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Abstract
The aim of this paper is to study a classical pseudo-monotone and non-Lipschitz
continuous variational inequality problem in real Hilbert spaces. Weak and strong
convergence theorems are presented under mild conditions. Our methods generalize
and extend some related results in the literature and the main advantages of pro-
posed algorithms there is no use of Lipschitz condition of the variational inequality
associated mapping. Numerical illustrations in finite and infinite dimensional spaces
illustrate the behaviors of the proposed schemes.
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1 Introduction

The main purpose of this paper to study the classical variational inequality of Fichera
[13, 14] and Stampacchia [38] (see also Kinderlehrer and Stampacchia [25]) in real
Hilbert spaces. Precisely, the classical variational inequality problem (VIP) is of the
form: finding a point x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1)

Let us denote by V I (C, A) the solutions set of VIP (1).
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This problem plays an important role as a modeling tool in diverse fields such as in
economics, engineering mechanics, transportation, and many more (see for example,
[2, 3, 15, 26, 28]). Recently, many iterative methods have been constructed for solv-
ing variational inequalities and their related optimization problems (see monographs
[12, 28] and references therein).

One of the most popular methods for solving variational inequalities with mono-
tone and Lipschitz continuous mappings is the method proposed by Korpelevich [30]
(also independently by Antipin [1]) which is called the extragradient method in the
finite dimensional Euclidean space. This method was based on a double-projection
method onto the feasible set.

The extragradient method has been studied and extended in infinite-dimensional
spaces by many authors (see, e.g., [6–9, 20, 22, 23, 32, 33, 39, 41–44] and the ref-
erences therein). It is easy to observe that, when the mapping-associated variational
inequality is not Lipschitz continuous or the Lipschitz constant of the associated
variational inequality mapping is very difficult to compute, it is clear that the extra-
gradient method is not applicable to implement because we can not determine the
stepsize.

Khobotov [27] proposed the linesearch for the extragradient method and Mar-
cotte’s paper [34] contains its implementation. The first extrapolation method using
Armijo-type linesearch was proposed in [29] and the method [19] follows the same
approach (see comments of Section 1.3 in [28] and and Section 12.1 in [12]).

This modification in [19, 29] allows convergence without Lipschitz continuity of
the mapping-associated variational inequality in finite-dimensional Euclidean space.
The algorithm is of the form
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Moreover, Algorithm 1 converges under the condition the mapping-associated
variational inequality is monotone and continuous on the feasible set in finite-
dimensional spaces. This brings the following natural question.

Question: Can we obtain convergence result for VIP using a new modification of the
extragradient method under a much weaker condition than monotonicity of the cost
function?

Our aim in this paper is to answer the above question in the affirmative. Precisely,
our contributions in this paper are:

– to construct another modification of extragradient algorithm that converges under
a weaker condition in an infinite-dimensional Hilbert space;

– to introduce a modification of extragradient method for solving VIP with
uniformly continuous pseudo-monotone mapping in infinite-dimensional real
Hilbert spaces;

– to use a different Armijo-type linesearch and obtain convergence results (weak
and strong convergence results) when the mapping is pseudo-monotone in the
sense of Karamardian [24]

– to compare, using numerical examples, our proposed methods with some meth-
ods in the literature. Our numerical analysis (performed both in finite- and
infinite-dimensional Hilbert spaces) shows that our methods outperform cer-
tain already established methods for solving variational inequality problem with
pseudo-monotone mapping in the literature.

We organize the paper as follows: In Sect. 2, we give some definitions and prelimi-
nary results to be used in our convergence analysis. In Sect. 3, we deal with analyzing
the convergence of the proposed algorithms. Finally, in Sect. 4, several numer-
ical experiments are performed to illustrate the implementation of our proposed
algorithms and compare our proposed algorithms with previously known algorithms.

2 Preliminaries

Let C be a non-empty, closed, and convex subset of a real Hilbert space H, A : H →
H is a single-valued mapping, and 〈·, ·〉 and ‖ · ‖ are the inner product and the norm
in H , respectively.

The weak convergence of {xn}∞n=1 to x is denoted by xn ⇀ x as n → ∞, while
the strong convergence of {xn}∞n=1 to x is written as xn → x as n → ∞. For each
x, y ∈ H and α ∈ R, we have

Definition 2.1 Let T : H → H be a mapping.

1. The mapping T is called L-Lipschitz continuous with L > 0 if

‖T x − Ty‖ ≤ L‖x − y‖ ∀x, y ∈ H .

if L = 1 then the mapping T is called non-expansive and if L ∈ (0, 1), T
is called contraction.
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2. The mapping T is called monotone if

〈T x − Ty, x − y〉 ≥ 0 ∀x, y ∈ H .

3. The mapping T is called pseudo-monotone if

〈T x, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ 0 ∀x, y ∈ H .

4. The mapping T is called α-strongly monotone if there exists a constant
α > 0 such that

〈T x − Ty, x − y〉 ≥ α‖x − y‖2 ∀x, y ∈ H .

5. The mapping T is called sequentially weakly continuous if for each
sequence {xn} we have: xn converges weakly to x implies xn converges weakly
to T x.

It is easy to see that very monotone mapping is pseudo-monotone but the converse
is not true. For example, take T x := 1

1+x
, x > 0.

For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx

such that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. PC is called the metric projection of H

onto C.

Lemma 2.1 [16] Given x ∈ H and z ∈ C. Then z = PCx ⇐⇒ 〈x − z, z − y〉 ≥
0 ∀y ∈ C.

Lemma 2.2 [16] Let x ∈ H . Then

i) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉 ∀y ∈ H ;
ii) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 ∀y ∈ C;
iii) 〈(I − PC)x − (I − PC)y, x − y〉 ≥ ‖(I − PC)x − (I − PC)y‖2 ∀y ∈ H .

Lemma 2.3 [5] Given x ∈ H and v ∈ H , v �= 0 and let T =
{z ∈ H : 〈v, z − x〉 ≤ 0}. Then, for all u ∈ H , the projection PT (u) is defined by

PT (u) = u − max

{
0,

〈v, u − x〉
||v||2

}
v.

In particular, if u /∈ T then

PT (u) = u − 〈v, u − x〉
||v||2 v.

Lemma 2.3 gives us an explicit formula to find the projection of any point onto a
half-space.

For properties of the metric projection, the interested reader could be referred to
Section 3 in [16] and Chapter 4 in [5].

The following Lemmas are useful for the convergence of our proposed methods.
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Lemma 2.4 [11] For x ∈ H and α ≥ β > 0 the following inequalities hold.

‖x − PC(x − αAx)‖
α

≤ ‖x − PC(x − βAx)‖
β

,

‖x − PC(x − βAx)‖ ≤ ‖x − PC(x − αAx)‖.

Lemma 2.5 [21] Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2
is uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1.
Then, A(M) is bounded.

Lemma 2.6 [[10], Lemma 2.1] Consider the problem V I (C, A) with C being a non-
empty, closed, convex subset of a real Hilbert space H and A : C → H being
pseudo-monotone and continuous. Then, x∗ is a solution of V I (C, A) if and only if

〈Ax, x − x∗〉 ≥ 0 ∀x ∈ C.

Lemma 2.7 [36] Let C be a non-empty set of H and {xn} be a sequence in H such
that the following two conditions hold:

i) for every x ∈ C, limn→∞ ‖xn − x‖ exists;
ii) every sequential weak cluster point of {xn} is in C.

Then, {xn} converges weakly to a point in C.

The proof of the following lemma is the same with Lemma 2.3 and was given in
[17]. Hence, we state the lemma and omit the proof in real Hilbert spaces.

Lemma 2.8 Let H be a real Hilbert space and h be a real-valued function on H and
define K := {x ∈ H : h(x) ≤ 0}. If K is nonempty and h is Lipschitz continuous on
H with modulus θ > 0, then

dist(x, K) ≥ θ−1 max{h(x), 0} ∀x ∈ H,

where dist(x, K) denotes the distance function from x to K .

Lemma 2.9 [31] Let {an} be a sequence of non-negative real numbers such that
there exists a subsequence {anj

} of {an} such that anj
< anj +1 for all j ∈ N. Then

there exists a non-decreasing sequence {mk} of N such that limk→∞ mk = ∞ and
the following properties are satisfied by all (sufficiently large) number k ∈ N:

amk
≤ amk+1 andak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, · · · , k} such that an < an+1.

Lemma 2.10 [45] Let {an} be a sequence of non-negative real numbers such that:
an+1 ≤ (1 − αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a sequence such that

a)
∑∞

n=0 αn = ∞;
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b) lim supn→∞ bn ≤ 0.

Then ,limn→∞ an = 0.

3 Main results

The following conditions are assumed for the convergence of the methods.

Condition 1 The feasible set C is a non-empty, closed, and convex subset of the real
Hilbert space H .

Condition 2 The mapping A : H → H is a pseudo-monotone, uniformly continu-
ous on H and sequentially weakly continuous on C. In finite-dimensional spaces, it
suffices to assume that A : H → H is a continuous pseudo-monotone on H .

Condition 3 The solution set of the VIP (1) is non-empty, that is V I (C, A) �= ∅.

3.1 Weak convergence

In this section, we introduce a new algorithm for solving VIP which is constructed
based on modified projection-type methods.

Remark 3.1 We note that our Algorithm 3.1 in this paper is proposed in infinite-
dimensional real Hilbert spaces while the method proposed by Solodov and Tseng in
[40] was done in finite-dimensional spaces. Furthermore, our method is much more
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general than that of Solodov and Tseng [40] even with a more general cost function
than that of Solodov and Tseng [40]. This is confirmed in our numerical examples,
where we give examples of variational inequalities with pseudomonotone functions
which are not monotone (as assumed in the paper of Solodov and Tseng [40]) even
in finite-dimensional spaces.

We start the analysis of the algorithm’s convergence by proving the following
lemmas

Lemma 3.1 Assume that Conditions 1–2 hold. The Armijo-line search rule (2) is
well defined.

Proof If xn ∈ V I (C, A) then xn = PC(xn − γAxn) and mn = 0. We consider the
situation xn /∈ V I (C, A) and assume the contrary that for all m we have

γ lm〈Axn−APC(xn−γ lmAxn), xn−PC(xn−γ lmAxn)〉 > μ‖xn−PC(xn−γ lmAxn)‖2
By Cauchy-Schwartz inequality, we have

γ lm‖Axn − APC(xn − γ lmAxn)‖ > μ‖xn − PC(xn − γ lmAxn)‖. (4)

This implies that

‖Axn − APC(xn − γ lmAxn)‖ > μ
‖xn − PC(xn − γ lmAxn)‖

γ lm
. (5)

We consider two possibilities of xn. First, if xn ∈ C, then since PC and A are
continuous, we have limm→∞ ‖xn − PC(xn − γ lmAxn)‖ = 0. From the uniform
continuity of the mapping A on bounded subsets of C, it implies that

lim
m→∞ ‖Axn − APC(xn − γ lmAxn)‖ = 0. (6)

Combining (5) and (6) we get

lim
m→∞

‖xn − PC(xn − γ lmAxn)‖
γ lm

= 0. (7)

Assume that zm = PC(xn − γ lmAxn) we have

〈zm − xn + γ lmAxn, x − zm〉 ≥ 0 ∀x ∈ C.

This implies that

〈zm − xn

γ lm
, x − zm〉 + 〈Axn, x − zm〉 ≥ 0 ∀x ∈ C. (8)

Taking the limit m → ∞ in (8) and using (7) we obtain

〈Axn, x − xn〉 ≥ 0 ∀x ∈ C,

which implies that xn ∈ V I (C, A) is a contraction.
Now, if xn /∈ C, then we have

lim
m→∞ ‖xn − PC(xn − γ lmAxn)‖ = ‖xn − PCxn‖ > 0. (9)
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and
lim

m→∞ γ lm‖Axn − APC(xn − γ lmAxn)‖ = 0 (10)

Combining (4), (9), and (10), we get a contradiction.

Remark 3.2 1. In the proof of Lemma 3.1, we do not use the pseudo-monotonicity
of A.

2. Now, we show that if xn = yn then stop and yn is a solution of V I (C, A). Indeed,
we have 0 < λn ≤ γ , which together with Lemma 2.4, we get

0 = ‖xn − yn‖
λn

= ‖xn − PC(xn − λnAxn)‖
λn

≥ ‖xn − PC(xn − γAxn)‖
γ

.

This implies that xn is a solution of V I (C, A), thus yn is a solution of V I (C, A).
3. Next, we show that if Ayn = 0 then stop and yn is a solution of V I (C, A).

Indeed, since yn ∈ C, it is easy to see that if Ayn = 0 then yn ∈ V I (C, A).

Lemma 3.2 Assume that Conditions 1–3 hold. Let x∗ be a solution of problem (1)
and the function hn be defined by (5). Then hn(x

∗) ≤ 0 and hn(xn) ≥ (1 − μ)‖xn −
yn‖2. In particular, if xn �= yn then hn(xn) > 0.

Proof Since x∗ be a solution of problem (1), using Lemma 2.6 we have

〈Ayn, x
∗ − yn〉 ≤ 0. (11)

It is implied from (11) and yn = PC(xn − λnAxn) that

hn(x
∗) = 〈xn − yn − λn(Axn − Ayn), x

∗ − yn〉
= 〈xn − yn − λnAxn, x

∗ − yn〉 + λn〈Ayn, x
∗ − yn〉

≤ 0.

The first claim of Lemma 3.2 is proven. Now, we prove the second claim. Using (2),
we have

hn(xn) = 〈xn − yn − λn(Axn − Ayn), xn − yn〉
= ‖xn − yn‖2 − λn〈Axn − Ayn, xn − yn〉
≥ ‖xn − yn‖2 − μ‖xn − yn‖2
= (1 − μ)‖xn − yn‖2.

Remark 3.3 Lemma 3.2 implies that xn /∈ Cn. According to Lemma 2.3, then xn+1
is of the form

xn+1 = xn − 〈xn − yn − λn(Axn − Ayn), xn − yn〉
‖xn − yn − λn(Axn − Ayn)‖2 (xn − yn − λn(Axn − Ayn)).

Lemma 3.3 Assume that Conditions 1–3 hold. Let {xn} be a sequence generated by
Algorithm 3.1. If there exists a subsequence {xnk

} of {xn} such that {xnk
} converges

weakly to z ∈ H and limk→∞ ‖xnk
− ynk

‖ = 0 then z ∈ V I (C, A).
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Proof From xnk
⇀ z, limk→∞ ‖xnk

− ynk
‖ = 0, and {yn} ⊂ C, we get z ∈ C. We

have ynk
= PC(xnk

− λnk
Axnk

) thus,

〈xnk
− λnk

Axnk
− ynk

, x − ynk
〉 ≤ 0 ∀x ∈ C.

or equivalently

1

λnk

〈xnk
− ynk

, x − ynk
〉 ≤ 〈Axnk

, x − ynk
〉 ∀x ∈ C.

This implies that

1

λnk

〈xnk
− ynk

, x − ynk
〉 + 〈Axnk

, ynk
− xnk

〉 ≤ 〈Axnk
, x − xnk

〉 ∀x ∈ C. (12)

Now, we show that
lim inf
k→∞ 〈Axnk

, x − xnk
〉 ≥ 0. (13)

For showing this, we consider two possible cases. Suppose first that
lim infk→∞ λnk

> 0. We have {xnk
} is a bounded sequence, A is uniformly continu-

ous on bounded subsets of H . By Lemma 2.6, we get that {Axnk
} is bounded. Taking

k → ∞ in (12) since ‖xnk
− ynk

‖ → 0, we get

lim inf
k→∞ 〈Axnk

, x − xnk
〉 ≥ 0.

Now, we assume that lim infk→∞ λnk
= 0. Assume znk

= PC(xnk
− λnk

.l−1Axnk
),

we have λnk
l−1 > λnk

. Applying Lemma 2.4, we obtain

‖xnk
− znk

‖ ≤ 1

l
‖xnk

− ynk
‖ → 0 ask → ∞.

Consequently, znk
⇀ z ∈ C, this implies that {znk

} is bounded, which the uniformly
continuity of the mapping A on bounded subsets of H follows that

‖Axnk
− Aznk

‖ → 0 ask → ∞. (14)

By the Armijo linesearch rule (2), we must have

λnk
.l−1〈Axn−APC(xn−λnk

.l−1Axn), xn−PC(xn−λnk
.l−1Axn)〉>μ‖xn−PC(xn−λnk

.l−1Axn)‖2

By Cauchy-Schwartz inequality, we have

λnk
.l−1‖Axnk

− APC(xnk
− λnk

l−1Axnk
)‖ > μ‖xnk

− PC(xnk
− λnk

l−1Axnk
)‖.

That is,
1

μ
‖Axnk

− Aznk
‖ >

‖xnk
− znk

‖
λnk

l−1
. (15)

Combining (14) and (15), we obtain

lim
k→∞

‖xnk
− znk

‖
λnk

l−1
= 0.

Furthermore, we have

〈xnk
− λnk

l−1Axnk
− znk

, x − znk
〉 ≤ 0 ∀x ∈ C.
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This implies that

1

λnk
l−1

〈xnk
− znk

, x − znk
〉 + 〈Axnk

, znk
− xnk

〉 ≤ 〈Axnk
, x − xnk

〉 ∀x ∈ C. (16)

Taking the limit k → ∞ in (16), we get

lim inf
k→∞ 〈Axnk

, x − xnk
〉 ≥ 0.

Therefore, the inequality (13) is proven.
On the other hand, we have

〈Aynk
, x−ynk

〉 = 〈Aynk
−Axnk

, x−xnk
〉+〈Axnk

, x−xnk
〉+〈Aynk

, xnk
−ynk

〉. (17)

Since limk→∞ ‖xnk
− ynk

‖ = 0 and the uniformly continuity of A on H, we get

lim
k→∞ ‖Axnk

− Aynk
‖ = 0,

which, together with (13) and (17) implies that

lim inf
k→∞ 〈Aynk

, x − ynk
〉 ≥ 0. (18)

Next, we show that z ∈ V I (C, A). Indeed, we choose a sequence {εk} of positive
numbers decreasing and tending to 0. For each k, we denote by Nk the smallest
positive integer such that

〈Aynj
, x − ynj

〉 + εk ≥ 0 ∀j ≥ Nk, (19)

where the existence of Nk follows from (18). Since {εk} is decreasing, it is easy to
see that the sequence {Nk} is increasing. Furthermore, for each k, since {yNk

} ⊂ C

we have AyNk
�= 0, and setting

vNk
= AyNk

‖AyNk
‖2 ,

we have 〈AyNk
, vNk

〉 = 1 for each k. Now, we can deduce from (19) that for each k

〈AyNk
, x + εkvNk

− yNk
〉 ≥ 0.

Since the fact that A is pseudo-monotone, we get

〈A(x + εkvNk
), x + εkvNk

− yNk
〉 ≥ 0.

This implies that

〈Ax, x − yNk
〉 ≥ 〈Ax − A(x + εkvNk

), x + εkvNk
− yNk

〉 − εk〈Ax, vNk
〉. (20)

Now, we show that limk→∞ εkvNk
= 0. Indeed, since xnk

⇀ z and limk→∞ ‖xnk
−

ynk
‖ = 0,we obtain yNk

⇀ z ask → ∞. Since A is sequentially weakly continu-
ous on C, {Aynk

} converges weakly to Az. We have that Az �= 0 (otherwise, z is a
solution). Since the norm mapping is sequentially weakly lower semicontinuous, we
have

0 < ‖Az‖ ≤ lim inf
k→∞ ‖Aynk

‖.
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Since {yNk
} ⊂ {ynk

} and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkvNk
‖ = lim sup

k→∞

(
εk

‖Aynk
‖
)

≤ lim supk→∞ εk

lim infk→∞ ‖Aynk
‖ = 0,

which implies that limk→∞ εkvNk
= 0.

Now, letting k → ∞, then the right hand side of (20) tends to zero by A is
uniformly continuous, {xNk

}, {vNk
} are bounded and limk→∞ εkvNk

= 0. Thus, we
get

lim inf
k→∞ 〈Ax, x − yNk

〉 ≥ 0.

Hence, for all x ∈ C we have

〈Ax, x − z〉 = lim
k→∞〈Ax, x − yNk

〉 = lim inf
k→∞ 〈Ax, x − yNk

〉 ≥ 0.

By Lemma 2.6, we obtain z ∈ V I (C, A) and the proof is complete.

Remark 3.4 When the function A is monotone, it is not necessary to impose the
sequential weak continuity on A.

Theorem 3.5 Assume that Conditions 1–3 hold. Then any sequence {xn} generated
by Algorithm 3.1 converges weakly to an element of V I (C, A).

Proof

Claim 1 {xn} is a bounded sequence. Indeed, let p ∈ V I (C, A) we have

‖xn+1 − p‖2 = ‖PCnxn − p‖2 ≤ ‖xn − p‖2 − ‖PCnxn − xn‖2
= ‖xn − p‖2 − dist2(xn, Cn). (21)

This implies that

‖xn+1 − p‖ ≤ ‖xn − p‖.
This implies that limn→∞ ‖xn − p‖ exists. Thus, the sequence {xn} is bounded and
we also have {yn} is bounded.

Claim 2 [
1

M
(1 − μ)‖xn − yn‖2

]2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2,

for some M > 0. Indeed, since {xn}, {yn} are bounded, thus {Axn}, {Ayn} are
bounded, thus there exists M > 0 such that ‖xn − yn − λn(Axn − Ayn)‖ ≤ M for all
n. Using this fact, we get for all u, v ∈ H that

‖hn(u) − hn(v)‖ = ‖〈xn − yn − λn(Axn − Ayn), u − v〉‖
≤ ‖xn − yn − λn(Axn − Ayn)‖‖u − v‖
≤ M‖u − v‖.
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This implies that hn(·) is M-Lipschitz continuous on H . By Lemma 2.8, we obtain

dist(xn, Cn) ≥ 1

M
hn(xn),

which, together with Lemma 3.2, we get

dist(xn, Cn) ≥ 1

M
(1 − μ)‖xn − yn‖2. (22)

Combining (21) and (22), we obtain

‖xn+1 − p‖2 ≤ ‖xn − z‖2 −
[
1

M
(1 − μ)‖xn − yn‖2

]2
,

which implies Claim 2 is proved.

Claim 3 The sequence {xn} converges weakly to an element of V I (C, A). Indeed,
since {xn} is a bounded sequence, there exists the subsequence {xnk

} of {xn} such that
{xnk

} converges weakly to z ∈ H .
According to Claim 2, we find

lim
n→∞ ‖xn − yn‖ = 0. (23)

It is implied from Lemma 3.3 and (23) that z ∈ V I (C, A).
Therefore, we proved that:

i) For every p ∈ V I (C, A), limn→∞ ‖xn − p‖ exists;
ii) Each sequential weak cluster point of the sequence {xn} is in V I (C, A).

By Lemma 2.7 the sequence {xn} converges weakly to an element of V I (C, A).

3.2 Strong convergence

In this section, we introduce an algorithm for strong convergence which is con-
structed based on viscosity method [35] and modified projection-type methods for
solving VIs. In addition, we assume that f : C → H is a contractive mapping with
a coefficient ρ ∈ [0, 1), and we add the following condition

Condition 4 Let {αn} be a real sequences in (0, 1) such that

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.
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Theorem 3.6 Assume that Conditions 1–4 hold. Then any sequence {xn} generated
by Algorithm 3.2 converges strongly to p ∈ V I (C, A), where p = PV I (C,A) ◦ f (p).

Proof

Claim 1 The sequence {xn} is bounded. Indeed, let zn = PCn(xn), according to
Claim 1 in Theorem 3.5, we get

‖zn − p‖2 ≤ ‖xn − p‖2 −
[
1

M
(1 − μ)‖xn − yn‖2

]2
. (24)

This implies that
‖zn − p‖ ≤ ‖xn − p‖.

Therefore,

‖xn+1 − p‖ = ‖αnf (xn) + (1 − αn)zn − p‖
= ‖αn(f (xn) − p) + (1 − αn)(zn − p)‖
≤ αn‖f (xn) − p‖ + (1 − αn)‖zn − p‖
≤ αn‖f (xn) − f (p)‖ + αn‖f (p) − p‖ + (1 − αn)‖zn − p‖
≤ αnρ‖xn − p‖ + αn‖f (p) − p‖ + (1 − αn)‖xn − p‖
≤ [1 − αn(1 − ρ)]‖xn − p‖ + αn(1 − ρ)

‖f (p) − p‖
1 − ρ

≤ max{‖xn − p‖, ‖f (p) − p‖
1 − ρ

}

≤ ... ≤ max{‖x1 − p‖, ‖f (p) − p‖
1 − ρ

}.
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This implies that the sequence {xn} is bounded. Consequently, {f (xn)}, {yn}, and
{zn} are bounded.

Claim 2

‖zn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉.
Indeed, we have

‖xn+1 − p‖2 = ‖αn(f (xn) − p) + (1 − αn)(zn − p)‖2
≤ (1 − αn)‖zn − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉
≤ ‖zn − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉. (25)

On the other hand, we have

‖zn − p‖2 = ‖PCnxn − p‖2 ≤ ‖xn − p‖2 − ‖zn − xn‖2. (26)

Substitute (26) into (25), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ‖zn − xn‖2 + 2αn〈f (xn) − p, xn+1 − p〉.
This implies that

‖zn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈f (xn) − p, xn+1 − p〉.

Claim 3

(1− αn)

[
1

M
(1 − μ)‖xn − yn‖2

]2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖f (xn)− p‖2.

Indeed, from the definition of the sequence {xn} and (24) we obtain

‖xn+1 − p‖2 = ‖αn(f (xn) − p) + (1 − αn)(zn − p)‖2
= αn‖f (xn) − p‖2 + (1 − αn)‖zn − p‖2 − αn(1 − αn)‖f (xn) − zn‖2

≤ αn‖f (xn) − p‖2 + (1 − αn)‖xn − p‖2 − (1 − αn)

[
1

L
(1 − μ)‖xn − yn‖2

]2

≤ αn‖f (xn) − p‖2 + ‖xn − p‖2 − (1 − αn)

[
1

M
(1 − μ)‖xn − yn‖2

]2
.

This implies that

(1− αn)

[
1

M
(1 − μ)‖xn − yn‖2

]2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖f (xn)− p‖2.

Claim 4

‖xn+1 − p‖2 ≤ (1− (1− ρ)αn)‖xn − p‖2 + (1− ρ)αn

2

1 − ρ
〈f (p) − p, xn+1 − p〉.
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Indeed, we have

‖xn+1 − p‖2 = ‖αnf (xn) + (1 − αn)zn − p‖2
= ‖αn(f (xn)−f (p)) + (1−αn)(zn−p) + αn(f (p)−p)‖2
≤ ‖αn(f (xn)−f (p))+(1−αn)(zn−p)‖2 + 2αn〈f (p)−p, xn+1−p〉
≤ αn‖f (xn)−f (p)‖2+(1−αn)‖zn−p‖2+2αn〈f (p)−p, xn+1 − p〉
≤ αnρ‖xn − p‖2 + (1 − αn)‖xn − p‖2 + 2αn〈f (p) − p, xn+1 − p〉
= (1−(1−ρ)αn)‖xn−p‖2 + (1−ρ)αn

2

1 − ρ
〈f (p) − p, xn+1 − p〉.

(27)

Claim 5 The sequence {‖xn − p‖2} converges to zero. We consider two possible
cases on the sequence {‖xn − p‖2}.

Case 1 There exists an N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N .
This implies that limn→∞ ‖xn − p‖2 exists. It is implied from Claim 2 that

lim
n→∞ ‖xn − zn‖ = 0.

Now, according to Claim 3,

lim
n→∞ ‖xn − yn‖ = 0. (28)

Since the sequence {xn} is bounded, it implies that there exists a subsequence {xnk
}

of {xn} that weak convergence to some z ∈ C such that

lim sup
n→∞

〈f (p)−p, xn −p〉 = lim
k→∞〈f (p)−p, xnk

−p〉 = 〈f (p)−p, z−p〉. (29)

Since xnk
⇀ z and (28), it implies from Lemma 3.3 that z ∈ V I (C, A).

On the other hand,

‖xn+1 − zn‖ = αn‖f (xn) − zn‖ → 0 asn → ∞.

Thus,

‖xn+1 − xn‖ = ‖xn+1 − zn‖ + ‖xn − zn‖ → 0 asn → ∞.

Since p = PV I (C,A)f (p) and xnk
⇀ z ∈ V I (C, A), using (29), we get

lim sup
n→∞

〈f (p) − p, xn − p〉 = 〈f (p) − p, z − p〉 ≤ 0.

This implies that

lim sup
n→∞

〈f (p) − p, xn+1 − p〉 ≤ lim sup
n→∞

〈f (p) − p, xn+1 − xn〉
+ lim sup

n→∞
〈f (p) − p, xn − p〉 ≤ 0,

which, together with Claim 4, implies from Lemma 2.10 that

xn → p asn → ∞.
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Case 2 There exists a subsequence {‖xnj
− p‖2} of {‖xn − p‖2} such that ‖xnj

−
p‖2 < ‖xnj +1−p‖2 for all j ∈ N. In this case, it follows Lemma 2.9 that there exists
a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following
inequalities hold for all k ∈ N:

‖xmk
− p‖2 ≤ ‖xmk+1 − p‖2 and‖xk − p‖2 ≤ ‖xmk+1 − p‖2. (30)

According to Claim 2, we have

‖zmk
− xmk

‖2 ≤ ‖xmk
− p‖2 − ‖xmk+1 − p‖2 + 2αmk

〈f (xmk
) − p, xmk+1 − p〉.

≤ αmk
〈f (xmk

) − p, xmk+1 − p〉
≤ αmk

‖f (xmk
) − p‖|xmk+1 − p‖ → 0 ask → ∞.

According to Claim 3, we have

(1−αmk
)

[
1

M
(1−μ)‖xmk

−ymk
‖2

]2
≤‖xmk

−p‖2−‖xmk+1−p‖2+αmk
‖f (xmk

)−p‖2

≤ αmk
‖f (xmk

) − p‖2 → 0 ask → ∞.

Using the same arguments as in the proof of Case 1, we obtain

‖xmk+1 − xmk
‖ → 0

and
lim sup
k→∞

〈f (p) − p, xmk+1 − p〉 ≤ 0.

Since (27), we get

‖xmk+1 − p‖2 ≤ (1 − αmk
(1 − ρ))‖xmk

− p‖2 + 2αmk
〈f (p) − p, xmk+1 − p〉

≤ (1 − αmk
(1 − ρ))‖xmk+1 − p‖2 + 2αmk

〈f (p) − p, xmk+1 − p〉.
which, together with (30), implies that

‖xk − p‖2 ≤ ‖xmk+1 − p‖2 ≤ 2〈f (p) − p, xmk+1 − p〉.
Therefore, lim supk→∞ ‖xk − p‖ ≤ 0, that is xk → p. The proof is completed.

Applying Algorithm 3.2 with f (x) := x1 for all x ∈ C, we obtain the following
corollary.

Corollary 3.7 Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x1 ∈ C be arbitrary.
Compute

yn = PC(xn − λnAxn),

where λn is chosen to be the largest λ ∈ {γ, γ l, γ l2, ...} satisfying
λ〈Axn − Ayn, xn − yn〉 ≤ μ‖xn − yn‖2.

If yn = xn then stop and xn is the solution of VIP. Otherwise, compute

xn+1 = αnx1 + (1 − αn)PC(xn),
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where
Cn := {x ∈ H : hn(x) ≤ 0}

and
hn(x) = 〈xn − yn − λn(Axn − Ayn), x − yn〉.

Assume that Conditions 1–4 hold. Then the sequence {xn} converges strongly to p ∈
V I (C, A), where p = PV I (C,A)x1.

4 Numerical illustrations

Some numerical implementations of our proposed methods in this paper are provided
in this section. We give the test examples both in finite-dimensional and infinite-
dimensional Hilbert spaces and give numerical comparisons in all cases.

In the first two examples, we consider test examples in finite dimensional and
implement our proposed Algorithm 3.1. We compare our method with Algorithm 1
of Iusem [19] (Iusem Alg. 1.1).

Example 4.1 Let us consider VIP (1) with

A(x) =
⎡
⎣ (x2

1 + (x2 − 1)2)(1 + x2)

−x3
1 − x1(x2 − 1)2

⎤
⎦

and
C := {x ∈ R

2 : −10 ≤ xi ≤ 10, i = 1, 2}.
This VIP has unique solution x∗ = (0, −1)T . It is easy to see thatA is not a monotone
map on C. However, using the Monte Carlo approach (see [18]), it can be shown that
A is pseudo-monotone on C. Let x1 be the initial point be randomly generated vector
in C, l = 0.1, γ = 2. We terminate the iterations if ‖xn − yn‖2 ≤ ε with ε = 10−3,
‖.‖2 is the Euclidean norm on R

2. The results are listed in Table 1 and Figs. 1, 2, 3,
and 4 below. We consider different values of μ (Table 2).

Example 4.2 Consider VIP (1) with

A(x) =
⎡
⎣ 0.5x1x2 − 2x2 − 107

−4x1 + 0.1x2
2 − 107

⎤
⎦

and
C := {x ∈ R

2 : (x1 − 2)2 + (x2 − 2)2 ≤ 1}.
Then A is not monotone on C but pseudo-monotone (see [18]). Furthermore, the VIP
(1) has a unique solution x∗ = (2.707, 2.707)T . Take l = 0.1, γ = 3, and μ = 0.2.
We terminate the iterations if ‖xn −yn‖2 ≤ ε with ε = 10−2. The results are listed in
Table 3 and Figs. 5, 6, 7, and 8 below. We consider different choices of initial point
x1 in C.
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Next, we give the following two examples in infinite-dimensional spaces to illus-
trate our proposed Algorithm 2. Here, we compare our proposed Algorithm 2 with
the method proposed by Vuong and Shehu in [46] with αn = 1

n+1 .

Example 4.3 Consider H := L2([0, 1]) with inner product 〈x, y〉 := ∫ 1
0 x(t)y(t)dt

and norm ‖x‖2 := (
∫ 1
0 |x(t)|2dt)

1
2 . Suppose C := {x ∈ H : ‖x‖2 ≤ 2}. Let g : C →

R be defined by

g(u) := 1

1 + ‖u‖22
.

Observe that g is Lg-Lipchitz continuous with Lg = 16
25 and 1

5 ≤ g(u) ≤ 1, ∀u ∈ C.
Define the Volterra integral mapping F : L2([0, 1]) → L2([0, 1]) by

F(u)(t) :=
∫ t

0
u(s)ds, ∀u ∈ L2([0, 1]), t ∈ [0, 1].

Then F is bounded linear monotone (see Exercise 20.12 of [4]). Now, define A :
C → L2([0, 1]) by

A(u)(t) := g(u)F (u)(t), ∀u ∈ C, t ∈ [0, 1].

Table 2 Example 1: comparison
of the inner loop to obtain λn μ Proposed alg. 3.2 iter. Iusem alg. 1.1 iter.

0.1 77 17853

0.5 28 3099

0.7 30 2071

0.9 26 322
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Fig. 5 Example 2 comparison with x1 = (1.5, 1.7)T
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Fig. 8 Example 2 comparison with x1 = (2.7, 2.6)T

As given in [37], A is pseudo-monotone mapping but not monotone since

〈Av − Au, v − u〉 = − 3

10
< 0

with v = 1 and u = 2.
Take l = 0.015, γ = 3 and μ = 0.1 (Table 4). We terminate the iterations if

‖xn − PC(xn − A(xn))‖2 ≤ ε with ε = 10−2. The results are listed in Table 5
and Figs. 9, 10 ,and 11 below. We consider different choices of initial point x1 in C

(Table 6).

Example 4.4 Take

H := L2([0, 1]) and C := {x ∈ H : ‖x‖2 ≤ 2}.
Define A : L2([0, 1]) → L2([0, 1]) by

A(u)(t) := e−‖u‖2
∫ t

0
u(s)ds, ∀u ∈ L2([0, 1]), t ∈ [0, 1].

It can also be shown that A is pseudo-monotone but not monotone on H .

Table 4 Example 2: comparison
of the inner loop to obtain λn Initial point x1 Proposed alg. 3.2 iter. Iusem alg. 1.1 iter.

(1.5, 1.7)T 5 19902

(2, 3)T 3 19998

(2, 1)T 3 19998

(2.7, 2.6)T 3 19602
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Table 5 Example 3 comparison:
proposed alg. 3.3 vs Vuong and
Shehu alg.

Proposed alg. 3.3 Vuong and Shehu alg.

x1 Iter. CPU (time) Iter. CPU (Time)

sin(t)
6 22 8.2281 × 10−3 1693 0.12414

5
29 t 29 1.1487 × 10−2 1907 0.12442

cos(t)
7 33 1.3024 × 10−2 2656 0.18212
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Fig. 9 Example 3 comparison with x1 = sin(t)
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Fig. 10 Example 3 comparison with x1 = 5
29 t
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Fig. 11 Example 3 comparison with x1 = cos(t)
7

Table 6 Example 3:
Comparison of the inner loop to
obtain λn

Initial point x1 Proposed alg. 3.3 iter. Vuong and Shehu alg. iter.

sin(t)
6 21 1692

5
29 t 28 1906

cos(t)
7 32 2655

Table 7 Example 4 comparison:
proposed alg. 3.3 vs Vuong and
Shehu alg.

Proposed alg. 3.3 Vuong and Shehu alg.

x1 Iter. CPU (time) Iter. CPU (time)

sin(t)
6 29 8.9724 × 10−3 1693 0.11536

5
29 t 38 1.1887 × 10−2 1907 0.11993

cos(t)
7 41 1.4232 × 10−2 2656 0.16087
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Fig. 12 Example 4 comparison with x1 = sin(t)
6
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Fig. 13 Example 4 comparison with x1 = 5
29 t

Take l = 0.015, γ = 4, and μ = 0.1. We terminate the iterations if ‖xn −PC(xn −
A(xn))‖2 ≤ ε with ε = 10−2. The results are listed in Table 7 and Figs. 12, 13,
and 14 below. We consider different choices of initial point x1 in C.

Remark 4.5

1. Our proposed algorithms are efficient and easy to implement evident from many
examples provided above.

2. We observe that the choices of initial point x1 and μ have no significant effect
on the number of iterations and the CPU time required to reach the stopping
criterion. See all the examples above.

3. Clearly from the numerical examples presented above, our proposed algorithms
outperformed Algorithm 1 proposed by Iusem both in the number of iterations
and CPU time required to reach the stopping criterion. The same observation is
seen when compared with the algorithm proposed by Vuong and Shehu in [46].

4. Furthermore, comparison of our proposed algorithms 3.2 and 3.3 are made with
both algorithms proposed by Iusem and Vuong and Shehu using the inner loop
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Fig. 14 Example 4 comparison with x1 = cos(t)
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Table 8 Example 4: comparison of the inner loop to obtain λn

Initial point x1 Proposed alg. 3.3 iter. Vuong and Shehu alg. iter.

sin(t)
6 28 1692

5
29 t 37 1906

cos(t)
7 40 2655

to obtain λn, see Tables 2, 4, 6, and 8. Again, we could observe great advantages
of our proposed algorithms over others.

5 Conclusions

We obtain weak and strong convergence of two projection-type methods for solving
VIP under pseudo-monotonicity and non-Lipschitz continuity of the VI-associated
mapping A. These two properties emphasize the applicability and advantages over
several existing results in the literature. Numerical experiments performed in both
finite- and infinite-dimensional spaces real Hilbert spaces show that our proposed
methods outperform some already known methods for solving VIP in the literature.

Acknowledgments The authors would like to thank Professor Aviv Gibali and two anonymous reviewers
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31. Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point

problems. SIAM J. Control Optim. 47, 1499–1515 (2008)
32. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J.

Optim. 25, 502–520 (2015)
33. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational

inequality problems. J. Glob. Optim. 61, 193–202 (2015)
34. Marcotte, P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium

problems. Inf. Syst. Oper. Res. 29, 258–270 (1991)
35. Moudafi, A.: Viscosity approximating methods for fixed point problems. J. Math. Anal. Appl. 241,

46–55 (2000)
36. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive

mappings. Bull. Amer. Math. Soc. 73, 591–597 (1967)
37. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequal-

ity in Hilbert spaces Optimization. https://doi.org/10.1080/02331934.2018.1522636 (2018)
38. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris.

258, 4413–4416 (1964)

Numerical Algorithms (2020) 84:795–823822

https://doi.org/10.1080/02331934.2018.1522636


39. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J.
Control Optim. 37, 765–776 (1999)

40. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities.
SIAM J. Control Optim. 34, 1814–1830 (1996)

41. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems.
Numer. Algorithm. 78, 1045–1060 (2018)

42. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for variational inequality
problems and fixed point problems. Optimization 67, 83–102 (2018)

43. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality
problems. Numer. Algorithm. 79, 597–610 (2018)

44. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational
inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

45. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
46. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with

applications to optimal control problems. Numer. Algorithms. https://doi.org/10.1007/s11075-018-
0547-6 (2018)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Duong Viet Thong1 ·Yekini Shehu2 ·Olaniyi S. Iyiola3

Yekini Shehu
yekini.shehu@unn.edu.ng

Olaniyi S. Iyiola
iyiola@calu.edu; niyi4oau@gmail.com

1 Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University,
Ho Chi Minh City, Vietnam

2 Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, People’s Republic of China
3 Department of Mathematics, Computer Science and Information Systems, California University

of Pennsylvania, Pennsylvania, PA, USA

Numerical Algorithms (2020) 84:795–823 823

https://doi.org/10.1007/s11075-018-0547-6
https://doi.org/10.1007/s11075-018-0547-6
mailto: yekini.shehu@unn.edu.ng
mailto: iyiola@calu.edu
mailto: niyi4oau@gmail.com

	Weak and strong convergence theorems
	Abstract
	Introduction
	Question:

	Preliminaries
	Main results
	Weak convergence
	Strong convergence

	Numerical illustrations
	Conclusions
	References
	Affiliations




