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Abstract
In this paper, we present a time two-grid algorithm based on the finite difference
(FD) method for the two-dimensional nonlinear time-fractional mobile/immobile transport
model. We establish the problem as a nonlinear fully discrete FD system, where the time
derivative is discretized by the second-order backward difference formula (BDF) scheme,
the Caputo fractional derivative is treated by means of L1 discretization formula, and
the spatial derivative is approximated by the central difference formula. For solv-
ing the nonlinear FD system more efficiently, a time two-grid algorithm is proposed,
which consists of two steps: first, the nonlinear FD system on a coarse grid is solved
by nonlinear iterations; second, the Newton iteration is utilized to solve the linearized
FD system on the fine grid. The stability and convergence inL2-norm are obtained for
the two-grid FD scheme. Numerical results are consistent with the theoretical anal-
ysis. Meanwhile, numerical experiments show that the two-grid FD method is much
more efficient than the general FD scheme for solving the nonlinear FD system.
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1 Introduction

Consider a time two-grid finite difference scheme for the two-dimensional nonlinear
time-fractional mobile/immobile transport model [17, 22] as follows:

ut + ∂αu

∂tα
− Δu + g(u) = f (x, y, t), (x, y, t) ∈ Ω × (0, T ], (1)

the initial condition is as follows:

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄, (2)

and the boundary conditions are as follows:

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T ], (3)

where α ∈ (0, 1), Ω = (0, L1) × (0, L2) with boundary ∂Ω , Δ = ∂2

∂x2
+ ∂2

∂y2
is the

two-dimensional Laplacian operator, f (x, t), u0(x) are given smooth functions and
the nonlinear reaction term g(u) satisfies |g(u)| ≤ C̄|u|, |g′(u)| ≤ C̄, C̄ is a positive
constant [18]. In addition, the Caputo fractional derivative (cf. [24]) is defined by the
following:

∂α

∂tα
u(x, y, t) = 1

Γ (1 − α)

∫ t

0

1

(t − s)α

∂u(x, y, s)

∂s
ds. (4)

Equation (1) is a fractal mobile/immobile transport model that describes a range
of problems, including heat diffusion and the propagation of ocean sound, in physical
or mathematical systems with time variables that behave essentially like the diffusion
of heat through a solid [1, 22].

To approximate the fractional order mobile/immobile transport equation, the sig-
nificant progress has been made. For instance, Schumer et al. [28] first considered
the fractional mobile/immobile transport model. These transfer equations control the
long-term limit of the continuous-time random walk model, which implies the proba-
bilistic interpretation of the mobile/immobile convection-diffusion equation. In most
cases, the analytical solutions of some complex models are difficult to be solved;
thus, it is necessary to use numerical methods to approximate the analytical solu-
tions. Liu et al. [15] presented effective implicit numerical methods for a class of
fractional advection-dispersion models. The stability and convergence of the implicit
numerical methods were proved. Liu et al. [17] developed a finite difference method
and a meshless method for the fractal mobile/immobile transport model with a frac-
tional time derivative. Zhang et al. [35] proposed a novel implicit numerical method
for the time variable fractional order mobile/immobile advection-dispersion model.
Additionally, Liu et al. [22] developed a second-order finite difference scheme for
the quasilinear time-fractional mobile/immobile equation.

Recently, fractional partial differential equations (FPDEs) have developed more
and more rapidly and many good numerical methods have followed, such as finite
element methods (FEMs) [8, 10, 18, 36], finite difference methods (FDMs) [2–4, 7,
9, 11, 17, 22, 23, 25, 30, 31], finite volume methods (FVMs) [16, 39], discontinuous
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Galerkin methods [6, 32], weak Galerkin methods [37, 38], spectral methods [13,
14], and two-grid methods [12, 19–21].

For solving the nonlinear systems, a two-grid algorithm which is first proposed
by Xu [33, 34] has attracted much attention due to its high efficiency. First, for
space two-grid algorithm based on the FDMs, Dawson and Wheeler [5] considered
a two-grid finite difference scheme for nonlinear parabolic equations. They showed
superconvergence of the flux and the pressure in certain discrete H 1- and L2-norms.
Rui and Liu [27] presented a two-grid block-centered finite difference method for
Darcy-Forchheimer flow in porous media. Built on [5], Li and Rui [12] considered
the case of fractional order, and established the error estimates on non-uniform rect-
angular grid. For a space two-grid algorithm established on the FEMs, Liu et al.
solved the nonlinear fourth-order reaction-diffusion problem [19] and the nonlinear
time-fractional cable equation [20]. The stability and the priori error estimates were
proved. Besides, for the time two-grid algorithm, Liu et al. [21] proposed a time two-
mesh algorithm combined with the finite element method for a time-fractional water
wave model. However, the time two-grid algorithm based on the finite difference
method has not been studied yet. Next, we shall consider that.

It is worth mentioning that compared with the two-grid FEMs [19–21], the two-
grid FDMs are relatively simple from the point of view of numerical calculation.
This means that our method will be favored by a large number of engineering sci-
entists. Furthermore, for the study of the two-grid finite difference method, our
article is different from Ref. [12]. Based on the finite difference method, Li and Rui
[12] employed a two-grid algorithm for the spatial direction. However, our article
uses a two-grid algorithm for the temporal direction. In addition, through numeri-
cal schemes and experiments, we can find that our method has the advantages of the
simple numerical calculation and the fast solution of nonlinear equations.

The main purpose of this paper is to establish a time two-grid finite difference
scheme for the two-dimensional nonlinear time-fractional mobile/immobile transport
model. The time derivative ut is approximated by the second-order BDF scheme,
the Caputo fractional derivative is discretized by the L1 discretization formula, and
the central difference formula for the spatial derivative. The time two-grid algorithm
is divided into two steps. Firstly, on a coarse mesh, we solve the nonlinear system,
and the Lagrangian interpolation formula is applied. Secondly, on a fine mesh, the
linearized system is solved. The time two-grid finite difference scheme is stable and
convergent with convergence order O(k2−α

F +k4−2α
C +h21+h22), where kF and kC are

the fine grid time-step size and the coarse grid time-step size, respectively. Numerical
results show that our method is more efficient than general finite difference method
in terms of the CPU time.

The structure of the remainder of this paper is constructed as follows. In Section 2,
some preliminaries are given. Section 3 devotes to the establishment of the two-grid
difference scheme. The stability and convergence of the two-grid FD scheme are
considered in Section 4. In Section 5, some numerical results are obtained by utilizing
the two-grid FD scheme and the general FD scheme, and some comparisons between
two methods are presented. The article ends with a brief conclusions section.
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2 Preliminaries

First define the time-step size on the fine grid k = kF := T/N , tn := nkF (0 ≤ n ≤
N ) for positive integer N , the time domain (0, T ] is covered by Ωk = {tn|0 ≤ n ≤
N }. Similarly, the time-step size on the coarse grid is kC := T/N , tn := nkC(0 ≤
n ≤ N) for positive integer N and satisfies kC = MkF for M ≥ 2. For any grid
function W1 = {wn|1 ≤ n ≤ N} on Ωk , we define the following:

δ
(C)
t wMn := 1

kC

(wMn − wM(n−1)),

D
(C)
t wMn := 1

2kC

(3wMn − 4wM(n−1) + wM(n−2)),

and W2 = {wn|1 ≤ n ≤ N } on Ωk , we define the following:

δ
(F )
t wn := 1

kF

(wn − wn−1), D
(F)
t wn := 1

2kF

(3wn − 4wn−1 + wn−2),

δtw
n := 1

k
(wn − wn−1), Dtw

n := 1

2k
(3wn − 4wn−1 + wn−2).

For two positive integers Jx and Jy , let space-step size h1 = L1/Jx, h2 = L2/Jy ,
h = max{h1, h2}, we arrive at xi = ih1, yj = jh2. Denote Ω̄h = {(xi, yj )|0 ≤ i ≤
Jx, 0 ≤ j ≤ Jy} and Ωh = Ω̄h ∩ Ω, ∂Ωh = Ωh ∩ ∂Ω .

Based on the grid function Wh = {wij |0 ≤ i ≤ Jx, 0 ≤ j ≤ Jy} on Ωh, we
denote the following:

δxwi+ 1
2 ,j

:= 1

h1
(wi+1,j − wij), δ2xwij := 1

h1
(δxwi+ 1

2 ,j
− δxwi− 1

2 ,j
),

the notations δywi+ 1
2 ,j

, δ2ywij are defined similarly and the discrete Laplace operator

Δhwij := (δ2x + δ2y)wij.
Also, for any grid function w, v ∈ Ωh, we define the following:

〈w, v〉 := h1h2

Jx−1∑
i=1

Jy−1∑
j=1

wijvij, ‖w‖ := √〈w,w〉, ‖w‖∞ := max
1 ≤ i ≤ Jx − 1,
1 ≤ j ≤ Jy − 1

|wij|,

‖δxw‖ :=

√√√√√h1h2

Jx−1∑
i=0

Jy−1∑
j=1

(δxwi+ 1
2 ,j

)2, ‖δyw‖ :=

√√√√√h1h2

Jx−1∑
i=1

Jy−1∑
j=0

(δxwi,j+ 1
2
)2.

First, we define the grid functions as follows:

Un
ij := u(xj , yj , tn), f n

ij := f (xj , yj , tn), (xi, yj ) ∈ Ω̄h, 0 ≤ n ≤ N .

Employing the Taylor series expansion with integral remainder, we arrive at the
following lemmas.
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Lemma 2.1 [4] Suppose u(x, y, t) ∈ C
4,4
x,y([0, L1] × [0, L2]), then it holds as

follows:

∂2u

∂x2
(xi , yj , tn) = δ2xUn

ij

−h21

6

∫ 1

0

[
∂4u

∂x4
(xi + zh1, yj , tn) + ∂4u

∂x4
(xi − zh1, yj , tn)

]
(1 − z)3dz,

∂2u

∂y2
(xi , yj , tn) = δ2yUn

ij

−h22

6

∫ 1

0

[
∂4u

∂y4
(xi , yj + zh2, tn) + ∂4u

∂y4
(xi , yj − zh2, tn)

]
(1 − z)3dz.

Lemma 2.2 [2, 3] Assume V (t) ∈ C3[tn−2, tn], then we arrive at the following:

V ′(tn) − 1

2k
[3V (tn) − 4V (tn−1) + V (tn−2)]

= −k2
∫ 1

0
[V ′′′(tn − kz) − 2V ′′′(tn − 2kz)](1 − z)2dz, n ≥ 2,

and

V ′(t1) − 1

k
[V (t1) − V (t0)] = k

∫ 1

0
V ′′(t0 + kz)zdz.

Lemma 2.3 [26, 30] Assume V (t) ∈ C2[0, tn], it holds as follows:∣∣∣∣ 1

Γ (1 − α)

∫ tn

0

V ′(s)
(tn − s)α

ds − k−1

Γ (1 − α)
Δα

t V (tn)

∣∣∣∣ ≤ C̄k2−α, 0 < α < 1,

Δα
t V (tn) = a0V (tn) −

n−1∑
i=1

(an−i−1 − an−i )V (ti) − an−1V (t0),

where al = ∫ tl+1
tl

z−αdz = k1−α

1−α
[(l + 1)1−α − l1−α], l ≥ 0.

Remark In this article, C̄ denotes a generic positive constant, not necessarily the
same at different occurrences, which is independent on the time-step size and the
space-step size.

3 Establishment of the two-grid difference scheme

Below, we first formulate the general finite difference scheme for nonlinear problem
(1)–(3).

Considering (1) at the point (xi, yj , tn) and using Lemmas 2.1–2.3, we have the
following:

δtU
1
ij + k−1

Γ (1 − α)
Δα

t U1
ij − ΔhU

1
ij + g(U1

ij ) = f 1
ij + (R1)

1
ij, (xi, yj ) ∈ Ωh, (5)
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DtU
n
ij + k−1

Γ (1 − α)
Δα

t Un
ij − ΔhU

n
ij + g(Un

ij ) = f n
ij + (R1)

n
ij,

(xi, yj ) ∈ Ωh, 2 ≤ n ≤ N , (6)

Un
ij = 0, (xi, yj ) ∈ ∂Ωh, 1 ≤ n ≤ N , (7)

U0
ij = u0(xi, yj ), (xi, yj ) ∈ Ωh, (8)

where

(R1)
1
ij = C̄(k + h21 + h22),

(R1)
n
ij = C̄(k2−α + h21 + h22), 2 ≤ n ≤ N . (9)

Omitting the truncation errors (R1)
n
ij, 1 ≤ n ≤ N , and replacing the function

Un
ij with its numerical approximation un

ij, we construct the following general finite
difference scheme as follows:

δtu
1
ij +

k−1

Γ (1 − α)
Δα

t u1ij − Δhu
1
ij + g(u1ij) = f 1

ij , (xi, yj ) ∈ Ωh, (10)

Dtu
n
ij +

k−1

Γ (1 − α)
Δα

t un
ij − Δhu

n
ij + g(un

ij) = f n
ij ,

(xi, yj ) ∈ Ωh, 2 ≤ n ≤ N , (11)

un
ij = 0, (xi, yj ) ∈ ∂Ωh, 1 ≤ n ≤ N , (12)

u0ij = u0(xi, yj ), (xi, yj ) ∈ Ωh. (13)

Now, we derive the two-grid difference scheme for problem (1)–(3). The process
is divided into three steps as follows.

Step I. On the coarse grid, noting that n = 0, 1, · · · , M, M + 1, · · · , 2M ,
· · · ,NM = N , we only calculate (pM)th level, 1 ≤ p ≤ N . Similar to the estab-
lishment of the general finite difference scheme, the coarse grid difference equations
are obtained by the following:

δ
(C)
t (uC)Mij + k−1

C

Γ (1 − α)
Δα

t (uC)Mij − Δh(uC)Mij + g((uC)Mij ) = f M
ij ,

(xi, yj ) ∈ Ωh, (14)

D
(C)
t (uC)

pM
ij + k−1

C

Γ (1 − α)
Δα

t (uC)
pM
ij − Δh(uC)

pM
ij + g((uC)

pM
ij ) = f

pM
ij ,

(xi, yj ) ∈ Ωh, 2 ≤ p ≤ N . (15)

Step II. Then based on u
pM
C obtained in the step I, 1 ≤ p ≤ N , we utilize the

Lagrange linear interpolation to compute the value of u
(p−1)M+q
C on the coarse grid,

where 1 ≤ q ≤ M − 1. In the time direction, employing the Lagrange interpola-
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tion formula between the points (t(p−1)M, u
(p−1)M
C ) and (tpM, u

pM
C ), we arrive at the

following:

LuC
(t(p−1)M+q) = u

(p−1)M+q
C

= t(p−1)M+q − tpM

t(p−1)M − tpM
u

(p−1)M
C + t(p−1)M+q − t(p−1)M

tpM − tp−1M
u
pM
C

= (1 − q

M
)u

(p−1)M
C + q

M
u
pM
C , 1 ≤ p ≤ N, 1 ≤ q ≤ M − 1. (16)

Step III. Finally, based on un
C in the step II on the time coarse mesh kC , the

following linear fine grid difference equations on the time fine mesh kF are given by
the following:

δ
(F )
t (uF )1ij +

k−1
F

Γ (1 − α)
Δα

t (uF )1ij − Δh(uF )1ij + g((uC)1ij)

+g′((uC)1ij)[(uF )1ij − (uC)1ij] = f 1
ij , (xi, yj ) ∈ Ωh, (17)

D
(F)
t (uF )nij +

k−1
F

Γ (1 − α)
Δα

t (uF )nij − Δh(uF )nij + g((uC)nij)

+g′((uC)nij)[(uF )nij − (uC)nij] = f n
ij , (xi, yj ) ∈ Ωh, 2 ≤ n ≤ N . (18)

4 Analysis of the two-grid difference scheme

Below, the stability and convergence of the two-grid difference scheme will be
derived. For the demand of analysis, we introduce some lemmas as follows:

Lemma 4.1 [4] For any grid functions w, v ∈ Wh, we obtain the follows:

〈δ2xw, v〉 = −h1h2

Jx−1∑
i=0

Jy−1∑
j=1

(δxwi+ 1
2 ,j

)(δxvi+ 1
2 ,j

),

〈δ2yw, v〉 = −h1h2

Jx−1∑
i=1

Jy−1∑
j=0

(δywi,j+ 1
2
)(δyvi,j+ 1

2
).

Lemma 4.2 [2, 3] For any wn ∈ Wh, 1 ≤ n ≤ N , it follows that

k〈δtw
1, w1〉 + k

N∑
n=2

〈Dtw
n, wn〉 ≥ 3

4
‖wN‖2 − 1

4
(‖wN−1‖2 + ‖w1‖2 + ‖w0‖2).
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Lemma 4.3 [30] For any G̃ = {G̃1, G̃2, G̃3, · · · } and Q̃, we have the following:

N∑
n=1

[
a0G̃n −

n−1∑
i=1

(an−i−1 − an−i )G̃i − an−1Q̃

]
G̃n

≥ T −α

2
kγ

N∑
n=1

G̃2
n − T 1−α

2(1 − α)
Q̃2, N ≥ 1,

where 0 < α < 1, al = k1−α
γ

1−α
[(l + 1)1−α − l1−α], l ≥ 0, γ = C or F .

Lemma 4.4 [29] (Discrete Gronwall’s inequality) If Zm is a non-negative real
sequence and satisfies such as the follow:

Zm ≤ Ãm +
m−1∑
s=0

B̃s Zs, m ≥ 0,

where Ãm is a non-descending and non-negative sequence, B̃s ≥ 0, then, we arrive
at the following:

Zm ≤ Ãm exp

(
m−1∑
s=0

B̃s

)
, m ≥ 0.

4.1 Stability

The energy method is applied to establish the stability of the two-grid difference
scheme. First, we derive the stability of coarse grid system.

Theorem 4.5 For the coarse grid system (14) and (15), for 1 ≤ n ≤ N and kC =
MkF , the following inequality holds:

‖un
C‖ ≤ C̄

(
‖u0C‖ + kC

N∑
l=1

‖f lM‖
)
.

Proof The above theorem will be proved by two steps.
(I). In the first step, we estimate the norm ‖upM

C ‖ for p = 1, 2, · · · , N . Taking

the inner products of (14) and (15) with kCuM
C and kCu

pM
C , respectively, we arrive at

the following:

kC〈δ(C)
t uM

C , uM
C 〉 + 1

Γ (1−α)
〈Δα

t uM
C , uM

C 〉 − kC〈Δhu
M
C , uM

C 〉
+kC〈g(uM

C ), uM
C 〉 = kC〈f M, uM

C 〉. (19)

kC〈D(C)
t u

pM
C , u

pM
C 〉 + 1

Γ (1−α)
〈Δα

t u
pM
C , u

pM
C 〉 − kC〈Δhu

pM
C , u

pM
C 〉

+kC〈g(u
pM
C ), u

pM
C 〉 = kC〈f pM, u

pM
C 〉, 2 ≤ p ≤ N .

(20)
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Then, for N ≥ 1, we readily obtain the following:

kC〈δ(C)
t uM

C , uM
C 〉 + kC

N∑
p=2

〈D(C)
t u

pM
C , u

pM
C 〉 + 1

Γ (1−α)

N∑
p=1

〈Δα
t u

pM
C , u

pM
C 〉

−kC

N∑
p=1

〈Δhu
pM
C , u

pM
C 〉 + kC

N∑
p=1

〈g(u
pM
C ), u

pM
C 〉 = kC

N∑
p=1

〈f pM, u
pM
C 〉.

(21)

Next, we shall estimate each term of (21). Firstly, from Lemmas 4.1–4.3 and using
the Cauchy-Schwarz inequality, we have the following:

kC〈δ(C)
t u

pM
C , u

pM
C 〉 + kC

N∑
p=2

〈D(C)
t u

pM
C , u

pM
C 〉

≥ 3
4‖uNMC ‖2 − 1

4 (‖u(N−1)M
C ‖2 + ‖uM

C ‖2 + ‖u0C‖2),
(22)

1

Γ (1 − α)

N∑
p=1

〈Δα
t u

pM
C , u

pM
C 〉 ≥ T −α

2Γ (1 − α)
kC

N∑
p=1

‖upMC ‖2 − T 1−α

2Γ (2 − α)
‖u0C‖2,

(23)

− kC

N∑
p=1

〈Δhu
pM
C , u

pM
C 〉 = −kC

N∑
p=1

(‖δxu
pM
C ‖2 + ‖δyu

pM
C ‖2) ≤ 0. (24)

In addition, we also have the following:

〈g(u
pM
C ), u

pM
C 〉 ≤ ‖g(u

pM
C )‖‖upMC ‖ ≤ C̄‖upMC ‖2, (25)

and
〈f pM, u

pM
C 〉 ≤ ‖f pM‖‖upMC ‖. (26)

Substituting (22)–(26) into (21), then it holds that as follows:

3
4‖uNMC ‖2 − 1

4 (‖u(N−1)M
C ‖2 + ‖uM

C ‖2 + ‖u0C‖2) − T 1−α

2Γ (2−α)
‖u0C‖2

≤ C̄kC

N∑
p=1

‖upMC ‖2 + kC

N∑
p=1

‖f pM‖‖upMC ‖. (27)

Taking the appropriate s̃ such that ‖us̃M
C ‖ = max

0≤p≤N
‖upMC ‖, we obtain the

following:
1
2‖uNMC ‖ ≤ 1

2‖us̃M
C ‖ ≤ 1

4 (‖uM
C ‖ + ‖u0C‖)

+ T 1−α

2Γ (2−α)
‖u0C‖ + C̄kC

N∑
p=1

‖upMC ‖ + kC

N∑
p=1

‖f pM‖. (28)

When kC ≤ 1/(4C̄), following from Lemma 4.4, inequality (28) becomes the
following:

‖uNMC ‖ ≤ C̄(T ) exp{NkC}
(

‖uM
C ‖ + ‖u0C‖ + kC

N∑
p=1

‖f pM‖
)

≤ C̄

(
‖uM

C ‖ + ‖u0C‖ + kC

N∑
p=1

‖f pM‖
)
.

(29)
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Similarly, using (19), we have the following:

‖uM
C ‖ ≤ C̄(T )(‖u0C‖ + kC‖f M‖). (30)

Thus, for any 1 ≤ p ≤ N , combining (29) with (30), we obtain the following:

‖upMC ‖ ≤ C̄

(
‖u0C‖ + kC

N∑
l=1

‖f lM‖
)
. (31)

(II). In the second step, we estimate the norm ‖u(p−1)M+q
C ‖ for 1 ≤ p ≤ N and

1 ≤ q ≤ M − 1.
Noting that (16), it follows that

‖u(p−1)M+q
C ‖ = ‖(1 − q

M
)u

(p−1)M
C + q

M
u
pM
C ‖

≤ (1 − q
M

)‖u(p−1)M
C ‖ + q

M
‖upMC ‖ ≤ C̄

(
‖u0C‖ + kC

N∑
l=1

‖f lM‖
)
.

(32)

Using (31) and (32), we finish the proof.
Below, we construct the stability of fine grid system.

Theorem 4.6 For the fine grid system (17) and (18), for 1 ≤ n ≤ N , it holds the
following:

‖un
F ‖ ≤ C̄(‖u0C‖ + ‖u0F ‖ + max

1≤l≤N
‖f l‖).

Proof We take the inner products of (17) and (18) with kF u1F and kF un
F , respectively,

then,
kF 〈δ(F )

t u1F , u1F 〉 + 1
Γ (1−α)

〈Δα
t u1F , u1F 〉 − kF 〈Δhu

1
F , u1F 〉

+kF 〈g(u1C) + g′(u1C)(u1F − u1C), u1F 〉 = kF 〈f 1, u1F 〉.
(33)

kF 〈D(F)
t un

F , un
F 〉 + 1

Γ (1−α)
〈Δα

t un
F , un

F 〉 − kF 〈Δhu
n
F , un

F 〉
+kF 〈g(un

C) + g′(un
C)(un

F − un
C), un

F 〉 = kF 〈f n, un
F 〉, 2 ≤ n ≤ N .

(34)

Then, summing for n from 2 to N and adding (33), we arrive at the following:

kF 〈δ(F )
t u1F , u1F 〉 + kF

N∑
n=2

〈D(F)
t un

F , un
F 〉

+ 1
Γ (1−α)

N∑
n=1

〈Δα
t un

F , un
F 〉 − kF

N∑
n=1

〈Δhu
n
F , un

F 〉

= −kF

N∑
n=1

〈g(un
C) + g′(un

C)(un
F − un

C), un
F 〉 + kF

N∑
n=1

〈f n, un
F 〉.

(35)

Analogous to the process of (22)–(24), using Lemmas 4.1–4.3 and the Cauchy-
Schwarz inequality, we obtain the following:

3
4‖uN

F ‖2 − 1
4 (‖uN −1

F ‖2 + ‖u1F ‖2 + ‖u0F ‖2) − T 1−α

2Γ (2−α)
‖u0F ‖2

≤ −kF

N∑
n=1

〈g(un
C) + g′(un

C)(un
F − un

C), un
F 〉 + kF

N∑
n=1

〈f n, un
F 〉

≤ kF

N∑
n=1

|〈g(un
C) + g′(un

C)(un
F − un

C), un
F 〉| + kF

N∑
n=1

‖f n‖‖un
F ‖,

(36)
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moreover, we have the following:

|〈g(un
C) + g′(un

C)(un
F − un

C), un
F 〉| ≤ C̄(‖un

C‖‖un
F ‖)

+‖g′(un
C)‖∞(‖un

F ‖ + ‖un
C‖)‖un

F ‖ ≤ C̄(‖un
C‖‖un

F ‖ + ‖un
F ‖2). (37)

Choosing the suitable m such that ‖um
F ‖ = max

0≤n≤N
‖un

F ‖, and substituting (37)

into (36), we get the following:

1
2‖uN

F ‖ ≤ 1
2‖um

F ‖ ≤ 1
4 (‖u1F ‖ + ‖u0F ‖) + T 1−α

2Γ (2−α)
‖u0F ‖

+C̄kF

N∑
n=1

(‖un
F ‖ + ‖un

C‖) + kF

N∑
n=1

‖f n‖. (38)

When kF ≤ 1/(6C̄), from Lemma 4.4, inequality (38) turns into the following:

‖uN
F ‖ ≤ C̄(T ) exp{N kF }

(
‖u1F ‖ + ‖u0F ‖ + kF

N∑
n=1

‖un
C‖ + kF

N∑
n=1

‖f n‖
)

≤ C̄

(
‖u1F ‖ + ‖u0F ‖ + kF

N∑
n=1

‖un
C‖ + kF

N∑
p=1

‖f n‖
)
.

(39)

Also, following from (33), we get the following:

‖u1F ‖ ≤ C̄(‖u0F ‖ + kF ‖u1C‖ + kF ‖f 1‖). (40)

Combining the above two inequalities and employing Theorem 4.5, it follows that

‖uN
F ‖ ≤ C̄

(
‖u0C‖ + ‖u0F ‖ + kC

N∑
l=1

‖f lM‖ + kF

N∑
n=1

‖f n‖
)
. (41)

This completes the proof.

4.2 Convergence

The convergence of the two-grid difference scheme is considered by the energy
method. Firstly, we shall derive the convergence of the coarse grid system as follows.

Let,
(eC)nij = Un

ij − (uC)nij, (xi, yj ) ∈ Ω̄h, 0 ≤ n ≤ N .

Subtracting (14)–(15), (12)–(13) from (5)–(8), respectively, we get the following
error equations:

δ
(C)
t (eC)Mij + k−1

C

Γ (1−α)
Δα

t (eC)Mij − Δh(eC)Mij + g(UM
ij ) − g((uC)Mij )

= (R1)
M
ij , (xi, yj ) ∈ Ωh,

(42)

D
(C)
t (eC)

pM
ij + k−1

C

Γ (1−α)
Δα

t (eC)
pM
ij − Δh(eC)

pM
ij + g(U

pM
ij ) − g((uC)

pM
ij )

= (R1)
pM
ij , (xi, yj ) ∈ Ωh, 2 ≤ p ≤ N,

(43)

(eC)nij = 0, (xi, yj ) ∈ ∂Ωh, 1 ≤ n ≤ N , (44)

(eC)0ij = 0, (xi, yj ) ∈ Ωh. (45)
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Theorem 4.7 Suppose u(x, y, t) ∈ C
4,4,3
x,y,t ([0, L1]×[0, L2]×(0, T ]) be the solution of

(5)–(6) and un
C be the solution of (14)–(16), for 1 ≤ n ≤ N , it holds the following:

max
1≤n≤N

‖Un − un
C‖ ≤ C̄(k2−α

C + h21 + h22).

Proof The proof consists of two steps:
(I). Taking the inner products of (42) and (43) with kCeM

C and kCe
pM
C , respec-

tively, summing up for p from 2 to N with (43) and adding (42), then we obtain the
following:

kC〈δ(C)
t eM

C , eM
C 〉 + kC

N∑
p=2

〈D(C)
t e

pM
C , e

pM
C 〉 + 1

Γ (1−α)

N∑
p=1

〈Δα
t e

pM
C , e

pM
C 〉

−kC

N∑
p=1

〈Δhe
pM
C , e

pM
C 〉 = −kC

N∑
p=1

〈g(UpM) − g(u
pM
C ), e

pM
C 〉

+kC

N∑
p=1

〈RpM
1 , e

pM
C 〉, 1 ≤ p ≤ N .

(46)

Using Lemmas 4.1–4.3 and the Cauchy-Schwarz inequality, we arrive at the
following:

3
4‖eNMC ‖2 − 1

4 (‖e(N−1)M
C ‖2 + ‖eM

C ‖2 + ‖e0C‖2) − T 1−α

2Γ (2−α)
‖e0C‖2

≤ kC

N∑
p=1

‖g(UpM) − g(u
pM
C )‖‖epMC ‖ + kC

N∑
p=1

‖RpM
1 ‖‖epMC ‖

≤ C̄kC

N∑
p=1

‖epMC ‖2 + kC

N∑
p=1

‖RpM
1 ‖‖epMC ‖.

(47)

Taking a suitable l̃ such that ‖el̃M
C ‖ = max

0≤p≤N
‖epMC ‖, then it holds the following:

1
2‖eNMC ‖ ≤ 1

2‖el̃M
C ‖ ≤ 1

4 (‖eM
C ‖ + ‖e0C‖)

+ T 1−α

2Γ (2−α)
‖e0C‖ + C̄kC

N∑
p=1

‖epMC ‖ + kC

N∑
p=1

‖RpM
1 ‖. (48)

Utilizing Lemma 4.4 and noting that (45), we obtain the following:

‖eNMC ‖ ≤ C̄(T ) exp{NkC}
(

‖eM
C ‖ + ‖e0C‖ + kC

N∑
p=1

‖RpM
1 ‖

)

≤ C̄

(
‖eM

C ‖ + ‖e0C‖ + kC‖RM
1 ‖ + kC

N∑
p=2

‖RpM
1 ‖

)

≤ C̄(T )(‖eM
C ‖ + k2C + k2−α

C + h21 + h22).

(49)

From (42), then we have the following:

‖eM
C ‖ ≤ C̄(T )(‖e0C‖ + kC‖RM

1 ‖) ≤ C̄(k2C + h21 + h22). (50)

Utilizing (49) and (50), it follows that

‖epMC ‖ ≤ C̄(k2−α
C + h21 + h22), 1 ≤ p ≤ N . (51)
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(II). For 1 ≤ p ≤ N and 1 ≤ q ≤ M − 1, we use the Lagrange’s interpolation
formula, then,

U(p−1)M+q = (1 − q
M

)U(p−1)M + q
M

UpM

+U ′′(ξ)
2 (t(p−1)M+q − t(p−1)M)(t(p−1)M+q − tpM).

(52)

Subtracting (15) from (52), we have the following:

e
(p−1)M+q
C = (1 − q

M
)e

(p−1)M
C + q

M
e
pM
C

+U ′′(ξ)
2 (t(p−1)M+q − t(p−1)M)(t(p−1)M+q − tpM),

then, using the triangle inequality and (51), we get the following:

‖e(p−1)M+q
C ‖ ≤ (1 − q

M
)‖e(p−1)M

C ‖ + q
M

‖epM
C ‖ + ‖U ′′(ξ)‖∞

2 k2C

≤ C̄(k2−α
C + h21 + h22), 1 ≤ p ≤ N, 1 ≤ q ≤ M − 1.

(53)

Using (51) and (53), the proof is completed.
Secondly, the convergence of the fine grid system will be derived.
Let,

(eF )nij = Un
ij − (uF )nij, (xi, yj ) ∈ Ω̄h, 0 ≤ n ≤ N .

Subtracting (17)–(18), (12)–(13) from (5)–(8), respectively, the error equations are
obtained by the following:

δ
(F )
t (eF )1ij + k−1

F

Γ (1−α)
Δα

t (eF )1ij − Δh(eF )1ij + g(U1
ij ) − g((uC)1ij)

−g′((uC)1ij)[((uF )1ij) − ((uC)1ij)] = (R1)
1
ij, (xi, yj ) ∈ Ωh,

(54)

D
(F)
t (eF )nij + k−1

F

Γ (1−α)
Δα

t (eF )nij − Δh(eF )nij + g(Un
ij ) − g((uC)nij)

−g′((uC)nij)[((uF )nij) − ((uC)nij)] = (R1)
n
ij,

(xi, yj ) ∈ Ωh, 2 ≤ n ≤ N ,

(55)

(eF )nij = 0, (xi, yj ) ∈ ∂Ωh, 1 ≤ n ≤ N , (56)

(eF )0ij = 0, (xi, yj ) ∈ Ωh. (57)

Theorem 4.8 Let u(x, y, t) ∈ C
4,4,3
x,y,t ([0, L1] × [0, L2] × (0, T ]) be the solution of

(5)–(6) and un
F be the solution of (17)–(18), for 1 ≤ n ≤ N , we have the following:

max
1≤n≤N

‖Un − un
F ‖ ≤ C̄(k2−α

F + k4−2α
C + h21 + h22).

Proof We take the inner products of (42) and (43) with kF e1F and kF en
F , respectively,

for N ≥ 1, then we arrive at the following:

kF 〈δ(F )
t e1F , e1F 〉 + kF

N∑
n=2

〈D(F)
t en

F , en
C〉

+ 1
Γ (1−α)

N∑
n=1

〈Δα
t en

F , en
F 〉 − kF

N∑
n=1

〈Δhe
n
F , en

F 〉

= −kF

N∑
n=1

〈g(Un) − g(un
C) − g′(un

C)(un
F − un

C), en
F 〉 + kF

N∑
n=1

〈Rn
1 , e

n
F 〉.

(58)
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Noticing that

g(Un) − g(un
C) − g′(un

C)(un
F − un

C)

= g′(un
C)(Un − un

C) + 1
2g

′′(θn)(Un − un
C)2 − g′(un

C)(un
F − un

C)

= g′(un
C)en

F + 1
2g

′′(θn)(en
C)2,

therefore,

−kF

N∑
n=1

〈g(Un) − g(un
C) − g′(un

C)(un
F − un

C), en
F 〉

≤ C̄(‖en
F ‖2 + ‖en

C‖2‖en
F ‖).

(59)

By Lemmas 4.1–4.3 and Cauchy-Schwarz inequality, it follows that

3
4‖eN

F ‖2 − 1
4 (‖eN −1

F ‖2 + ‖e1F ‖2 + ‖e0F ‖2) − T 1−α

2Γ (2−α)
‖e0F ‖2

≤ C̄kF

N∑
n=1

(‖en
F ‖2 + ‖en

C‖2‖en
F ‖) + kF

N∑
n=1

‖Rn
1‖‖en

F ‖, (60)

Taking m so that ‖em
F ‖ = max

0≤n≤N
‖en

F ‖, and noting that (57), we have the

following:

1
2‖eN

F ‖ ≤ 1
2‖em

F ‖ ≤ 1
4‖e1F ‖ + C̄kF

N∑
n=1

(‖en
F ‖ + ‖en

C‖2) + kF

N∑
n=1

‖Rn
1‖. (61)

Utilizing Lemma 4.4, we get the following:

‖eN
F ‖ ≤ C̄ exp{N kF }

(
‖e1F ‖ + kF

N∑
n=1

‖en
C‖2 + kF

N∑
n=1

‖Rn
1‖

)
. (62)

From (54), using the same way, we have the following:

‖e1F ‖ ≤ C̄(T )(‖e0F ‖ + kF ‖e1C‖2 + kF ‖R1
1‖). (63)

Substituting (9) and (63) into (62), and combining Theorem 4.7, it holds the
following:

‖eN
F ‖ ≤ C̄(k2−α

F + k4−2α
C + h21 + h22). (64)

We finish the proof.

5 Numerical experiment

In this section, we set L1 = L2 = T = 1. All experiments are performed on a
Windows 10 (64 bit) PC-Inter(R) Core(TM) i7-8750H CPU 2.20 GHz, 8.0 GB of
RAM using MATLAB R2014b.

The two-grid difference (TGD) scheme (14)–(18) and the general finite difference
(GFD) scheme (10)–(13) are used to simulate the problem (1)–(3). To show the effec-
tiveness of the two-grid algorithm, we perform two numerical examples. Let uTGD
and uGFD be the numerical solutions, respectively.
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Table 1 The L2-errors, convergence rates and CPU time (seconds) with h = 1/100 and M = 3

α kC kF EGFD ratet
GFD CPU(s) ETGD ratet

TGD CPU(s)

0.25 1/4 1/12 1.696213e-3 – 132.72 1.696341e-3 – 86.17

1/8 1/24 5.169795e-4 1.714 251.62 5.169807e-4 1.714 169.23

1/16 1/48 1.640700e-4 1.656 480.42 1.640700e-4 1.656 322.63

0.75 1/4 1/12 3.618949e-3 – 125.91 3.674818e-3 – 83.11

1/8 1/24 1.515827e-3 1.255 242.38 1.271433e-3 1.271 161.31

1/16 1/48 6.623354e-4 1.194 460.25 6.630738e-4 1.199 310.53

Denote,

ETGD(h, k) = max
1≤n≤N

‖Un − un
F ‖,

ratet
TGD = log2

(
ETGD(h,2k)
ETGD(h,k)

)
, ratex

TGD = log2
(

ETGD(2h,k)
ETGD(h,k)

)
,

the notations EGFD(h, k), ratet
GFD, and rate

x
GFD are defined similarly.

Example 1 In the first example, the nonlinear term is g(u) = u3 and the inhomoge-
neous term is as follows:

f (x, y, t) = [(2 + α)
(
1 + Γ (2+α)

2 t1−α
)

+ 2π2t]t1+α sinπx sinπy

+ (t2+α sinπx sinπy)3.

The corresponding exact solution is as follows:

u(x, y, t) = t2+α sinπx sinπy.

When the spatial step Jx = Jy = 100 is fixed, in Tables 1 and 2, we present the
L2-errors, the temporal convergence orders and the CPU time for α = 0.25, 0.75
by using the two-grid difference scheme (14)–(18) and the general finite differ-
ence scheme (10)–(13), respectively. The numerical results show that two difference
schemes are convergent with the order 2−α in the time direction. Moreover, combin-
ing Tables 1 and 2, it can be seen that the two-grid difference scheme will save more
time than the general finite difference scheme as M increases. Fixed the time-step

Table 2 The L2-errors, convergence rates and CPU time (seconds) with h = 1/100 and M = 5

α kC kF EGFD ratet
GFD CPU(s) ETGD ratet

TGD CPU(s)

0.25 1/2 1/10 2.278547e-3 – 112.67 2.281892e-3 – 59.28

1/4 1/20 7.141716e-4 1.674 207.24 7.142017e-4 1.676 106.27

1/8 1/40 2.249906e-4 1.666 391.88 2.249923e-4 1.666 199.63

0.75 1/2 1/10 4.573776e-3 – 105.81 5.428355e-3 – 57.72

1/4 1/20 1.899303e-3 1.268 198.29 1.967804e-3 1.464 103.21

1/8 1/40 8.190562e-4 1.213 389.10 8.269552e-4 1.251 191.31
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Table 3 The L2-errors and convergence rates with kC = 1/256 and kF = 1/1024

α h EGFD ratex
GFD ETGD ratex

TGD

0.20 1/4 4.114949e-2 – 4.114945e-2 –

1/8 1.019620e-2 2.013 1.019618e-2 2.013

1/16 2.542821e-3 2.003 2.542802e-3 2.003

1/32 6.353620e-4 2.001 6.353432e-4 2.001

1/64 1.588730e-4 2.000 1.588543e-4 2.000

0.50 1/4 3.989599e-2 – 3.989596e-2 –

1/8 9.892164e-3 2.012 9.892145e-3 2.012

1/16 2.468250e-3 2.003 2.468233e-3 2.003

1/32 6.176084e-4 1.999 6.175918e-4 1.999

1/64 1.552887e-4 1.992 1.552722e-4 1.992

0.80 1/4 3.833725e-2 – 3.833723e-2 –

1/8 9.526970e-3 2.009 9.526959e-3 2.009

1/16 2.392026e-3 1.994 2.392016e-3 1.994

1/32 6.129641e-4 1.964 6.129538e-4 1.964

1/64 1.684969e-4 1.863 1.684867e-4 1.863

N = 1024, the results in Table 3 reflect a convergence rate in space ≈ 2 for two dif-
ference schemes. The results in the time-space direction are in good agreement with
the theoretical analysis.

Fig. 1 The comparison of two methods for CPU time with h = 1/100 and M = 3
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Fig. 2 The comparison of two methods for CPU time with h = 1/100 and M = 5

Figures 1 and 2 give the comparison of the two-grid difference and the general
finite difference scheme, respectively, and show intuitively that given the same accu-
racy the two-grid algorithm is much more efficient than the general finite difference
method in the temporal direction.

Example 2 In the second example, the nonlinear term is g(u) = u3 and the exact
solution is given as follows:

u(x, y, t) = (1 + 4t3) sinπx sinπy.

Table 4 The L2-errors, convergence rates and CPU time (seconds) with h = 1/100 and M = 2

α kC kF EGFD ratet
GFD CPU(s) ETGD ratet

TGD CPU(s)

0.25 1/4 1/8 6.119585e-3 – 290.91 6.474947e-3 – 204.86

1/8 1/16 1.663753e-3 1.879 455.07 1.728943e-3 1.905 301.13

1/16 1/32 5.147191e-4 1.693 707.64 5.189988e-4 1.736 495.18

0.50 1/4 1/8 8.810485e-3 – 285.67 9.273411e-3 – 202.12

1/8 1/16 2.840304e-3 1.633 437.77 2.952957e-3 1.651 296.21

1/16 1/32 9.893523e-4 1.521 702.43 9.971202e-4 1.566 488.93

0.75 1/4 1/8 1.635303e-2 – 280.28 1.835445e-2 – 198.17

1/8 1/16 6.567541e-3 1.316 427.03 6.734695e-3 1.446 289.91

1/16 1/32 2.711785e-3 1.276 690.12 2.723183e-3 1.306 479.98
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Table 5 The L2-errors and convergence rates with kC = 1/256 and kF = 1/1024

α h EGFD ratex
GFD ETGD ratex

TGD

0.25 1/4 7.357866e-2 – 7.357928e-2 –

1/8 1.897176e-2 1.955 1.897233e-2 1.955

1/16 4.778252e-3 1.989 4.778809e-3 1.989

1/32 1.196736e-3 1.997 1.197283e-3 1.997

0.50 1/4 7.362154e-2 – 7.362216e-2 –

1/8 1.898381e-2 1.955 1.898436e-2 1.955

1/16 4.783566e-3 1.987 4.784111e-3 1.988

1/32 1.200354e-3 1.995 1.200892e-3 1.994

0.75 1/4 7.390821e-2 – 7.390870e-2 –

1/8 1.907500e-2 1.954 1.907544e-2 1.954

1/16 4.825988e-3 1.982 4.826421e-3 1.983

1/32 1.230567e-3 1.971 1.230968e-3 1.971

The initial condition is u0(x, y) = sinπx sinπy and the corresponding source term
is as follows:

f (x, y, t) =
(
12t2 + 2π2(1 + 4t3) + 24t3−α

Γ (4−α)

)
sinπx sinπy

+ (
(1 + 4t3) sinπx sinπy

)3
.

In Tables 4 and 5, we give the numerical results with the initial condition
u0(x, y) �= 0 for α = 0.25, 0.50, and 0.75 by utilizing the two-grid difference scheme
(14)–(18) and the general finite difference scheme (10)–(13), respectively. The nume-
rical results demonstrate that the two-grid difference method is more efficient than the
general difference method. Furthermore, the results also show that the convergence
orders in the space-time direction are approximately 2 and 2 − α, respectively.

6 Conclusions

In this article, a time two-grid algorithm based on the finite difference method
is proposed and analyzed for the two-dimensional nonlinear time-fractional
mobile/immobile transport model. The two-grid algorithm mainly includes two com-
putational steps: first, on the coarse grid a nonlinear system is solved, then a
linearized system is solved on the fine grid. The stability and convergence of the two-
grid difference scheme are proved. The proposed two-grid algorithm is implemented,
and the numerical results demonstrate that the two-grid algorithm is a more efficient
way to solve the nonlinear time-fractional mobile/immobile transport problem.

Acknowledgements The authors are grateful to the reviewers for their helpful and valuable sugges-
tions/comments in the improvement of this paper.

Numerical Algorithms (2020) 85:39–5856



Funding This study is supported by the National Natural Science Foundation of China (No.11671131)
and the Construct Program of the Key Discipline in Hunan Province, Performance Computing and
Stochastic Information Processing (Ministry of Education of China).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two
difference schemes. In: Abstract and Applied Analysis, Hindawi Publishing Corporation (2013).
https://doi.org/10.1155/2013/828764

2. Chen, H., Xu, D.: A second-order fully discrete difference scheme for a nonlinear partial integro-
differential equation (in Chinese). J. Sys. Sci. Math. Scis. 28, 51–70 (2008)

3. Chen, H., Gan, S., Xu, D., Liu, Q.: A second-order BDF compact difference scheme for fractional-
order Volterra equations. Int. J. Computer Math. 93, 1140–1154 (2016)

4. Chen, H., Xu, D., Peng, Y.: An alternating direction implicit fractional trapezoidal rule type difference
scheme for the two-dimensional fractional evolution equation. Int. J. Comput. Math. 92, 2178–2197
(2015)

5. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear
parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

6. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations.
ESAIM: M2AN. 47, 1186–1845 (2013)

7. Hu, S., Qiu, W., Chen, H.: A backward Euler difference scheme for the integro-differential equations
with the multi-term kernels. Int. J. Comput Math. https://doi.org/10.1080/00207160.2019.1613529
(2019)

8. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations.
J. Comput. Appl. Math. 235, 3285–3290 (2011)

9. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional
differential equations. J. Comp. Phys. 316, 614–631 (2016)

10. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with
subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

11. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers
equation. Appl. Math. Modelling. 40, 6096–6081 (2016)

12. Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional
parabolic equation. J. Sci. Comput. 72, 863–891 (2017)

13. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation.
Math. Comput. 80, 1369–1396 (2011)

14. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J.
Comput. Phys. 225, 1533–1552 (2007)

15. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-
dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

16. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving
the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

17. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.: A RBF meshless approach for modeling a fractal
mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

18. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-
fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70, 573–591 (2015)

19. Liu, Y., Du, Y., Li, H., Li, J., He, S.: A two-grid mixed finite element method for a nonlinear fourth-
order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70, 2474–2492
(2015)

20. Liu, Y., Du, Y., Li, H., Wang, J.: A two-grid finite element approximation for a nonlinear time-
fractional Cable equation. Nonlinear. Dyn. 85, 2535–2548 (2016)

Numerical Algorithms (2020) 85:39–58 57

https://doi.org/10.1155/2013/828764
https://doi.org/10.1080/00207160.2019.1613529


21. Liu, Y., Yu, Z., Li, H., Liu, F., Wang, J.: Time two-mesh algorithm combined with finite element
method for time fractional water wave model. Int. J. Heat Mass Transf. 120, 1132–1145 (2018)

22. Liu, Z., Cheng, A., Li, X.: A second-order finite difference scheme for quasilinear time fractional
parabolic equation based on new fractional derivative. Int. J. Comput. Math. 95, 396–411 (2018)

23. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM
J. Numer. Anal. 27, 20–31 (1990)

24. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
25. Qiao, L., Xu, D.: Compact alternating direction implicit scheme for integro-differential equations of

parabolic type. J. Sci Comput. https://doi.org/10.1007/s10915-017-0630-5 (2018)
26. Qiu, W., Chen, H., Zheng, X.: An implicit difference scheme and algorithm implementation for the

one-dimensional time-fractional Burgers equations. Math. Comput Simul. https://doi.org/10.1016/
j.matcom.2019.05.017 (2019)

27. Rui, H., Liu, W.: A two-grid block-centered finite difference method for Darcy-Forchheimer flow in
porous media. SIAM J. Numer. Anal. 53, 1941–1962 (2015)

28. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute
transport. Water Resour. Res. https://doi.org/10.1029/2003WR002141 (2003)

29. Sloan, I.H., Thomee, V.: Time discretization of an integro-differential equation of parabolic type.
SIAM J. Numer. Anal. 23, 1052–1061 (1986)

30. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math.
56, 193–209 (2006)

31. Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular
kernel. Appl. Numer. Math. 11, 309–319 (1993)

32. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional
fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

33. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33,
1759–1777 (1996)

34. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237
(1994)

35. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time
variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–
701 (2013)

36. Zhang, H., Liu, F., Anh, V.: Galerkin finite element approximation of symmetric space-fractional
partial differential equations. Appl. Math. Comput. 217, 2534–2545 (2010)

37. Zhou, J., Xu, D., Chen, H.: A weak Galerkin finite element method for multi-term time-fractional
diffusion equations. East Asian J. Appl. Math. 8, 181–193 (2018)

38. Zhou, J., Xu, D., Dai, X.: Weak Galerkin finite element method for the parabolic integro-differential
equation with weakly singular kernel, Comput. Appl Math. https://doi.org/10.1007/s40314-019-
0807-7 (2019)

39. Zhuang, P., Liu, F., Turner, I., Gu, Y.: Finite volume and finite element methods for solving a one-
dimensional space-fractional Boussinesq equation. Appl. Math. Model. 38, 3860–3870 (2014)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Numerical Algorithms (2020) 85:39–5858

https://doi.org/10.1007/s10915-017-0630-5
https://doi.org/10.1016/j.matcom.2019.05.017
https://doi.org/10.1016/j.matcom.2019.05.017
https://doi.org/10.1029/2003WR002141
https://doi.org/10.1007/s40314-019-0807-7
https://doi.org/10.1007/s40314-019-0807-7

	A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model
	Abstract
	Introduction
	Preliminaries
	Establishment of the two-grid difference scheme
	Analysis of the two-grid difference scheme
	Stability
	Convergence

	Numerical experiment
	Conclusions
	References


