
https://doi.org/10.1007/s11075-019-00743-5

ORIGINAL PAPER

A priori error estimates of a Jacobi spectral method
for nonlinear systems of fractional boundary value
problems and related Volterra-Fredholm integral
equations with smooth solutions

Mahmoud A. Zaky1 · Ibrahem G. Ameen2

Received: 21 February 2019 / Accepted: 29 May 2019 /
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Our aim in this paper is to develop a Legendre-Jacobi collocation approach for a non-
linear system of two-point boundary value problems with derivative orders at most
two on the interval (0, T ). The scheme is constructed based on the reduction of the
system considered to its equivalent system of Volterra-Fredholm integral equations.
The spectral rate of convergence for the proposed method is established in both L2-
and L∞- norms. The resulting spectral method is capable of achieving spectral accu-
racy for problems with smooth solutions and a reasonable order of convergence for
non-smooth solutions. Moreover, the scheme is easy to implement numerically. The
applicability of the method is demonstrated on a variety of problems of varying com-
plexity. To the best of our knowledge, the spectral solution of such a nonlinear system
of fractional differential equations and its associated nonlinear system of Volterra-
Fredholm integral equations has not yet been studied in literature in detail. This gap
in the literature is filled by the present paper.
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1 Introduction

Fractional differential equations are the mathematical formulation of many physical
and engineering phenomena. In particular, they have attracted much attention within
the natural and social sciences, since they can properly model phenomena dominated
by memory effects. The nonlocal nature of the fractional integral makes the numeri-
cal treatment of fractional differential equations expensive in terms of computational
effort and memory requirements. Direct approaches for discretizing these equations
require that the entire solution history is stored and used throughout the computa-
tion. Therefore, the design of efficient solvers for the numerical simulation of such
problems is a difficult task [1–5].

The analytical solutions of many fractional differential equations have been hin-
dered by the difficulties in the computation of the fractional operator. Though some
fractional differential equations with a simple form, e.g., linear equations, can be
solved by analytical methods, e.g., the Laplace transformmethod or the Fourier trans-
form method [6], the analytical solutions of many nonlinear fractional differential
equations are rather difficult to obtain. Therefore, the development of efficient meth-
ods to tackle the numerical approximation of such problems has been of great interest
and has attracted the attention of many scientists over the past decades [7–10]. Due
to the non-locality and singularity of the fractional operator, existing methods includ-
ing finite difference and finite element methods mostly lead to low-order schemes.
Spectral methods are capable of providing highly accurate solutions to smooth prob-
lems with significantly less unknowns than using finite difference or finite element
methods [11–15].

A great deal of papers are devoted to the numerical solution of initial value prob-
lems for fractional differential equations (see, e.g., [16–20]). In contrast to this, only a
few papers concern the numerical solution of boundary value problems for fractional
differential equations. Kopteva and Stynes [21] proposed a piecewise polynomial col-
location method for a two-point linear boundary value problem, where the leading
term in the differential operator is a Caputo fractional-order derivative of order 2− δ

with 0 < δ < 1. Pedas and Tamme [22] discussed a piecewise polynomial colloca-
tion method for a class of linear boundary value problems which involve Caputo-type
fractional derivatives. They derived some regularity properties of the exact solu-
tion using an integral equation reformulation of the boundary value problem. Sheng
and Shen [23] proposed a hybrid spectral element method for fractional two-point
boundary value problem involving both Caputo and Riemann-Liouville fractional
derivatives, following a similar procedure in [21]. Wang et al. [24] developed
Bernoulli wavelets operational matrix approach for solving coupled systems of non-
linear fractional integro-differential equations. Wang et al. [25] developed a Legendre
spectral collocation method for fractional boundary value problems. Gu [26] pro-
vided an hp-version spectral collocation method to solve system of Volterra integral
equations. Graef et al. [27] presented a Chebyshev spectral collocation method for
solving Riemann-Liouville fractional boundary value problems. Li et al. [28] derived
effective algorithms based on Legendre, Chebyshev, and Jacobi polynomials to solve
fractional boundary value problems. Doha et al. [29] applied Chebyshev tau and col-
location methods to solve linear and nonlinear fractional boundary value problems.
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Ezz-Eldien and Doha [30] presented and analyzed a spectral collocation method for
solving systems of pantograph type Volterra integro-differential equations. Doha et
al. [31] proposed Jacobi-Gauss–collocation approaches for solving Volterra, Fred-
holm and systems of Volterra-Fredholm integro-differential equations with initial and
nonlocal boundary conditions. Mokhtary et al. [32] developed a well-conditioned
Jacobi spectral Galerkin method for the analysis of Volterra-Hammerstein integral
equations with weakly singular kernels and proportional delay. Zacky [33] developed
and analyzed a singularity preserving spectral-collocation method for the numerical
solution of nonlinear tempered fractional boundary value problems.

Recently, many researchers have devoted their attention to studying the existence
of solutions of nonlinear fractional boundary value problems [34, 35]. We mention
that the fractional order λ involved is generally in (1, 2] with the exception that
λ ∈ (2, 3] in [36] and λ ∈ (3, 4] in [37]. Though there have been extensive studies on
the properties of the solutions of many kinds of fractional differential equations, rel-
atively little progress has been made on systems of fractional differential equations
[38–40].

Following the spirit of [1, 25], the purpose of the present work is to study the
convergence behavior of the spectral collocation method for the system of fractional
boundary value problems of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 Dλ

t u1(t) = g1(t, u1(t), . . . , uQ(t)), 0 < t < T,
C
0 Dλ

t u2(t) = g2(t, u1(t), . . . , uQ(t)), 0 < t < T,
...
C
0 Dλ

t uQ(t) = gQ(t, u1(t), . . . , uQ(t)), 0 < t < T,

ui(0) = ui(T ) = 0, i = 1, 2, . . . , Q, λ ∈ (1, 2),

(1.1)

where gi : [0, T ] × R
Q → R are continuous and C

0 Dν
t is the Caputo fractional

derivative of order ν ∈ (n, n − 1) defined by (see, e.g., [6]):

C
0 Dν

t ψ = 0I
n−ν
t

(
dnψ

dtn

)

, n ∈ N. (1.2)

Here, 0I ν
t for ν > 0 is the Riemann-Liouville fractional integral of order ν defined

by (see, e.g., [6]):

0I
ν
t ψ = 1

�(ν)

∫ t

0
(t − s)ν−1ψ(s)ds. (1.3)

In case of λ = 2, C
0 Dλ

t coincides with the usual second order derivative u′′(t), and
the model (1.1) recovers the classical system of two-point boundary value prob-
lems. We will show that our methodology is an implicit technique which is spectrally
convergent.

The outline of the paper is as follows. In Section 2, some properties of the Jacobi
polynomial and its Gauss interpolation are presented to be used throughout the
paper. In Section 3, the formulation of the spectral collocation method is introduced.
In Section 4, abstract error bounds are initially proved as a key step in the analysis of
the collocation method. In Section 5, the convergence analysis under the L2-norm is
provided. In Section 6, the convergence analysis under the L∞-norm is established.
In Section 6, two numerical examples are implemented to support our results and
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to illustrate the performance of the presented numerical method. Finally, Section 7
offers a summary of the main results and directions for future research.

2 Jacobi polynomials and Jacobi-Gauss interpolation

For λ, μ > −1 and t ∈ � := (−1, 1), the Jacobi polynomials can be expressed via
the hypergeometric function [41]:

Pλ,μ
i (t) = (λ+1)i

i! 2F1

(
−i, λ + μ + i + 1; λ + 1; 1−t

2

)
, t ∈ �, i ∈ N. (2.1)

Here, (·)i is the Pochhammer symbol. This yields the following equivalent three-term
recurrence relation

P
λ,μ
0 (t) = 1,

P
λ,μ
1 (t) = 1

2 (λ + μ + 2)t + 1
2 (λ − μ),

Pλ,μ
i+1(t) =

(
â

λ,μ
i t − b̂

λ,μ
i

)
Pλ,μ

i (t) − ĉ
λ,μ
i Pλ,μ

i−1(t), i ≥ 1,
(2.2)

where
â

λ,μ
i = (2i+μ+λ+1)(2i+μ+λ+2)

2(i+1)(i+μ+λ+1) ,

b̂
λ,μ
i = (2i+μ+λ+1)(μ2−λ2)

2(i+1)(i+μ+λ+1)(2i+μ+λ)
,

ĉ
λ,μ
i = (2i+μ+λ+2)(i+λ)(i+μ)

(i+1)(i+μ+λ+1)(2i+μ+λ)
.

(2.3)

It is worth recalling two important special cases of the Jacobi polynomials, e.g.,
the Legendre polynomials

Li(t) = P0,0
i (t) = 2F1

(
−i, i + 1; 1; 1−t

2

)
, (2.4)

and the Chebyshev polynomials

Ti(t) =
√

πi!
�
(
i+ 1

2

)

i

P
− 1

2 ,− 1
2

i (t), (2.5)

where �(·) represents the Gamma function.
The Jacobi polynomials are orthogonal with respect to the weight function:

ωλ,μ(t) = (1 − t)λ(1 + t)μ, namely,
∫

�

Pλ,μ
i (t)Pλ,μ

j (t)ωλ,μ(t)dt = γ
λ,μ
i δi,j , (2.6)

where δi,j is the Dirac Delta symbol, and

γ
λ,μ
i = 2(λ+μ+1)�(i + μ + 1)�(i + λ + 1)

i!(2i + λ + μ + 1)�(i + λ + μ + 1)
. (2.7)

Let
{
t
λ,μ
i , �

λ,μ
i

}N

i=0
be the set of Jacobi-Gauss nodes and weights. The Jacobi-

Gauss quadrature enjoys the exactness
∫

�

ϕ(t)ωλ,μ(t)dt =
N∑

i=0

ϕ(ti)�
λ,μ
i , ∀ϕ(x) ∈ P2N+1(�), (2.8)
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where PN(�) is the set of all polynomials of degree not exceeding N . Hence,

N∑

k=0

P
λ,μ
i (t

λ,μ
k )P

λ,μ
j (t

λ,μ
k )�

λ,μ
k = γ

λ,μ
i δi,j , ∀ 0 ≤ i + j ≤ 2N + 1. (2.9)

Let Iλ,μ
t,N u be the Jacobi-Gauss interpolation of u ∈ C(�) defined by

Iλ,μ
t,N u(t)=

N∑

i=0

û
λ,μ
i P

λ,μ
i (t)∈PN, where û

λ,μ
i = 1

γ
λ,μ
i

N∑

j=0

u(tj )P
λ,μ
i (tj )�

λ,μ
j .

(2.10)
To alleviate the burden of heavy notation, we drop the parameters λ, μ in the notation
whenever λ = μ = 0.

3 Jacobi collocation discretization

The numerical approach for solving the system of fractional differential (1.1) is
essentially based on recasting (1.1) in the form of the following nonlinear system of
Fredholm integral equations, to which we will apply a collocation method.

Lemma 3.1 (see [42], Lemma 6.43) Let λ ∈ (1, 2). Assume that ui(t), i = 1, . . . ,Q
are functions with an absolutely continuous first derivative, and gi : [0, T ] ×R

Q →
R are continuous. Then, we have that u ∈ C1[0, T ] is a solution of the boundary
value problem (1.1) if and only if it is a solution of the Fredholm integral equation:

u(t) = 1
�(λ)

∫ t

0 (t − τ)λ−1g (τ,u(τ )) dτ − t
T �(λ)

∫ T

0 (T − τ)λ−1g (τ,u(τ )) dτ,

(3.1)
where u(t) = [

u1(t), u2(t), . . . , uQ(t)
]T

, g = [g1, g2, . . . , gQ]T .

For ease of analysis, we employ the transformation

t (x) = T

2
(x + 1), x ∈ �, (3.2)

to describe the spectral method on the standard interval �. Then, (3.1) becomes

u
(

T
2 (x + 1)

) = 1
�(λ)

∫ T
2 (x+1)

0

(
T
2 (x + 1) − τ

)λ−1
g(τ,u(τ )))dτ

− x+1
2�(λ)

∫ T

0 (T − τ̂ )λ−1g(τ̂ ,u(τ̂ ))dτ̂ .
(3.3)

Furthermore, to change the interval
(
0, T

2 (x + 1)
)
to (−1, x) and the interval (0, T )

to �, we use the variable transformations

τ(σ ) = T
2 (σ + 1), σ ∈ (−1, x),

τ̂ (β) = T
2 (β + 1), β ∈ �.

(3.4)

Then, (3.3) can be written as

U(x) = T λ

2λ�(λ)

∫ x

−1
(x −σ)λ−1G (σ,U(σ )) dσ − T λ(x + 1)

2λ+1�(λ)

∫ 1

−1
(1−β)λ−1G (β,U(β)) dβ, (3.5)
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where

U(x) := [
U1(x), . . . , UQ(x)

]T ≡ u (τ (x)) ,

G (σ,U(σ )) := [
G1 (σ,U(σ )) , . . . , GQ (σ,U(σ ))

]T ≡ g (τ (σ ),u (τ (σ ))) .
(3.6)

Finally, for ease of implementation and analysis, we use the variable transformation

σ(x, η) = x + 1

2
η + x − 1

2
, x, η ∈ �, (3.7)

to convert the interval (−1, x) to the unit interval �. Equation (3.5) becomes

U(x) = T λ(x+1)λ

4λ�(λ)

∫ 1
−1(1 − η)λ−1G(σ (x, η),U(σ (x, η)))dη

− T λ(x+1)
2λ+1�(λ)

∫ 1
−1(1 − β)λ−1G (β,U(β)) dβ.

(3.8)

The spectral collocation method to (3.8) is implemented in the frequency space by
seeking approximate solution in the form

Um,N(x) =
N∑

i=0
ûm,iLi(x) ∈ PN(�), m = 1, . . . Q. (3.9)

Hence, inserting (3.9) into (3.8) leads to the following system

UN(x) = T λ

4λ�(λ)
Ix,N

[
(x + 1)λ

∫ 1
−1(1 − η)λ−1Iλ−1,0

η,N G(σ (x, η),UN(σ(x, η)))dη
]

− T λ(x+1)
2λ+1�(λ)

[∫ 1
−1(1 − β)λ−1Iλ−1,0

β,N G(β,UN(β))dβ
]
,

(3.10)
where UN(x) = [

U1,N (x), . . . , UQ,N(x)
]T . To verify the existence of a solution

of (3.10), see “Appendix” of this paper. We now provide a detailed implementation
procedure for (3.10). Setting

Ix,NIλ−1,0
η,N

(
(x + 1)λGm

(
σ(x, η), U1,N (σ (x, η)), . . . , UQ,N(σ (x, η))

))

=
N∑

i=0

N∑

j=0
v̂m,i,jLi(x)Pλ−1,0

j (η), m = 1, . . . ,Q,
(3.11)

thanks to (2.6), we have

T λ

4λ�(λ)
Ix,N

[
(x + 1)λ

∫ 1
−1(1 − η)λ−1Iλ−1,0

η,N Gm

(
σ(x, η), U1,N (σ (x, η)), . . . , UQ,N (σ (x, η))

)
dη
]

= T λ

4λ�(λ)

N∑

i=0

N∑

j=0
v̂m,i,jLi(x)

∫ 1
−1(1 − η)λ−1Pλ−1,0

j (η)dη

= T λ

2λ�(λ+1)

N∑

i=0
v̂m,i,0Li(x), m = 1, . . . , Q.

(3.12)
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Using (2.9) and (3.11) yields

v̂m,i,0 = λ(2i + 1)

21+λ

×
N∑

r=0

N∑

s=0

(xr + 1)λGm

(
σ
(
xr , x

λ−1,0
s

)
, U1,N

(
σ(xr , x

λ−1,0
s )

)
, . . . ,

UQ,N

(
σ(xr , x

λ−1,0
s )

))
Li(xr)�r�

λ−1,0
s . (3.13)

Moreover, by (2.8), we have
∫ 1
−1(1 − β)λ−1Iλ−1,0

β,N Gm(β, U1,N (β), . . . , UQ,N(β))dβ = ŵm =
N∑

j=0
�

λ−1,0
j Gm

(
x

λ−1,0
j , U1,N (x

λ−1,0
j ), . . . , UQ,N(x

λ−1,0
j )

)
.

(3.14)
Hence, using (3.10)–(3.14), we deduce that

N∑

i=0
ûm,iLi(x) = T λ

�(λ+1)2λ

N∑

i=0
v̂m,i,0Li(x) − T λ(x+1)

2λ+1�(λ)
ŵm, m = 1, . . . , Q. (3.15)

Finally, using (2.6) yields
⎧
⎪⎪⎨

⎪⎪⎩

ûm,0 = T λ

�(λ+1)2λ v̂m,0,0 − T λ

2λ+1�(λ)
ŵm, m = 1, . . . , Q,

ûm,1 = T λ

�(λ+1)2λ v̂m,1,0 − T λ

2λ+1�(λ)
ŵm, m = 1, . . . , Q,

ûm,i = T λ

�(λ+1)2λ v̂m,i,0, i = 2, . . . , N, m = 1, . . . , Q,

(3.16)

which can be solved using a standard iterative method such as the Newton’s method.

Remark 3.1 If the Dirichlet boundary conditions become non-zero, that is,

ui(0) = ai, ui(T ) = bi, i = 1, 2, . . .Q,

where the boundary conditions ai and bi are not zero identically. Denote

wi(t) = ui(t) − T − x

T
ai − x

T
bi .

then, we can get

wi(0) = wi(T ) = 0.

Based on the above process, we could solve the problemwith homogeneous boundary
conditions instead of the inhomogeneous conditions.

4 Abstract error bounds

In order to give the subsequent results conveniently, we consider the following fam-
ily of spaces. For notational convenience, we denote by I the identity operator and
∂

q
x u(x) the q-th derivative of u, i.e., ∂q

x u(x) := dqu
dxq (x).
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We denote by L2
ωλ,μ(�) the space of the measurable functions on � such that

∫

�
|u(x)|2 ωλ,μdx < +∞. It is a Hilbert space with the inner product and norm

given by

(u, v)ωλ,μ :=
∫

�

u(x)v(x)ωλ,μdx, (4.1)

‖u‖ωλ,μ :=
(∫

�

|u(x)|2 ωλ,μdx

)1/2

. (4.2)

Definition 4.1 Let s ≥ 1 be an integer. The Sobolev space Hs
ωλ,μ(�) is the space

of functions u ∈ L2
ωλ,μ(�) such that all the distribution of u of order up to s can be

represented by functions in L2
ωλ,μ(�). That is,

Hs
ωλ,μ(�) :=

{
u ∈ L2

ωλ,μ(�) : ∂m
x u ∈ L2

ωλ,μ(�), 0 ≤ m ≤ s
}

, (4.3)

endowed with the inner product and norm

(u, v)Hs

ωλ,μ
=

s∑

m=0

(
∂m
x u, ∂m

x v
)

ωλ,μ, (4.4)

‖u‖Hs

ωλ,μ
= (u, u)

1/2
Hs

ωλ,μ
. (4.5)

Definition 4.2 For a non-negative integer s, the non-uniformly Jacobi-weighted
Sobolev space:

Bs
ωλ,μ(�) :=

{
u : ∂m

x u ∈ L2
ωλ+m,μ+m(�), 0 ≤ m ≤ s

}
, (4.6)

equipped with the inner product, norm, and semi-norm

(u, v)Bs

ωλ,μ
=

s∑

m=0

(
∂m
x u, ∂m

x v
)

ωλ+m,μ+m,

‖u‖Bs

ωλ,μ
= (u, u)

1/2
Bs

ωλ,μ
, |u|Bs

ωλ,μ
= ∥
∥∂s

xu
∥
∥

ωλ+m,μ+m .
(4.7)

In particular, L2(�) = B0
ω0,0(�) and ‖·‖ = ‖·‖ω0,0 . The space Bs

ωλ,μ(�) distin-
guishes itself from the usual weighted Sobolev spaceHs

ωλ,μ(�) by involving different
weight functions for derivatives of different orders. It is obvious that Hs

ωλ,μ(�) is a
subspace of Bs

ωλ,μ(�), that is

‖u‖Bs

ωλ,μ
≤ c ‖u‖Hs

ωλ,μ
.
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The space L∞(�) is the Banach space of the measurable functions u that are
bounded outside a set of measure zero, equipped the norm

‖u‖∞ = ess sup
x∈�

|u(x)| . (4.8)

Definition 4.3 Let U(t) = (
uij (t)

)

m×n
be a matrix function of t ∈ �, we define the

non-negative real function

|U(t)| =
m∑

i=1

n∑

j=1

∣
∣uij (t)

∣
∣ , (4.9)

and the norms

‖U‖ωλ,μ := (∫

�
|U(t)|2 ωλ,μdt

)1/2
,

‖U‖∞ := ess supt∈� |U(t)| . (4.10)

Lemma 4.1 Let λ, μ > −1. For any U ∈ Bs
ωλ,μ(�) with s ≥ 1 and 0 ≤ k ≤ s ≤

N + 1,

∥
∥
∥∂

k
x (U − Iλ,μ

x,NU)

∥
∥
∥

ωλ+k,μ+k
≤ cNk−s

∥
∥∂s

xU
∥
∥

ωλ+s,μ+s , (4.11)

where Iλ,μ
x,N is the Jacobi-Gauss interpolation operator.

Proof Using the Cauchy-Schwarz inequality, we obtain

∥
∥
∥∂k

x (U − Iλ,μ
x,NU)

∥
∥
∥

ωλ+k,μ+k
=
∥
∥
∥
∥
∥

Q∑

q=1

∣
∣
∣(I − Iλ,μ

x,N )Uq

∣
∣
∣

∥
∥
∥
∥
∥

ωλ+k,μ+k

=
⎛

⎝
∫

�

(
Q∑

q=1

∣
∣
∣(I − Iλ,μ

x,N )Uq

∣
∣
∣

)2

ωλ+k,μ+kdx

⎞

⎠

1/2

≤
(
∫

�

(
Q∑

q=1

∣
∣
∣(I −Iλ,μ

x,N )Uq

∣
∣
∣
2
)(

Q∑

q=0
1

)

ωλ+k,μ+kdx

)1/2

≤c

(
Q∑

q=1

∥
∥
∥(I − Iλ,μ

x,N )Uq

∥
∥
∥
2

ωλ+k,μ+k

)1/2

.

(4.12)
Using the Jacobi-Gauss interpolation error estimate (see [43] page 133)

∥
∥
∥∂

k
x (Uq − Iλ,μ

x,NUq)

∥
∥
∥

ωλ+k,μ+k
≤ cNk−s

∥
∥∂s

xUq

∥
∥

ωλ+s,μ+s , (4.13)
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it follows that

∥
∥
∥∂k

x (U − Iλ,μ
x,NU)

∥
∥
∥

ωλ+k,μ+k
≤ cNk−s

(
Q∑

q=1

∥
∥∂s

xUq

∥
∥2

ωλ+s,μ+s

)1/2

= cNk−s

(
Q∑

q=1

∫

�
ωλ+s,μ+s

(
∂s
xUq(x)

)2
dx

)1/2

= cNk−s

(
∫

�

Q∑

q=1
ωλ+s,μ+s

(
∂s
xUq(x)

)2
dx

)1/2

≤ cNk−s
(∫

�
ωλ+s,μ+s

(∣
∣∂s

xU(x)
∣
∣
)2

dx
)1/2

= cNk−s
∥
∥∂s

xU
∥
∥

ωλ+s,μ+s .
(4.14)

Lemma 4.2 For any u ∈ Hs(�) with 0 ≤ s ≤ N + 1,
∥
∥U − Ix,NU

∥
∥∞ ≤ cN

3
4−s

∥
∥∂s

xU
∥
∥ . (4.15)

Proof Using the Sobolev inequality, we obtain

∥
∥(I − Ix,N )U

∥
∥∞ =

∥
∥
∥
∥
∥

Q∑

q=1

∣
∣(I − Ix,N )Uq

∣
∣

∥
∥
∥
∥
∥∞

≤
Q∑

q=1

∥
∥(I − Ix,N )Uq

∥
∥∞

≤ c
Q∑

q=1

∥
∥(I − Ix,N )Uq

∥
∥

1
2
∥
∥(I − Ix,N )Uq

∥
∥

1
2
H 1(�)

.

(4.16)

Using (4.13) gives

∥
∥(I − Ix,N )U

∥
∥∞ ≤ c

Q∑

q=1
N− s

2
∥
∥∂s

xUq

∥
∥

1
2
∥
∥(I − Ix,N )Uq

∥
∥

1
2
H 1(�)

. (4.17)

The Legendre-Gauss interpolation error measured in the usual Sobolev space is given
by (cf. [44], pp. 289)

∥
∥(I − Ix,N )Uq

∥
∥

H 1(�)
≤ cN

3
2−s

∥
∥∂s

xUq

∥
∥ . (4.18)

Therefore,

∥
∥(I − Ix,N )U

∥
∥∞ ≤ cN

3
4−s

Q∑

q=1

∥
∥∂s

xUq

∥
∥ ≤ cN

3
4−sQ

∥
∥∂s

xU
∥
∥

≤ cN
3
4−s

∥
∥∂s

xU
∥
∥ .

(4.19)
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Lemma 4.3 (cf. [45], pp. 330) Let {Fi(x)}Ni=0 be the N-th Lagrange interpolation
polynomials associated with the N +1Gauss points of the Jacobi polynomials. Then,

∥
∥
∥Iλ,μ

N

∥
∥
∥∞ := max

x∈�

N∑

i=0

|Fi(x)| =
{
O (logN) , −1 < λ, μ ≤ − 1

2 ,

O
(
Nγ+ 1

2

)
, γ = max(λ, μ), otherwise.

(4.20)

Let ηλ−1
i be the Jacobi-Gauss nodes in � and σ

λ−1,0
i = σ

(
x, η

λ−1,0
i

)
. The

mapped Jacobi-Gauss interpolation operator x Ĩλ−1,0
σ,N : C(−1, x) −→ PN(−1, x) is

defined by

x Ĩλ−1,0
σ,N Uq

(
σ

λ−1,0
i

)
= Uq

(
σ

λ−1,0
i

)
, 0 ≤ i ≤ N . (4.21)

Hence,

x Ĩλ−1,0
σ,N Uq

(
σ

λ−1,0
i

)
=Uq

(
σ

λ−1,0
i

)
=Uq

(
σ(x, η

λ−1,0
i )

)
=Iλ−1,0

η,N Uq

(
σ(x, η

λ−1,0
i )

)
, (4.22)

and

x Ĩλ−1,0
σ,N Uq (σ ) = Iλ−1,0

η,N Uq (σ (x, η))

∣
∣
∣
η= 2σ

x+1+ 1−x
1+x

. (4.23)

Accordingly, we can easily derive the following results

∫ x

−1(x − σ)λ−1
x Ĩλ−1,0

σ,N Uq(σ )dσ =
(
1+x
2

)λ ∫ 1
−1(1 − η)λ−1Iλ−1,0

η,N Uq (σ (x, η)) dη

=
(
1+x
2

)λ N∑

j=0
Uq

(
σ(x, η

λ−1,0
j )

)
�

λ−1,0
j

=
(
1+x
2

)λ N∑

j=0
Uq

(
σ

λ−1,0
j

)
�

λ−1,0
j .

(4.24)
Similarly,

∫ x

−1
(x − σ)λ−1

(

x Ĩλ−1,0
σ,N Uq(σ )

)2
dσ =

(
1 + x

2

)λ N∑

j=0

U2
q

(
σ

λ−1,0
j

)
�

λ−1,0
j .

(4.25)
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Moreover, we have that for integer 1 ≤ s ≤ N + 1,

∫ x

−1 (x − σ)λ−1
∣
∣
∣

(
I − x Ĩλ−1,0

σ,N

)
U (σ )

∣
∣
∣
2
dσ

≤ Q
(
1+x
2

)λ ∫ 1
−1 (1 − η)λ−1

Q∑

q=1

∣
∣
∣Uq (σ(x, η)) − Iλ−1,0

η,N Uq (σ (x, η))

∣
∣
∣
2
dη

≤ cN−2s
(
1+x
2

)λ Q∑

q=1

∫ 1
−1 (1 − η)λ+s−1(1 + η)s

∣
∣
∣∂s

ηUq (σ (x, η))

∣
∣
∣
2
dη

= cN−2s
∫ x

−1 (x − σ)λ+s−1(1 + σ)s
∣
∣∂s

σU(σ )
∣
∣2 dσ .

(4.26)

5 Convergence analysis in L2(�)

In this section, we analyze and characterize the convergence of the scheme (3.10).
Our results generalize and extend the excellent results obtained in [25]. For conve-
nience, we denote E = U(x) − UN(x). Clearly,

‖E‖ ≤ ∥
∥U − Ix,NU

∥
∥+ ∥∥Ix,NU − UN

∥
∥ . (5.1)

Lemma 5.1 The following inequality holds

‖E‖ ≤
5∑

j=1

∥
∥Ej

∥
∥ . (5.2)

where

E1 = U(x) − Ix,NU(x),

E2 = Ix,N

∫ x

−1 R(x, σ )(I − x Ĩλ−1,0
σ,N )G(σ,U(σ ))dσ,

E3 = Ix,N

∫ x

−1 R(x, σ )x Ĩλ−1,0
σ,N (G(σ,U(σ )) − G(σ,UN(σ))) dσ,

E4 = x+1
2

∫ 1
−1R(1, β)Iλ−1,0

β,N (G(β,UN(λ)) − G(β,U(β))) dβ,

E5 = x+1
2

∫ 1
−1R(1, β)

(
Iλ−1,0

β,N − I
)
G(β,U(β))dβ,

(5.3)

and R = (Rij ) with Rij = T λ(x−σ)λ−1

2λ�(λ)
δij , i, j = 1, . . . ,Q.

Proof By (3.5), we get

Ix,NU(x) = T λ

2λ�(λ)
Ix,N

∫ x

−1(x − σ)λ−1G (σ,U(σ )) dσ − T λ(x+1)
2λ+1�(λ)

∫ 1
−1(1 − β)λ−1G (β,U(β)) dβ,

(5.4)

and

UN(x) = T λ

2λ�(λ)
Ix,N

∫ x

−1(x − σ)λ−1
x Ĩλ−1,0

σ,N G(σ,UN(σ))dσ

− T λ(x+1)
2λ+1�(λ)

∫ 1
−1(1 − β)λ−1Iλ−1,0

β,N G (β,UN(β)) dβ.
(5.5)
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Subtracting (5.5) from (5.4) yields

Ix,NU − UN(x) = T λ

2λ�(λ)
Ix,N

∫ x

−1(x − σ)λ−1
(
G(σ,U(σ )) − x Ĩλ−1,0

σ,N G(σ,UN(σ))
)

dσ

+ T λ(x+1)
2λ+1�(λ)

∫ 1
−1(1 − β)λ−1

(
Iλ−1,0

β,N G (β,UN(β)) − G (β,Ui (β))
)

dβ,
(5.6)

which can be rewritten as

Ix,NU − UN(x) = Ix,N

∫ x

−1 R(x, σ )(I − x Ĩλ−1,0
σ,N )G(σ,U(σ ))dσ,

+Ix,N

∫ x

−1 R(x, σ )x Ĩλ−1,0
σ,N (G(σ,U(σ )) − G(σ,UN(σ))) dσ,

+ x+1
2

∫ 1
−1 R(1, η)Iλ−1,0

η,N (G(β,UN(λ)) − G(β,U(β))) dβ,

+ x+1
2

∫ 1
−1 R(1, β)

(
Iλ−1,0

β,N − I
)
G(β,U(β))dβ.

(5.7)
Hence, the desired result is a direct consequence of (5.7).

Throughout this section, we denote by Gq the Nemytskii operator correspond-
ing to Gq , which is defined by Gq(U)(x) := Gq(x,U(x)). Moreover, we suppose
that Gq fulfill the Lipschitz conditions with the Lipschitz constants Lq,i and

max
1≤i≤Q

Q∑

q=1
Lq,i ≤ �(λ+1)

2T λ .

Theorem 5.1 Let U(x) and UN(x) be the solutions of the system of (3.8) and (3.10),
respectively. Assume that U ∈ Bs

ωs,s (�), Gq : Bs
ωs,s (�) −→ Bs

ωλ+s−1,s (�) with
integer 1 ≤ s ≤ N + 1 and N ≥ 1. Then, we have the following estimate:

‖U − UN‖ ≤ cN−s
(∥
∥∂s

xU
∥
∥

ωs,s + ∥∥∂s
xG(·,U(·))∥∥

ωλ+s−1,s

)
. (5.8)

Proof By Lemma 4.1, we get

‖E1‖ = ∥
∥U(x) − Ix,NU(x)

∥
∥ ≤ CN−s

∥
∥∂s

xU
∥
∥

ωs,s . (5.9)

We next estimate the term ‖E2‖. Using the Legendre-Gauss integration formula (2.8),
we have

‖E2‖2 =
∥
∥
∥Ix,N

∫ x

−1 R(x, σ )(I − x Ĩλ−1,0
σ,N )G (σ,U(σ )) dσ

∥
∥
∥
2

=
∥
∥
∥
∥
∥

Q∑

q=1
Ix,N

∫ x

−1 Rqq(x, σ )(I − x Ĩλ−1,0
σ,N )Gq(σ,U(σ ))dσ

∥
∥
∥
∥
∥

2

= ∫ 1
−1

(
Q∑

q=1
Ix,N

∫ x

−1 Rqq(x, σ )(I − x Ĩλ−1,0
σ,N )Gq(σ,U(σ ))dσ

)2

dx

=
N∑

j=0
wj

(
Q∑

q=1

∫ xj

−1 Rqq(xj , σ )(I − xj
Ĩλ−1,0

σ,N )Gq(σ,U(σ ))dσ

)2

.

(5.10)
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Then, by the Cauchy-Schwarz inequality, we deduce that

‖E2‖2 ≤
N∑

j=0
wj

Q∑

q=1

(∫ xj

−1 Rqq(xj , σ )(I − xj
Ĩλ−1,0

σ,N )Gq(σ,U(σ ))dσ
)2 Q∑

q=1
(1)2

≤ C
N∑

j=0

Q∑

q=1
wj

∫ xj

−1 Rqq(xj , σ )dσ
∫ xj

−1 Rqq(xj , σ )

∣
∣
∣(I − xj

Ĩλ−1,0
σ,N )Gq(σ,U(σ ))

∣
∣
∣
2
dσ

= C
N∑

j=0

Q∑

q=1
wj (xj + 1)λ

∫ xj

−1(xj − σ)λ−1
∣
∣
∣(I − xj

Ĩλ−1,0
σ,N )Gq(σ,U(σ ))

∣
∣
∣
2
dσ .

(5.11)

By (4.26), we get that

‖E2‖2 ≤ CN−2s
Q∑

q=1

∫ x

−1

∣
∣∂s

σ Gq(σ,U(σ ))
∣
∣2 (x − σ)λ+s−1(1 + σ)sdσ

≤ CN−2s
∫ x

−1

Q∑

q=1

∣
∣∂s

σ Gq(σ,U(σ ))
∣
∣2 (x − σ)λ+s−1(1 + σ)sdσ

≤ CN−2s
∫ x

−1

∣
∣∂s

σG(σ,U(σ ))
∣
∣2 (x − σ)λ+s−1(1 + σ)sdσ

≤ CN−2s
∥
∥∂s

σG(σ,U(σ ))
∥
∥2

ωλ+s−1,s .

(5.12)

We now estimate the term ‖E3‖. Using the Legendre-Gauss integration formula (2.8),
we have

‖E3‖
=
∥
∥
∥Ix,N

∫ x

−1 R(x, σ )x Ĩλ−1,0
σ,N (G(σ,U(σ )) − G(σ,UN (σ))) dσ

∥
∥
∥

=
⎛

⎝
∫ 1
−1

(
Q∑

q=1
Ix,N

∫ x

−1
T λ

2λ�(λ)
(x − σ)λ−1

x Ĩλ−1,0
σ,N

(
Gq (σ,U(σ )) − Gq (σ,UN (σ))

)
dσ

)2

dx

⎞

⎠

1
2

= T λ

2λ�(λ)

⎛

⎝
N∑

j=0
�j

(
∫ xj

−1(xj − σ)λ−1
Q∑

q=1
xj
Ĩλ−1,0

σ,N

(
Gq (σ,U(σ )) − Gq (σ,UN (σ))

)
dσ

)2
⎞

⎠

1
2

≤ T λ

2λ�(λ)

⎛

⎝
N∑

j=0
�j

∫ xj

−1(xj −σ)λ−1dσ
∫ xj

−1(xj −σ)λ−1

(∣
∣
∣
∣
∣

Q∑

q=1
xj
Ĩλ−1,0

σ,N

(
Gq(σ,U(σ ))−Gq(σ,UN (σ))

)
∣
∣
∣
∣
∣

)2

dσ

⎞

⎠

1
2

≤ T λ

2λ�(λ)

⎛

⎝
N∑

j=0
�j

(xj +1)λ

λ

∫ xj

−1(xj − σ)λ−1

(
Q∑

q=1

∣
∣
∣xj

Ĩλ−1,0
σ,N

(
Gq(σ,U(σ )) − Gq(σ,UN (σ))

)∣∣
∣

)2

dσ

⎞

⎠

1
2

≤ T λ

2λ�(λ)

⎛

⎝
N∑

j=0
�j

(xj +1)2λ

2λλ

N∑

k=0

(
Q∑

q=1

∣
∣
∣Gq(σ

λ−1,0
k ,U(σ

λ−1,0
k )) − Gq(σ

λ−1,0
k ,UN (σ

λ−1,0
k ))

∣
∣
∣

)2

�
λ−1,0
k

⎞

⎠

1
2

.

(5.13)
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For xj ∈ (−1, 1), we know that

N∑

j=0

�j(xj + 1)λ ≤ 8

3
, ∀λ ∈ [1, 2]. (5.14)

Therefore, by (4.25), (4.26), (5.14), the Lipschitz condition, and the triangle inequal-
ity, we obtain that

‖E3‖

≤ T λ

2λ�(λ)

⎛

⎝
N∑

j=0
�j

(xj +1)2λ

2λλ

N∑

k=0

(
Q∑

q=1

Q∑

i=1
Lq,i

∣
∣
∣Ui(σ

λ−1,0
k ) − UN,i(σ

λ−1,0
k )

∣
∣
∣

)2

�
λ−1,0
k

⎞

⎠

1
2

= λ

2λ+1

⎛

⎝
N∑

j=0
�j

(xj +1)2λ

2λλ

N∑

k=0

(
Q∑

i=1

∣
∣
∣Ui(σ

λ−1,0
k ) − UN,i(σ

λ−1,0
k )

∣
∣
∣

)2

�
λ−1,0
k

⎞

⎠

1
2

≤ λ

2λ+1

⎛

⎝
N∑

j=0
�j

(xj +1)λ

λ

∫ xj

−1(xj − σ)λ−1

(
Q∑

i=1

∣
∣
∣xj

Ĩλ−1,0
σ,N

(
Ui(σ ) − UN,i(σ )

)∣∣
∣

)2

dσ

⎞

⎠

1
2

≤ λ

2λ+1

(
N∑

j=0
�j

(xj +1)λ

λ

) 1
2

max
0≤j≤N

⎛

⎝
∫ xj

−1(xj − σ)λ−1

(
Q∑

i=1

∣
∣
∣xj

Ĩλ−1,0
σ,N

(
Ui(σ ) − UN,i(σ )

)∣∣
∣

)2

dσ

⎞

⎠

1
2

≤ λ

2λ+1

√
8
3λ max

0≤j≤N

⎡

⎢
⎣

⎛

⎝
∫ xj

−1(xj − σ)λ−1

(
Q∑

i=1

∣
∣
∣xj

Ĩλ−1,0
σ,N Ui(σ ) − Ui(σ )

∣
∣
∣

)2

dσ

⎞

⎠

1
2

+
⎛

⎝
∫ xj

−1(xj − σ)λ−1

(
Q∑

i=1

∣
∣Ui(σ ) − UN,i(σ )

∣
∣

)2

dσ

⎞

⎠

1
2
⎤

⎥
⎦

≤ cN−s max
0≤j≤N

⎛

⎝
∫ xj

−1(xj − σ)λ+s−1(1 + σ)s

(
Q∑

i=1

∣
∣∂s

σ Ui(σ )
∣
∣

)2

dσ

⎞

⎠

1
2

+ λ

2λ+1

√
8
3λ max

0≤j≤N

⎛

⎝
∫ xj

−1(xj − σ)λ−1

(
Q∑

i=1

∣
∣Ui(σ ) − UN,i(σ )

∣
∣

)2

dσ

⎞

⎠

1
2

≤ cN−s
∥
∥∂s

σU
∥
∥

ωλ+s−1,s + λ

2λ+1

√
2λ+2

3λ

⎛

⎝
∫ 1
−1

(
Q∑

i=1

∣
∣Ui(σ ) − UN,i(σ )

∣
∣

)2

dσ

⎞

⎠

1
2

≤ cN−s
∥
∥∂s

σU
∥
∥

ωλ+s−1,s +
√

λ
3×2λ ‖E‖ .

(5.15)
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We now estimate the following term

‖E4‖ = ‖x+1‖
2

∣
∣
∣
∫ 1
−1 R(1, β)Iλ−1,0

β,N (G(β,UN(β)) − G(β,U(β))) dβ

∣
∣
∣

= T λ‖x+1‖
2λ+1�(λ)

∣
∣
∣
∣
∣

∫ 1
−1

Q∑

q=1
(1 − β)λ−1Iλ−1,0

β,N

(
Gq(β,UN(β)) − Gq(β,U(β))

)
dβ

∣
∣
∣
∣
∣

≤ T λ

2λ+1�(λ)

√
2λ+3

3λ

⎛

⎝
∫ 1
−1(1 − β)λ−1

(
Q∑

q=1

∣
∣
∣Iλ−1,0

β,N

(
Gq(β,UN(β)) − Gq(β,U(β))

)
dβ

∣
∣
∣

)2
⎞

⎠

1
2

≤ T λ

2λ+1�(λ)

√
2λ+3

3λ

⎛

⎝
N∑

j=0
�

λ−1,0
j

(
Q∑

q=1

∣
∣
∣

(
Gq(x

λ−1,0
j ,UN(x

λ−1,0
j )) − Gq(x

λ−1,0
j ,U(x

λ−1,0
j ))

)∣
∣
∣

)2
⎞

⎠

1
2

≤ T λ

2λ+1�(λ)

√
2λ+3

3λ

⎛

⎝
N∑

j=0
�

λ−1,0
j

(
Q∑

q=1

Q∑

i=1
Lq,i

∣
∣
∣UN,i (x

λ−1,0
j )) − Ui(x

λ−1,0
j ))

∣
∣
∣

)2
⎞

⎠

1
2

≤ λ

2λ+2

√
2λ+3

3λ

⎛

⎝
N∑

j=0
�

λ−1,0
j

(
Q∑

i=1

∣
∣
∣UN,i (x

λ−1,0
j ) − Ui(x

λ−1,0
j )

∣
∣
∣

)2
⎞

⎠

1
2

= λ

2λ+2

√
2λ+3

3λ

⎛

⎝
∫ 1
−1(1 − β)λ−1

(
Q∑

i=1

∣
∣
∣UN,i (β) − Iλ−1,0

β,N Ui(β)

∣
∣
∣

)2

dβ

⎞

⎠

1
2

≤
√

λ

3×2λ+1

(
‖UN − U‖ωλ−1,0 +

∥
∥
∥U − Iλ−1,0

β,N U
∥
∥
∥

ωλ−1,0

)

≤
√

λ
12 ‖E‖ + cN−s

∥
∥∂s

xU
∥
∥

ωλ+s−1,s .
(5.16)

It remains to estimate the term ‖E5‖. By Lemma 4.1 and (4.26), we have

‖E5‖ = ‖x+1‖
2

∣
∣
∣
∫ 1
−1 R(1, β)

(
Iλ−1,0

β,N − I
)
G(β,U(β))

∣
∣
∣ dβ

= T λ

2λ+1�(λ)

√
8
3

∫ 1
−1(1 − β)λ−1

∣
∣
∣
∣
∣

Q∑

q=1

(
Iλ−1,0

β,N − I
)

Gq(β,U(β))

∣
∣
∣
∣
∣
dβ

≤ c
(∫ 1

−1(1 − β)λ−1dβ
) 1

2

⎛

⎝
∫ 1
−1(1 − β)λ−1

(
Q∑

q=1

∣
∣
∣

(
Iλ−1,0

β,N − I
)

Gq(β,U(β))

∣
∣
∣

)2

dβ

⎞

⎠

1
2

≤ cN−s
∥
∥∂s

xG (· ,U(·))∥∥
ωλ+s−1,s .

(5.17)

Theorem 5.2 Let uN(t) := UN

(
2t
T

− 1
)
be the numerical solution of the system

of (1.1) with t ∈ (0, T ) and χλ,μ(t) := (T − t)λtμ. Then, we have the following
estimate:

‖u − uN‖ ≤ cN−s
(∥
∥∂s

t u
∥
∥

χs,s + ∥∥∂s
t g(·,u(·))∥∥

χλ+s−1,s

)
. (5.18)

6 Convergence analysis in L∞(�)

In this section, we derive the error estimation in the function space L∞(�).
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Theorem 6.1 Let U(x) and UN(x) be the solutions of the system of (3.8) and (3.10),
respectively. Assume that U ∈ L∞ ∩ Bs(�), Gq : Bs(�) −→ Bs

ωλ+s−1,s (�) with
1 ≤ s ≤ N + 1 and N ≥ 1. Then, we have the following estimate:

‖U − UN‖∞ ≤ cN
3
4−s

∥
∥∂s

xU
∥
∥+ cN

1
2−s

∥
∥∂s

xG(·,U(·))∥∥
ωλ+s−1,s . (6.1)

Proof It follows from (5.1) that

‖E‖∞ ≤ ∥
∥U − Ix,NU

∥
∥∞ + ∥∥Ix,NU − UN

∥
∥∞ ≤

5∑

i=1

‖Ei‖∞ . (6.2)

Using Lemma 4.2 gives

‖E1‖∞ = ∥
∥U − Ix,NU

∥
∥∞ ≤ cN

3
4−s

∥
∥∂s

xU
∥
∥ . (6.3)

Next, by Lemma 4.3, we deduce that

|E2| =
∣
∣
∣Ix,N

∫ x

−1 R(x, σ )
(
I − x Ĩλ−1,0

σ,N

)
G(σ,U(σ ))dσ

∣
∣
∣

= T λ

2λ�(λ)

∣
∣
∣
∣
∣
Ix,N

∫ x

−1 (x − σ)λ−1
Q∑

q=1

(
I − x Ĩλ−1,0

σ,N

)
Gq(σ,U(σ ))dσ

∣
∣
∣
∣
∣

≤ T λ

2λ�(λ)

∥
∥Ix,N

∥
∥∞ max

−1≤x≤1

∣
∣
∣
∣
∣

∫ x

−1 (x − σ)λ−1
Q∑

q=1

(
I − x Ĩλ−1,0

σ,N

)
Gq(σ,U(σ ))dσ

∣
∣
∣
∣
∣

≤ c N
1
2 max

−1≤x≤1

∫ x

−1 (x − σ)λ−1

∣
∣
∣
∣
∣

Q∑

q=1

(
I − x Ĩλ−1,0

σ,N

)
Gq(σ,U(σ ))dσ

∣
∣
∣
∣
∣

≤ c N
1
2 max

−1≤x≤1

∫ x

−1 (x − σ)λ−1
Q∑

q=1

∣
∣
∣

(
I − x Ĩλ−1,0

σ,N

)
Gq(σ,U(σ ))dσ

∣
∣
∣ .

(6.4)

By the Cauchy-Schwarz inequality and (4.26),

|E2| ≤ c N
1
2 max−1≤x≤1

[∫ x

−1 (x − σ)λ−1 dσ

× ∫ x

−1 (x − σ)λ−1

(
Q∑

q=1

∣
∣
∣

(
I − x Ĩλ−1,0

σ,N

)
Gq(σ,U(σ ))

∣
∣
∣

)2

dσ

⎤

⎦

1
2

≤ c N
1
2 max−1≤x≤1

⎡

⎣
∫ x

−1 (x − σ)λ−1

(
Q∑

q=1

∣
∣
∣

(
I − x Ĩλ−1,0

σ,N

)
Gq(σ,U(σ ))

∣
∣
∣

)2

dσ

⎤

⎦

1
2

≤ c N
1
2 −s max

−1≤x≤1

⎡

⎣
∫ x

−1 (x − σ)λ+s−1 (1 + σ)s

∣
∣
∣
∣
∣

Q∑

q=1
∂s
σ Gq(σ,U(σ ))

∣
∣
∣
∣
∣

2

dσ

⎤

⎦

1
2

≤ cN
1
2 −s
∥
∥∂s

σG (·,U(·))∥∥2
ωλ+s−1,s .

(6.5)
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Similarly, using Lemma 4.3 leads to

|E3| =
∣
∣
∣Ix,N

∫ x

−1 R(x, σ )x Ĩλ−1,0
σ,N (G(σ,U(σ )) − G(σ,UN(σ))) dσ

∣
∣
∣

= T λ

2λ�(λ)

∣
∣
∣
∣
∣
Ix,N

∫ x

−1(x − σ)λ−1
Q∑

q=1
x Ĩλ−1,0

σ,N

(
Gq(σ,U(σ )) − G(σ,UN(σ))

)
dσ

∣
∣
∣
∣
∣

≤ c
∥
∥Ix,N

∥
∥∞ max

−1≤x≤1

∣
∣
∣
∣
∣

∫ x

−1(x − σ)λ−1
Q∑

q=1
x Ĩλ−1,0

σ,N

(
Gq(σ,U(σ )) − G(σ,UN(σ))

)
dσ

∣
∣
∣
∣
∣

≤ cN
1
2 max−1≤x≤1

∫ x

−1(x − σ)λ−1

∣
∣
∣
∣
∣

Q∑

q=1
x Ĩλ−1,0

σ,N

(
Gq(σ,U(σ )) − G(σ,UN(σ))

)
dσ

∣
∣
∣
∣
∣

≤ cN
1
2 max

−1≤x≤1

∫ x

−1(x − σ)λ−1
Q∑

q=1

∣
∣
∣x Ĩλ−1,0

σ,N

(
Gq(σ,U(σ )) − G(σ,UN(σ))

)
dσ

∣
∣
∣

≤ cN
1
2 max

−1≤x≤1

[∫ x

−1(x − σ)λ−1dσ

× ∫ x

−1(x − σ)λ−1

(
Q∑

q=1

∣
∣
∣x Ĩλ−1,0

σ,N

(
Gq(σ,U(σ )) − G(σ,UN(σ))

)
dσ

∣
∣
∣

)2
⎤

⎦

1
2

≤ cN
1
2 max−1≤x≤1

⎡

⎣ (x+1)λ

2λ

N∑

k=0

(
Q∑

q=1

∣
∣
∣Gq(σ

λ−1,0
k ,U(σ

λ−1,0
k )) − Gq(σ

λ−1,0
k ,UN(σ

λ−1,0
k ))

∣
∣
∣

)2

ω
λ−1,0
k

⎤

⎦

1
2

.

(6.6)

Further, by the triangle inequality, (4.25), and (4.26), we deduce that

|E3| ≤ cN
1
2 max−1≤x≤1

⎡

⎣ (x+1)λ

2λ

N∑

k=0

(
Q∑

i=1

∣
∣
∣Ui(σ

λ−1,0
k ) − UN,i(σ

λ−1,0
k )

∣
∣
∣

)2

ω
λ−1,0
k

⎤

⎦

1
2

≤ cN
1
2 max−1≤x≤1

⎡

⎣
∫ x

−1(x − σ)λ−1

(
Q∑

i=1

∣
∣
∣x Ĩλ−1,0

σ,N Ui(σ ) − UN,i(σ )

∣
∣
∣

)2

dσ

⎤

⎦

1
2

≤ cN
1
2 max−1≤x≤1

⎡

⎣
∫ x

−1(x − σ)λ−1

(
Q∑

i=1

∣
∣
∣x Ĩλ−1,0

σ,N Ui(σ ) − UN,i(σ )

∣
∣
∣

)2

dσ

+ ∫ x

−1(x − σ)λ−1

(
Q∑

i=1

∣
∣Ui(σ ) − UN,i(σ )

∣
∣

)2

dσ

⎤

⎦

1
2

≤ cN
1
2 −s
∥
∥∂s

xU
∥
∥

ωλ+s−1,s + cN
1
2 ‖E‖ .

(6.7)

We obtain from the Cauchy-Schwarz inequality that

|E4| =
∣
∣
∣ x+1

2

∫ 1
−1 R(1, β)Iλ−1,0

β,N (G(β,UN(λ)) − G(β,U(β))) dβ

∣
∣
∣

=
∣
∣
∣
∣
∣

T λ(x+1)
2λ+1�(λ)

∫ 1
−1

Q∑

q=1
(1 − β)λ−1Iλ−1,0

β,N

(
Gq(β,UN(λ)) − Gq(β,U(β))

)
dβ

∣
∣
∣
∣
∣

≤ T λ

2λ�(λ)

∫ 1
−1(1 − β)λ−1

∣
∣
∣
∣
∣

Q∑

q=1
Iλ−1,0

β,N

(
Gq(β,UN(λ)) − Gq(β,U(β))

)
dβ

∣
∣
∣
∣
∣

≤ T λ

2λ�(λ)

∫ 1
−1(1 − β)λ−1

Q∑

q=1

∣
∣
∣Iλ−1,0

β,N

(
Gq(β,UN(λ)) − Gq(β,U(β))

)
dβ

∣
∣
∣
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≤ T λ

2λ�(λ)

(∫ 1
−1(1 − β)λ−1dβ

× ∫ 1−1(1 − β)λ−1

(
Q∑

q=1

∣
∣
∣Iλ−1,0

β,N

(
Gq(β,UN(λ)) − Gq(β,U(β))

)
dβ

∣
∣
∣

)2
⎞

⎠

1
2

≤ T λ

2λ�(λ)

(
2λ

λ

) 1
2

⎛

⎝
∫ 1
−1(1 − β)λ−1

(
Q∑

q=1

∣
∣
∣Iλ−1,0

β,N

(
Gq(β,UN(λ)) − Gq(β,U(β))

)
dβ

∣
∣
∣

)2
⎞

⎠

1
2

.

(6.8)

Hence, a combination of the above result, (4.25), (4.26), Lemma 4.1, and the
Lipschitz condition yields

|E4| ≤ T λ

2λ�(λ)

(
2λ

λ

) 1
2

⎛

⎝
N∑

j=0
�

λ−1,0
j

(
Q∑

q=1

∣
∣
∣

(
Gq(x

λ−1,0
j ,UN(x

λ−1,0
j )) − Gq(x

λ−1,0
j ,U(x

λ−1,0
j ))

)∣
∣
∣

)2
⎞

⎠

1
2

≤ T λ

2λ�(λ)

(
2λ

λ

) 1
2

⎛

⎝
N∑

j=0
�

λ−1,0
j

(
Q∑

q=1

Q∑

i=1
Lq,i

∣
∣
∣UN,i (x

λ−1,0
j ) − Ui (x

λ−1,0
j )

∣
∣
∣

)2
⎞

⎠

1
2

≤ λ
2λ+1

(
2λ

λ

) 1
2

⎛

⎝
N∑

j=0
�

λ−1,0
j

(
Q∑

i=1

∣
∣
∣UN,i (x

λ−1,0
j ) − Ui (x

λ−1,0
j )

∣
∣
∣

)2
⎞

⎠

1
2

≤ λ

2λ+1

(
2λ

λ

) 1
2

⎛

⎝
∫ 1
−1(1 − β)λ−1

(
Q∑

i=1

∣
∣
∣UN,i (β) − Iλ−1,0

β,N Ui (β)

∣
∣
∣

)2
⎞

⎠

1
2

≤ λ

2λ+1

(
2λ

λ

) 1
2

⎛

⎝
∫ 1
−1(1 − β)λ−1

(
Q∑

i=1

∣
∣UN,i (β) − Ui (β)

∣
∣

)2

dβ

+ ∫ 1−1(1 − β)λ−1

(
Q∑

i=1

∣
∣
∣Ui (β) − Iλ−1,0

β,N Ui (β)

∣
∣
∣

)2

dβ

⎞

⎠

1
2

≤ 1
2 ‖UN − U‖∞ + cN−s

∥
∥∂s

xU
∥
∥

ωλ+s−1,s .
(6.9)

The last term is bounded by

|E5| =
∣
∣
∣ x+1

2

∫ 1
−1 R(1, β)

(
Iλ−1,0

β,N − I
)
G(β,U(β))dβ

∣
∣
∣

=
∣
∣
∣
∣
∣

T λ(x+1)
2λ+1�(λ)

∫ 1
−1

Q∑

q=1
(1 − β)λ−1

(
Iλ−1,0

β,N − I
)

Gq(β,U(β))dβ

∣
∣
∣
∣
∣

≤ T λ

2λ�(λ)

∫ 1
−1(1 − β)λ−1

∣
∣
∣
∣
∣

Q∑

q=1

(
Iλ−1,0

β,N − I
)

Gq(β,U(β))dβ

∣
∣
∣
∣
∣

≤ T λ

2λ�(λ)

∫ 1
−1(1 − β)λ−1

Q∑

q=1

∣
∣
∣

(
Iλ−1,0

β,N − I
)

Gq(β,U(β))dβ

∣
∣
∣

≤ T λ

2λ�(λ)

⎛

⎝
∫ 1
−1(1 − β)λ−1dβ

∫ 1
−1(1 − β)λ−1

(
Q∑

q=1

∣
∣
∣

(
Iλ−1,0

β,N − I
)

Gq(β,U(β))dβ

∣
∣
∣

)2

dβ

⎞

⎠

1
2

≤ cN−s
∥
∥∂s

xG (·,U(·))∥∥
ωλ+s−1,s .

(6.10)
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Hence, a combination of (6.3), (6.5), (6.7), (6.8), (6.10), and Theorem 5.1 yields
6.1.

Theorem 6.2 Let uN(t) := UN

(
2t
T

− 1
)
be the numerical solution of the system

of (1.1) with t ∈ (0, T ) and χλ,μ(t) := (T − t)λtμ. Then, we have the following
estimate:

‖u − uN‖∞ ≤ cN
3
4−s

∥
∥∂s

t u
∥
∥+ cN

1
2−s

∥
∥∂s

t g(·,u(·))∥∥
χλ+s−1,s . (6.11)

7 Numerical results

In order to illustrate the performance of the Jacobi spectral collocation method,
we perform various numerical examples for smooth and non-smooth solutions. The
implementation of the method has been carried out in Mathematica 11.3. The func-
tionsMaximize and NIntegrate have been used to estimate the L∞- and L2- absolute
errors.

Example 1 We consider the following linear system of fractional differential equa-
tions: ⎧

⎪⎨

⎪⎩

C
0 Dλ

t u1(t) = a1(t)u1(t) + a2(t)u2(t) + g1(t), 0 < t < 1,
C
0 Dλ

t u2(t) = a3(t)u1(t) + a4(t)u2(t) + g2(t), 0 < t < 1,
ui(0) = ui(1) = 0, i = 1, 2,

(7.1)

where a1(t) = a4(t) = 20t3(1 − t)e−t and a2(t) = a3(t) = sin(t).

The exact solution is u1(t) = t − t
111
17 , which is a smooth solution on the interval

[0, 1], and u2(t) = t − tλ+1, which is a weakly singular solution at the endpoint
t = 0. The functions g1(t) and g2(t) are obtained using the exact solution. The L∞-
and L2- errors for the three fractional orders λ = {1.3, 1.5, 1.9} are listed in Table 1.
We observe a much faster decay of the errors for the smooth solution for all employed
values of λ, and a slower rate of convergence for the weakly singular solution. Hence,
the proposed method is able to deal with problems with smooth solutions in a very
effective manner.

Example 2 We consider the following nonlinear system of fractional differential
equations:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dλ

t u1(t) = cos (u2(t) + u3(t)) + g1(t),
C
0 Dλ

t u2(t) = u1(t) + eu3(t) + g2(t),
C
0 Dλ

t u3(t) = u3(t) + sin (u1(t) + u2(t)) + g3(t),

ui(0) = 0, ui(1) = 1, i = 1, 2, 3.

(7.2)

The corresponding exact solution is given by u1(t) = t4, u2(t) = t5, u2(t) = t6.
The functions gi(t) are obtained using the exact solution. The numerical results are
plotted for several fractional orders λ = 1.3, 1.5, 1.9 in Figs. 1, 2, and 3, respectively.
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Table 1 The L∞- and L2- errors for problem (7.1) versus N

u1(t) u2(t)

λ N L∞-errors L2-errors L∞-errors L2-errors CPU time (s)

5 2.1383 × 10−3 6.3991 × 10−4 3.3059 × 10−4 4.4422 × 10−5 4.47

10 2.8061 × 10−8 4.2572 × 10−9 2.0635 × 10−5 1.4372 × 10−6 7.80

1.3 15 7.2187 × 10−10 1.5090 × 10−10 3.7478 × 10−6 1.7887 × 10−7 14.47

20 8.5206 × 10−11 1.6334 × 10−11 1.0902 × 10−6 3.9666 × 10−8 24.08

25 1.6585 × 10−11 2.8271 × 10−12 4.1323 × 10−7 1.2157 × 10−8 49.01

5 2.4669 × 10−3 6.4001 × 10−4 2.9932 × 10−4 4.1761 × 10−5 4.08

10 2.1064 × 10−8 2.7334 × 10−9 1.3930 × 10−5 1.0126 × 10−6 6.81

1.5 15 2.4363 × 10−10 4.0694 × 10−11 2.5247 × 10−7 1.0785 × 10−7 13.47

20 1.9812 × 10−11 3.5930 × 10−12 5.6586 × 10−7 2.1421 × 10−8 25.38

25 3.2013 × 10−12 5.4194 × 10−13 1.9693 × 10−7 6.0260 × 10−9 48.02

5 2.4797 × 10−3 6.4016 × 10−4 5.3521 × 10−5 8.2722 × 10−6 4.32

10 1.7725 × 10−8 2.3400 × 10−9 1.4178 × 10−6 1.1153 × 10−7 7.00

1.9 15 8.1327 × 10−11 6.9417 × 10−12 1.6179 × 10−7 8.6612 × 10−9 13.58

20 2.0804 × 10−12 1.4114 × 10−13 3.3855 × 10−8 1.3776 × 10−9 27.54

25 1.2632 × 10−13 8.5186 × 10−15 9.9258 × 10−9 3.2730 × 10−10 50.39

Example 3 We consider the following nonlinear system of fractional differential
equations:

⎧
⎪⎨

⎪⎩

C
0 Dλ

t u1(t) = u22(t) + g1(t), 0 < t < 1,
C
0 Dλ

t u2(t) = u21(t) + g2(t), 0 < t < 1,
ui(0) = ui(1) = 0, i = 1, 2.

(7.3)

The exact solution is u1(t) = tλ+1 − t2, which is a weakly singular solution at the

endpoint t = 0, and u2(t) = t3 − t
113
15 , which is smooth on the interval [0, 1]. The

functions g1(t) and g2(t) are obtained using the exact solution. The L∞- and L2-

Fig. 1 The L2- and L∞- errors versus the number of collocation points for problem (7.2) with λ = 1.3
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Fig. 2 The L2- and L∞- errors versus the number of collocation points for problem (7.2) with λ = 1.5

Fig. 3 The L2- and L∞- errors versus the number of collocation points for problem (7.2) with λ = 1.9

Table 2 The L∞- and L2- errors for problem (7.3) versus N

u1(t) u2(t)

N L∞-errors L2-errors L∞-errors L2-errors

5 3.7022 × 10−4 7.1334 × 10−5 7.1857 × 10−3 1.6538 × 10−3

10 1.0909 × 10−5 7.8517 × 10−6 3.1925 × 10−7 2.2307 × 10−7

λ = 1.3 15 3.1687 × 10−6 2.2916 × 10−6 6.3647 × 10−8 4.3104 × 10−8

20 1.2820 × 10−6 9.3519 × 10−7 2.1273 × 10−8 1.4069 × 10−8

25 4.2361 × 10−6 5.5153 × 10−7 9.3630 × 10−9 6.0957 × 10−9

5 2.2536 × 10−4 1.5815 × 10−4 7.1857 × 10−3 1.6538 × 10−3

10 4.0750 × 10−5 2.9700 × 10−5 1.4293 × 10−6 9.9532 × 10−7

λ = 1.5 15 1.4009 × 10−5 1.0213 × 10−5 3.6620 × 10−7 2.5047 × 10−7

20 6.3783 × 10−6 4.6584 × 10−6 1.4502 × 10−7 9.8040 × 10−8

25 3.4254 × 10−6 2.5029 × 10−6 7.2141 × 10−8 4.8411 × 10−8

5 3.9158 × 10−4 2.9113 × 10−4 7.1857 × 10−3 1.6539 × 10−3

10 1.2167 × 10−4 8.8861 × 10−5 4.5200 × 10−6 3.1637 × 10−6

λ = 1.9 15 5.6234 × 10−5 4.1067 × 10−5 1.6916 × 10−6 1.1767 × 10−6

20 3.1805 × 10−5 2.3228 × 10−5 8.6848 × 10−7 6.0192 × 10−7

25 2.0238 × 10−5 1.4779 × 10−5 5.2483 × 10−7 3.6298 × 10−7
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errors for the three fractional orders λ = {1.3, 1.5, 1.9} are presented in Table 2. We
observe a much faster decay of the errors for the smooth solution for all employed
values of λ, and a slower rate of convergence for the weakly singular solution. The
results are in good agreement with what we expect.

8 Conclusion and future work

This paper developed a numerical approach for solving a nonlinear system of
fractional differential equations based on the Legendre-Jacobi spectral collocation
method. The strategy is derived using some variable transformations to reduce the
problem into the equivalent system of Fredholm integral equations, so that the spec-
tral theory can be applied conveniently. The most important contribution of this work
is that we were able to demonstrate rigorously that the errors of smooth solutions
decay exponentially in L2- and L∞-norms, which is a desired feature for a spectral
method. Two numerical examples showed the results in agreement with the theoreti-
cal analysis. We believe that the ideas introduced in this paper will serve as a basis for
future spectral methods for systems of nonlinear fractional differential equations and
systems of integral equations with non-sooth solutions. An exciting generalization
of this work will be to high dimensional problems and problems with non-smooth
solutions.

Acknowledgments The authors wish to thank the referees for their constructive comments and sugges-
tions, which greatly improved the quality of this paper.

Appendix: Existence of the approximate solution

We consider the following iteration process:

Um
N(x)= T λ

4λ�(λ)
Ix,N

[
(x+1)λ

∫ 1
−1(1−η)λ−1Iλ−1,0
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(A.1)
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where
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We obtain from the Cauchy-Schwarz inequality that

‖B1‖
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Hence, by (4.25), (5.14) and the Lipschitz condition, we obtain that
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It remains to estimate the term ‖B2‖. By the Cauchy-Schwarz inequality, we have
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The previous result, along with (2.8) and Lipschitz condition, yields
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Hence,
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∥ −→ 0 as m −→ ∞. It implies the existence of solution of (3.10).
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differential equations. Appl. Math. Model. 40(2), 671–684 (2016)

21. Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value
problem. BIT Numer. Math. 55, 1105–1123 (2015)

22. Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of
fractional differential equations. J. Comput. Appl. Math. 236, 3349–3359 (2012)

23. Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value
problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)

24. Wang, J., Xu, T.-Z., Wei, Y.-Q., Xie, J.-Q.: Numerical simulation for coupled systems of nonlinear
fractional order integro-differential equations via wavelets method. Appl. Math. Comput. 324, 36–50
(2018)

25. Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value
problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)

26. Gu, Z.: Piecewise spectral collocation method for system of Volterra integral equations. Adv. Comput.
Math. 43, 385–409 (2017)

27. Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville
fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)

28. Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Frac. Cal.
Appl. Anal. 15.3, 383–406 (2012)

29. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational
matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62(5), 2364–
2373 (2011)

30. Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra
integro-differential equations. Numer. Algor. 81(1), 57–77 (2019)

31. Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Lopes, A.M.: Shifted Jacobi–Gauss-collocation with
convergence analysis for fractional integro-differential equations. Commun. Nonlinear Sci. Numer.
Simulat. 72, 342–359 (2019)

32. Mokhtary, P., Moghaddam, B.P., Lopes, A.M., Tenreiro Machado, J.A.: A computational approach
for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional
delay. Numer Algor. https://doi.org/10.1007/s11075-019-00712-y (2019)

Numerical Algorithms (2020) 84:63–8988

https://doi.org/10.1007/s11075-019-00712-y


33. Zaky, M.A.: Existence, uniqueness and numerical analysis of solutions of tempered fractional
boundary value problems. Appl. Numer. Math. https://doi.org/10.1016/j.apnum.2019.05.008 (2019)
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