

n + 2ρ(δ)δ2 + 1
4δρ(δ) + ω

2

√
(1 − θ)

(
1+ρ(δ)2

2ρ(δ)3
− 1

4δρ(δ) − ω
) .

Proof Using (18) and the triangle inequality, we have

δ(v+) = 1

2

∥∥∥(v+)−1 − v+
∥∥∥ ≤ 1

2v+
min

∥∥∥e − (v+)2
∥∥∥

= 1

2v+
min

∥∥∥∥e − 1

1 − θ

(
e + v2

2v
− v

4
h′(v) tan(h(v)) sec2(h(v)) + dxds

)∥∥∥∥
= 1

2(1 − θ)v+
min

∥∥∥∥(1 − θ)e − e + v2

2v
+ v

4
h′(v) tan(h(v)) sec2(h(v)) − dxds

∥∥∥∥
= 1

2(1 − θ)v+
min

∥∥∥∥−θe − (e − v)2

2v
+ v

4
h′(v) tan(h(v)) sec2(h(v)) − dxds

∥∥∥∥
≤ 1

2(1 − θ)v+
min

(
θ
√

n +
∥∥∥∥ (e − v)2

2v

∥∥∥∥
+

∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥ + ‖dxds‖
)

≤ 1

2(1 − θ)v+
min

(
θ
√

n + 1

2
‖v−1‖∞‖e − v‖2

+
∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥ + ω
)

, (19)

where the last inequality follows from (15).
To obtain an upper bound for 1

2‖v−1‖∞‖e − v‖2, due to |1 − t | ≤ |t−1 − t |, for
each t > 0, Lemma 2 and (5), we have

1

2
‖v−1‖∞‖e − v‖2 = 1

2vmin
‖e − v‖2 ≤ 1

2vmin
‖v−1 − v‖2 ≤ 2ρ(δ)δ2. (20)

Numerical Algorithms (2020) 85:59–75 69



Using Lemma 4, we get

∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥ ≤ 1

8

∥∥∥v−1(v − v−1
∥∥∥

≤ 1

8vmin
‖v − v−1‖ ≤ 1

4
δρ(δ). (21)

Substituting these two bounds into (19), and also using Lemma 8, we obtain the
inequality in the lemma.

4.2 Upper bound forω

Let us denote the null space of the matrix Ā as L. So,

L := {ξ ∈ R
n : Āξ = 0}.

Obviously, the affine space {ξ ∈ R
n : Āξ = θνr0b } equals dx + L. The row space of

Ā equals the orthogonal complement L⊥ of L, and ds ∈ θνvs−1r0c + L⊥. Also note
that L∩L⊥ = {0}, and as a consequence the affine spaces dx +L and ds +L⊥ meet
in a unique point q.

Lemma 10 Let q be the (unique) point in the intersection of the affine space dx +L
and ds + L⊥. Then

2ω ≤ ‖q‖2 + (‖q‖ + σ(v))2 .

Proof The proof of lemma is exactly the same as the proof of Lemma 3.4 in [24],
except we make use of −∇Φ(v) instead of v−1 − v.

Following the same argument as in Section 3.4 [24], we obtain

‖q‖ ≤ θ
‖x‖1 + ‖s‖1

ζvmin
≤ θ(n + ‖v‖2)

vmin
≤ θρ(δ)

(
n + n + 2δ2 + 2δ

√
n + δ2

)

= nθρ(δ)

(
1 + ρ

(
δ√
n

)2
)
. (22)

The following lemma provides an upper bound for σ(v) in the terms of the measure
proximity δ.

Lemma 11 One has

σ(v) ≤ (2 + ρ(δ)) δ + 1

4
δρ(δ)2.
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Proof Using the definition of σ(v), the triangle inequality, Lemma 5, and (21), we
obtain

σ(v) =
∥∥∥∥e + v2 − 2v3

2v2
− 1

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥∥
≤

∥∥∥∥e + v2 − 2v3

2v2
‖+‖ v

4v
h′(v) tan(h(v)) sec2(h(v))

∥∥∥∥
≤

∥∥∥∥
(

e + v−1

2

)
(v−1 − v)

∥∥∥∥ + ‖v−1‖∞
∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥
≤ T

∥∥∥∥e + v−1

2

∥∥∥∥∞

∥∥∥v−1 − v

∥∥∥ + ‖v−1‖∞
∥∥∥v

4
h′(v) tan(h(v)) sec2(h(v))

∥∥∥
≤

(
1 + 1

2vmin

)
2δ + 1

4vmin
δρ(δ)

≤ (2 + ρ(δ)) δ + 1

4
δρ(δ)2.

The last inequality is due to Lemma 2. This completes the proof.

Using Lemma 10, (22) and Lemma 11 we obtain an upper bound for ω.

ω ≤ 1

2

⎡
⎣n2θ2ρ(δ)2

(
1 + ρ

(
δ√
n

)2
)2

+
(

nθρ(δ)

(
1 + ρ

(
δ√
n

)2
)

+ (2 + ρ(δ)) δ + 1

4
δρ(δ)2

)2
⎤
⎦ . (23)

4.3 Values for θ and τ

Our aim is to find a positive number τ such that if δ(v) ≤ τ holds, then δ(v+) ≤ τ .
By Lemma 9, this is certainly true if

ω <
1 + ρ(δ)2

2ρ(δ)3
− 1

4
δρ(δ), (24)

θ
√

n + 2ρ(δ)δ2 + 1
4δρ(δ) + ω

2

√
(1 − θ)

(
1+ρ(δ)2

2ρ(δ)3
− 1

4δρ(δ) − ω
) ≤ τ . (25)

Using (23), the inequality (24) holds if

n2θ2ρ(δ)2

(
1 + ρ

(
δ√
n

)2
)2

+
(

nθρ(δ)

(
1 + ρ

(
δ√
n

)2
)

+ (2 + ρ(δ)) δ + 1

4
δρ(δ)2

)2

<
1 + ρ(δ)2

ρ(δ)3
− 1

2
δρ(δ).
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One easily verifies that the left-hand side expression in the above inequality is mono-
tonically increasing with respect to δ, whereas the right-hand side expression is the
monotonically decreasing. Hence, it suffices to have

n2θ2ρ(τ)2

(
1 + ρ

(
τ√
n

)2
)2

+
(

nθρ(τ)

(
1 + ρ

(
τ√
n

)2
)

+ (2 + ρ(τ)) τ + 1

4
τρ(τ)2

)2

<
1 + ρ(τ)2

ρ(τ)3
− 1

2
τρ(τ). (26)

One may easily check that the above inequality is satisfied if

τ = 1

16
, θ = 1

22n
. (27)

This means that the inequality (24) holds, i.e., the iterate (x+, y+, s+) is strictly
feasible, by Lemma 7. On the other hand, note that

g(n, τ ) := ρ(τ)2

968

(
1 + ρ

(
τ√
n

)2
)2

+1

2

(
ρ(τ)

22

(
1 + ρ

(
τ√
n

)2
)

+ (2 + ρ(τ)) τ + 1

4
τρ(τ)2

)2

provides an upper bound for ω, by (23). Moreover, g(n, 1
16 ) ≤ g(2, 1

16 ) ≤ 0.0533.
From Lemma 9, we have

δ(v+) ≤ θ
√

n + 2ρ(δ)δ2 + 1
4δρ(δ) + ω

2

√
(1 − θ)

(
1+ρ(δ)2

2ρ(δ)3
− 1

4δρ(δ) − ω
)

≤
1

22
√

n
+ 2ρ(τ)τ 2 + 1

4τρ(τ) + g(2, τ )

2

√(
1 − 1

22n

) (
1+ρ(τ)2

2ρ(τ)3
− 1

4τρ(τ) − g(2, τ )
)

≤
1

22
√
2

+ 2(1.0645) 1
256 + 1

64 (1.0645) + 0.0533

2

√(
1 − 1

44

) (
1+(1.0645)2

2(1.0645)3
− 1

64 (1.0645) − 0.0533
)

≤ 0.0619 < 0.0625 = τ .

This means that the inequality (25) is true. That is, the algorithm is well defined in
the sense that the property δ(x, s; μ) ≤ τ with τ and θ defined in (27) is maintained
in all iterations.

4.4 Complexity analysis

In the previous sections, we have found that if n ≥ 2 and at the start of an iter-
ation the iterates (x, y, s) satisfying δ(x, s; μ) ≤ τ , with τ and θ as defined in
(27), then after the full-Newton step, the new iterate (x+, y+, s+) is strictly feasible
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and δ(x+, s+; μ+) ≤ τ . This makes the algorithm well defined. After each itera-
tion, the residuals and the duality gap are reduced by a factor 1 − θ . Hence, using
(x0)T s0 = nζ 2, the total number of main iterations is bounded above by

1

θ
log

max{nζ 2, ‖r0p‖, ‖r0d‖}
ε

.

Using θ = 1
22n , we have the following result.

Theorem 1 Let (P) and (D) be feasible and ζ > 0 such that ‖x∗ + s∗‖∞ ≤ ζ for
some optimal solutions x∗ of (P) and (y∗, s∗) of (D). Then after at most

22n log
max{nζ 2, ‖r0p‖, ‖r0d‖}

ε

inner iterations the algorithm finds an ε-solution of (P) and (D).

5 Numerical results

In this section, we report some computational results for the test problems given
in Table 1 that are taken from the standard NETLIB test repository [2]. Numerical
results were obtained by using MATLAB R2009a (version 7.8.0.347) on Windows
XP Enterprize 32-bit operating system. The numerical results are summarized in
Table 1, where “Iter.” denotes the required iteration numbers and “CPU” denotes the
CPU time (in seconds) required to obtain an ε-solution of the underlying problem.
Moreover, in Table 1, “bound” and ”object. value” respectively denote the obtained
bound in Theorem 1 and the objective function value. We set ε = 10−4 as the accu-
racy parameter and choose the initial starting point (x0, y0, s0) = (ζ e, 0, ζ e) such
that ‖x∗ + s∗‖∞ ≤ ζ . Also, we set θ = 1

22n for the proposed algorithm and θ = 1
8n

for the algorithm in [24].
Note that the iteration bound in this paper is a worst-case bound, as is usual for

theoretical bounds for IPMs (including IIPMs). When solving a particular problem,
usually much smaller iteration numbers can be realized by taking θ larger than the
value that is theoretically justified [24]. Now, we compare the proposed algorithm
in this paper with the given algorithm in [13]. In order to, we again consider ε =
10−4, (x0, y0, s0) = (ζ e, 0, ζ e) such that ‖x∗ + s∗‖∞ ≤ ζ and θ = 0.2. In Table 2,

Table 1 Computational results for the test problems given

Name ξ ‖x∗ + s∗‖∞ Bound Object. value Proposed Algor. Algor. in [24]

Iter. Iter.

afiro 500 500 28691 −464.7531 28680 10422

blend 90 87.0949 57549 − 30.8121 57539 20917

share2b 70 62.2722 81241 − 415.7322 81231 29532

scagr7 4570 4569.3 127330 − 2331389 127317 46288
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Table 2 Numerical results

Name ξ Proposed Algor. Algor. in [13]

Iter. CPU C. Iter. Iter. CPU

afiro 500 116 0.560865 120 115 0.651357

blend 90 104 1.438975 108 103 3.931390

sc50a 300 110 0.990336 122 112 2.127226

sc105 400 119 3.940669 146 118 10.060901

share2b 400 117 3.859234 131 118 8.831048

scagr7 500 122 4.917836 144 121 12.272520

beaconfd 600 126 12.049325 125 125 28.381452

sc205 200 116 14.056501 115 184 42.886385

“C. Iter.” denotes the required centering iteration numbers. The numerical results are
listed in Table 2.

The obtained numerical results in Table 2 show that for each problem instance, the
algorithm in [13] needs a number of inner iterations ( C. Iter. ), while the proposed
algorithm does not need to these iterations. Moreover, from the results in the Table 2,
we find that the execution time of the proposed algorithm is almost one-third of the
execution time of the algorithm in [13].

6 Concluding remarks

In this paper, we proposed a new infeasible interior-point algorithm for solving LO
problems. In each iteration, the algorithm uses only one step as feasibility step and
admits a trigonometric kernel function instead of the logarithmic kernel function in
system of scaled search directions. Moreover, the new algorithm does not need the
centering steps. The proposed algorithm uses only full steps and therefore no line-
searches are needed for generating the new iterates. The complexity bound of the
proposed algorithm coincides with the currently best known iteration bound of infea-
sible IPMs for LO problems. We presented some numerical results to illustrate the
performance of the algorithm on NETLIB test problems.
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