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Abstract
In this paper, we introduce a new algorithm which combines the inertial projection
and contraction method and the viscosity method for solving monotone variational
inequality problems in real Hilbert spaces and prove a strong convergence theorem of
our proposed algorithm under the standard assumptions imposed on cost operators.
Finally, we give some numerical experiments to illustrate the proposed algorithm.
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1 Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖.
Let C be a nonempty closed convex subset of H and A : H → H be an operator.

The variational inequality problem (VIP) for A on C is to find a point x∗ ∈ C

such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1)

Let us denote V I (C, A) by the solution set of the problem (VIP) (1). The problem
of finding solutions of the problem (VIP) (1) is a fundamental problem in optimiza-
tion theory. Due to this, the problem (VIP) (1) has received a lot of attention by
many authors. In fact, there are two general approaches to study variational inequal-
ity problems, which are the regularized method and the projection method. Based on
these directions, many algorithms have been considered and proposed for solving the
problem (VIP) (1) (see, for example, [13–16, 26, 31, 34, 35, 43, 46, 53–55]).

The basic idea consists of extending the projected gradient method for solving the
problem of minimizing f (x) subject to x ∈ C given by

xn+1 = PC(xn − αn�f (xn)), ∀n ≥ 0, (2)

where {αn} is a positive real sequence satisfying certain conditions and PC is the
metric projection onto C.

For convergence properties of this method for the case in which f : R2 → R is
convex and differentiable function, one may see [1]. An immediate extension of the
method (2) to (VIP) (1) is the projected gradient method for optimization problems,
substituting the operator A for the gradient, so that we generate a sequence {xn} in
the following manner:

xn+1 = PC(xn − αnAxn), ∀n ≥ 0.

However, the convergence of this method requires a slightly strong assumption that
the operators are strongly monotone or inverse strongly monotone (see, for example,
[51]).

To avoid this strong assumption, Korpelevich [27] introduced the extragradient
method (EGM) for solving saddle point problems and, after that, this method was fur-
ther extended to variational inequality problems in both Euclidean spaces and Hilbert
spaces. The convergence of the extragradient method only requires that the operator
A is monotone andL-Lipschitz continuous. More precisely, the extragradient method
is of the form: {

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ≥ 0,
(3)

where λ ∈ (0, 1/L) and PC denotes the metric projection from H onto C.
If the solution set V I (C, A) is nonempty, then the sequence {xn} generated by the

process (3) converges weakly to an element in V I (C, A).
In recent years, the (EGM) (3) has received great attention by many authors, who

improved it in various ways (see, for example, [13–17, 29, 34, 35, 38, 41, 47–49] and
the references therein).
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In fact, the (EGM) (3) needs to calculate two projections onto the closed convex
set C in each iteration. If C is a general closed convex set, then this might seriously
affect the efficiency of the algorithm.

To our knowledge, there are some methods to overcome this drawback. The first
one is the subgradient extragradient method proposed by Censor et al. [14], in which
the second projection onto C is replaced by a projection onto a specific constructible
half-space. Their algorithm is of the form:⎧⎨

⎩
yn = PC(xn − λAxn),

Tn = {w ∈ H |〈xn − λAxn − yn, w − yn〉 ≤ 0},
xn+1 = PTn(xn − λAyn), ∀n ≥ 0,

where λ ∈ (0, 1/L).
The second one is the method proposed by Tseng in [49]. Tseng’s method is of

the form: {
yn = PC(xn − λAxn),

xn+1 = yn − λ(Ayn − Axn), ∀n ≥ 0,

where λ ∈ (0, 1/L). Recently, Tseng’s extragradient method for solving (VIP) (1)
has received great attention by many authors (see, for example, [7, 43, 50] and the
references therein).

The third one is the projection and contraction method studied by some authors
[25, 42]. The projection and contraction method is of the form:⎧⎪⎪⎨

⎪⎪⎩

x0 ∈ H,

yn = PC(xn − λAxn),

d(xn, yn) = (xn − yn) − λ(Axn − Ayn),

xn+1 = xn − γβnd(xn, yn), ∀n ≥ 0,

where γ ∈ (0, 2), λ ∈ (0, 1/L), and

βn := φ(wn, yn)

‖d(wn, yn)‖2 , φ(wn, yn) := 〈wn − yn, d(wn, yn)〉, ∀n ≥ 0.

In recent years, the projection and contraction method has received great attention
by many authors, who improved it in various ways (see, for example, [12, 19–21] and
the references therein).

Note that the three methods above need only to calculate one projection onto C in
each iteration. This may increase the performance of the algorithms.

Now, let us mention an inertial-type algorithm which is based upon a discrete
version of a second-order dissipative dynamical system [4, 5] and it can be regarded
as a procedure of speeding up the convergence properties (see [3, 33, 39]).

In 2001, Alvarez and Attouch [3] applied the inertial technique to obtain an
inertial proximal method for solving the problem of finding zero of a maximal
monotone operator, which is as follows: for any xn−1, xn ∈ H and two parameters
θn ∈ [0, 1), λn > 0, find xn+1 ∈ H such that

0 ∈ λnA(xn+1) + xn+1 − xn − θn(xn − xn−1), ∀n ≥ 0,

which can be written equivalently as follows:

xn+1 = JA
λn

(xn + θn(xn − xn−1)), ∀n ≥ 0,
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where JA
λn

is the resolvent of A with parameter λn and the inertia is induced by the
term θn(xn − xn−1).

Recently, the inertial methods have been studied by several authors (see [2, 3,
6–11, 18, 22, 32, 36, 37, 44, 45]).

In 2015, Bot and Csetnek [11] introduced the so-called inertial hybrid proximal
hybrid proximal-extragradient algorithm, which combines the inertial-type algorithm
and the hybrid proximal-extragradient for a maximally monotone operator.

Very recently, Dong et al. [22] proposed an algorithm as a combination between
inertial projection and contraction method (shortly, IPCM) and inertial method. The
IPCM is of the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0, x1 ∈ H,

wn = xn + αn(xn − xn−1),

yn = PC(wn − λAwn),

d(wn, yn) = (wn − yn) − λ(Awn − Ayn),

xn+1 = wn − γβnd(wn, yn), ∀n ≥ 0,

where γ ∈ (0, 2), λ ∈ (0, 1/L), and

βn :=
⎧⎨
⎩

φ(wn, yn)

‖d(wn, yn)‖2 , if d(wn, yn) �= 0

0, if d(wn, yn) = 0,

where φ(wn, yn) := 〈wn−yn, d(wn, yn)〉. Under appropriate conditions, they proved
that the sequence {xn} converges weakly to an element of V I (C, A).

Motivated and inspired by the works in the literature. In this paper, we study strong
convergence of the algorithm for solving classical variational inequalities problem
with Lipschitz continuous and monotone mapping in real Hilbert spaces. The algo-
rithm is inspired by the inertial projection and contraction method and the viscosity
method. Under several appropriate conditions imposed on parameters, we will prove
that the proposed algorithm converges strongly to some point in V I (C, A). Finally,
we present several numerical experiments to support convergence of theorems. The
numerical illustrations show that the speed of the proposed algorithm with inertial
effects is better than the original algorithm without inertial effects.

This paper is organized as follows: In Section 2, we recall some definitions and
preliminary results for further use. Section 3 deals with analyzing the convergence of
the proposed algorithm. Finally, in Section 4, we perform several numerical examples
to illustrate the computational performance of our algorithm.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . The
weak convergence of {xn} to x is denoted by xn ⇀ x as n → ∞, while the strong
convergence of {xn} to x is written as xn → x as n → ∞.

For all x, y ∈ H , we have

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2
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and

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (4)

For all x ∈ H , there exists the unique nearest point in C, denoted by PCx, such
that

‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. It is known that PC is nonexpansive.

Lemma 1 [23] Let C be a nonempty closed convex subset of a real Hilbert space H .
For any x ∈ H and z ∈ C, we have

z = PCx ⇐⇒ 〈x − z, z − y〉 ≥ 0, ∀y ∈ C.

Lemma 2 [23] Let C be a closed and convex subset in a real Hilbert space H and
let x ∈ H . Then we have the following:

(1) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉 for all y ∈ H ;
(2) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 for all y ∈ C.

For some properties of the metric projection, refer to Section 3 in [23].

Definition 1 Let T : H → H be an operator. Then

(1) T is said to be L-Lipschitz continuous with L > 0 if

‖T x − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ H ;
(2) T is said to be monotone if

〈T x − Ty, x − y〉 ≥ 0, ∀x, y ∈ H .

Lemma 3 [30] Let {an} be a sequence of nonnegative real numbers such that there
exists a subsequence {anj

} of {an} such that anj
< anj +1 for each j ∈ N. Then

there exists a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the
following properties are satisfied by all (sufficiently large) number k ∈ N:

amk
≤ amk+1, ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, · · · , k} such that an < an+1.

Lemma 4 Let {an} be a sequence of nonnegative real numbers such that:

an+1 ≤ (1 − αn)an + αnbn, ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {bn} are sequences such that

(a)
∑∞

n=0 αn = ∞;
(b) lim supn→∞ bn ≤ 0.

Then limn→∞ an = 0.
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Remark 1 Lemma 4 was shown and used by several authors. For detail proofs, see
Liu [28] and Xu [52]. Furthermore, a variant of Lemma 4 has already been used by
Reich in [40].

Lemma 5 [26] Let A : H → H be a monotone and L-Lipschitz continuous mapping
on C. Let S = PC(I − μA), where μ > 0. If {xn} is a sequence in H satisfying
xn ⇀ q and xn − Sxn → 0, then q ∈ V I (C, A) = Fix(S).

3 Main results

In this section, we assume that A : H → H is monotone and Lipschitz continuous
on H with the constant L, V I (C, A) �= ∅ and f : H → H be a contraction mapping
with contraction parameter κ ∈ [0, 1).

Now, we introduce the following algorithm:

Lemma 6 If yn = wn or dn = 0 in Algorithm 1, then yn ∈ V I (C, A).
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Proof Since A is L-Lipschitz continuous, we have

‖dn‖ = ‖wn − yn − λ[Awn − Ayn]‖
≥ ‖wn − yn‖ − λ‖Awn − Ayn‖
≥ ‖wn − yn‖ − λL‖wn − yn‖
= (1 − λL)‖wn − yn‖. (8)

It is also easy to see that

‖dn‖ ≤ (1 + λL)‖wn − yn‖. (9)

Combining (8) and (9), we get

(1 − λL)‖wn − yn‖ ≤ ‖dn‖ ≤ (1 + λL)‖wn − yn‖ (10)

and so wn = yn if and only if d(wn, yn) = 0. Therefore, if wn = yn or dn = 0, then
wn = yn and we get

yn = PC(yn − λAyn).
This implies that yn ∈ V I (C, A). This completes the proof.

Theorem 1 The sequence {xn} generated by Algorithm 1 converges strongly to an
element p ∈ V I (C, A), where p = PV I (C,A) ◦ f (p).

Proof Claim 1. Let zn = wn − θndn. Now, we show that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2. (11)

Indeed, we have

〈wn − p, dn〉
= 〈wn − yn, dn〉 + 〈yn − p, dn〉
= 〈wn − yn, wn − yn − λ(Awn − Ayn)〉 + 〈yn − p, wn−yn − λ(Awn−Ayn)〉
= ‖wn−yn‖2−〈wn−yn, λ(Awn−Ayn)〉+〈yn−p, wn−yn−λ(Awn − Ayn)〉
≥ ‖wn − yn‖2 − λL‖wn − yn‖2 + 〈yn − p, wn − yn − λ(Awn − Ayn)〉. (12)

Note that, from yn = PC(wn − λAwn), it follows that

〈yn − wn + λAwn, yn − p〉 ≤ 0. (13)

By the monotonicity of A and p ∈ V I (C, A), we have

〈Ayn, yn − p〉 ≥ 〈Ap, yn − p〉 ≥ 0. (14)

Thus, from (13) and (14), it follows that

〈wn − yn − λn(Awn − Ayn), yn − p〉 ≥ 0. (15)

Combining (12) and (15), we obtain

〈wn − p, dn〉 ≥ (1 − λL)‖wn − yn‖2. (16)

On the other hand, we have

‖zn − p‖2 = ‖wn − θndn − p‖2
= ‖wn − p‖2 − 2θn〈dn, wn − p〉 + θ2n‖dn‖2. (17)
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Combining (16) and (17), we get

‖zn − p‖2 ≤ ‖wn − p‖2 − 2θn(1 − λL)‖wn − yn‖2 + θ2n‖dn‖2. (18)

On the other hand, since θn = (1 − λL)
‖wn − yn‖2

‖dn‖2 , it follows that

‖wn − yn‖2 = θn‖dn‖2
1 − λL

. (19)

Substituting (19) into (18), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 − 2θ2n · ‖dn‖2 + θ2n‖dn‖2
= ‖wn − p‖2 − ‖θn · dn‖2. (20)

By the definition of the sequence {zn}, we have zn = wn − θndn and so

θndn = wn − zn, (21)

which implies, from (20) and (21), that

‖zn − p‖2 = ‖wn − p‖2 − ‖wn − zn‖2.
Claim 2. The sequence {xn} is bounded. By Claim 1, we have

‖zn − p‖ ≤ ‖wn − p‖. (22)

From the definition of wn, we get

‖wn − p‖ = ‖xn + αn(xn − xn−1) − p‖
≤ ‖xn − p‖ + αn‖xn − xn−1‖
= ‖xn − p‖ + βn · αn

βn

‖xn − xn−1‖. (23)

From (5), (6), and (7), we have
αn

βn

‖xn−xn−1‖ → 0; hence, there exists a constant

M1 > 0 such that
αn

βn

‖xn − xn−1‖ ≤ M1 ∀n. (24)

Combining (22), (23), and (24), we obtain

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ + βnM1. (25)

Since we have xn+1 = βnf (xn) + (1 − βn)zn, it follows that

‖xn+1 − p‖ = ‖βnf (xn) + (1 − βn)zn − p‖
= ‖βn(f (xn) − p) + (1 − βn)(zn − p)‖
≤ βn‖f (xn) − p‖ + (1 − βn)‖zn − p‖
≤ βn‖f (xn) − f (p)‖ + βn‖f (p) − p‖ + (1 − βn)‖zn − p‖
≤ βnκ‖xn − p‖ + βn‖f (p) − p‖ + (1 − βn)‖zn − p‖. (26)
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Substituting (25) into (26), we obtain

‖xn+1 − p‖ ≤ (1 − (1 − κ)βn)‖xn − p‖ + βnM1 + βn‖f (p) − p‖.
= (1 − (1 − κ)βn)‖xn − p‖ + (1 − κ)βn

M1 + ‖f (p) − p‖
1 − κ

≤ max

{
‖xn − p‖, M1 + ‖f (p) − p‖

1 − κ

}

≤ · · ·
≤ max

{
‖x0 − p‖, M1 + ‖f (p) − p‖

1 − κ

}
.

This implies {xn} is bounded. Also, we see that {zn}, {f (xn)}, and {wn} are
bounded. This completes the proof.

Claim 3.

(1 − βn)‖zn − wn‖2 ≤ ‖xn+1 − p‖2 − ‖xn − p‖2 + βnM4

for some M4 > 0. Indeed, we get

‖xn+1 − p‖2 ≤ βn‖f (xn) − p‖2 + (1 − βn)‖zn − p‖2
≤ βn(‖f (xn) − f (p)‖ + ‖f (p) − p‖)2 + ‖zn − p‖2
≤ βn(κ‖xn − p‖ + ‖f (p) − p‖)2 + (1 − βn)‖zn − p‖2
≤ βn(‖xn − p‖ + ‖f (p) − p‖)2 + (1 − βn)‖zn − p‖2
= βn‖xn − p‖2 + βn(2‖xn − p‖ · ‖f (p) − p‖ + ‖f (p) − p‖2)

+(1 − βn)‖zn − p‖2
≤ βn‖xn − p‖2 + (1 − βn)‖zn − p‖2 + βnM2 (27)

for some M2 > 0. Substituting (11) into (27), we get

‖xn+1−p‖2 ≤ βn‖xn −p‖2+ (1−βn)‖wn −p‖2− (1−βn)‖zn −wn‖2+βnM2,

(28)
which implies from (25) that

‖wn − p‖2 ≤ (‖xn − p‖ + βnM1)
2

= ‖xn − p‖2 + βn(2M1‖xn − p‖ + βnM
2
1 )

≤ ‖xn − p‖2 + βnM3 (29)

for some M3 > 0. Combining (28) and (29), we obtain

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1 − βn)‖xn − p‖2 + βnM3

−(1 − βn)‖zn − wn‖2 + βnM2

= ‖xn − p‖2 + βnM3 − (1 − βn)‖zn − wn‖2 + βnM2.

This implies that

(1 − βn)‖zn − wn‖2 ≤ ‖xn+1 − p‖2 − ‖xn − p‖2 + βnM4,

where M4 := M2 + M3.
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Claim 4.

‖wn − yn‖2 ≤ (1 + λL)2

(1 − λL)2
‖zn − wn‖2.

Indeed, we have

‖wn − yn‖2 = θn‖dn‖2
1 − λL

= ‖θndn‖2
(1 − λL)θn

= ‖zn − wn‖2
(1 − λL)θn

. (30)

It follows from (10) that

‖wn − yn‖
‖dn‖ ≥ 1

1 + λL
.

Therefore, we have

θn = (1 − λL)
‖wn − yn‖2

‖dn‖2 ≥ 1 − λL

(1 + λL)2
,

that is,
1

θn

≤ (1 + λL)2

1 − λL
. (31)

Combining (30) and (31), we obtain

‖wn − yn‖2 ≤ (1 + λL)2

(1 − λL)2
‖zn − wn‖2.

Claim 5.

‖xn+1 − p‖2
≤ (1 − (1 − κ)βn)‖xn − p‖2

+(1 − κ)βn ·
[

2

1 − κ
〈f (p) − p, xn+1 − p〉 + 3M

1 − κ
· αn

βn

· ‖xn − xn−1‖
]

for some M > 0. Indeed, we have

‖wn − p‖2
= ‖xn + αn(xn − xn−1) − p‖2
= ‖xn − p‖2 + 2αn〈xn − p, xn − xn−1〉 + α2

n‖xn − xn−1‖2
≤ ‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖ + α2

n‖xn − xn−1‖2. (32)

Using (4), we have

‖xn+1 − p‖2
= ‖βnf (xn) + (1 − βn)zn − p‖2
= ‖βn(f (xn) − f (p)) + (1 − βn)(zn − p) + βn(f (p) − p)‖2
≤ ‖βn(f (xn) − f (p)) + (1 − βn)(zn − p)‖2 + 2βn〈f (p) − p, xn+1 − p〉
≤ βn‖f (xn) − f (p)‖2 + (1 − βn)‖zn − p‖2 + 2βn〈f (p) − p, xn+1 − p〉
≤ βnκ

2‖xn − p‖2 + (1 − βn)‖zn − p‖2 + 2βn〈f (p) − p, xn+1 − p〉
≤ βnκ‖xn − p‖2 + (1 − βn)‖zn − p‖2 + 2βn〈f (p) − p, xn+1 − p〉
≤ βnκ‖xn − p‖2 + (1 − βn)‖wn − p‖2 + 2βn〈f (p) − p, xn+1 − p〉. (33)
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Substituting (32) into (33), we have

‖xn+1 − p‖2
≤ (1 − (1 − κ)βn)‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖

+α2
n‖xn − xn−1‖2 + 2βn〈f (p) − p, xn+1 − p〉

= (1 − (1 − κ)βn)‖xn − p‖2 + (1 − κ)βn · 2

1 − κ
〈f (p) − p, xn+1 − p〉

+αn‖xn − xn−1‖(2‖xn − p‖ + αn‖xn − xn−1‖)
≤ (1 − (1 − κ)βn)‖xn − p‖2 + (1 − κ)βn · 2

1 − κ
〈f (p) − p, xn+1 − p〉

+αn‖xn − xn−1‖(2‖xn − p‖ + α‖xn − xn−1‖)
≤ (1 − (1 − κ)βn)‖xn − p‖2

+(1 − κ)βn · 2

1 − κ
〈f (p) − p, xn+1 − p〉 + 3Mαn‖xn − xn−1‖

≤ (1 − (1 − κ)βn)‖xn − p‖2

+(1 − κ)βn ·
[

2

1 − κ
〈f (p) − p, xn+1−p〉 + 3M

1 − κ
· αn

βn

· ‖xn − xn−1‖
]

,

where M := supn∈N{‖xn − p‖, α‖xn − xn−1‖} > 0.
Claim 6. Finally, we show that

{‖xn − p‖2} converges to zero by considering two
possible cases on the sequence

{‖xn − p‖2}.
Case 1. There exists N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for each n ≥ N .

This implies that limn→∞ ‖xn − p‖ exists and, according to Claim 3, we get

lim
n→∞ ‖zn − wn‖ = 0. (34)

Now, we show that, as n → ∞,

‖xn+1 − xn‖ → 0, ‖yn − wn‖ → 0. (35)

Indeed, we have

‖xn+1 − zn‖ = βn‖zn − f (xn)‖ → 0, ‖xn − wn‖ = αn‖xn − xn−1‖ = βn.
αn

βn

‖xn − xn−1‖ → 0.

(36)

This implies, from (34) and (36), that

‖xn+1 − xn‖ ≤ ‖xn+1 − zn‖ + ‖zn − wn‖ + ‖wn − xn‖ → 0.

From (34) and Claim 4, we get

lim
n→∞ ‖yn − wn‖ = 0. (37)

Since the sequence {xn} is bounded, it follows that there exists a subsequence {xnk
}

of {xn} converging weakly to a point z ∈ H such that

lim sup
n→∞

〈f (p)−p, xn−p〉 = lim
k→∞〈f (p)−p, xnk

−p〉 = 〈f (p)−p, z−p〉, (38)
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which implies, from (34), that
wnk

⇀ z. (39)

From (37), (39), and Lemma 5, we have z ∈ V I (C, A). Also, from (38) and the
definition of p = PV I (C,A) ◦ f (p), we have

lim sup
n→∞

〈f (p) − p, xn − p〉 = 〈f (p) − p, z − p〉 ≤ 0. (40)

Combining (35) and (40), we have

lim sup
n→∞

〈f (p) − p, xn+1 − p〉 = lim sup
n→∞

〈f (p) − p, xn − p〉
= 〈f (p) − p, z − p〉
≤ 0.

Using Lemma 4 and Claim 5, we get limn→∞ ‖xn − p‖ = 0.
Case 2. There exists a subsequence {‖xnj

− p‖2} of {‖xn − p‖2} such that
‖xnj

− p‖2 < ‖xnj +1 − p‖2, ∀j ≥ 1.

In this case, it follows from Lemma 3 that there exists a nondecreasing sequence
{mk} of N such that limk→∞ mk = ∞ and the following inequalities hold: for
each k ≥ 1,

‖xmk
− p‖2 ≤ ‖xmk+1 − p‖2, ‖xk − p‖2 ≤ ‖xmk

− p‖2. (41)

According to Claim 3, we have

(1 − βmk
)‖zmk

− wmk
‖2 ≤ ‖xmk

− p‖2 − ‖xmk+1 − p‖2 + βmk
M4

≤ βmk
M4.

Therefore, we obtain
lim

k→∞ ‖zmk
− wmk

‖ = 0.

Using the same arguments as in the proof of Case 1, we obtain

‖xmk+1 − xmk
‖ → 0

and
lim sup
k→∞

〈f (p) − p, xmk+1 − p〉 ≤ 0.

According to Claim 5, we have

‖xmk+1 − p‖2
≤ (1 − (1 − κ)βmk

)‖xmk
− p‖2

+(1 − κ)βmk
·
[

2

1 − κ
〈f (p) − p, xmk+1 − p〉 + 3M

1 − κ
· αmk

βmk

· ‖xmk
− xmk−1‖

]
. (42)

From (41) and (42), we obtain

‖xmk+1 − p‖2
≤ (1 − (1 − κ)βmk

)‖xmk+1 − p‖2

+(1 − κ)βmk
·
[

2

1 − κ
〈f (p) − p, xmk+1 − p〉 + 3M

1 − κ
· αmk

βmk

· ‖xmk
− xmk−1‖

]
.
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Table 1 Comparison of three algorithms in Example 1

x0 = 1
2 t2 x0 = e−t x0 = (t3 + 1)e−t

Sec. Iter. Sec. Iter. Sec. Iter.

Algorithm KR 11.4953 28321 40.0575 83,227 44.5052 95,145

Algorithm M 4.2687 28321 17.1946 83,227 20.3869 95,145

iPCM 3.0231 14161 9.4175 41,614 10.8513 47,573

Thus, we have

‖xmk+1 − p‖2 ≤ 2

1 − κ
〈f (p) − p, xmk+1 − p〉 + 3M

1 − κ
· αmk

βmk

· ‖xmk
− xmk−1‖.

Therefore, we have

lim sup
k→∞

‖xmk+1 − p‖ ≤ 0. (43)

Combining (41) and (43), we have lim supk→∞ ‖xk − p‖ ≤ 0, that is, xk → p.
This completes the proof.

Fig. 1 Comparison of three algorithms in Example 1 with x0 = 1
2 t2
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Fig. 2 Comparison of three algorithms in Example 1 with x0 = e−t

Fig. 3 Comparison of three algorithms in Example 1 with x0 = (t3 + 1)e−t
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Table 2 Comparison of two algorithms with different m

m = 10 m = 50 m = 80 m = 150

Sec. Iter. Sec. Iter. Sec. Iter. Sec. Iter.

iPCM 0.5140 84 0.5626 75 3.4844 203 0.6347 57

PCM 0.6219 114 2.6014 376 10.2969 615 5.1199 487

4 Numerical illustrations

In this section, we provide two numerical examples to test the proposed algorithms.
All the codes were written inMatlab (R2015a) and run on PCwith Intel(R) Core(TM)
i3-370M Processor 2.40 GHz.

Now, we apply Algorithm 1 to solve the variational inequality problem (VIP)
(1) and compare numerical results with other algorithms. In the numerical results
reported in the following tables, “Iter.” and “Sec.” stand for the number of iterations
and the cpu time in seconds, respectively.

Fig. 4 Comparison of two algorithms in Example 2 with m = 10
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Fig. 5 Comparison of two algorithms in Example 2 with m = 50

Example 1 Suppose that H = L2([0, 1]) with the inner product

〈x, y〉 :=
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ H,

and the induced norm

‖x‖ :=
(∫ 1

0
|x(t)|2dt

) 1
2

, ∀x ∈ H .

Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball. Define an operator A : C → H by

(Ax)(t) = max{0, x(t)}.
It is easy to see that A is 1-Lipschitz continuous and monotone on C. For given C

and A, the set of solutions of the variational inequality problem (VIP) (1) is given by

 = {0} �= ∅. It is known that

PC(x) =
{

x
‖x‖

L2
, if ‖x‖L2 > 1,

x, if ‖x‖L2 ≤ 1.
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Fig. 6 Comparison of two algorithms in Example 2 with m = 80

Now, we apply Algorithm 1 (iPCM), Maingé’s algorithm [30] (Algorithm M)
and Kraikaew and Saejung’s algorithm [26] (Algorithm KR) to solve the variational
inequality problem (VIP) (1). We use:

(a) The same parameter λ = 0.5,
(b) The stopping rule ‖xn − 0‖ < 10−3 for all algorithms,
(c) The same starting point x0.

Moreover, with respect to Algorithm 1, we take f (x) = x1, βn = 1
n
, and α =

0.6. We also choose αn = 1
n
for Maingé’s algorithm and Kraikaew and Saejung’s

algorithm. We now make a comparison of three algorithms with different x0 and
report the results in Table 1.

Convergent behavior of Algorithms with different starting point is given in Figs. 1,
2, and 3. In these figures, the value of error ‖xn − 0‖ is represented by the y-axis,
and number of iterations is represented by the x-axis.

Example 2 Consider the linear operator A : Rm → R
m defined by A(x) = Mx + q,

which is taken from [24] and has been considered by many authors for numerical
experiments (see, for example, [18, 25]), where

M = BBT + S + D,
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Fig. 7 Comparison of two algorithms in Example 2 with m = 150

B is an m×m matrix, S is an m×m skew-symmetric matrix, D is an m×m diagonal
matrix, whose diagonal entries are nonnegative (so M is positive definite), q is a
vector in Rm, and

C := {
x ∈ R

m : −5 ≤ xi ≤ 5, i = 1, ..., m
}
.

Then, A is monotone and Lipschitz continuous with the Lipschitz constant L =
||M||. For q = 0, the unique solution of the corresponding variational inequality is
{0}.

Now, we compare our Algorithm 1 (iPCM) with the standard algorithm (Algo-
rithm 1 with αk = 0, shortly, PCM). The starting point is x0 = (1, 1, · · · , 1) ∈ R

m.
All entries of the matrices B, S, D are generated randomly (matrices of normally
distributed random numbers).

Control parameters and stopping rules are chosen as in Example 1 except α = 0.9,
f (x) = 0, and βn = 1

n+2 . The results are described in Table 2 and Figs. 4, 5, 6, and 7.
In Fig. 8, we illustrate the performances of Algorithm 1 for different choices of

the contraction f (x) = 0.82x, 0.75x, 0.5x, 0.125x, where m = 150 and the stopping
criterion is ‖xn − 0‖ < 10−4.

Computing times for Algorithm 1 are 1.1341, 1.5652, 3.6404, and 7.2754 second
for f (x) = 0.82x, 0.75x, 0.5x, 0.125x, respectively, and the corresponding number
of iterations for Algorithm 1 are 106, 150, 351, and 702.
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Fig. 8 The performances of Algorithm 1 for different choices of the contraction f (x) = 0.82x, 0.75x,
0.5x, 0.125x

5 Conclusions

The paper has proposed a new method for solving monotone and Lipschitz VIPs
in real Hilbert spaces. Under some suitable conditions imposed on parameters, we
have proved the strong convergence of the algorithm. The efficiency of the proposed
algorithm has also been illustrated by several numerical experiments.

Acknowledgments The authors would like to thank Professor Aviv Gibali and two anonymous reviewers
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version of this paper.
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31. Maingé, P.E., Gobinddass, M.L.: Convergence of one step projected gradient methods for variational
inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)
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