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Abstract
The problem of computing the roots of a particular sequence of sparse polynomials
pn(t) is considered. Each instance pn(t) incorporates only the n+1 monomial terms
t, t2, t4, . . . , t2n

associated with the binomial coefficients of order n and alternating
signs. It is shown that pn(t) has (in addition to the obvious roots t = 0 and 1)
precisely n − 1 simple roots on the interval (0, 1) with no roots greater than 1, and
a recursion relating pn(t) and pn+1(t) is used to show that they possess interlaced
roots. Closed–form expressions for the Bernstein coefficients of pn(t) on [ 0, 1 ] are
derived and employed to compute the roots in double–precision arithmetic. Despite
the severe variation of the graph of pn(t), and tight clustering of roots near t = 1,
it is shown that for n ≤ 10, the roots on (0, 1) are remarkably well–conditioned and
can be computed to high accuracy using both the power and Bernstein forms.

Keywords Random simplicial complex · Euler characteristic · Polynomial roots
Descartes’ law of signs · Interlaced roots · Bernstein basis · Condition number

1 Introduction

The accurate and efficient computation of the real roots of polynomials is a funda-
mental problem in numerical analysis, of great importance in numerous applications.
Although this problem has been intensively investigated since the advent of digital
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computers, a “universal” root–finding algorithm based on floating–point arithmetic,
that infallibly computes to a specified precision the roots of polynomials with arbi-
trary coefficients, remains an elusive ideal. A primary factor in this state of affairs is
the high variability observed in the sensitivity of polynomial roots to perturbations
in the polynomial coefficients, and the sometimes counter–intuitive trends of this
sensitivity.

For polynomials with exactly specified integer coefficients, the vagaries of
floating–point arithmetic can be circumvented by invoking arbitrary–precision ratio-
nal arithmetic to determine isolating intervals for each root, smaller than any
prescribed width. However, this approach can become very demanding in comput-
ing time and memory requirements, and for many practical problems, the initial
polynomial coefficients will not be exactly known.

Floating–point arithmetic, based on rounding or truncation of significant digits
to ensure a fixed memory size for numbers, has become widely adopted in scien-
tific computing since the 1960s. In the late 1950s, it was implemented in software
rather than in the cpu, and the two–part paper [13] by the British numerical analyst
J. H. Wilkinson describes one of its earliest applications in computing polynomial
roots. Subsequently [15], he characterized his choice of an “easy” test polynomial
(with the 20 equally spaced real roots 1, 2, . . . , 20) as the most traumatic experience
in my career as a numerical analyst, due to the extreme difficulty in comput-
ing any accurate digits for most of the roots. The polynomial with the 20 roots
2−1, 2−2, . . . , 2−20 in geometric progression is also considered in [13], and despite
the close proximity of successive roots, it was found that they could be computed to
a high accuracy.

The choice of basis plays an important role in determining the sensitivity of the
roots of a polynomial to uncertainties in its coefficients, and it is known that the usual
monomial (power) form a0 + a1t + · · · + amtm is not, in general, a favorable choice.
For computing the real roots on a finite interval t ∈ [ a, b ], the Bernstein form is
preferred, and in fact it is “optimally stable” among all bases that are non–negative
over that interval [4].

In the present paper, we consider the roots of a sequence of sparse high–degree
polynomials that arise from the study of random simplicial complexes (see Section 2),
wherein each instance pn(t) includes only the n + 1 monomial terms tk for k =
1, 2, . . . , 2n with binomial coefficients of alternating sign. Because of the proba-
bilistic interpretation of the independent variable t , the main focus is on real roots
t ∈ [ 0, 1 ] although we also briefly discuss positive roots > 1, negative roots, and
complex conjugate root pairs.

The remainder of this paper is organized as follows. Section 2 introduces the topo-
logical problem that motivates the study of the positive roots of the family of sparse
high–degree polynomials considered herein. In Section 3, we elucidate some of the
distinctive properties of the roots of these polynomials. Section 4 then considers
numerical computation of the roots on (0, 1) using double–precision floating–point
arithmetic for n ≤ 10, based upon the power and Bernstein representations, and
Section 5 discusses the accuracy of the computed roots in relation to the root
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condition numbers. Finally, Section 6 summarizes the principle results of the present
study.

2 Euler characteristic of random simplicial complexes

We begin by explaining how the sequence of polynomials investigated herein arises
quite naturally in the context of a fundamental question concerning the homotopy
type of randomly constructed simplicial complexes.

2.1 Random simplicial complexes

Erdős and Rényi introduced random graphs [1] in 1959. In the years since their intro-
duction, random graphs have proven to be an extremely powerful tool in graph theory,
and their study has opened up a huge collection of new research directions. The most
useful and deeply studied probability model starts with n vertices and a fixed prob-
ability t . Then, for each pair of vertices u and v, we flip a “t–coin” (that comes up
heads with probability t) to decide whether or not they should be connected by an
edge.

Even though, to a topologist, a graph is just a 1–dimensional simplicial complex,
the study of random simplicial complexes has attracted substantial attention only
in the past 15 years or so. The generalization from the random models of Erdős
and Rényi to probability models for random simplicial complexes is straightforward.
Recall that an n–dimensional simplex �n is the convex hull of a set of n + 1 points
{x1, . . . , xn+1} in general position in R

m (with m ≥ n). The points xi are called the
vertices of the simplex. Any subset with k + 1 of these vertices defines a subsimplex
of dimension k. Thus, there are

(
n+1
k+1

)
k–dimensional simplices in �n, and a total of

2n+1 simplices, including the empty simplex. Combinatorially, a simplicial complex
K of �n is simply the union of some (perhaps all) of the simplices of �n, with the
proviso that if a simplex is in K , then so are all its subsimplices.

Several probability models for constructing random simplicial complexes have
been studied, which are all specializations of the following extremely general proce-
dure. List all the non–empty simplices of �n with an ordering σ1, . . . , σ2n+1−1 such
that their dimensions are weakly increasing, and for each simplex σ , assign a prob-
ability pσ ∈ [ 0, 1 ]. Then, beginning with K = ∅ and σ = σ1, check if all the
subsimplices of σ are already in K . If they are, then σ is “available for inclusion into
K” and we flip a coin that comes up heads with probability pσ to decide whether or
not to include it. Once that decision is made, we consider the next simplex in our list;
the construction ends once all of the simplices of �n have been considered.

We focus henceforth on the specialization of this general model in which we
choose a fixed value t ∈ [ 0, 1 ] and set pσ = t for all simplices σ of �n.

2.2 Euler characteristic

A topologist is naturally interested in the homotopy–theoretical properties of random
simplicial complexes. The most fundamental question is whether or not these spaces
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are contractible (i.e., homotopically trivial). One way to distinguish the homotopy
types of spaces is through the Euler characteristic, defined as

χ(K) :=
dim(K)∑

k=0

(−1)k #{k-simplices in K} .

If K and L are homotopy equivalent, then χ(K) = χ(L), and since χ(K) = 1 if
K is a single point, we see that K cannot be contractible when χ(K) �= 1. Let the
random variable χ(n) be the Euler characteristic of the complex K constructed by
the above procedure, with expected value E(χ(n)).

Proposition 1 E(χ(n)) = − 1

t

n+1∑

j=1

(−1)j
(

n + 1

j

)
t2j

.

This follows directly from the discussion above, together with the linearity of
expected value. Straightforward manipulation of the equation E(χ(n)) = 1 yields
the following result.

Corollary 1 The “expected random subcomplex” of �n−1 is not contractible if t is
not a root of the polynomial

pn(t) :=
n∑

k=0

(−1)k
(

n

k

)
t2k

. (1)

Motivation for studying the roots of pn (t ) Corollary 1 indicates that the random
process generally produces homotopically non–trivial complexes—with possible
exceptions when the probability t is one of the finite number of real roots of the
polynomial pn(t) in the interval [ 0, 1 ]. Furthermore, our study of these polynomials
suggests that they always change sign at the roots, which means that the algebraic
topology of the random complexes may have a phase transition or threshold of some
kind at these particular t values. The study of thresholds separating different kinds of
behavior is a major strand in the well–established theory of random graphs.

3 Anatomy of the polynomials

We are interested in the roots of the sparse polynomials pn(t) of degree 2n defined
for n ≥ 1 by (1). The first few instances of these polynomials are

p1(t) = t − t2 ,

p2(t) = t − 2 t2 + t4 ,

p3(t) = t − 3 t2 + 3 t4 − t8 ,

p4(t) = t − 4 t2 + 6 t4 − 4 t8 + t16 ,

p5(t) = t − 5 t2 + 10 t4 − 10 t8 + 5 t16 − t32 ,

p6(t) = t − 6 t2 + 15 t4 − 20 t8 + 15 t16 − 6 t32 + t64 ,
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and one can easily verify that they satisfy the simple recursion relation

pn+1(t) = pn(t) − pn(t
2) . (2)

For all n ≥ 1, t = 0 is obviously a root of pn(t), and t = 1 is also a root, since

pn(1) =
n∑

k=0

(−1)k
(

n

k

)
= 0 .

These are simple roots of pn(t), since p′
n(0) = 1 and p′

n(1) = (−1)n. Thus, the factor
(1 − t)t can be extracted from pn(t) to obtain a polynomial p̃n(t) of the modestly
lower degree 2n − 2, although p̃n(t) is no longer sparse. From an abstract algebraic
point of view, we have verified using Maple that p̃n(t) is irreducible over the rational
numbers for 2 ≤ n ≤ 10.

Clearly, t = 0 and t = 1 are the only roots of p1(t), while p2(t) has the additional
real roots t = 1

2 (−1 ± √
5), one negative and one positive. Using Maple, we have

verified that the Galois group of the splitting field E of p̃3(t) is isomorphic to the
full symmetric group Sym(6), and since this group is not solvable, the roots of p3(t)

(apart from 0 and 1) cannot be expressed in terms of radicals. It seems likely that this
is also true for all n ≥ 3, although the degree of p4(t) is already too high for Maple
to cope with.

Since the polynomial (1) has n sign changes in its coefficients, Descartes’ law of
signs [12] indicates that the number of its positive real roots is less than n by an even
amount. We show below that pn(t) has exactly n positive roots (n − 1 roots on (0, 1)

together with the root t = 1) and identify an “interlacing” property of the roots for
successive n values, i.e., the roots of pn+1(t) on (0, 1) lie within intervals delineated
by the roots of pn(t).

Lemma 1 For n ≥ 1 the polynomials (1) have at most n + 1 roots on [ 0, 1 ] and
their derivatives have at most n roots on (0, 1).

Proof Since pn(t) exhibits n sign changes in its coefficients, Descartes’ law of signs
indicates that it has at most n positive roots, including t = 1. Since t = 0 is also a
root of pn(t), it has at most n + 1 roots on [ 0, 1 ]. The derivative of pn(t), namely

p′
n(t) =

n∑

k=0

(−1)k
(

n

k

)
2k t2k−1 ,

also exhibits n coefficient sign changes, so p′
n(t) has at most n roots on (0, 1). Note

that 0 and 1 are not roots, since p′
n(0) = 1 and p′

n(1) = (−1)n.

Proposition 2 Consider a polynomial f (t) satisfying:

• f (t) has only simple roots on [ 0, 1 ] including 0 and 1.
• r < s2 for consecutive root pairs r, s of f (t) on [ 0, 1 ].
• f ′(t) has exactly one root between r and s.

Then, the polynomial g(t) = f (t) − f (t2) inherits the following properties:

• g(t) has one simple root w between the roots r, s of f (t).
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• The root w of g(t) actually lies between
√

r and s.
• Any two consecutive roots v, w of g(t) satisfy v < w2.

Proof Let q, r, s be consecutive roots of f (t) on t ∈ [ 0, 1 ]. Then, r <
√

r < s and
q < r2 ≤ t2 for r ≤ t ≤ s. Now the values of f (t) on [ r, s ] are replicated by f (t2)

on [√
r,

√
s ]. In particular, f (t) and f (t2) must have opposite signs on [ r, √r ]

and [ s,
√

s ] so g(t) cannot vanish on these intervals (see Fig. 1). For simplicity, we
assume that f (t) < 0 for r < t < s (an analogous argument holds when f (t) > 0).
Then, f (t) < 0 = f (t2) at t = √

r , and 0 = f (t) > f (t2) at t = s. Thus, since
g(t) < 0 at t = √

r and g(t) > 0 at t = s, the interval (
√

r, s) must contain a root w

of g(t). Moreover, since

g′(t) = f ′(t) − 2 t f ′(t2) ,

and f ′(t) > 0 and f ′(t2) < 0 at t = w when f (t) < 0 for r < t < s, we have
g′(w) > 0, so w is a simple root of g(t).

Finally, consecutive roots v, w of g(t) lying between successive root pairs q, r and
r, s of f (t) must satisfy

q <
√

q < v < r <
√

r < w < s ,

and consequently it is clear that v < w2.

Theorem 1 For n ≥ 1, the root structure of the polynomials (1) on [ 0, 1 ] may be
characterized as follows:

• pn(t) has exactly n + 1 simple roots on [ 0, 1 ] including t = 0 and t = 1.
• The roots exhibit a “super–quadratic distribution”—i.e., r < s2 for any pair of

consecutive roots r, s of pn(t).

0.0 0.2 0.4 0.6 0.8 1.0

–0.1

0.0

0.1

t

r sr1/2 s1/2

p4(t) p4(t2)

Fig. 1 The graphs (red) of p4(t) and (blue) of p4(t
2), showing consecutive roots r, s and

√
r,

√
s. Observe

that p4(t), p4(t
2) have opposite signs on the intervals [ r,

√
r ] and [ s,

√
s ] but the same sign on [ √

r, s ],
which contains a root of p5(t), indicated by the dashed line, where the graphs of p4(t), p4(t

2) cross. Note
also that p4(t), p4(t

2) have derivatives of opposite sign on [ √
r, s ]
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Proof We argue by induction. First, the stated properties are easily verified by direct
calculation for small n values. Now suppose that they hold for some larger n. Under
this supposition, Lemma 1 indicates that pn(t) has exactly n extrema on (0, 1) that
isolate its n+1 roots on [ 0, 1 ]. Consequently, pn(t) satisfies the conditions stipulated
for the polynomial f (t) in Proposition 2, and pn+1(t)—as defined by the recursion
relation (2)—has the properties of the polynomial g(t) in Proposition 2. This implies
that pn+1(t) has n + 2 simple roots on [ 0, 1 ] (including t = 0 and t = 1) with a
super–quadratic distribution, i.e., v < w2 for any pair of consecutive roots v, w of
pn+1(t). This completes the induction proof.

As a direct consequence of Theorem 1, we make the following observations.

Remark 1 By Descartes’ law of signs, the polynomials pn(t) have no real roots for
t > 1.

Corollary 2 The n roots tn+1,1, . . . , tn+1,n of pn+1(t) on (0, 1) interlace the n − 1
roots tn,1, . . . , tn,n−1 of pn(t) on (0, 1) — i.e., with tn,0 = 0 and tn,n = 1 they satisfy

tn,k−1 < tn+1,k < tn,k for k = 1, . . . , n . (3)

The ordering (3) is just a weaker form of the relation
√

tn,k−1 < tn+1,k < tn,k for
k = 1, . . . , n established in Theorem 1.

The remarkable behavior of the graph of pn(t), illustrated in Fig. 2 for t ∈ [ 0, 1 ]
in the case n = 10, makes it an interesting test case for polynomial root solvers.
Using a linear scale in t , only the first 6 of its 9 roots on (0, 1) are clearly discernible.
As n increases, the graph of pn(t) on [ 0, 1 ] oscillates with increasing frequency but
decreasing amplitude between negative and positive values as t → 1, and the roots
become tightly clustered. For t > 1, pn(t) rapidly diverges to +∞ or −∞ according
to whether n is even or odd.

0.0 0.2 0.4 0.6 0.8 1.0

–2

–1

0

1

2

t

p10(t)

Fig. 2 Graph of the polynomial p10(t) over the interval t ∈ (0, 1)
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4 Computing the roots on (0, 1)

At the cost of sacrificing certainty, numerical computations permit greater scope and
efficiency than symbolic computations in computing the real roots of (1) on t ∈
(0, 1). In particular, the Bernstein form

f (t) =
m∑

i=0

ci

(
m

i

)
(1 − t)m−i t i

of a degree–m polynomial f (t) on t ∈ [ 0, 1 ] offers significant computational
advantages, including:

• Interpolation of end–point values: f (0) = c0 and f (1) = cm.
• Convex hull property: min

i
ci ≤ f (t) ≤ max

i
ci for t ∈ [ 0, 1 ].

• Variation–diminishing property: # of roots on (0, 1) = # sign variations of
(c0, . . . , cm) − 2 k for some integer k ≥ 0.

• Subdivision algorithm: for any point τ ∈ (0, 1), the Bernstein coefficients on
the subintervals1 [ 0, τ ] and [ τ, 1 ] can be computed through recursive convex
combinations of the coefficients c0, . . . , cm.

• Numerical stability: f (t) on t ∈ [ 0, 1 ] is always less sensitive to uniform
perturbations in its Bernstein coefficients than in its power coefficients.

A scheme to isolate the real roots of a polynomial on t ∈ (0, 1) may be based on the
variation–diminishing property and subdivision algorithm. See [3] for a comprehen-
sive review of the properties of the Bernstein form—further details on the numerical
stability properties may be found in [4, 5].

4.1 Bernstein form of pn (t )

The change of variables t ∈ (0, ∞) → u ∈ (0, 1) specified by

t = u

1 − u
(4)

defines a bijective relation between t and u, since dt/du = (1 − u)−2 > 0 for
u ∈ (0, 1). Note also that t ∈ (0, 1) and t ∈ (1, ∞) correspond to u ∈ (0, 1

2 ) and
u ∈ ( 1

2 , 1). Substituting (4) into (1) yields

pn(u) = 1

(1 − u)2n

n∑

k=0

(−1)k
(

n

k

)
(1 − u)2n−2k

u2k

,

1It is understood here that these sub–intervals are both mapped to [ 0, 1 ] through the transformations
t → t/τ and t → (t − τ)/(1 − τ), respectively.
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In computing the positive roots of (1), we omit the factor 1/(1 − u)2n
since it is

non–zero and finite on (0, 1). The remaining term fn(u) = (1 − u)2n
pn(u) can be

expressed in the Bernstein basis of degree 2n on u ∈ [ 0, 1 ] as

fn(u) =
2n∑

i=0

ci

(
2n

i

)
(1 − u)2n−iui , (5)

where ci = 0 if i �= 2k for k = 0, . . . , n and

ci = (−1)k

(
n

k

)

(
2n

2k

) if i = 2k for k = 0, . . . , n . (6)

The form (5) retains the sparsity of (1), with only n + 1 non–zero coefficients.

Although the Bernstein coefficients of the restriction of (5) to u ∈
(

0, 1
2

)
can

be computed by the de Casteljau subdivision algorithm [2], it is preferable to derive
them from first principles. Setting

pn(t) =
2n∑

l=0

cl

(
2n

l

)
(1 − t)2n−l t l , (7)

the coefficients c0, . . . , c2n of (1) on t ∈ [ 0, 1 ] may be determined as follows. For
each k, the kth term in (7) is multiplied by 1 = [ (1 − t) + t ]2n−2k

to give

pn(t) =
n∑

k=0

(−1)k
(

n

k

)
t2k [ (1 − t) + t ]2n−2k

,

and through binomial expansions of the factors [ (1 − t) + t ]2n−2k
, we obtain

pn(t)=
n∑

k=0

(−1)k
(

n

k

)
t2k

2n−2k∑

j=0

(
2n − 2k

j

)
(1 − t)2n−2k−j tj

=
n∑

k=0

2n−2k∑

j=0

(−1)k
(

n

k

)(
2n − 2k

j

)
(1 − t)2n−2k−j t2k+j .

By setting l = 2k + j , re–arranging the order of summation, and performing some
manipulations on the binomial coefficients, the Bernstein form of pn(t) on t ∈ [ 0, 1 ]
is determined to have coefficients defined by c0 = 0 and

cl = 1
(

2n

l

)
kmax∑

k=0

(−1)k
(

n

k

)(
2n − 2k

l − 2k

)
, l = 1, . . . , 2n , (8)

kmax = 
 log2 l � being the largest integer k with 2k ≤ l. Note that c2n = 0, since
t = 1 is a root of pn(t). Because of the restricted range of summation, and the
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appearance of the summation index as an exponent2 in the binomial coefficients,
there is no obvious further reduction of the sum (8).

The binomial coefficients appearing in (8) can be very large, because of the expo-
nential dependence on n. Goetgheluck [8, 9] describes an algorithm to represent any
binomial coefficient through its factorization

(
m

l

)
=

r∏

i=1

p
ei

i , (9)

where {p1, p2, p3, . . .} = {2, 3, 5, . . .} is the ordered set of prime numbers, and
e1, e2, e3, . . . are their corresponding exponents. Since primes larger than m cannot
appear in (9), the index r is such that pr ≤ m and pr+1 > m. The form (9) allows
exact representation of high–order binomial coefficients, and also their products
and ratios, since multiplication and division are performed by adding or subtract-
ing their prime exponents. Having determined the sum in (8) exactly as an integer,
the coefficient cl is obtained by a single floating–point division. Nevertheless, using
extended–precision integer arithmetic (the long long data type in the C program-
ming language), this approach is only feasible for n ≤ 6, since larger values incur
overflow in evaluating the sums in (8). Thus, for n ≤ 6, the prime factorization (9) is
used in evaluating the binomial coefficients in (8), and for n > 6, they are evaluated
using double–precision floating–point arithmetic.

The Bernstein representation (7) is “dense” in the sense that, apart from c0 =
c2n = 0 since pn(0) = pn(1) = 0, the coefficients cl for 1 ≤ l ≤ 2n − 1 are, in
general, non–zero. For n ≤ 3, the non–zero coefficients of pn(t) are

n = 1 : c1 = 1

2
, n = 2 : c1, c2, c3 = 1

4
,

1

6
, −1

4
,

n = 3 : c1, c2, c3, c4, c5, c6, c7 = 1

8
,

2

14
,

3

56
, − 1

10
, −13

56
, − 3

14
,

1

8
.

For n > 3, it is impractical to list the coefficients, and they are best displayed
graphically. The Bernstein form (7) of pn(t) has control points specified by

(l/2n, cl) for l = 0, . . . , 2n

and the control polygon is the piecewise–linear graph obtained by connecting them
in order. The control polygon mimics the graph of pn(t), as illustrated in Fig. 3 for
n = 5 and 6, and it can be refined by degree elevation or subdivision [2] so as to
converge monotonically to pn(t).

The roots of pn(t) on (0, 1) can be isolated through a hierarchical binary subdivi-
sion, such that each subinterval exhibits exactly 0 or 1 sign change in its associated
Bernstein coefficients. Moreover, a simple check for guaranteed convergence of
Newton–Raphson iterations [11] to the unique real root on each isolating interval
can be expressed in terms of these Bernstein coefficients and their first and second
forward differences.

2The authoritative compilation of summation formulas [10] contains no examples that include the
summation index as an exponent within the binomial coefficients.
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–0.4

–0.2
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0.4

t
0.0 0.2 0.4 0.6 0.8 1.0

t

Fig. 3 Graphs of the polynomials p5(t) and p6(t) over the interval [ 0, 1 ], on the left and right, together
with their Bernstein–form control polygons

Using initial estimates obtained from the graphs of pn(t) for n ≤ 6, the roots on
(0, 1) were computed by Newton–Raphson iterations using both the power form (1)
and Bernstein form (7). To evaluate pn(t) and its derivative, Horner’s method and
the de Casteljau algorithm were used in the former and latter cases. To ensure the
greatest accuracy, the Bernstein coefficients (8) were computed using the binomial
coefficient factorizations (9).

The roots on t ∈ (0, 1) for n ≤ 6 computed using the power and Bernstein forms
were found to differ by < 10−15. They are enumerated in Table 1 to 10 decimal
places. For n > 6, double–precision floating–point arithmetic was used to compute
the binomial coefficients in (8), to avoid integer overflow. However, the roots com-
puted using the power and Bernstein forms still differ by < 10−15 in most cases,
and 10−13 for the roots clustered near t = 1 when n = 10. These roots are listed in
Table 2 to 10 decimal places.

4.2 Distribution of the positive real roots

The computed roots of pn(t) on (0, 1) for 2 ≤ n ≤ 10, as listed in Tables 1 and 2, are
shown in Fig. 4 with linear scales for t and n, and in Fig. 5 with logarithmic scales.
For n > 10, the computations are very cumbersome, and the clustering of roots near
t = 1 makes them difficult to resolve. Figure 5 suggests a power–law dependence of

Table 1 Computed roots of pn(t) on (0, 1) for 2 ≤ n ≤ 6

n = 2 n = 3 n = 4 n = 5 n = 6

0.6180339888 0.3940092283 0.2843286564 0.2217578136 0.1816228563

0.8860953981 0.7425684029 0.6446586494 0.5776201937

0.9659707987 0.8991950734 0.8439600927

0.9895661392 0.9608761970

0.9967274894
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Table 2 Computed roots of pn(t) on (0, 1) for 7 ≤ n ≤ 10

n = 7 n = 8 n = 9 n = 10

0.1537506418 0.1332813706 0.1176164554 0.1052439966

0.5285323068 0.4905966981 0.4601069756 0.4348788819

0.8026230006 0.7705178543 0.7445053722 0.7227374666

0.9335597010 0.9120061995 0.8947784829 0.8805076463

0.9846749330 0.9717430537 0.9611371063 0.9525258901

0.9989563611 0.9939230694 0.9878924924 0.9827779812

0.9996632097 0.9975629411 0.9947648577

0.9998903961 0.9990133089

0.9999641141

the roots on n, but this is not exact. A least–squares fit to the smallest root of pn(t)

for 2 ≤ n ≤ 10 gives

t ≈ a nb , a ≈ 1.146625 , b ≈ −1.036283 . (10)

As seen in Table 3, there is a noticeable discrepancy at the smaller n values, although
the accuracy improves significantly if the fit is restricted to n ≥ 4.

Since the tightly clustered roots near t = 1 are not easily distinguishable for the
larger n values in Figs. 4 and 5, an alternative plot is presented in Fig. 6, showing
their distances from t = 1 on a logarithmic scale in t .

Figure 7 illustrates the super–quadratic distribution of the roots of pn(t) identified
in Theorem 1 for the case n = 10. The interlacing property of the roots of pn(t) and
pn+1(t) is evident in Tables 1 and 2, and through a close inspection of Fig. 4.

0.0 0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

8

9

10

t

n

Fig. 4 Distribution of real roots of the polynomials pn(t) over the interval t ∈ (0, 1) for the cases n ≤
2 ≤ 10 (the roots at t = 0 and t = 1 are omitted)
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Fig. 5 Distribution of real roots of the polynomials pn(t) over the interval t ∈ (0, 1) for the cases 2 ≤
n ≤ 10, employing logarithmic scales for t and n

4.3 The complete set of roots

Although we are mainly interested in the positive real roots of pn(t) on (0, 1), we can
easily identify some basic facts about its entire set of roots. First, as a consequence of
Theorem 1 and Descartes’ law of signs, we observe that pn(t) has no real roots t > 1.
Concerning the negative roots, we note that, whereas pn(t) has n coefficient sign
variations, pn(−t) has only n − 1. Thus, Descartes’ law of signs implies that pn(t)

has at least one negative real root for even n. Moreover, pn(−t) = pn(t)−2t , and we
have pn(−1) = −2 for any n, since pn(1) = 0. Hence, noting that pn(t) → +∞ as
t → −∞ for even n, there must be a real root on (−∞, −1) if n is even. The negative
real roots of pn(t) can be identified as the negatives of the values t > 0 where the
graphs of pn(t) and 2t intersect. For t ∈ (0, 1), this first occurs when n = 10, as can
be seen by noting in Fig. 2 that the graph of 2t crosses p10(t) twice.

Finally, we briefly comment on the complete set of 2n (real and complex) roots
of pn(t) which (as computed in Maple) are illustrated in Fig. 8 for the cases n =

Table 3 Comparison of smallest
roots of the polynomials pn(t)

for 2 ≤ n ≤ 10 with the values
obtained from a power law
least–squares fit of the form (10)

n Actual root Least–squares fit

2 0.618033988750 0.559073785600

3 0.304009228317 0.367272762062

4 0.284328656449 0.272594325571

5 0.221757813626 0.216316972336

6 0.181622856260 0.179075595125

7 0.153750641776 0.152637263660

8 0.133281370572 0.132912091834

9 0.117616455363 0.117640265263

10 0.105243996624 0.105472266277
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Fig. 6 Distance of the real roots of the polynomials pn(t) on (0, 1) from t = 1 for the cases n ≤ 2 ≤ 10,
plotted using a logarithmic scale for 1 − t

4, 6, 8, 10. It is seen that (most of) the complex roots cluster near a circle centered at
the origin, whose radius approaches 1 as n increases.

5 Numerical stability of roots

It is known that, for a polynomial specified in the power and Bernstein forms

f (t) =
m∑

i=0

ait
i =

m∑

i=0

ci

(
m

i

)
(1 − t)m−i t i ,

on t ∈ [ 0, 1 ], the values (and roots) of f (t) are systematically less sensitive to
uncertainties of a uniform maximum relative magnitude ε in the Bernstein coeffi-
cients than in the power coefficients [5]. In fact, it has been shown [4] that among all
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t n
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Fig. 7 The “super–quadratic” distribution property t2
n,k > tn,k−1 for k = 2, . . . , n − 1 of the roots

tn,1, . . . , tn,n−1 of the polynomial pn(t) for n = 10
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Fig. 8 The entire set of (real and complex) roots of pn(t) for n = 4, 6, 8, 10

non–negative polynomial bases on [ 0, 1 ], the Bernstein basis is “optimally stable”
with respect to such coefficient perturbations.

For the power form (1), the n + 1 non–zero coefficients have magnitudes ≥ 1 that
(except for the lowest– and highest–order terms) are increasing with n. On the other
hand, the Bernstein form (7) has 2n − 1 non–zero coefficients, of magnitude ≤ 1
that are decreasing with n. For both forms, the non–zero coefficients have alternating
signs. A somewhat surprising result is that both representations admit computation
of the roots of pn(t) with similar accuracy—it is only for the tightly clustered roots
near t = 1 in the case n = 10 that the power form begins to exhibit slower and more
erratic convergence of the Newton–Raphson iterations than the Bernstein form (see
Table 4).

This phenomenon may be understood as follows. For the power form (1), the n+1
non–zero coefficients are known exactly3 a priori as integers. For the Bernstein form

3Note, however, that not all of these coefficients admit a finite binary representation, and small errors may
be incurred in converting them to floating–point numbers.
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Table 4 Newton–Raphson
iterations for the largest real root
of p10(t) from the initial value
t = 0.999966, using the
Bernstein and power
representations. Note that the
computed values differ only in
the 14th and 15th decimal places

Iteration Bernstein Power

1 0.999964010117222 0.999964010117263

2 0.999964113848415 0.999964113848471

3 0.999964114129893 0.999964114129906

4 0.999964114129895 0.999964114129931

5 0.999964114129895 0.999964114129896

6 0.999964114129895 0.999964114129898

7 0.999964114129895 0.999964114129856

8 0.999964114129895 0.999964114129880

(7), on the other hand, the 2n − 1 non–zero coefficients must be computed from
the expression (8). This can be done almost exactly for n ≤ 6 using “long” (64–
bit) integers, but floating–point arithmetic must be employed for n > 6, incurring
“initial” coefficient errors.

However, initial coefficient errors are not the only factors influencing the accu-
racy of the computed roots. In backward error analysis [14, 16], the result of each
floating–point arithmetic operation is interpreted as an exact outcome for perturbed
operands. By “backward” propagation of these perturbations through the algorithm,
from the final result to the input values, the outcome of the computation can be
regarded as exact for certain perturbed inputs. Knowing these input perturbations
and the condition number for the problem (i.e., the sensitivity of the output values
to changes in the input values), the accuracy of the final result can (in principle) be
assessed.

The condition number of a simple real root t = τ of a polynomial pm(t) with
coefficients a0, . . . , am in the basis {φ0(t), . . . , φm(t)} is conventionally defined [6,
7] as

C(τ) :=

m∑

i=0

| aiφi(τ ) |

|p′
m(τ)| .

In the limit ε → 0, the perturbation δτ in the root τ incurred by errors in the
coefficients of uniform maximum relative magnitude ε satisfies

| δτ | ≤ C(τ) ε .

Table 5 lists the condition numbers CB and CP in the Bernstein and power bases for
the 9 roots of the instance n = 10 of the polynomial (1). It is seen that the inequality
CB < CP holds for all the roots, and the growth of CP as the roots approach 1 is
noteworthy (whereas CB actually decreases). This explains the slower convergence
to the largest root seen in Table 4.

The condition number values listed in Table 5 are actually very modest. This fact,
coupled with the remarkable degree of agreement between the roots computed using
the power and Bernstein forms, imparts confidence in the roots quoted herein. In
proceeding beyond n = 10, it is likely that the Bernstein form will furnish better
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Table 5 Root condition
numbers for the Bernstein and
power forms of p10(t)

Root CB CP

0.105243996624 0.0077 0.2475

0.434878881858 0.0124 0.9521

0.722737466605 0.0112 1.4939

0.880507646268 0.0082 1.8829

0.952525890137 0.0055 2.4949

0.982777981150 0.0036 4.2066

0.994764857698 0.0024 11.4735

0.999013308936 0.0015 69.9995

0.999964114130 0.0001 1085.2778

results for the roots tightly clustered near t = 1, although at a significantly higher
computational cost.

6 Closure

In this study, several interesting theoretical properties of the polynomials pn(t)

defined by (1) have been elucidated—including (i) the existence of a simple recursion
relating pn+1(t) to pn(t); (ii) the fact that these polynomials have, for each n > 1,
precisely n − 1 roots on t ∈ (0, 1) and none for t > 1; (iii) the super–quadratic dis-
tribution of these roots, i.e., each root is smaller than the square of the next–largest
root; and (iv) the interlacing of the roots of pn(t) and pn+1(t), wherein the roots of
the latter on (0, 1) lie within the intervals delineated by the roots of former.

The unusual nature of the polynomials pn(t) poses formidable challenges for root
computation algorithms on account of their high degrees and strong scale variations
of their graphs. Nevertheless, it was observed that for n ≤ 10, their roots are remark-
ably well–conditioned, and admit accurate computation in ordinary double–precision
arithmetic using both the power and Bernstein forms. Although the Bernstein form
is more stable than the power form, it lacks the sparsity of the power form, and its
advantages are only apparent with the tightly clustered roots of p10(t) near t = 1.
Due to the exponential growth in the degree, root computations for pn(t) with n > 10
have not been attempted: these tax the capabilities of both symbolic and numeric
methods, and special procedures may be needed to reliably address them.
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