
https://doi.org/10.1007/s11075-019-00765-z

ORIGINAL PAPER

A gradient-type algorithmwith backward inertial
steps associated to a nonconvex minimization
problem

Cristian Daniel Alecsa1,2 ·Szilárd Csaba László3 ·Adrian Viorel3
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Abstract
We investigate an algorithm of gradient type with a backward inertial step in con-
nection with the minimization of a nonconvex differentiable function. We show that
the generated sequences converge to a critical point of the objective function, if a
regularization of the objective function satisfies the Kurdyka-Łojasiewicz property.
Further, we provide convergence rates for the generated sequences and the objec-
tive function values formulated in terms of the Łojasiewicz exponent. Finally, some
numerical experiments are presented in order to compare our numerical scheme with
some algorithms well known in the literature.
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1 Introduction and Preliminaries

Gradient-type algorithms have a long history, going back at least to Cauchy (1847),
and also a wealth of applications. Solving linear systems, Cauchy’s original moti-
vation, is maybe the most obvious application, but many of today’s hot topics in
machine learning or image processing also deal with optimization problems from an
algorithmic perspective and rely on gradient-type algorithms.

The original gradient descent algorithm

xn+1 = xn − s∇g(xn),

which is precisely an explicit Euler method applied to the gradient flow

ẋ(t) = −∇g(x(t)),

does not achieve very good convergence rates and much research has been dedicated
to accelerating convergence.

Based on the analogy to mechanical systems, e.g., to the movement, with friction,
of a heavy ball in a potential well defined by the smooth convex objective function g,
with Lg−Lipschitz continuous gradient, Polyak [26] was able to provide the seminal
idea for achieving acceleration namely the addition of inertial (momentum) terms
to the gradient algorithm. His two-step iterative method, the so-called heavy ball
method, takes the following form: For the initial values x0 = x−1 ∈ R

m and n ∈ N

let: ⎧
⎨

⎩

yn = xn + αn(xn − xn−1),

xn+1 = yn − βn∇g(xn),

(1)

where αn ∈ [0, 1) and βn > 0 is a step-size parameter. Recently, in [29], the conver-

gence rate of order O
(

1
n

)
has been obtained for the heavy ball algorithm, provided g

is coercive, the inertial parameter (αn)n∈N is a nonincreasing sequence, and the step-
size parameter satisfies βn = 2(1−αn)c

Lg
, for some fixed c ∈ (0, 1) (see also [18] for an

ergodic rate). More precisely, in [29], it is shown that under the previous assumption
one has:

g(xn) − min g = O
(

1

n

)

.

It is worthwhile mentioning that the forward-backward algorithm studied in [12]
in a full nonconvex setting reduces to Polyak’s heavy ball method if the nonsmooth
term vanishes; hence, it can be viewed as an extension of the heavy ball method to
the case when the objective function g is possible nonconvex, but still has Lipschitz
continuous gradient with Lipschitz contant Lg . Indeed, Algorithm 1 from [12], in
case f ≡ 0 and F = 1

2‖ · ‖2 has the form: For the initial values x0 = x−1 ∈ R
m and

n ∈ N, let:
xn+1 = xn + αn(xn − xn−1) − βn∇g(xn), (2)

where 0 < β ≤ βn ≤ β < +∞ and αn ∈ [0, α], α > 0 for all n ≥ 1. In this
particular case, convergence of the generated sequence (xn)n∈N to a critical point of
the objective function g can be shown under the assumption that a regularization of
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the objective function satisfies the Kurdyka-Łojasiewicz property, further β, β and
α > 0 satisfy:

1 > βLg + 2α
β

β
. (3)

Note that (3) implies α < 1
2 ; hence, αn ∈

[
0, 1

2

)
for all n ≥ 1. If β and α are

positive numbers such that 1 > βLg + 2α, then by choosing β ∈
[
β,

β

βLg+2α

)
,

relation (3) is satisfied.
Probably the most acclaimed inertial algorithm is Nesterov’s accelerated gradient

method, which in its particular form: For the initial values x0 = x−1 ∈ R
m and n ∈ N

let: ⎧
⎨

⎩

yn = xn + n
n+3 (xn − xn−1),

xn+1 = yn − s∇g(yn),

(4)

for a convex g with Lipschitz continuous gradient Lg and step size s ≤ 1
Lg

, exhibits

an improved convergence rate of O(1/n2) (see [15, 23]), and which, as highlighted
by Su, Boyd, and Candès [28], (see also [5]), can be seen as the discrete counterpart
of the second-order differential equation:

ẍ(t) + 3

t
ẋ(t) − ∇g(x(t)) = 0.

In this respect, it may be useful to recall that until recently little was known about
the efficiency of Nesterov’s accelerated gradient method outside a convex setting.
However, in [20], a Nesterov-like method, differing from the original only by a mul-
tiplicative coefficient, has been studied and convergence rates have been provided for
the very general case when a regularization of the objective function g has the KL
property. More precisely, in [20], the following algorithm was considered.

For the initial values x0 = x−1 ∈ R
m and n ∈ N let:

⎧
⎨

⎩

yn = xn + βn
n+α

(xn − xn−1),

xn+1 = yn − s∇g(yn),

(5)

where α > 0, β ∈ (0, 1) and 0 < s <
2(1−β)

Lg
. Unfortunately, for technical reasons,

one can not allow β = 1 therefore one does not have full equivalence between Algo-
rithm (5) and Algorithm (4). However, what is lost at the inertial parameter is gained

at the step size, since for 0 < β ≤ 1
2 one may have s ∈

[
1

Lg
, 2

Lg

)
. Convergence of

the sequences generated by Algorithm (5) was obtained under the assumption that
the regularization of the objective function g, namely H(x, y) = g(x) + 1

2‖y − x‖2,
is a KL function.

In this paper, we deal with the optimization problem:

inf
x∈Rm

g(x), (P)
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where g : Rm −→ R is a Fréchet differentiable function with Lg-Lipschitz contin-
uous gradient, i.e., there exists Lg ≥ 0 such that ‖∇g(x) − ∇g(y)‖ ≤ Lg‖x − y‖
for all x, y ∈ R

m, and we associate to (P) the following inertial algorithm of gradient
type.

Consider the starting points x0 = x−1 ∈ R
m, and for every n ∈ N let:

⎧
⎨

⎩

yn = xn + αn(xn − xn−1),

xn+1 = yn − βn∇g(yn),

(6)

where we assume that

lim
n−→+∞ αn = α ∈

(
−10 + √

68

8
, 0

)

, lim
n−→+∞ βn = β and 0 < β <

4α2 + 10α + 2

Lg(2α + 1)2
.

Remark 1 Observe that the inertial parameter αn becomes negative after a number of
iterations and this can be viewed as taking a backward inertial step in our algorithm.
Of course, this also shows that after a number of iteration yn is a convex combination
of xn−1 and xn, (see [16] for similar constructions), that is:

yn = (1 − (−αn))xn + (−αn)xn−1, −αn ∈ (0, 1).

Another novelty of Algorithm (6) is that it allows variable step size. Moreover, it
can easily be verified that whenever α > − 1

6 one may take β > 1
Lg

.
We emphasize that the analysis of the proposed algorithm (6) is intimately related

to the properties of the following regularization of the objective function g (see also
[11–13, 20, 21]), that is:

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖y − x‖2. (7)

In the remainder of this section, we introduce the necessary apparatus of notions and
results that we will need in our forthcoming analysis.

For a differentiable function f : Rm −→ R, we denote by crit(f ) = {x ∈ R
m :

∇f (x) = 0} the set of critical points of f . The following so-called descent lemma
(see [24]) will play an essential role in our forthcoming analysis.

Lemma 2 Let f : Rm −→ R be Frèchet differentiable with L Lipschitz continuous
gradient. Then:

f (y) ≤ f (x) + 〈∇f (x), y − x〉 + L

2
‖y − x‖2, ∀x, y ∈ R

m.

Furthermore, the set of cluster points of a given sequence (xn)n∈N will be denoted
by ω((xn)n∈N). At the same time, the distance function to a set is defined for A ⊆ R

m

as
dist(x, A) = inf

y∈A
‖x − y‖ for all x ∈ R

m.

Our convergence result relies on the concept of a KL function. For η ∈ (0, +∞],
we denote by �η the class of concave and continuous functions ϕ : [0, η) →
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[0, +∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η), continuous
at 0 and ϕ′(s) > 0 for all s ∈ (0, η).

Definition 1 (Kurdyka-Łojasiewicz property) Let f : Rm → R be a differentiable
function. We say that f satisfies the Kurdyka-Łojasiewicz (KL) property at x ∈ R

m

if there exists η ∈ (0, +∞], a neighborhood U of x and a function ϕ ∈ �η such that
for all x in the intersection:

U ∩ {x ∈ R
m : f (x) < f (x) < f (x) + η}

the following inequality holds:

ϕ′(f (x) − f (x))‖∇f (x))‖ ≥ 1.

If f satisfies the KL property at each point in R
m, then f is called a KL function.

The function ϕ is called a desingularizing function (see for instance [6]). The
origins of this notion go back to the pioneering work of Łojasiewicz [22], where it is
proved that for a real-analytic function f : Rm → R and a critical point x ∈ R

m (that
is ∇f (x) = 0), there exists θ ∈ [1/2, 1) such that the function |f − f (x)|θ‖∇f ‖−1

is bounded around x. This corresponds to the situation when ϕ(s) = C(1−θ)−1s1−θ ,
where C > 0 is a given constant, and leads to the following definition.

Definition 2 (for which we refer to [2, 8, 22]) A differentiable function f : Rm −→
R has the Łojasiewicz property with exponent θ ∈ [0, 1) at x ∈ crit(f ) if there exists
K, ε > 0 such that:

|f (x) − f (x)|θ ≤ K‖∇f (x)‖, (8)

for every x ∈ R
m, with ‖x − x‖ < ε.

In the above definition, for θ = 0, we adopt the convention 00 = 0, such that if
|f (x) − f (x)|0 = 0, then f (x) = f (x) (see [2]).

The result of Łojasiewicz allows the interpretation of the KL property as a re-
parametrization of the function values in order to avoid flatness around the critical
points. Kurdyka [19] extended this property to differentiable functions definable in
an o-minimal structure. Further extensions to the nonsmooth setting can be found in
[3, 8–10].

To the class of KL functions belong semi-algebraic, real sub-analytic, semiconvex,
uniformly convex, and convex functions satisfying a growth condition. We refer the
reader to [2–4, 7–10] and the references therein for more details regarding all the
classes mentioned above and illustrating examples.

Finally, an important role in our convergence analysis will be played by the
following uniformized KL property given in [7, Lemma 6].

Lemma 3 Let 
 ⊆ R
m be a compact set and let f : Rm → R be a differentiable

function. Assume that f is constant on 
 and f satisfies the KL property at each
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point of 
. Then, there exist ε, η > 0 and ϕ ∈ �η such that for all x ∈ 
 and for all
x in the intersection:

{x ∈ R
m : dist(x, 
) < ε} ∩ {x ∈ R

m : f (x) < f (x) < f (x) + η} (9)

the following inequality holds:

ϕ′(f (x) − f (x))‖∇f (x)‖ ≥ 1. (10)

The outline of the paper is the following. In Section 2, we give a sufficient con-
dition that ensures the decrease property of the regularization H in the iterates, and
which also ensures that the iterates gap belongs to l2. Further, using these results,
we show that the set of cluster points of the iterates is included in the set of critical
points of the objective function. Finally, by means of the the KL property of H , we
obtain that the iterates gap belongs to l1. This implies the convergence of the iterates
(see also [4, 7, 12, 20]). In Section 3, we obtain several convergence rates both for
the sequences (xn)n∈N, (yn)n∈N generated by the numerical scheme (6), as well as
for the function values g(xn), g(yn) in the terms of the Łojasiewicz exponent of g

and H , respectively (see [14, 17, 20] and also [1] for convergence rates under geo-
metrical conditions). Finally, in Section 4, we present some numerical experiments
that show that our algorithm, in many cases, has better properties than the algorithms
used in the literature.

2 Convergence results

We start to investigate the convergence of the proposed algorithm by showing that H

is decreasing along certain sequences built upon the iterates generated by (6).

Theorem 4 Let (xn)n∈N and (yn)n∈N be the sequences generated by the numerical
scheme (6) and for all n ∈ N, n ≥ 1 consider the sequences:

An = (2 − βnLg)(1 + αn+1)
2 − 2αn+1(1 + αn+1)

2βn

,

Cn = (2 − βnLg)αn(1 + αn+1) − αnαn+1

2βn

and
δn = An−1 + Cn−1.

Then, there exists N ∈ N such that:

(i) The sequence
(
g(yn) + δn‖xn − xn−1‖2

)

n≥N
is decreasing and δn > 0 for all

n ≥ N .

Assume further that g is bounded from below. Then,

(ii) The sequence
(
g(yn) + δn‖xn − xn−1‖2

)

n≥N
is convergent;

(iii)
∑

n≥1 ‖xn − xn−1‖2 < +∞.
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Proof By applying the descent Lemma 2 to g, we have:

g(yn+1) ≤ g(yn) + 〈∇g(yn), yn+1 − yn〉 + Lg

2
‖yn+1 − yn‖2.

However, after rewriting the first equation in (6) as ∇g(yn) = 1
βn

(yn − xn+1) and
taking the inner product with yn+1 − yn to obtain:

〈∇g(yn), yn+1 − yn〉 = 1

βn

〈yn − xn+1, yn+1 − yn〉,
the descent inequality becomes:

g(yn+1) − Lg

2
‖yn+1 − yn‖2 ≤ g(yn) + 1

βn

〈yn − xn+1, yn+1 − yn〉 (11)

= g(yn) + 1

βn

(
−‖yn+1 − yn‖2 + 〈yn+1 − xn+1, yn+1 − yn〉

)
.

Further,
yn+1 − yn = (1 + αn+1)(xn+1 − xn) − αn(xn − xn−1)

and
yn+1 − xn+1 = αn+1(xn+1 − xn),

hence:

g(yn+1)+
(

1

βn

− Lg

2

)

‖yn+1−yn‖2 ≤ g(yn)+αn+1

βn

〈xn+1 − xn, yn+1 − yn〉. (12)

Thus, we have:

‖yn+1 − yn‖2 = ‖(1 + αn+1)(xn+1 − xn) − αn(xn − xn−1)‖2

= (1+αn+1)
2‖xn+1−xn‖2+α2

n‖xn−xn−1‖2−2αn(1+αn+1)〈xn+1 − xn, xn − xn−1〉,
and

〈xn+1 − xn, yn+1 − yn〉 = 〈xn+1 − xn, (1 + αn+1)(xn+1 − xn) − αn(xn − xn−1)〉
= (1 + αn+1)‖xn+1 − xn‖2 − αn〈xn+1 − xn, xn − xn−1〉.

Replacing the above equalities in (12) gives:

g(yn+1) + (2 − βnLg)(1 + αn+1)
2 − 2αn+1(1 + αn+1)

2βn

‖xn+1 − xn‖2 ≤

g(yn) − (2 − βnLg)α
2
n

2βn

‖xn − xn−1‖2+
(2 − βnLg)αn(1 + αn+1) − αnαn+1

βn

〈xn+1 − xn, xn − xn−1〉.
The above inequality motivates the introduction of the following notations:

Bn = (2 − βnLg)α
2
n

2βn

and
�n = An−1 + Bn + Cn−1 + Cn (13)

for all n ∈ N, n ≥ 1.
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In terms of these notations, after using the equality:

2〈xn+1 − xn, xn − xn−1〉 = ‖xn+1 − xn−1‖2 − ‖xn+1 − xn‖2 − ‖xn − xn−1‖2,

we can write:

−Cn‖xn+1−xn−1‖2+g(yn+1)+(An+Cn)‖xn+1−xn‖2 ≤ g(yn)+(−Cn−Bn)‖xn−xn−1‖2. (14)

Consequently, we have:

− Cn‖xn+1 − xn−1‖2 + �n‖xn − xn−1‖2 ≤ (g(yn) + δn‖xn − xn−1‖2)

−(g(yn+1) + δn+1‖xn+1 − xn‖2). (15)

Now, since αn −→ α, βn −→ β as n −→ +∞ and α ∈
(−10+√

68
8 , 0

)
, 0 < β <

4α2+10α+2
Lg(2α+1)2 we have:

lim
n−→+∞ An = (2 − βLg)(α + 1)2 + 2α − 2α2

2β
,

lim
n−→+∞ Bn = (2 − βLg)α

2

2β
,

lim
n−→+∞ Cn = (2 − βLg)α(1 + α) − α2

2β
< 0,

lim
n−→+∞ �n = (2 − βLg)(2α + 1)2 + 2α − 4α2

2β
> 0,

lim
n−→+∞ δn = (2 − βLg)(2α2 + 3α + 1) + 2α − 3α2

2β
> 0.

Hence, there exists N ∈ N and C > 0, D > 0 such that for all n ≥ N one has:

Cn ≤ −C, �n ≥ D and δn > 0

which, in the view of (15), shows (i); that is, the sequence g(yn) + δn‖xn − xn−1‖2

is decreasing for n ≥ N .
By using (15) again, we obtain:

0 < C‖xn+1 − xn−1‖2 + D‖xn − xn−1‖2 ≤ (g(yn) + δn‖xn − xn−1‖2)

−(g(yn+1) + δn+1‖xn+1 − xn‖2),

for all n ≥ N , or, more convenient, that:

0 < D‖xn − xn−1‖2 ≤
(
g(yn) + δn‖xn − xn−1‖2

)
−

(
g(yn+1) + δn+1‖xn+1 − xn‖2

)
, (16)

for all n ≥ N . Let r > N . Summing up the latter relations gives:

D

r∑

n=N

‖xn − xn−1‖2 ≤
(
g(yN) + δN‖xN − xN−1‖2

)
−

(
g(yr+1) + δr+1‖xr+1 − xr‖2

)
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which leads to:

g(yr+1) + D

r∑

n=N

‖xn − xn−1‖2 ≤ g(yN) + δN‖xN − xN−1‖2. (17)

Now, taking into account that g is bounded from below, after letting r −→ +∞ we
obtain:

∞∑

n=N

‖xn − xn−1‖2 < +∞

which proves (iii).
This also shows that:

lim
n−→+∞ ‖xn − xn−1‖2 = 0,

hence

lim
n−→+∞ δn‖xn − xn−1‖2 = 0.

But then, using again the fact that g is bounded from below, we have that the sequence
g(yn) + δn‖xn − xn−1‖2 is bounded from below and also decreasing (see (i)) for
n ≥ N ; hence, there exists:

lim
n−→+∞ g(yn) + δn‖xn − xn−1‖2 ∈ R.

Remark 5 By introducing the sequence:

un = √
2δn · (xn − xn−1) + yn, n ≥ 1, (18)

one can easily observe that the statements of Theorem 4 can be expressed in terms of
the regularization of the objective function since H(yn, un) = g(yn)+δn‖xn−xn−1‖2

for all n ∈ N, n ≥ 1.
An interesting fact is that for the sequence (H(yn, un))n≥N to be decreasing one

does not need the boundedness of the objective function g, but only its regularity, as
can be seen in the proof of Theorem 4. The energy decay is thus a structural property
of the algorithm (6) and only the existence of the limit requires the boundedness of
the objective function.

Remark 6 Observe that conclusion (iii) in the hypotheses of Theorem 4 assures that
the sequence (xn − xn−1)n∈N ∈ l2, in particular that:

lim
n−→+∞(xn − xn−1) = 0. (19)

Lemma 7 In the framework of the optimization problem (P), assume that the objec-
tive function g is bounded from below and consider the sequences (xn)n∈N and
(yn)n∈N generated by the numerical algorithm (6) and let (un)n∈N be defined by (18).
Then, the following statements are valid:
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(i) The sets of cluster points of (xn)n∈N, (yn)n∈N and (un)n∈N coincide and are
contained in the set o critical points of g, i.e.:

ω((xn)n∈N) = ω((yn)n∈N) = ω((un)n∈N) ⊆ crit (g);
(ii) ω((yn, un)n∈N) ⊆ crit (H) = {(x, x) ∈ R

m × R
m : x ∈ crit (g)} .

Proof (i) We start by proving ω((xn)n∈N) ⊆ ω((un)n∈N) and ω((xn)n∈N) ⊆
ω((yn)n∈N). Bearing in mind that lim

n−→∞(xn − xn−1) = 0 and that the sequences

(δn)n∈N, (αn)n∈N, and (βn)n∈N are convergent, the conclusion is quite straight-
forward. Indeed, if x ∈ ω((xn)n∈N) and (xnk

)k∈N is a subsequence such that
lim

k−→∞ xnk
= x, then:

lim
k−→∞ ynk

= lim
k−→∞ xnk

+ lim
k−→∞ αnk

· lim
k−→∞(xnk

− xnk−1)

and
lim

k−→∞ unk
= lim

k−→∞ δnk
· lim
k−→∞(xnk

− xnk−1) + lim
k−→∞ ynk

imply that the sequences (xnk
)k∈N, (ynk

)k∈N and (unk
)k∈N all converge to the same

element x ∈ R
m. The reverse inclusions follow in a very similar manner from the

definitions of un and yn.
In order to prove that ω((xn)n∈N) ⊆ crit(g), we use the fact that ∇g is a continuous

operator. So, passing to the limit in ∇g(ynk
) = 1

βnk

· (ynk
− xnk+1) and taking into

account that limk−→+∞ βnk
= β > 0, we have:

∇g(x) = lim
k−→∞ ∇g(ynk

)

= 1

lim
k−→∞ βnk

· lim
k−→∞(ynk

− xnk+1)

and finally, as ynk
− xnk+1 = (xnk

− xnk+1) + αnk
· (xnk

− xnk−1), we obtain:

∇g(x) = 0.

For proving the statement (ii), we rely on a direct computation yielding:

∇H(x, y) = (∇g (x) + (x − y) , (y − x)) , (20)

which, in turn, gives

crit(H) = {
(x, x) ∈ R

m × R
m : x ∈ crit(g)

}

and allows us to apply (i) to obtain the desired conclusion.

Some direct consequences of Theorem 4 (ii) and Lemma 7 are the following.

Fact 8 In the setting of Lemma 7, let (x, x) ∈ ω((yn, un)n∈N). It follows that x ∈
crit (g) and:

lim
n−→∞ H(yn, un) = H(x, x).
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Consequently,

H is finite and constant on the set ω((yn, un)n∈N).

The arguments behind the proofs of the following two facts are the same as those
in Lemma 13 from [20].

Fact 9 If the assumptions from Lemma 7 hold true and if the sequence (xn)n∈N is
bounded, then the following conclusions hold up :

(i) ω((yn, un)n∈N) is nonempty and compact ,

(ii) lim
n−→+∞ dist((yn, un), ω((yn, un)n∈N)) = 0 .

Remark 10 We emphasize that if g is coercive, that is lim‖x‖→+∞ g(x) = +∞, then
g is bounded from below and (xn)n∈N, (yn)n∈N, the sequences generated by (6), are
bounded.

Indeed, notice that g is bounded from below, being a continuous and coercive
function (see [27]). Note that according to Theorem 4 the sequence D

∑r
n=N ‖xn −

xn−1‖2 is convergent hence is bounded. Consequently, from (17), it follows that yr is
contained for every r > N, (N is defined in the hypothesis of Theorem 4), in a lower
level set of g, which is bounded. Since (yn)n∈N is bounded, taking into account (19),
it follows that (xn)n∈N is also bounded.

Now, based on the conclusions of Lemma 7, we present a result which will be
crucial later on. For our next result, ‖ · ‖1 will denote the 1-norm and ‖ · ‖2 will
represent the 2-norm on the linear space R

m × R
m.

Lemma 11 Let H , (xn)n∈N, (yn)n∈N, and (un)n∈N be as in all the previous results,
with the mapping g bounded from below. Then, the following gradient inequalities
hold true:

‖∇H(yn, un)‖2 ≤ ‖∇H(yn, un)‖1 ≤ 1

βn

· ‖xn+1 −xn‖+
[(

αn

βn

)

+ 2
√

2δn

]

· ‖xn −xn−1‖ (21)

and

‖∇H(yn, un)‖2
2 ≤ 2

β2
n

· ‖xn+1 − xn‖2 + 2

[(
αn

βn

− √
2δn

)2

+ δn

]

· ‖xn − xn−1‖2. (22)

Proof First of all note that from our numerical scheme (6) we have ∇g(yn) =
1
βn

((xn − xn+1) + αn(xn − xn−1)). In terms of the ‖ · ‖1 on R
m × R

m, we have:

‖∇H(yn, un)‖1 = ‖ (∇g(yn) + (yn − un) , (un − yn)) ‖1

= ‖∇g(yn) + (yn − un) ‖ + ‖un − yn‖
≤ 1

βn

‖xn+1 − xn‖ + αn

βn

‖xn − xn−1‖ + 2
√

2δn‖xn − xn−1‖,
which proves the desired inequality.
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Now, with respect to the Euclidean norm, similar arguments yield:

‖∇H(yn, un)‖2
2 = ‖∇g(yn) + (yn − un)‖2 + ‖un − yn‖2

=
∥
∥
∥∇g(yn) − √

2δn(xn − xn−1)

∥
∥
∥

2 +
(√

2δn

)2 · ‖xn − xn−1‖2

≤ 2

β2
n

‖xn+1 − xn‖2 + 2

∥
∥
∥
∥

(
αn

βn

− √
2δn

)

· (xn − xn−1)

∥
∥
∥
∥

2

+ 2δn · ‖xn − xn−1‖2,

completing the proof.

Our main result concerning the convergence of the sequence (xn)n∈N generated by
the algorithm (6) to a critical point of the objective function g is the following.

Theorem 12 Consider the sequences (x)n∈N, (yn)n∈N generated by the algorithm
(6) and let the objective function g be bounded from below. If the sequence (xn)n∈N
is bounded and H is a KL function, then:

∞∑

n=1

‖xn − xn−1‖ < +∞ (23)

and there exists an element x ∈ crit(g) such that lim
n−→+∞ xn = x.

Proof Consider (x̄, x̄) from the set ω((yn, un)n∈N) under the assumptions of Lemma
7. It follows that x̄ ∈ crit (g). Also, using Fact 8, we get that lim

n−→∞ H(yn, un) =
H(x̄, x̄). Furthermore, we consider two cases:

I. By using N from Theorem 4, assume that there exists n̄ ≥ N , with n̄ ∈ N,
such that H(yn̄, un̄) = H(x̄, x̄). Then, since (H(yn, un))n≥N is a decreasing
sequence, it follows that:

H(yn, un) = H(x, x), for every n ≥ n,

Now, using (16), we get that for every n ≥ n we have the following inequality:

0 ≤ D‖xn − xn−1‖2 ≤ H(yn, un)−H(yn+1, un+1) = H(x̄, x̄)−H(x̄, x̄) = 0.

So, the sequence (xn)n≥n is constant and the conclusion holds true.
II. Now, we deal with the case when H(yn, un) > H(x, x), for every n ≥ N .

So, consider the set 
 := ω((yn, un)n∈N). From Fact 9, we have that the set 
 is
nonempty and compact. Also, Fact 8 assures that mapping H is constant on 
. From
the hypotheses of the theorem, we have that H is a KL function. So, according to
Lemma 3, there exists ε > 0, η > 0 and a function ϕ ∈ �η, such that for all the
points (z, w) from the set:

{(z, w) ∈ R
m×R

m : dist ((z, w),
) < ε}∩{(z, w) ∈ R
m×R

m : H(x̄, x̄) < H(z, w) < η+H(x̄, x̄)}

one has that:

ϕ′(H(z, w) − H(x̄, x̄)) · ‖∇H(z, w)‖ ≥ 1.
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On the other hand, using Fact 9, we obtain that lim
n−→+∞ dist ((yn, un), 
) = 0. This

means that there exists an index n1 ∈ N, for which it is valid:

dist((yn, un), 
) < ε , for all n ≥ n1.

Let us introduce the notation:

rn := H(yn, un) − H(x, x).

Because
lim

n−→+∞ rn = 0

and since
rn > 0 , for all n ≥ N

then there exists another index n2 ≥ N , such that:

0 < rn < η , for every n ≥ n2.

Taking n̄ := max(n1, n2) we get that for each n ≥ n̄ it follows:

ϕ′(rn) · ‖∇H(yn, un)‖ ≥ 1.

Since the function ϕ is concave, we have:

ϕ(rn) − ϕ(rn+1) ≥ ϕ′(rn) · (rn − rn+1).

Thus, the following relation takes place for each n ≥ n̄:

ϕ(rn) − ϕ(rn+1) ≥ rn − rn+1

‖∇H(yn, un)‖ .

On one hand, combining the inequality (16) and (21), it follows that for every n ≥ n̄

ϕ(rn) − ϕ(rn+1) ≥ D‖xn − xn−1‖2

1

βn

‖xn − xn+1‖ +
[
αn

βn

+ 2
√

2δn

]

· ‖xn − xn−1‖
. (24)

On the other hand, we know that the sequences (αn)n∈N, (βn)n∈N and (δn)n∈N are

convergent, and limn−→+∞ βn = β > 0, hence

(
1

βn

)

n∈N
and

(
αn

βn

+ 2
√

2δn

)

n∈N
are bounded. This shows that there exists N̄ ∈ N, N̄ ≥ n̄ and there exists M > 0,
such that:

sup
n≥N

{
1

βn

,
αn

βn

+ 2
√

2δn

}

≤ M .

Thus, the inequality (24) becomes:

ϕ(rn) − ϕ(rn+1) ≥ D‖xn − xn−1‖2

M (‖xn − xn+1‖ + ‖xn − xn−1‖) , (25)

for every n ≥ N̄ . This implies that for each n ≥ N̄ , the following inequality holds:

‖xn − xn−1‖ ≤
√

M

D
· (ϕ(rn) − ϕ(rn+1)) · (‖xn − xn+1‖ + ‖xn − xn−1‖).
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From the well-known arithmetical-geometrical inequality, it follows that:
√

M

D
· (ϕ(rn) − ϕ(rn+1)) · (‖xn − xn+1‖ + ‖xn − xn−1‖)

≤ ‖xn+1 − xn‖ + ‖xn − xn−1‖
3

+ 3M

4D
· (ϕ(rn) − ϕ(rn+1)) .

Therefore, we obtain:

‖xn − xn−1‖ ≤ ‖xn+1 − xn‖ + ‖xn − xn−1‖
3

+ 3M

4D
· (ϕ(rn) − ϕ(rn+1)) .

Consequently, we have:

2‖xn − xn−1‖ − ‖xn − xn+1‖ ≤ 9M

4D
· (ϕ(rn) − ϕ(rn+1)) , (26)

for every n ∈ N, with n ≥ N̄ . Now, by summing up the latter inequality from N to
P ≥ N , we get that:

P∑

n=N̄

‖xn − xn−1‖ ≤ ‖xP+1 − xP ‖ − ‖xN̄ − xN̄−1‖ + 9M

4D
· (

ϕ(rN̄ ) − ϕ(rP+1)
)

.

Now, it is time to use the fact that ϕ(0) = 0. In this setting, by letting P −→ +∞
and by using (19) we obtain:

∞∑

n=N̄

‖xn − xn−1‖ ≤ −‖xN̄ − xN̄−1‖ + 9M

4D
ϕ(rN̄ ) < +∞.

It implies that:
∞∑

n=1

‖xn − xn−1‖ < +∞,

so the first part of the proof is done.
At the same time, the sequence (Sn)n∈N, defined by:

Sn =
n∑

i=1

‖xi − xi−1‖

is Cauchy. Thus, for every ε > 0, there exists a positive integer number Nε, such that
for each n ≥ Nε and for all p ∈ N, one has:

Sn+p − Sn ≤ ε.

Furthermore,

Sn+p − Sn =
n+p∑

i=n+1

‖xi − xi−1‖ ≥
∥
∥
∥
∥
∥
∥

n+p∑

i=n+1

(xi − xi−1)

∥
∥
∥
∥
∥
∥

= ‖xn+p − xn‖.

So, the sequence (xn)n∈N is Cauchy hence is convergent, i.e., there exists x ∈ R
m,

such that:
lim

n−→+∞ xn = x.
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Thus, by using (i) of Lemma 7, it follows that:

{x} = ω((xn)n∈N) ⊆ crit(g) ,

which leads to the conclusion of the second part of the present theorem.

Remark 13 Since the class of semi-algebraic functions is closed under addition (see
for example [7]), and (x, y) �→ 1

2‖x − y‖2 is semi-algebraic, the conclusion of the
previous theorem holds if the condition that H is a KL function is replaced by the
assumption that g is semi-algebraic.

Note that, according to Remark 10, the conclusion of Theorem 12 remains valid
if we replace in its hypotheses that the conditions that g is bounded from below and
(xn)n∈N is bounded by the condition that g is coercive.

Finally, observe that under the assumptions of Theorem 12, we have limn−→+∞
yn = x and

lim
n−→+∞ g(xn) = lim

n−→+∞ g(yn) = g(x).

3 Convergence rates

In the following theorem, we provide convergence rates for the sequence generated
by (6), but also for the function values, in terms of the Łojasiewicz exponent of
H (see also, [2, 8, 14, 20]). More precisely we obtain finite, linear and sublinear
convergence rates, depending the Łojasiewicz exponent of H , θ is 0, or θ belongs to(

0, 1
2

]
, or θ ∈

(
1
2 , 1

)
, respectively. Note that the forthcoming results remain valid

if one replace in their hypotheses the conditions that g is bounded from below and
(xn)n∈N is bounded by the condition that g is coercive.

The following lemma was established in [14] and will be crucial in obtaining our
convergence rates.

Lemma 14 ([14] Lemma 15) Let (en)n≥n, n ∈ N be a monotonically decreas-
ing positive sequence converging to 0. Assume further that there exist the natural
numbers l0 ≥ 1 and n0 ≥ n + l0 such that for every n ≥ n0 one has:

en−l0 − en ≥ C0e
2θ
n (27)

where C0 > 0 is some constant and θ ∈ [0, 1). Then, following statements are true:

(i) If θ = 0, then (en)n≥n converges in finite time;

(ii) If θ ∈
(

0, 1
2

]
, then there exists C1 > 0 and Q ∈ [0, 1), such that for every

n ≥ n0

en ≤ C1Q
n;

(iii) If θ ∈
[

1
2 , 1

)
, then there exists C2 > 0, such that for every n ≥ n0 + l0

en ≤ C2(n − l0 + 1)−
1

2θ−1 .

In the proof of the following theorem, we use Lemma 14 (see also [2]).
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Theorem 15 In the settings of problem (P) consider the sequences (xn)n∈N, (yn)n∈N
generated by Algorithm (6). Assume that g is bounded from below and that (xn)n∈N
is bounded. Suppose that

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖x − y‖2

fulfills the Łojasiewicz property with Łojasiewicz constant K and Łojasiewicz expo-
nent θ ∈ [0, 1) and let limn−→+∞ xn = x. Then, the following statements hold
true:

If θ = 0, then the sequences

(a0) (g(yn))n∈N, (g(xn))n∈N, (yn)n∈N and (xn)n∈N converge in a finite number of
steps;

If θ ∈
(

0, 1
2

]
, then there exist Q ∈ (0, 1), a1, a2, a3, a4 > 0 and k ∈ N such that:

(a1) g(yn) − g(x) ≤ a1Q
n for every n ≥ k,

(a2) g(xn) − g(x) ≤ a2Q
n for every n ≥ k,

(a3) ‖xn − x‖ ≤ a3Q
n
2 for every n ≥ k,

(a4) ‖yn − x‖ ≤ a4Q
n
2 for all n ≥ k;

If θ ∈
(

1
2 , 1

)
then there exist b1, b2, b3, b4 > 0 and k ∈ N such that:

(b1) g(yn) − g(x) ≤ b1n
− 1

2θ−1 , for all n ≥ k,

(b2) g(xn) − g(x) ≤ b2n
− 1

2θ−1 , for all n ≥ k,

(b3) ‖xn − x‖ ≤ b3n
θ−1

2θ−1 , for all n ≥ k,

(b4) ‖yn − x‖ ≤ b4n
θ−1

2θ−1 , for all n ≥ k.

Proof We start by employing the ideas from the proof of Theorem 12, namely if there
exists n ∈ N, with n ≥ N , for which one has that:

H(yn, un) = H(x, x),

then it follows that the sequence (xn)n≥n is constant. This leads to the fact that the
sequence (yn)n≥n is also constant. Furthermore,

H(yn, un) = H(x, x) for all n ≥ n .

That is, if the regularized energy is constant after a certain number of iterations,
one can see that the conclusion follow in a straightforward way.
Now, we can easily assume that:

H(yn, un) > H(x, x) for all n ≥ N .

In order to simplify notations, we will use

Hn := H(yn, un), H := H(x, x) and ∇Hn := ∇H(yn, un).

Our analysis aims to apply Lemma 14 for

rn := Hn − H = H(yn, un) − H(x, x) > 0
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based on three previously established fundamental relations:

(a) The energy decay relation (16), for every n ≥ N

Hn − Hn+1 ≥ D‖xn − xn−1‖2,

(b) The energy-gradient estimate (22), for every n ∈ N

‖∇Hn‖2 ≤ 2

β2
n

‖xn+1 − xn‖2 + Sn‖xn − xn−1‖2

where

Sn = 2 ·
[(

αn

βn

− √
2δn

)2

+ δn

]

,

(c) The Łojasiewicz inequality (8), for every n ≥ N1

(Hn − H)2θ ≤ K2‖∇Hn‖2,

where N1 ≥ N is defined by the Łojasiewicz property of H at (x, x) such that
for ε > 0 one has

‖(yn, un) − (x, x)‖ < ε

for all n ≥ N1.

By combining these three inequalities, one reaches

(Hn − H)2θ ≤ 2K2

β2
nD

(Hn+1 − Hn+2) + K2Sn

D
(Hn − Hn+1)

and we are led to a nonlinear second-order difference inequality

r2θ
n ≤ 2K2

β2
nD

(rn+1 − rn+2) + K2Sn

D
(rn − rn+1), (28)

for every n ≥ N1.
Using the fact that the positive sequence (rn)n≥N is decreasing we have that

r2θ
n+2 ≤ r2θ

n for all n ≥ N . Further, since the sequences
(

2K2

β2
nD

)

n∈N and
(

K2Sn

D

)

n∈N
converge and have positive limit, there exists C > 0 such that for all n ≥ N1 one has

2K2

β2
nD

(rn+1 − rn+2) + K2Sn

D
(rn − rn+1) ≤ C(rn − rn+2).

In the view of these observations, (28) becomes

C0r
2θ
n+2 ≤ rn − rn+2, (29)

for every n ≥ N1, where C0 = 1
C

.
Now we can apply Lemma 14 by observing that (29) is nothing else that (27) in

Lemma 14, with en = rn+2, n = N − 2, l0 = 2 and n0 = N1 − 2. Hence, by taking
into account that rn > 0 for all n ≥ N , that is, in the conclusion of Lemma 14 (ii)
one has Q �= 0, we have:

(p0) If θ = 0, then (rn)n≥N converges in finite time;
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(p1) If θ ∈
(

0, 1
2

]
, then there exists C1 > 0 and Q ∈ (0, 1), such that for every

n ≥ N1
rn ≤ C1Q

n;
(p2) If θ ∈

[
1
2 , 1

)
, then there exists C2 > 0, such that for every n ≥ N1 + 2

rn ≤ C2(n − 3)−
1

2θ−1 .

(a0). We treat first the case θ = 0. Then, according to (p0), rn = g(yn) − g(x̄) +
δn‖xn −xn−1‖2 converges in finite time. But then rn − rn+1 = 0 for n big enough,
hence (16) implies that xn = xn−1 for n big enough, consequently yn = xn for n

big enough, thus (xn)n∈N, (yn)n∈N converge in finite time. The above results show
immediately that (g(xn))n∈N , (g(yn))n∈N converge in finite time.

Assume now that θ ∈
(

0, 1
2

]
.

(a1). According to (p1) there exists C1 > 0 and Q ∈ (0, 1), such that for every
n ≥ N1 one has:

rn = g(yn) − g(x̄) + δn‖xn − xn−1‖2 ≤ C1Q
n. (30)

Hence,
g(yn) − g(x̄) ≤ a1Q

n, (31)

for all n ≥ N1, where a1 = C1.
(a2). In order to give an upper bound for the difference g(xn) − g(x̄), we consider

the following chain of inequalities based upon Lemma 2:

g(xn) − g(yn) ≤ 〈∇g(yn), xn − yn〉 + Lg

2
‖xn − yn‖2

=
〈

1

βn

(yn − xn+1), −αn(xn − xn−1)

〉

+ Lg

2
‖xn − yn‖2

= 1

βn

〈xn+1 − xn, αn(xn − xn−1)〉 − α2
n

2 − βnLg

2βn

‖xn − xn−1‖2.

Here, using the inequality:

〈xn+1 − xn, αn(xn − xn−1)〉 ≤ 1

2

[
1

2 − βnLg

‖xn+1 − xn‖2 + (2 − βnLg)α2
n‖xn − xn−1‖2

]

,

leads, after some simplifications, to:

g(xn) − g(yn) ≤ 1

2βn(2 − βnLg)
‖xn+1 − xn‖2, for all n ∈ N.

By combining the inequality (16) with the fact that the sequence (g(yn)+δn‖xn −
xn−1‖2)n≥N is decreasing and converges to g(x), one obtains:

g(xn) − g(yn) ≤ 1

2Dβn(2 − βnLg)
rn+1 , for all n ≥ N . (32)

From (30), we have rn+1 ≤ C1Q
n+1 ≤ C1Q

n for all n ≥ N1, hence:

g(xn) − g(yn) ≤ 1

2Dβn(2 − βnLg)
C1Q

n, for all n ≥ N1.
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This means that for every n ≥ N1 one has:

g(xn) − g(x̄) = (g(xn) − g(yn)) + (g(yn) − g(x)) ≤ C1

[
1

2Dβn(2 − βnLg)
+ 1

]

Qn.

Since the sequence (βn)n∈N is convergent to β > 0, we can choose:

a2 = C1 sup
n≥N1

1

2Dβn(2 − βnLg)
+ C1

and we have
g(xn) − g(x̄) ≤ a2Q

n , for every n ≥ N1. (33)

(a3). We continue the proof by establishing an estimate for ‖xn−x‖. By the triangle
inequality and by summing up (26) from n ≥ N ≥ N1 to P > n, (where N was
defined in the proof of Theorem 12), one has:

‖xP − xn−1‖ ≤
P∑

k=n

‖xk − xk−1‖

≤ −‖xn − xn−1‖ + ‖xP+1 − xP ‖ + 9M

4D

[
ϕ(Hn − H) − ϕ(HP+1 − H)

]
,

so, letting P −→ ∞ gives:

‖xn−1 − x̄‖ ≤ 9M

4D
ϕ(Hn − H).

Recall, however, that the desingularizing function is ϕ(t) = K
1−θ

t1−θ hence,

‖xn−1 − x̄‖ ≤ M1r
1−θ
n , (34)

for every n ≥ N , where M1 = 9MK

4D(1 − θ)
.

Further, since rn converges to 0 one has 0 < rn < 1 for n big enough, hence
r1−θ
n ≤ √

rn holds for θ ∈ (0, 1/2], if n is big enough. By using (30), we conclude
that there exists N2 ≥ N such that:

‖xn − x̄‖ ≤ M1
√

rn+1 ≤ M1
√

rn ≤ a3Q
n
2 , for every n ≥ N2, (35)

where a3 := √
C1M1.

(a4). Finally, we conclude this part of the proof by deducing an upper bound for
‖yn − x‖. The following inequalities hold true:

‖yn − x‖ = ‖xn + αn(xn − xn−1) − x̄‖ ≤ |1 + αn| · ‖xn − x‖ + |αn| · ‖xn−1 − x‖
≤ (1 + |αn|)a3Q

n
2 + |αn|a3Q

− 1
2 Q

n
2 ≤ (1 + |αn| + Q− 1

2 |αn|)a3Q
n
2 ,

for all n ≥ N2 + 1. Let a4 = supn≥N2+1(1 + |αn| + Q− 1
2 |αn|)a3 > 0. Then,

‖yn − x̄‖ ≤ a4Q
n
2 , for all n ≥ N2 + 1. (36)

Now, if we take k = max{N1, N2 + 1} then (31), (33), (35), and (36) lead to the
conclusions (a1)-(a4).

Finally, assume that θ ∈
(

1
2 , 1

)
.

Numerical Algorithms (2020) 84:485–512 503



(b1). According to (p2) there exists C2 > 0, such that for every n ≥ N1 +2 one has

rn = g(yn) − g(x̄) + δn‖xn − xn−1‖2 ≤ C2(n − 3)−
1

2θ−1 . (37)

Consequently,

g(yn) − g(x̄) ≤ C2(n − 3)−
1

2θ−1 = C2

(
n

n − 3

) 1
2θ−1

n− 1
2θ−1

for every n ≥ N1 + 2. Hence, we have

g(yn) − g(x̄) ≤ b1n
− 1

2θ−1 , (38)

for every n ≥ N1 + 2, where b1 = C2 supn≥N1+2

(
n

n−3

) 1
2θ−1

.

The other claims now follow quite easily.

(b2). Indeed, note that (32) holds for every n ≥ N1, hence:

g(xn) − g(yn) ≤ 1

2Dβn(2 − βnLg)
rn+1 ≤ 1

2Dβn(2 − βnLg)
b1(n + 1)

−1
2θ−1 .

Therefore, one obtains:

g(xn) − g(x) = (g(xn) − g(yn)) + (g(yn) − g(x)) ≤
(

1

2Dβn(2 − βnLg)
b1 + b1

)

n
−1

2θ−1 ,

for every n ≥ N1 + 2. Let b2 = supn≥N1+2

(
1

2Dβn(2 − βnLg)
b1 + b1

)

. Then

g(xn) − g(x) ≤ b2n
−1

2θ−1 , (39)

for every n ≥ N1 + 2.
(b3). For proving (b3), we use (34) again, and we have that for all n ≥ N ≥ N1 +2

it holds

‖xn − x̄‖ ≤ M1r
1−θ
n+1 ≤ M1r

1−θ
n ≤ M1

(
b1n

−1
2θ−1

)1−θ

.

Let b3 = M1b
1−θ
1 . Then,

‖xn − x̄‖ ≤ b3n
θ−1

2θ−1 , (40)

for all n ≥ N .
(b4). The final estimate is a straightforward consequence of the definition of yn

and the above estimates. Indeed, for all n ≥ N + 1 one has:

‖yn − x‖ = ‖xn + αn(xn − xn−1) − x̄‖ ≤ |1 + αn| · ‖xn − x‖ + |αn| · ‖xn−1 − x‖
≤ (1 + |αn|)b3n

θ−1
2θ−1 + |αn|b3(n − 1)

θ−1
2θ−1 ≤ (1 + 2|αn|)b3(n − 1)

θ−1
2θ−1 .

Let b4 = supn≥N+1(1 + 2|αn|)b3

(
n

n−1

) 1−θ
2θ−1

> 0. Then,

‖yn − x̄‖ ≤ b4n
θ−1

2θ−1 , for all n ≥ N + 1. (41)
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Now, if we take k = N + 1 then (38), (39), (40), and (41) lead to the conclusions
(b1)-(b4).

Remark 16 According to [21], H has the Łojasiewicz property with Łojasiewicz

exponent θ ∈
[

1
2 , 1

)
, whenever g has the Łojasiewicz property with Łojasiewicz

exponent θ ∈
[

1
2 , 1

)
. Therefore, one obtains the same convergence rates if in the

hypotheses of Theorem 15 one assumes that g has the Łojasiewicz property with

Łojasiewicz exponent θ ∈
[

1
2 , 1

)
.

4 Numerical experiments

The aim of this section is to support the analytic results of the previous sections
by numerical experiments and to highlight some interesting features of the generic
algorithm (6).

4.1 Comparing Algorithm (6) with some algorithms from the literature by using
different step sizes

In our first experiment, let us consider the convex function:

g : R2 −→ R, g(x, y) = 0.02x2 + 0.005y2.

Based on the boundedness of its Hessian, we infer that the Lipschitz constant of its
gradient is Lg = 0.2. Obviously, g is strongly convex and its global minimum is
(0, 0).

In order to give a better perspective on the advantages and disadvantages of algo-
rithm (6) for different choices of step sizes and inertial coefficients, in our first
numerical experiment, we compare the following:

(a) The proposed algorithm (6) with inertial parameter αn = −0.01 · n

n + 3
, which

shows that α = −0.01 ∈
(

−10 + √
68

8
, 0

)

, and constant step size βn = β =

9 ∈
(

0 ,
4α2 + 10α + 2

Lg (2α + 1)2

)

;

(b) The proposed algorithm (6) with inertial parameter αn = −0.01 · n

n + 3
and

increasing step size βn = 9 · n + 1

n + 2
;
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(c) The proposed algorithm (6) with inertial parameter αn = −0.01 · n

n + 3
and

decreasing step size βn = 9 · n + 3

n + 2
;

(d) Polyak’s algorithm (1) with inertial parameter αn = 0.6 · n

n + 2
and constant

step size βn = 2
Lg

= 10;

(e) Polyak’s algorithm (1) with decreasing inertial parameter αn = 0.7 · n + 2

n + 1.5

and increasing step size βn = 2(1−αn)·0.9
Lg

= 9 · 0.3n + 0.1

n + 1.5
;

(f) Nesterov algorithm (4) with maximal admissible step size s = 1
Lg

= 5;

(g) The Nesterov-like algorithm (5) with inertial parameter 0.6 · n

n + 3
, and step

size s = 2(1−0.6)
Lg

= 4.

The choices of inertial coefficients and step sizes are motivated by theoretical results
in [18, 29] and [20]. We consider the starting points x0 = x−1 = (3, 1) and run the
simulations until the error |g(xn+1) − g(xn)| attains the value 10−15. These results
are shown in Fig. 1, where the horizontal axis measures the number of iterations
and the vertical axis shows the error |g(xn+1) − g(xn)|. The experiment depicted in
Fig. 1 shows that Algorithm (6) has the best behavior when we choose a decreasing
step size (red square in Fig. 1). This instance outperforms those obtained with the
same Algorithm (6) but with constant step size (red star in Fig. 1) and even more so
fo increasing step sizes (by red circle in Fig. 1). Further, it should be noted that the
Algorithm (6), in all its instances, outperforms Algorithm (5) (green line in Fig. 1),
Algorithm (1) with a constant step size (yellow line in Fig. 1) or variable step size
(black line in Fig. 1) and also Nesterov’s Algorithm (4) (blue line in Fig. 1).

052002051001050
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10-4

10-2

100

Algorithm (6)-decreasing stepsize
Algorithm (6)-constant stepsize
Algorithm (6)-increasing stepsize
Nesterov-like
Polyak-constant stepsize
Polyak- variable stepsize
Nesterov

Fig. 1 Comparing different algorithms for the strongly convex function g(x, y) = 0.02x2 + 0.005y2

Numerical Algorithms (2020) 84:485–512506



4.2 The analysis of the behavior of Algorithm (6) via different inertial values
and step sizes

In the second set of numerical experiments, we analyze the behavior of our algo-
rithm with different inertial values and different step sizes in a noncovex setting.
Our experiments suggest that in order to obtain faster convergence one should use
in Algorithm (6) decreasing step size βn and one should have a sequence of inertial
parameter whose limit is as close to 0 as possible (see Fig. 2).

First, consider the Rastrigin function (see [25]):

g : R2 −→ R, g(x, y) = 20 + x2 − 10 cos(2πx) + y2 − 10 cos(2πy)

which is nonconvex. For the initial values x0 = x−1 = (0.9, 0.9), we run Algo-
rithm (6), with the constant step size βn = β = 0.001 (yellow circle in Fig. 2a),
then with decreasing step size βn = 0.001 · n+4

n+3 (green arrow in Fig. 2a) and then

with increasing step size βn = 0.001 · n+2
n+3 (red star in Fig. 2a). Meanwhile, the iner-

tial parameter is taken to be αn = −0.1 · n

n + 3
with simulations running until the

error|g(xn+1)−g(xn)| attains 10−15. The results are shown in Fig. 2a, where the hor-
izontal axis measures the number of iterations and the vertical axis shows the error
in terms of iterates.

Next, consider the convex quadratic function g : R2 −→ R, g(x, y) = 0.02x2 +
0.005y2 together with initial values x0 = x−1 = (3, 1) and an inertial parameter

αn = −0.01 · n

n + 1
. The three instances of our algorithm: with constant step size

βn = β = 8 (yellow circle in Fig. 2b), decreasing step size βn = 8 · n+4
n+3 (green arrow

in Fig. 2b) and finally with nondecreasing step size βn = 8 · n+2
n+3 (red star in Fig. 2b),
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Fig. 2 Comparing different step sizes and inertial coefficients
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are compared and results are shown in Fig. 2b, where the horizontal axis measures
the number of iterations and the vertical axis shows the error in terms of iterates.

We also consider different initial values for Algorithm (6), namely x0 = x−1 =
(0.9, 0.9) together with a fixed step size βn = β = 0.001 and the inertial parameters

αn = −0.2· n

n + 3
(red circle in Fig. 2c), αn = −0.1· n

n + 3
(yellow star Fig. 2c), and

αn = −0.001 · n

n + 3
(green arrow Fig. 2c). The result when the objective function

g is the Rastrigin function is shown in Fig. 2c.
Finally, we consider the same inertial values as before for Algorithm (6), but we

take the convex objective function g : R2 −→ R, g(x, y) = 0.02x2 + 0.005y2 and
the fixed step size βn = β = 8, see Fig. 2d.

4.3 Comparing Algorithm (6) with known algorithms by using some test
functions for optimization

Since Algorithm (6) is new in the literature, it is worthwhile to compare with known
algorithms using some so-called test functions for optimization (see [25]). In these
experiments, we run the algorithms until the error |g(xn+1)−g(xn)| attains the value
10−15. These results are shown in Fig. 3a–d, where the horizontal axis measures the
number of iterations and the vertical axis shows the error |g(xn+1) − g(xn)|.

At first consider Beale’s Function:

g : R2 −→ R, g(x, y) = (1.5−x +xy)2 + (2.25−x +xy2)2 + (2.625−x +xy3)2.

We compare Algorithm (6) with inertial parameter αn = −0.01 · n
n+3 (red star

Fig. 3a), with Algorithm (2) with inertial parameter αn = 0.01 · n
n+3 (green square
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Fig. 3 Minimizing test functions for optimization by using different algorithms
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Fig. 3a), and Algorithm (4) (blue circle Fig. 3a), by taking the same step size
βn = s = 0.01, and initial value x0 = x−1 = (0.1, 0.5). Meanwhile Algorithm (6)
and Algorithm (2) show a similar behavior for the Beale function, both outperform
Algorithm (4) (see Fig. 3a).

Consider next the Rosenbrock Function:

g : R2 −→ R, g(x, y) = 100(x2 − y)2 + (x − 1)2.

We compare Algorithm (6) with inertial parameter αn = −0.01 · n
n+3 (red star

Fig. 3b), with Algorithm (2) with inertial parameter αn = 0.4 · n
n+3 (green square

Fig. 3b), and Algorithm (4) (blue circle Fig. 3b), by taking the same step size
βn = s = 0.001, and initial value x0 = x−1 = (2, 2) (see Fig. 3b). Note that
also for the Rosenbrock Function, Algorithm (6) and Algorithm (2) have a simi-
lar behavior; however, in contrast with the oscillations in the error terms of iterates
|g(xn+1) − g(xn)| of Algorithm (2), Algorithm (6) shows an almost linear decrease
trend.

We are also interested in the quadratic function of the form:

g : R2 −→ R, g(x, y) = −3803.84 − 138.08x − 232.92y + 128.08x2 + 203.64y2 + 182.25xy.

We compare Algorithm (6) with inertial parameter αn = −0.2· n
n+3 (red star Fig. 3c),

with Algorithm (2) with inertial parameter αn = 0.49· n
n+3 (green square Fig. 3c), and

Algorithm (4) (blue circle Fig. 3c), by taking the same step size βn = s = 0.0025,
and initial value x0 = x−1 = (2, 2). As Fig. 3c shows that in this case Algorithm (6)
clearly outperforms Algorithm (2) and Algorithm (4).

Finally, for the logistic regression with l2-regularization, we consider the cost
function:

g : Rm −→ R, g(w) = 1

k

k∑

i=1

ln
(

1 + e−yiw
T xi

)
+ 1

2
‖w‖2 ,

with k = 200, m = 50. Further,

y1, . . . , yk ∈ {−1, +1}
and

x1, . . . , xk ∈ R
m are generated by a random normal distribution.

We compare Algorithm (6) with inertial parameter αn = −0.1 · n
n+3 (red star Fig. 3d),

with Algorithm (2) with inertial parameter αn = 0.36 · n
n+3 (green square Fig. 3d),

and Algorithm (4) (blue circle Fig. 3d), by taking the same step size βn = s = 0.5,
and the initial value x0 = x−1 = (1, . . . , 1)T . Also here, Algorithm (6) outperforms
Algorithm (2) and Algorithm (4) (see Fig. 3d).

4.4 Switching between positive and negative inertial parameter values

Finally, a set of numerical experiments is related to the minimization of the
nonconvex, coercive function:

g : R −→ R, g(x) = ln(1 + (x2 − 1)2).
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Fig. 4 Minimizing the nonconvex function g(x) = ln(1+ (x2 −1)2) by using different inertial values and
different starting points

Observe that this function has two global minima at x = −1 and x = 1 and a local
maximum at x = 0.

The experiments that we present in what follows emphasize the importance of the
fact that the inertial parameter αn in Algorithm (6), though having a strictly negative
limit, may have a finite number of positive terms.

Indeed, by taking the same starting points x0 = x−1 = 2 and constant step size
βn = 0.1, according to Fig. 4a, Algorithm (6), with inertial parameter αn = −0.1 n

n+3
(red star Fig. 4a), seems to converge faster than algorithm (2) with inertial parameter
αn = 0.1 n

n+3 (black circle Fig. 4a), after a certain number of iterates. Here, we ran
the algorithms until the absolute value of the gradient of the objective function in
iterates |∇g(xn)| attained the value 10−15. These results are shown in Fig. 4a, where
the horizontal axis measures the number of iterations and the vertical axis shows
the energy error |g(xn+1) − g(x)|, where x in this case is the appropriate minimum
1. However, these algorithms show a similar behavior concerning the scaled error
h2n2|g(xn+1) − g(x)|, where n is the number of iterations and h is the step size (see
Fig. 4b).

Now, for the initial values x0 = x−1 = 0.00001 (which is very closed to the
local maximum of the objective function), Algorithm (2) (black circle, Fig. 4c, d),
clearly outperforms Algorithm (6) (red star, Fig. 4c, d) both for the energy error
|g(xn+1) − g(x)|, (Fig. 4c), and the scaled error h2n2|g(xn+1) − g(x)| (Fig. 4d).

Nevertheless, the very general structure of the generic Algorithm (6) allows for
much flexibility, as only the limit of the sequence (αn) is prescribed. So, one can
profit by taking the inertial parameter αn = −0.1n+5

n+3 in Algorithm (6). Then, αn is
positive for the first 50 iterates, and this helps Algorithm (6) to outperform Algorithm
(5) with inertial parameter αn = 0.1 n

n+3 , even for the initial values x0 = x−1 =
0.00001 (see Fig. 4e for the energy error |g(xn+1) − g(x)| and Fig. 4f for the scaled
error h2n2|g(xn+1) − g(x)|, where the graphics corresponding to Algorithm (6) are
depicted by red, the graphics corresponding to Algorithm (2) are depicted by black).
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