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Abstract
Error control software packages based on Gaussian collocation have been widely
used for the numerical solution of boundary value ODEs (BVODEs) and 1D
parabolic time-dependent PDEs (1D PDEs) for several decades. These robust and
efficient packages are among the best available for these problem classes. In this
paper, we survey error control Gaussian collocation software for BVODEs and 1D
PDEs and provide an overview of recent work involving the development of two
new packages, one for each problem class. The first is an updated version of the
well-known COLSYS/COLNEW package for BVODEs. The second is the newest
member of the BACOL family of software packages for 1D PDEs. We briefly review
the underlying numerical algorithms employed in these packages and then pro-
vide numerical results that show the superiority of the new packages compared to
previously released packages from each software class.

Keywords Boundary value ordinary differential equations · Partial differential
equations · Collocation · Error estimation · Error control · Efficiency

Mathematics Subject Classification (2010) 65L06 · 65L10 · 65L80 · 65M20 ·
65M70

1 Introduction

For boundary value ODEs (BVODEs) and 1D parabolic time-dependent PDEs (1D
PDEs), error control software based on Gaussian collocation algorithms has been
widely used for several decades. In this paper, we survey error control Gaussian
collocation software for BVODEs and 1D PDEs and provide a brief overview of
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recent work involving the development of two new error control Gaussian collocation
packages, one for each problem class.

Error control is an essential element of all high-quality numerical software. Error
control software returns a numerical solution for which an associated error estimate
satisfies a user-prescribed tolerance. Such software has two important advantages: (i)
the user can have reasonable confidence that the numerical solution has an error that
is consistent with the requested tolerance, and (ii) the cost of the computation will be
consistent with the requested tolerance.

In this paper, we assume systems of BVODEs having the general form

u′(x) = f (x,u(x)) , a < x < b, u : � → �n, f : � × �n → �n, (1)

with separated boundary conditions,

bL (u(a)) = 0L, bR (u(b)) = 0R, bL : �n → �nL, bR : �n → �nR , (2)

where 0L ∈ �nL, 0R ∈ �nR , and nL + nR = n.
For 1D PDEs, we will assume systems having the general form,

ut (x, t) = f (x, t, u(x, t), ux(x, t), uxx(x, t)) , a < x < b, t ≥ t0, (3)

where u : � × � → �n and f : � × � × �n × �n × �n → �n, with separated
boundary conditions,

bL (t,u(a, t), ux(a, t)) = 0, bR (t,u(b, t), ux(b, t)) = 0, t ≥ t0, (4)

where bL, bR : � × �n × �n → �n, 0 ∈ �n, and initial conditions,

u(x, t0) = u0(x), a < x < b, u0 : � → �n. (5)

For systems of BVODEs, the earliest package to implement Gaussian collocation
within an error control framework is COLSYS [4], which was released about four
decades ago. The computation is based on a mesh of points that partitions [a, b] and
the approximate solution is represented in terms of a B-spline basis [11]. The sys-
tem of nonlinear equations arising from the collocation process together with the
boundary conditions is solved using a Newton-type algorithm to obtain the B-spline
coefficients. Control of an estimate of the error of the approximate solution is pro-
vided through adaptive mesh refinement based on equidistribution of estimates of the
global error for each subinterval. About three decades ago, COLNEW [7], an update
of COLSYS, was released; the primary modifications were the replacement of the B-
spine basis with a monomial basis and corresponding changes to the linear algebra
algorithms. Both COLSYS and COLNEW are able to directly treat a generalization
of (1) and (2), known as a mixed order system (see [5] for further details); however,
in this paper, we consider only the standard first-order system form (1) and (2). We
will discuss the algorithms employed in COLSYS/COLNEW in more detail in the
next section.

In subsequent years, a number of packages, obtained through modifications of
COLNEW, have been released; these include COLMOD [10], which updates the
mesh refinement algorithm and introduces automatic parameter continuation, and
COLDAE [6], which extends the problem class to include BVODEs with coupled
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algebraic constraints. More recent work has seen interfaces to COLNEW developed
in Scilab [22], Python [24], and R [23].

For 1D PDEs, PDECOL [18], released about four decades ago, is the earliest Gaus-
sian collocation package to provide any form of error control. PDECOL assumes a
mesh that partitions [a, b] and represents the approximate solution using a B-spline
basis for the spatial dependence with the time dependence represented in the coeffi-
cients of the B-spline basis functions. The Gaussian collocation process discretizes
the PDEs, yielding a system of ODEs. The user must provide the time derivatives of
the boundary conditions; these are a set of ODEs. These ODEs, together with those
arising from the collocation process, are solved using an ODE solver [18], which pro-
vides control of the temporal error. PDECOL does not provide control of the spatial
error.

Almost three decades ago, a modification of PDECOL, called EPDCOL [16]
was developed. EPDCOL replaces the banded linear system solver employed by
PDECOL with an almost block diagonal (ABD) solver, COLROW [12], which can
efficiently solve the ABD linear systems that arise from the B-spline collocation spa-
tial discretization. In [16], EPDCOL was shown to be about twice as fast as PDECOL.
EPDCOL also does not provide control of the spatial error.

The next 1D PDE package implementing Gaussian collocation, BACOL [26, 28],
was developed about 15 years ago. This package features control of both the spatial
and temporal error. It uses the same representation for the approximate solution that
is used in PDECOL and EPDCOL. However, the boundary conditions are treated
directly and, these equations, together with the ODEs arising from the collocation
discretization, represent a system of index-1 differential algebraic equations (DAEs).
The temporal error–controlled computation of the B-spline coefficients is performed
by DASSL [9], which is based on backward differentiation formulas (BDFs). Spatial
error control is provided through spatial mesh refinement based on equidistribution of
computed spatial error estimates. In a comparison with several other packages for 1D
PDEs, BACOL was shown to provide superior performance, especially for problems
with solutions exhibiting sharp moving layers and for sharp tolerances [27].

Approximately a decade ago, BACOLR [25], a modification of BACOL, was
developed. In BACOLR, DASSL is replaced with RADAU5 [15], a DAE solver
which is based on a fifth-order implicit Runge-Kutta method of Radau IIA type.
Numerical comparisons of BACOL and BACOLR show that the two codes perform
similarly on standard test problems and that BACOLR has much superior perfor-
mance on problems for which the stability of the higher order BDFs is an issue. The
stability regions of the higher order BDFs do not include the imaginary axis and thus
problems that lead to DAEs having Jacobians with eigenvalues near the imaginary
axis, for example, Schrödinger type problems, cannot be treated using the higher
order BDFs. The paper [25] shows that BACOL fails on problems of this type unless
DASSL is restricted to using only lower order BDFs, in which case the efficiency of
the computation is substantially degraded.

The recently released package, BACOLI [20], is a modification of BACOL that
improves on the efficiency of the BACOL spatial error estimation algorithm by
replacing it with a pair of new interpolation–based spatial error estimation schemes.
In [20], BACOLI is shown to be approximately twice as efficient as BACOL. We
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describe the algorithms employed in BACOL, BACOLR, and BACOLI in more detail
in Section 3.

The two new error control Gaussian collocation packages introduced in this paper
are called COLNEW95 and BACOLRI. COLNEW95 is a modification of COLNEW
that updates it to Fortran 95 while introducing several new features that substantially
improve the efficiency of the computation. The primary modifications are the intro-
duction of a superconvergent interpolant to augment the collocation solution and new
error estimation and mesh refinement algorithms. BACOLRI is the newest member
of the BACOL family of error control 1D PDE solvers. It updates BACOLR to use
the new interpolation–based spatial error estimation schemes that were introduced in
BACOLI.

The results of this work will lead to improved error control Gaussian colloca-
tion software for BVODEs and 1D PDEs and will contribute to ongoing work in the
development of error control Gaussian collocation software for 2D PDEs [17].

This paper is organized as follows. In Sections 2 and 3, we review the algo-
rithms implemented in COLSYS/COLNEW and BACOL, BACOLR, and BACOLI,
respectively. Sections 4 and 5, respectively, give brief overviews of COLNEW95
and BACOLRI, along with some numerical comparisons that demonstrate the supe-
riority of these two new solvers. We close, in Section 6, with our conclusions and
suggestions for future work.

2 Error control Gaussian collocation software for BVODEs:
COLSYS/COLNEW

Let {xi}Ni=0 be a set of mesh points partitioning [a, b] with,

a = x0 < x1 < . . . < xN−1 < xN = b.

Assume a C0-continuous, degree p, B-spline basis defined on this mesh. In COL-
SYS, the approximate solution, U(x) : � → �n, to (1) and (2), is expressed in the
form,

U(x) =
Np∑

i=1

cp,iBp,i(x), (6)

where cp,i ∈ �n is an unknown vector coefficient for Bp,i(x), the ith B-spline basis
function of degree p (associated with the above mesh and continuity conditions),
and Np = Np + 1. As mentioned earlier, the primary difference between COLSYS
and COLNEW is that in COLNEW the B-spline basis is replaced with a piecewise
monomial basis; see [7] for further details.

Let
{
ρj

}p

j=1 be the points of the p-point Gauss-Legendre quadrature rule mapped
onto [0, 1] and let hi = xi − xi−1, i = 1, . . . , N . The collocation points, ξm, m =
1, . . . , Np, are given by,

ξm = xi−1 + hiρj , m = (i − 1)p + j, j = 1, . . . , p, i = 1, . . . , N . (7)



Numerical Algorithms (2019) 81:1505–1519 1509

The collocation equations are obtained by requiring that (6) satisfy (1) at the
collocation points (7); this gives,

U(ξm) = f (ξm,U(ξm)) , m = 1, . . . , Np. (8)

The approximate solution, (6), is also required to satisfy (2); this gives,

bL (U(a)) = 0L, bR (U(b)) = 0R . (9)

The system, (8) and (9), is solved using a modified Newton iteration (see [5] for
further details) in order to obtain cp,i , i = 1, . . . , Np.

Standard theory (see, e.g., [5]) for the Gaussian collocation solution of (1) states
that the global error at {xi}Ni=0 satisfies,

U(xi) − u(xi) ∼ O
(
h2p

)
, i = 0, . . . , N, (10)

while the global error at a non-mesh point, x �= {xi}Ni=0, satisfies,

U(x) − u(x) ∼ O
(
hp+1

)
, x ∈ [a, b].

For p > 1, the collocation solution is thus superconvergent at {xi}Ni=0.
The global error estimates, one for each mesh subinterval, are obtained using

Richardson extrapolation (RE). This process requires that a collocation solution
obtained on a mesh of N subintervals be subtracted from a collocation solution (of
the same degree) computed on a mesh of 2N subintervals, where the second mesh is
obtained by halving each subinterval of the first mesh. If the error estimates do not
satisfy the tolerance, then the code will generate a new mesh and compute another
collocation solution based on this new mesh. If the distribution of the error estimates
over the subintervals is sufficiently non-uniform, then the error estimates are used
as the basis for an equidistribution algorithm that can change the number of mesh
points and their locations. Otherwise, the new mesh is obtained simply by halving
each subinterval of the current mesh.

Since the decision to perform an equidistribution requires a fairly substantial non-
uniform distribution of the error estimates, it is common for the next mesh to be
obtained by halving each subinterval of the current mesh. This improves the effi-
ciency of the RE error estimation computation because the code can use RE to
compute an error estimate for the current collocation solution without having to com-
pute a new collocation solution on a new mesh formed by halving each subinterval
of the current mesh. While this is an advantage for the error estimate computation, a
disadvantage is that the meshes are typically not particularly well adapted to the error
estimates, since the equidistribution algorithm is only rarely invoked.

3 Error control Gaussian collocation software for 1D PDEs: BACOL,
BACOLR, BACOLI

In this section, we will assume the same mesh, {xi}Ni=0, that was defined in the
previous section but now will assume a C1-continuous, degree p, B-spline basis
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defined on this mesh. In BACOL, BACOLR, and BACOLI, the approximate solution,
U(x, t) : � × � → �n, is expressed in the form,

U(x, t) =
Np∑

i=1

cp,i(t)Bp,i(x), (11)

where cp,i(t) : � → �n is an unknown time–dependent vector coefficient of Bp,i(x),
the ith B-spline basis function (associated with the spatial mesh and spatial continuity
conditions indicated above), and, in this case, Np = N(p − 1) + 2.

Let
{
ρj

}p−1
j=1 be the points of the (p − 1)-point Gauss-Legendre quadrature rule

mapped onto [0, 1]. The collocation points, ξm, m = 2, . . . , N(p − 1) + 1, are given
by,

ξm = xi−1+hiρj , m = (i−1)(p−1)+j+1, j = 1, . . . , p−1, i = 1, . . . , N .
(12)

For a given t , the coefficients, cp,i(t), are determined by requiring that U(x, t)

satisfy (3) at the collocation points (12). The collocation equations are,

Ut (ξm, t) = f (ξm, t,U(ξm, t),Ux(ξm, t),Uxx(ξm, t)) , m = 2, . . . , N(p − 1) + 1.
(13)

The approximate solution, U(x, t), is also required to satisfy the boundary conditions;
this gives,

bL (t,U(a, t),Ux(a, t)) = 0, bR (t,U(b, t),Ux(b, t)) = 0. (14)

Standard theory states that the spatial error of U(x, t) is O
(
hp+1

)
, where h is the

spatial mesh spacing; see, e.g., [20] and references within.
As mentioned earlier, the system, (13) and (14), is solved using either DASSL or

RADAU5, in order to perform a temporal error–controlled computation to obtain the
B-spline coefficients. After each accepted time step, BACOL and BACOLR com-
pute an estimate of the spatial error for (11). If this error estimate does not satisfy the
tolerance, the numerical solution is rejected, and a spatial remeshing is performed,
based on the principle of equidistributing the spatial error estimates over the spa-
tial mesh subintervals. Both the number of mesh points and their locations may be
changed in order to adapt to the magnitude (with respect to the user-specified toler-
ance) and distribution of the subinterval spatial error estimates over [a, b]. See [28]
for further details. The spatial error estimates are obtained by computing a second
approximate solution, U(x, t), on the same spatial mesh and at the same time t , but
based on B-splines of degree p + 1, and this essentially doubles the overall cost.

This inefficiency is addressed in BACOLI which replaces the computation of
U(x, t) with the more efficient computation of a piecewise polynomial interpolant to
U(x, t). There are two options for this interpolant. One, the superconvergent inter-
polant (SCI) [2], is based on interpolating U(x, t) and Ux(x, t) at the mesh points
and U(x, t) at certain other points where it is superconvergent in space, i.e., the spa-
tial error is at least one order higher than at an arbitrary point in the spatial domain.
The resultant interpolant is of one order of spatial accuracy higher than U(x, t) and
replaces U(x, t) in the computation of the spatial error estimates for U(x, t). Since
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this scheme returns U(x, t) and controls a spatial error estimate for U(x, t), we will
refer to this as standard (ST) error control.

The second type of interpolant, the lower order interpolant (LOI) [3], is based
on interpolating U(x, t) and Ux(x, t) at the mesh points and U(x, t) at certain other
points such that the resulting interpolant has an interpolation error that is asymptoti-
cally equivalent to the error of a collocation solution of one order lower than U(x, t).
Then the difference between this interpolant and U(x, t) is used as an estimate of
the spatial error of U(x, t). Since this scheme controls a spatial error estimate for a
collocation solution that is of one lower order than the returned approximate solu-
tion, U(x, t), we will refer to this as local extrapolation (LE) error control. This type
of control is similar to what is done in the context of Runge-Kutta formula pairs for
the numerical solution of initial value ODEs [14]. BACOLI has been shown to be
approximately twice as fast as BACOL [20].

4 Overview of new error control Gaussian collocation software
for BVODEs: COLNEW95

In this section, we briefly describe the modifications that were made to COLNEW
to obtain COLNEW95 and then provide some numerical results. Further details are
provided in [1]. The modifications proceeded in three phases:

(Phase 0) The initial phase involved a modification of COLNEW to update it from its
original Fortran 77 implementation to a Fortran 95 implementation. This led to major
simplifications in the calling sequence of the solver. COLNEW95 employs a variety
of Fortran 95 language features such as module environments, derived types, optional
arguments, and dynamic memory allocation, and also computes divided difference
Jacobians.

(Phase 1) The second phase of modifications involved augmenting the collocation
solution, (6) (which, as mentioned earlier, has a global error that is O

(
hp+1

)
) with a

low-cost piecewise polynomial superconvergent interpolant [13], which has a global
error that is O

(
h2p

)
, the same order as that of the mesh point solution values. This

interpolant, which we will refer to as the SCI-BV, is constructed by using the frame-
work of continuous mono-implicit Runge-Kutta methods [19] and takes advantage of
the fact that a collocation method is equivalent to a Runge-Kutta method [5].

In [13], the SCI-BV is used in a post-processing step to improve the accuracy of
the final collocation solution returned by COLNEW. The issue with this use of the
SCI-BV is that COLNEW is still required to perform a computation such that the
estimated global error of the collocation solution is less than the user tolerance. The
SCI-BV then provides a second solution approximation, which has a global error
that is much smaller than the user has requested.

In this phase, we modified COLNEW to introduce the SCI-BV within the code
rather than as a post-processing step. The SCI-BV is constructed after each inter-
mediate collocation solution is computed and the difference between the collocation
solution and the SCI-BV is used to estimate the error of the collocation solution. This
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Fig. 1 Absolute error of collocation solution on each subinterval, mapped onto [0,1], for test problem (15)

means that RE is not required and thus it is not necessary to bias the mesh refine-
ment algorithm so that it primarily forms each new mesh by halving each subinterval
of the current mesh. We therefore also modified the mesh refinement algorithm so
that it always uses equidistribution; this allows the meshes to be better adapted to the
error estimates throughout the computation. Note that the collocation solution is still
the primary solution that is returned to the user.

Another modification performed during this phase is based on the observation that
the collocation solution on each subinterval is known to have a leading-order error
term that is a multiple of a single polynomial [5]. Figure 1 shows the absolute error
for the test problem,

(
ε + x2

)
y′′ + 4xy′ + 2y = 0, y(−1) = y(1) = 1/(1 + ε), (15)

on each subinterval of a mesh that was used in the computation of the collocation
solution; the errors on each subinterval are mapped onto [0,1] and plotted on the same
graph. We choose ε = 0.1, p = 5, and a tolerance of 10−5. We see that the error
has the same form on every subinterval and in particular that the maximum error
occurs at the midpoint of each subinterval. We can therefore obtain the maximum
value of the error estimate on each subinterval by evaluating the difference between
the collocation solution and the SCI-BV at this point on each subinterval.

We compare the performance of COLNEW and COLNEW95 Phase1 on a test
BVODE system obtained by using the transverse-method-of-lines (see, e.g., [5]),
together with a fixed time step backward Euler method, to discretize the temporal
domain of the 1D PDE:

zt = zxx − zzx + cos(ωx) + tω2 cos(ωx) − t2 cos(ωx) sin(ωx), (16)
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Fig. 2 Number of Mesh Subintervals vs. Maximum Error Estimate, COLNEW and COLNEW95 Phase1,
1D PDE test problem (16), p=5

where

z(0, t) = t, z(1, t) = t cos(ω), z(x, 0) = 0, ω = 10, tend = 1.

The time step is chosen to give a system of 50 second-order BVODEs, which are then
converted to a system of 100 first-order BVODEs. The tolerance is 10−10 and p = 5.
In Fig. 2, we show results obtained by running COLNEW and COLNEW95 Phase1
on this test problem. We see that COLNEW95 Phase1 converges much more quickly
to an acceptable numerical solution and that final mesh it uses has fewer subintervals
than the final mesh employed by COLNEW. The CPU time for COLNEW95 Phase1
is 209 s while that for COLNEW is 474 s.

(Phase 2) The last step in the development of COLNEW95 involved computing the
SCI-BV immediately after each collocation solution is computed but in this phase, it
is the SCI-BV that is returned to the user as the primary solution. The error estimate
for the SCI-BV is obtained by employing an algorithm called the HO scheme [8]. It
makes use of a collocation method and its corresponding SCI-BV that is of one higher
order than that which was used to compute the collocation solution upon which the
primary SCI-BV is based. The HO scheme has a low computational cost; most of the
work is done during the computation of the original collocation solution. In Fig. 3, we
show results which compare COLNEW95 Phase1 with COLNEW95 Phase2. We see
that COLNEW95 Phase2 converges to a mesh that leads to an acceptable numerical
solution faster than COLNEW95 Phase1 and that it employs a final mesh that has
substantially fewer subintervals than that employed by COLNEW95 Phase1. The
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Fig. 3 Number of Subintervals vs. Maximum Error Estimate, COLNEW95 Phase1 and COL-
NEW95 Phase2, 1D PDE test problem (16), p=5.

CPU time used by COLNEW95 Phase2 is 124 s, while that for COLNEW95 Phase1
is 209 s. COLNEW95 Phase2 represents the current version of COLNEW95.

5 Overview of new error control Gaussian collocation software
for 1D PDEs: BACOLRI

The release of BACOLRI completes a four-step software development project that
started with BACOL, followed with BACOLR, and more recently saw the release of
BACOLI. The following diagram shows the relationships among the four codes.

BACOL ⇒ BACOLR

⇓ ⇓
BACOLI ⇒ BACOLRI

As mentioned earlier, BACOLR was developed as a modification of BACOL to
replace DASSL with RADAU5, addressing the stability issues associated with the
use of DASSL on certain types of PDEs, and BACOLI was developed from BACOL
to address efficiency issues associated with the computation of the spatial error esti-
mates. BACOLRI follows from both BACOLR and BACOLI; it uses RADAU5 for
the time integration and replaces the expensive computation of the second approx-
imate solution in BACOLR with the interpolation-based spatial error estimation
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schemes introduced in BACOLI. The development of BACOLRI involved a substan-
tial modification of BACOLR. Further details regarding this modification and the
results of an extensive numerical testing process are described in [21].

As mentioned earlier, BACOLI has two error control modes, ST (standard) error
control, based on the SCI scheme, and LE (Local Extrapolation) error control, based
on the LOI scheme. Because BACOLRI also implements both the SCI and LOI
schemes, it also has the ST and LE error control options. The earlier package,
BACOLR, runs in ST error control mode; but with a simple modification, it is pos-
sible to have BACOLR return the higher order approximate solution and in this case
it is employing LE error control mode. We introduce the following notation to sum-
marize the software package and error control combinations that are discussed in this
paper.

• (BACOLI/ST): BACOLI using the SCI spatial error estimation scheme in ST
spatial error control mode,

• (BACOLI/LE): BACOLI using the LOI spatial error estimation scheme in LE
spatial error control mode,

• (BACOLRI/ST): BACOLRI using the SCI spatial error estimation scheme in ST
spatial error control mode,

• (BACOLRI/LE): BACOLRI using the LOI spatial error estimation scheme in LE
spatial error control mode,

• (BACOLR/ST): BACOLR in ST spatial error control mode,
• (BACOLR/LE): BACOLR in LE spatial error control mode.

In the first set of tests, we compare BACOLR/ST and BACOLR/LE with
BACOLRI/ST and BACOLRI/LE on a standard test problem, which we call the two-
layer Burger’s equation:

ut = −uux + εuxx, 0 < x < 1, t > 0,

with boundary and initial conditions taken from the exact solution,

u(x, t) = 0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where

A = 0.05

ε
(x − 0.5 + 4.95t) , B = 0.25

ε
(x − 0.5 + 0.75t) , C = 0.5

ε
(x − 0.375),

ε is a problem-dependent parameter that we set to 10−4, and tend = 1. We choose
p = 6 and consider a range of tolerances uniformly distributed (on a log scale) over
10−2, . . . , 10−10.

In Fig. 4, we plot CPU times for BACOLR/LE, BACOLRI/ST, and BACOLRI/LE
relative to the corresponding CPU times for BACOLR/ST. We also plot the best fit
line to each data set to provide some indication of the overall trends of the data sets.
Note that the horizontal line associated with a relative error of 1.0 corresponds to the
BACOLR/ST code. We see that BACOLRI/ST and BACOLRI/LE both have costs
that are approximately 40–60% of those of BACOLR/ST and BACOLR/LE, over the
range of tolerances considered.
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Fig. 4 L2-norm error vs. CPU times for BACOLR/LE, BACOLRI/ST, and BACOLRI/LE relative to the
corresponding CPU times for BACOLR/ST, for the Two Layer Burger’s Equation, ε = 10−4, tend = 1,
p = 6

In the second set of tests, we compare BACOLI/ST and BACOLI/LE with
BACOLRI/ST and BACOLRI/LE on a problem we call the coupled nonlinear
Schrödinger system:

(u1)t = i

(
1

2
(u1)xx + η(u1)x + (|u1|2 + ρ|u2|2)u1)

)
,

(u2)t = i

(
1

2
(u2)xx − η(u2)x + (ρ|u1|2 + |u2|2)u2)

)
,

where −30 < x < 90 and t > 0, with boundary conditions given by,

(u1)x(−30, t) = (u2)x(−30, t) = 0, (u1)x(90, t) = (u2)x(90, t) = 0.

The initial conditions are,

u1(x, 0) = g1(x), u2(x, 0) = g2(x), a ≤ x ≤ b,

where g1(x) and g2(x) are chosen so that the exact solutions are,

u1(x, t) =
√

2κ

1 + ρ
sech

(√
2κ(x − φt)

)
e
i

(
(φ−η)x−

(
φ2−η2

2 −κ

)
t

)

,

u2(x, t) =
√

2κ

1 + ρ
sech

(√
2κ(x − φt)

)
e
i

(
(φ+η)x−

(
φ2−η2

2 −κ

)
t

)

,

where φ = 1, η = 0.5, ρ = 2/3, and κ = 1. We choose tend = 1. We again choose
p = 6 and the same range of tolerances over 10−2, . . . , 10−10.
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Fig. 5 L2-norm error vs. CPU times for BACOLI/LE, BACOLRI/ST, and BACOLRI/LE relative to the
corresponding CPU times for BACOLI/ST, for the Coupled Nonlinear Schrödinger System, tend = 1,
p = 6

BACOLI is not able to solve this problem unless we restrict DASSL to use only
BDFs of orders 1 or 2 due to the stability issues that arise for the BDFs when applied
to problems of this type, as mentioned earlier in this paper. Since it uses RADAU5
rather than DASSL, these stability issues do not arise for BACOLRI and the package
is able to solve this problem in a straightforward fashion. After setting, BACOLI to
use DASSL restricted to the BDFs of orders 1 and 2, we obtain the results given in
Fig. 5, where we plot CPU times for BACOLI/LE, BACOLRI/ST, and BACOLRI/LE
relative to the corresponding CPU times for BACOLI/ST. We see that, particularly for
medium to sharp tolerances, BACOLRI/ST and BACOLRI/LE are both much faster
than either BACOLI/ST or BACOLI/LE.

6 Conclusions and future work

Error control Gaussian collocation solvers for BVODEs and 1D PDEs have been
widely used for several decades. The new solvers, COLNEW95 and BACOLRI,
provide significant improvements over earlier solvers from their respective families.

Future work associated with COLNEW95 will involve extensive testing and anal-
ysis to optimize its performance. As well, the current version of COLNEW95 is able
to compute approximate solutions, based on the corresponding SCI-BVs, that are
of orders 2, 4, or 6. However COLNEW can return approximate solutions of orders
2, . . . , 8. We therefore plan to extend COLNEW95 to allow it to be able to return
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approximate solutions of order 8. This will involve deriving a new 8th order SCI-BV,
extending the original development undertaken in [13].

Future work involving BACOLRI will center on further testing and analysis to
improve its performance. The introduction of algorithms for the automatic selec-
tion of p, the degree of the B-spline basis, and the type of error control, SCI/ST, or
LOI/LE, is also planned.

As well, the results from both these projects will impact on future development of
error control Gaussian collocation software for 2D PDEs.
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