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Abstract
Recently, the numerical solution of stiffly/highly oscillatory Hamiltonian problems
has been attacked by using Hamiltonian boundary value methods (HBVMs) as spec-
tral methods in time. While a theoretical analysis of this spectral approach has been
only partially addressed, there is enough numerical evidence that it turns out to be
very effective even when applied to a wider range of problems. Here, we fill this
gap by providing a thorough convergence analysis of the methods and confirm the
theoretical results with the aid of a few numerical tests.

Keywords Spectral methods · Legendre polynomials · Hamiltonian boundary value
methods · HBVMs · SHBVMs
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1 Introduction

In recent years, the efficient numerical solution of Hamiltonian problems has been
tackled via the definition of the energy-conserving Runge-Kutta methods named
Hamiltonian boundary value methods (HBVMs) [10–13]. Such methods have been
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2 Dipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Florence, Italy
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developed along several directions (see, e.g., [4, 14, 19]), including Hamiltonian
BVPs [1] and Hamiltonian PDEs (see, e.g., [6]): we also refer to the monograph [7]
and to the recent review paper [8] for further details.

More recently, HBVMs have been used as spectral methods in time for solving
highly oscillatory Hamiltonian problems [18], as well as stiffly oscillatory Hamilto-
nian problems [9] emerging from the space semi-discretization of Hamiltonian PDEs.
Their spectral implementation is justified by the fact that this family of methods per-
forms a projection of the vector field onto a finite dimensional subspace via a least
squares approach based on the use of Legendre orthogonal polynomials [13]. This
spectral approach, supported by a very efficient nonlinear iteration technique to han-
dle the large nonlinear systems needed to advance the solution in time (see [12],
[7, Chapter 4] and [8]), proved to be very effective. However, a thorough convergence
analysis of HBVMs, used as spectral methods, was still lacking. In fact, when using
large stepsizes, as is required by the spectral strategy, the notion of classical order of
a method is not sufficient to explain the correct asymptotic behavior of the solutions,
so that a different analysis is needed, which is the main goal of the present paper.
Moreover, the theoretical achievements will be numerically confirmed by applying
the methods to a number of ODE-IVPs.

It is worth mentioning that early references where numerical methods were derived
by projecting the vector field onto a finite dimensional subspace are, e.g., [2, 3, 27,
28] (a related reference is [36]). A similar technique, popular for solving oscilla-
tory problems, is that of exponential/trigonometrically fitted methods and, more in
general, functionally fitted methods [22–24, 26, 29–33, 35, 37].

With these premises, the structure of the paper is as follows: in Section 2, we
analyze the use of spectral methods in time; in Section 3, we discuss the efficient
implementation of the fully discrete method; in Section 4, we provide numeri-
cal evidence of the effectiveness of such an approach, confirming the theoretical
achievements. At last, a few conclusions are reported in Section 5.

2 Spectral approximation in time

This section contains the main theoretical results regarding the spectral methods
that we shall use for the numerical solution of ODE-IVPs which, without loss of
generality, will be assumed in the form1

ẏ(t) = f (y(t)), y(0) = y0 ∈ R
m. (1)

Hereafter, f is assumed to be suitably smooth (in particular, we shall assume f (z)

to be analytic in a closed complex ball centered at y0). We consider the solution
of problem (1) on the interval [0, h], where h stands for the time-step to be used
by a one-step numerical method. The same arguments will be then repeated for the
subsequent integration steps. According to [13], we consider the expansion of the

1In fact, if problem (1) is non autonomous, t can be included in the state vector.
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right-hand side of (1) along the shifted and scaled Legendre polynomial orthonormal
basis {Pj }j≥0,

Pj ∈ �j,

∫ 1

0
Pi(x)Pj (x)dx = δij , i, j = 0, 1, . . . ,

with �j the set of polynomials of degree j and δij the Kronecker delta. One then
obtains:

ẏ(ch) = f (y(ch)) ≡
∑
j≥0

Pj (c)γj (y), c ∈ [0, 1], (2)

with the Fourier coefficients γj (y) given by

γj (y) =
∫ 1

0
Pj (τ)f (y(τh))dτ, j = 0, 1, . . . . (3)

We recall that:

‖Pj‖ := max
x∈[0,1] |Pj (x)| = √

2j + 1,
∫ 1

0
Pj (x)q(x)dx = 0, ∀q ∈ �j−1.

(4)
Let us now study the properties of the coefficients γj (y) defined at (3). To begin

with, we report the following results.

Lemma 1 Let g : [0, h] → V , with V a vector space, admit a Taylor expansion at
0. Then, ∫ 1

0
Pj (c)g(ch)dc = O(hj ).

Proof See [13, Lemma 1].

Corollary 1 The Fourier coefficients defined in (3) satisfy: γj (y) = O(hj ).

We now want to derive an estimate which generalizes the result of Corollary 1 to
the case where the stepsize h is not small. For this purpose, hereafter we assume that
the solution y(t) of (1) admits a complex analytic extension in a neighbourhood of 0.
Moreover, we shall denote by B(0, r) the closed ball of center 0 and radius r in the
complex plane, and C(0, r) the corresponding circumference. The following results
then hold true.

Lemma 2 Let Pj be the j th shifted and scaled Legendre polynomial and, for ρ > 1,
let us define the function

Qj(ξ) =
∫ 1

0

Pj (c)

ξ − c
dc, ξ ∈ C(0, ρ). (5)

Then,

‖Qj‖ρ := max
ξ∈C(0,ρ)

|Qj(ξ)| ≤
√

2

j + 1

1

(ρ − 1)ρj
. (6)
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Proof One has, for |ξ | = ρ > 1, and taking into account (4):

Qj(ξ) =
∫ 1

0

Pj (c)

ξ − c
dc = ξ−1

∫ 1

0

Pj (c)

1 − ξ−1c
dc = ξ−1

∫ 1

0
Pj (c)

∑
�≥0

ξ−�c� dc

= ξ−1
∑
�≥j

ξ−�

∫ 1

0
Pj (c)c

� dc = ξ−j−1
∑
�≥0

ξ−�

∫ 1

0
Pj (c)c

�+j dc.

Passing to norms, one has:

∣∣∣∣∣
∫ 1

0
Pj (c)c

�+j dc

∣∣∣∣∣ ≤ ‖Pj‖
∫ 1

0
c�+jdc =

√
2j + 1

j + � + 1
≤
√

2

j + 1
,

∣∣∣∣∣∣ξ
−j−1

∑
�≥0

ξ−�

∣∣∣∣∣∣ ≤ ρ−j−1
∑
�≥0

ρ−� =
[
(ρ − 1)ρj

]−1
,

from which (6) follows.

Lemma 3 Let g(z) be analytic in the closed ball B(0, r∗) of the complex plane, for
a given r∗ > 0. Then, for all 0 < h ≤ h∗ < r∗,

gh(ξ) := g(ξh) (7)

is analytic in B(0, ρ), with

ρ ≡ ρ(h) := r∗

h
≥ r∗

h∗ =: ρ∗ > 1. (8)

We are now in the position of stating the following result.2

Theorem 1 Assume that the function

g(z) := f (y(z)) (9)

and h in (2)–(3) satisfy the hypotheses of Lemma 3. Then, there exists κ = κ(h∗) > 0,
such that3

|γj (y)| ≤ κ√
j + 1

ρ−j . (10)

2The used arguments are mainly adapted from [21].
3Hereafter, for sake of clarity, we shall denote by | · | any convenient vector or matrix norm.
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Proof By considering the function (7) corresponding to (9), and with reference to
the function Qj(ξ) defined in (5), one has that the parameter ρ, as defined in (8), is
greater than 1 and, moreover, (see (3))

γj (y) =
∫ 1

0
Pj (c)f (y(ch))dc ≡

∫ 1

0
Pj (c)gh(c)dc

=
∫ 1

0
Pj (c)

[
1

2π i

∫
C(0,ρ)

gh(ξ)

ξ − c
dξ

]
dc

= 1

2π i

∫
C(0,ρ)

gh(ξ)

[∫ 1

0

Pj (c)

ξ − c
dc

]
dξ ≡ 1

2π i

∫
C(0,ρ)

gh(ξ)Qj (ξ) dξ .

Then, passing to norms (see (6)),

|γj (y)| ≤ ρ‖gh‖ρ‖Qj‖ρ .

Moreover, observing that (see (9), (7), and (8)):

‖gh‖ρ := max
ξ∈C(0,ρ)

|gh (ξ)| ≤ max
ξ∈B(0,ρ)

|gh (ξ)| ≡ max
z∈B(0,r∗)

|g(z)| =: ‖g‖,

and using (6), one has, (see (8)):

|γj (y)| ≤ ‖g‖
(1 − ρ−1)

√
2

j + 1
ρ−j ≤ ‖g‖

(1 − (ρ∗)−1)

√
2

j + 1
ρ−j ,

from which (10) eventually follows.

Remark 1 It is worth mentioning that, in the bound (10), the dependence on h only
concerns the parameter ρ > 1, via the expression (8), from which one infers that
ρ ∼ h−1, for all 0 < h ≤ h∗ < r∗. This, in turn, is consistent with the result of
Corollary 1, when h → 0.

Let us now consider a polynomial approximation to (2),

σ̇ (ch) =
s−1∑
j=0

Pj (c)γj (σ ), c ∈ [0, 1], (11)

where γj (σ ) is defined according to (3) by formally replacing y by σ , i.e.,

γj (σ ) =
∫ 1

0
Pj (τ)f (σ (τh))dτ, j = 0, 1, . . . , s − 1. (12)

Integrating term by term (11), and imposing the initial condition in (1), provide us
with the polynomial approximation of degree s:

σ(ch) = y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γj (σ ), c ∈ [0, 1]. (13)

We now want to assess the extent to which σ(ch) approximates y(ch), for c ∈ [0, 1].
When h → 0, it is known that y(h) − σ(h) = O(h2s+1) (see, e.g., [7, 8, 13]).
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Nevertheless, we here discuss the approximation of σ to y, in the interval [0, h], when
h is finite and only assuming that the result of Theorem 1 is valid. The following
result then holds true.4

Theorem 2 Let y be the solution of (1), σ be defined according to (13), and assume
that f (σ(z)) is analytic in B(0, r∗), for a given r∗ > 0. Then, for all 0 < h ≤ h∗ <

r∗, there exist M, M̄ > 0, M = M(h∗), M̄ = M̄(h∗), and ρ > 1, ρ ∼ h−1, such
that:

• |σ(ch) − y(ch)| ≤ chM ρ−s , c ∈ [0, 1] ;
• |σ(h) − y(h)| ≤ hM̄ ρ−2s .

Proof Let y(t, ξ, η) denote the solution of the problem

ẏ = f (y), t ≥ ξ, y(ξ) = η,

and (t, ξ) be the solution of the associated variational problem,

̇(t, ξ) = f ′(y(t, ξ, η))(t, ξ), t ≥ ξ, (ξ, ξ) = I,

having set f ′ the Jacobian of f . Without loss of generality, we shall assume that the
function

ĝ(z) := (h, z), (14)

is also analytic in B(0, r∗). We also recall the following well-known perturbation
results:

∂

∂η
y(t, ξ, η) = (t, ξ),

∂

∂ξ
y(t, ξ, η) = −(t, ξ)f (η).

Consequently, from (12) and (13), one has:

σ(ch) − y(ch) = y(ch, ch, σ (ch)) − y(ch, 0, σ (0)) =
∫ ch

0

d

dt
y(ch, t, σ (t)) dt

=
∫ ch

0

[
∂

∂ξ
y(ch, ξ, σ (t))

∣∣∣∣
ξ=t

+ ∂

∂η
y(ch, t, η)

∣∣∣∣
η=σ(t)

σ̇ (t)

]
dt

= −h

∫ c

0
(ch, τh) [f (σ(τh)) − σ̇ (τh)] dτ

= −h

∫ c

0
(ch, τh)

⎡
⎣∑

j≥0

Pj (τ)γj (σ ) −
s−1∑
j=0

Pj (τ)γj (σ )

⎤
⎦ dτ

= −h
∑
j≥s

[∫ c

0
Pj (τ)(ch, τh)dτ

]
γj (σ ). (15)

From the result of Theorem 1 applied to g(z) := f (σ(z)), we know that there exist
κ = κ(h∗) and ρ > 1, ρ ∼ h−1, such that, for the Fourier coefficients defined in

4The proof uses arguments similar to those of [13, Theorem 4].
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(12),

|γj (σ )| ≤ κ√
j + 1

ρ−j . (16)

Moreover, (see (4)) ‖Pj‖ = √
2j + 1 and, considering that, for all h ∈ (0, h∗],

max
x1,x2∈[0,h] |(x1, x2)| ≤ max

x1,x2∈[0,h∗] |(x1, x2)| =: ν≡ ν(h∗),

one has that ∣∣∣∣
∫ c

0
Pj (τ)(ch, τh)dτ

∣∣∣∣ ≤ cν
√
2j + 1.

Consequently, the first statement follows from (15) by setting, with reference to the
parameter ρ∗ defined in (8),

M = νκ
√
2

1 − (ρ∗)−1
,

since, for all c ∈ [0, 1]:

|σ(ch) − y(ch)| ≤ chνκ
∑
j≥s

√
2j + 1

j + 1
ρ−j ≤ chνκ

√
2
∑
j≥s

ρ−j

= chνκ
√
2

ρ−s

1 − ρ−1
≤ ch

νκ
√
2

1 − (ρ∗)−1
ρ−s ≡ chMρ−s .

To prove the second statement (i.e., when c = 1), we observe that the result of
Theorem 1 holds true also for the function (14) involved in the Fourier coefficients∫ 1

0
Pj (τ)(h, τh)dτ .

Consequently, there exist κ1= κ1(h
∗) > 0, such that∣∣∣∣∣

∫ 1

0
Pj (τ)(h, τh)dτ

∣∣∣∣∣ ≤ κ1√
j + 1

ρ−j . (17)

The second statement then follows again from (15) by setting

M̄ = κ1κ

1 − (ρ∗)−2
,

so that, by using same steps as above:

|σ(h) − y(h)| ≤ hκ1κ
∑
j≥s

ρ−2j

j + 1
≤ hκ1κ

∑
j≥s

ρ−2j

= hκ1κ
ρ−2s

1 − ρ−2
≤ h

κ1κ

1 − (ρ∗)−2
ρ−2s ≡ hM̄ρ−2s .

Let us now introduce the use of a finite precision arithmetic, with machine preci-
sion u, for approximating (2). Then, the best we can do is to consider the polynomial
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approximation (11)–(12)5

ẏ(ch)
.= σ̇ (ch) =

s−1∑
j=0

Pj (c)γj (σ ), c ∈ [0, 1], (18)

such that

|γs(σ )| < tol · max
j<s

|γj (σ )|, tol ∼ u. (19)

Integrating (18), and imposing that σ(0) = y0, then brings back to (13). We observe
that because of (16), (19) may be approximately recast as

√
1

s + 1
ρ−s < tol ∼ u, (20)

where ρ ∼ h−1. Consequently, choosing s such that (19) (or (20)) is satisfied, we
obtain that:

• the polynomial σ(ch) defined by (18) and (13) provides a uniformly accurate
approximation to y(ch), in the whole interval [0, h], within the possibility of the
used finite precision arithmetic;

• σ(h) is a spectrally accurate approximation to y(h). Moreover, in light of the
second point of the result of Theorem 2, one has that the criterion (19) can be
conveniently relaxed. In fact, making the ansatz (see (16) and (17)) κ = κ1, one
has that

|σ(h) − y(h)| � hκ2

1 − ρ−2
ρ−2s ≈ h(s + 1)

1 − ρ−2
|γs(σ )|2. (21)

Imposing the approximate upper bound to be smaller than the machine epsilon
u, one then obtains:

|γs(σ )| �
√

u(1 − ρ−2)

h(s + 1)
∝ u1/2, (22)

which is generally much less restrictive than (19).6 Alternatively, by considering
that the use of relatively large time-steps h is sought, one can use tol ∼ u1/2 in
(19), that is,

|γs(σ )| < tol · max
j<s

|γj (σ )|, tol ∼ u1/2, (23)

In other words, (21) means that the method maintains the property of super-
convergence, which is known to hold when h → 0, also in the case where the
time-step h is relatively large.

5Hereafter,
.= means “equal within the round-off error level of the used finite precision arithmetic”.

6This latter criterion was that used in [18] and [9].
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Remark 2 In particular, we observe that (19) (or (20) or (22)) can be fulfilled by
varying the value of s, and/or that of the stepsize h, by considering that, by virtue of
(8),

ρ(hnew) ≈ ρ(hold)
hold

hnew
,

hold and hnew being the old and new stepsizes, respectively.
It is worth mentioning that the result of Theorem 2 can be also used to define a

stepsize variation, within a generic error tolerance tol, thus defining a strategy for the
simultaneous order/stepsize variation.

We conclude this section mentioning that, to gain efficiency, the criterion (19) for
the choice of s in (18) can be more conveniently changed to

|γs−1(σ )| ≤ tol · max
j≤s−1

|γj (σ )|, tol ∼ ρ · u. (24)

Similarly, the less restrictive criterion (22) can be approximately modified as:

|γs−1(σ )| � ρ

√
u

hs
∝ u1/2,

or, alternatively, one uses tol ∼ u1/2 in (24). As is clear, computing the norms of the
coefficients γj (σ ) permits to derive estimates for the parameters κ and ρ in (16), as
we shall see later in the numerical tests.

3 SHBVMs

The approximation procedure studied in the previous section does not yet provide a
numerical method, in that the integrals defining γj (σ ), j = 0, . . . , s − 1, in (12)–
(13) need to be computed. For this purpose, one can approximate them to within
machine precision through a Gauss-Legendre quadrature formula of order 2k (i.e.,
the interpolatory quadrature rule defined at the zeros of Pk) with k large enough. In
particular, following the criterion used in [9, 18], for the double precision IEEE7, we
choose

k = max{20, s + 2}. (25)

After that, we define the approximation to y(h) as

y1 := σ(h) ≡ y0 + hγ0(σ ). (26)

In so doing, one eventually obtains a HBVM(k, s), which we sketch below. Hereafter,
we shall refer to such a method as to spectral HBVM (in short, SHBVM), since its
parameters s and k, respectively defined in (19) (or (20) or (22)) and (25), are aimed
at obtaining a numerical solution which is accurate within the round-off error level
of the used finite precision arithmetic.

7In such a case, the machine precision is u ≈ 10−16.
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For sake of completeness, let us now briefly sketch what a HBVM(k, s) is. In
general, to approximate the Fourier coefficient γj (σ ), and assuming for sake of
simplicity that full machine accuracy is gained, we use the quadrature

γj (σ )
.=

k∑
�=1

b�Pj (c�)f (σ (c�h)) =: γ̂j , j = 0, . . . , s − 1, (27)

where the polynomial σ is that defined in (13) by formally replacing γj (σ ) with γ̂j ,
and (ci, bi) are the abscissae and weights of the Gauss-Legendre quadrature of order
2k on the interval [0, 1].8 Setting Y� = σ(c�h), from (27), one then obtains the stage
equations

Yi = y0 + h

s−1∑
j=0

∫ ci

0
Pj (x)dxγ̂j

≡ y0 + h

k∑
j=1

bj

[
s−1∑
�=0

∫ ci

0
P�(x)dxP�(cj )

]

︸ ︷︷ ︸
=: aij

f (Yj ), i = 1, . . . , k, (28)

with the new approximation given by (see (26))

y1 = y0 + hγ̂0 ≡ y0 + h

k∑
i=1

bif (Yi). (29)

Consequently, with reference to (28), setting

A = (
aij

) ∈ R
k×k, b = (bi), c = (ci) ∈ R

k, (30)

one easily realizes that (28) and (29) define the k-stage Runge-Kutta method with
Butcher tableau:

c A

b� .

From (28), one verifies that the Butcher matrix in (30) can be written as

A = IsP�
s �, (31)

with

Ps =
⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ , Is =

⎛
⎜⎝
∫ c1
0 P0(x)dx . . .

∫ c1
0 Ps−1(x)dx

...
...∫ ck

0 P0(x)dx . . .
∫ ck

0 Ps−1(x)dx

⎞
⎟⎠ ∈ R

k×s ,

(32)
and

� =
⎛
⎜⎝

b1
. . .

bk

⎞
⎟⎠ ∈ R

k×k . (33)

8i.e., 0 < c1 < · · · < ck < 1 are the zeros of Pk .
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In fact, setting ei ∈ R
k the ith unit vector, and taking into account (31)–(33), one has

e�
i Aej = e�

i IsP�
s �ej = e�

i Is

(
e�
j Ps

)�
bj =bj

[
s−1∑
�=0

∫ ci

0
P�(x)dxP�(cj )

]
≡ aij ,

as defined in (28). From well-known properties of Legendre polynomials (see, e.g.,
[7, AppendixA]), one has that

Is = Ps+1X̂s ≡
⎛
⎜⎝

P0(c1) . . . Ps(c1)

...
...

P0(ck) . . . Ps(ck)

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ0 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−1 0
ξs

⎞
⎟⎟⎟⎟⎟⎟⎠

, ξi =
(
2
√

|4i2 − 1|
)−1

,

(34)

from which one easily derives the following property relating the matrices (32)–(33)
(see, e.g., [7, Lemma 3.6]):

P�
s �Is =

⎛
⎜⎜⎜⎜⎝

ξ0 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−1 0

⎞
⎟⎟⎟⎟⎠ =: Xs ∈ R

s×s . (35)

Remark 3 From (32)–(34), one has that the Butcher matrix (31) can be rewritten as

A = Ps+1X̂sP�
s �. (36)

Considering that, when k = s, (see (35)) Ps+1X̂s = PsXs and P�
s � = P−1

s , so that
A reduces to PsXsP−1

s , we observe that (36) can be also regarded as a generalization
of the W -transformation in [25, Section IV.5].

At this point, we observe that the stage equation (28) can be cast in vector form,
by taking into account (30)–(33), as

Y ≡
⎛
⎜⎝

Y1
...

Yk

⎞
⎟⎠ = e ⊗ y0 + hIsP

�
s � ⊗ Im · f (Y ), e =

⎛
⎜⎝
1
...
1

⎞
⎟⎠ ∈ R

k, (37)

with an obvious meaning of f (Y ). On the other hand, the block vector of the
coefficients in (27) turns out to be given by

γ̂ ≡
⎛
⎜⎝

γ̂0
...

γ̂s−1

⎞
⎟⎠ = P�

s � ⊗ Im · f (Y ). (38)

Consequently, from (37), one obtains

Y = e ⊗ y0 + hIs ⊗ Im · γ̂ ,
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and then, from (38), one eventually derives the equivalent discrete problem

F(γ̂ ) := γ̂ − P�
s � ⊗ Im · f

(
e ⊗ y0 + hIs ⊗ Im · γ̂

) = 0, (39)

which has (block) dimension s, independently of k (compare with (37)). Once it has
been solved, the new approximation is obtained (see (29)) as y1 = y0 + hγ̂0.

It is worth observing that the new discrete problem (39), having block dimension
s independently of k, allows us to use arbitrarily high-order quadratures (see (25)),
without affecting that much the computational cost.

In order to solve (39), one could in principle use a fixed-point iteration,9

γ̂
�+1 := P�

s � ⊗ Im · f
(
e ⊗ y0 + hIs ⊗ Im · γ̂

�
)

, � = 0, 1, . . . ,

which, though straightforward, usually implies restrictions on the choice of the step-
size h. For this reason, this approach is generally not useful when using the methods
as spectral methods, where the use of relatively large stepsizes is sought. On the other
hand, the use of the simplified Newton iteration for solving (39) reads, by virtue of
(35),

solve:
[
Is ⊗ Im − hXs ⊗ f ′(y0)

]
δ� = −F(γ̂

�
), γ̂

�+1 := γ̂
� + δ�, � = 0, 1, . . . . (40)

However, the coefficient matrix in (40) has a dimension s times larger than that of the
continuous problem (i.e.,m) and, therefore, this can be an issue when large values of s
are to be used, as in the case of SHBVMs. Fortunately, this problem can be overcome
by replacing the previous iteration (40) with a corresponding blended iteration [7, 8,
12] (see also [5]). In more details, once one has formally computed the m×m matrix

� = (
Im − hρsf

′(y0)
)−1

, ρs = min
λ∈σ(Xs)

|λ|, (41)

where σ(Xs) denotes, as is usual, the spectrum of matrix Xs , one iterates:

η� := F(γ̂
�
), η�

1 := ρsX
−1
s ⊗Imη�, γ̂

�+1 := γ̂
�+Is ⊗�

[
η�
1 + Is ⊗ �

(
η� − η�

1

)]
, � = 0, 1, . . . .

(42)

Consequently, one only needs to compute, at each time-step, the matrix � ∈ R
m×m

defined in (41),10 having the same size as that of the continuous problem. More-
over, it is worth mentioning that for semi-linear problems with a leading linear part,
the Jacobian of f can be approximated with the (constant) linear part, so that � is
computed once for all [6, 9, 18].

Remark 4 It must be stressed that it is the availability of the very efficient blended
iteration (41)–(42) which makes the practical use of HBVMs as spectral methods in
time possible, since relatively large values of s can be easily and effectively handled.

A thorough analysis of the blended iteration can be found in [15]. Contexts
where it has been successfully implemented include stiff ODE-IVPs [16], lin-
early implicit DAEs up to index 3 [17] (see also the code BiMD in TestSet for

9Hereafter, the initial approximation γ̂
0 = 0 is conveniently used.

10i.e., factor �−1.
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IVP Solvers “https://archimede.dm.uniba.it/∼testset/testsetivpsolvers/”), and canoni-
cal Hamiltonian systems (see the Matlab code HBVM, available at “http://web.math.
unifi.it/users/brugnano/LIMbook/”), while its implementation in the solution of RKN
methods may be found in [38].

4 Numerical tests

The aim of this section is twofold: firstly, to assess the theoretical analysis of SHB-
VMs made in Section 2; secondly, to compare such methods w.r.t. some well-known
ones. All numerical tests, which concern different kinds of ODE problems, have
been computed on a laptop with a 2.8-GHz Intel-i7 quad-core processor and 16GB
of memory, running Matlab 2017b. For the SHBVM, the criteria (23) and (25) have
been respectively used to determine its parameters s and κ .

4.1 The Kepler problem

We start considering the well-known Kepler problem (see, e.g., [7, Chapter 2.5]),
which is Hamiltonian, with Hamiltonian function

H(q, p) = 1

2
‖p‖22 − ‖q‖−1

2 , q, p ∈ R
2. (43)

Consequently, we obtain the equations

q̇ = p, ṗ = −‖q‖−3
2 q, (44)

which, when coupled with the initial conditions

q(0) = (
1 − ε, 0

)�
, p(0) =

(
0,

√
1+ε
1−ε

)�
, ε ∈ [0, 1), (45)

provide a periodic orbit of period T = 2π that, in the q-plane, is given by an ellipse
of eccentricity ε. In particular, we choose the value ε = 0.5. The solution of this
problem has two additional (functionally independent) invariants besides the Hamil-
tonian (43), i.e., the angular momentum and one of the nonzero components of the
Lenz vector [7, page 64] (in particular, we select the second one):

M(q, p) = q1p2 − p1q2, L(q, p) = −p1M(q, p) − q2‖q‖−1
2 . (46)

At first, we want to assess the result of Theorem 1. For this purpose, we apply the
HBVM (20,16) for one step starting from the initial condition (45), and using time-
steps hi = 2π/(5 · 2i−1), i = 1, . . . , 5. Figure 1 is the plot (see (27)) of |γ̂j |, for
j = 0, 1, . . . , 15, (solid line with circles), which, according to (16), should behave
as κρ−j /

√
j + 1, due to the result of Theorem 1. A least squares approximation

technique has been employed to estimate the two parameters (κ and ρ) appearing
in the bound (16). These theoretical bounds are highlighted by the dashed line with
asterisks in Fig. 1: evidently, they well fit the computed values, except those which
are close to the round-off error level. Moreover, according to the arguments in the
proof of Theorem 1, one also expects that the estimate of κ increases but is bounded,
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Fig. 1 Behavior of |γ̂j | for decreasing values of the time-step h for the Kepler problem (44)–(45) solved
by the HBVM(20,16) with decreasing time-steps. The line with circles are the computed norms, whereas
those with the asterisks are the estimated ones. Observe that for the smallest time-steps, the computed
norms stagnate near the round-off error level

as h → 0, whereas ρ should be proportional to h−1. This fact is confirmed by the
results listed in Table 1.

Next, we compare the following methods for solving (44)–(45):

• the s-stage Gauss method (i.e., HBVM(s, s)), s = 1, 2, which is symplectic
and of order 2s. Consequently, it is expected to conserve the angular momentum
M(q, p) in (46), which is a quadratic invariant [34];

• the HBVM(6, s) methods, s = 1, 2, which, for the considered stepsizes is energy-
conserving and of order 2s;

Table 1 Estimated values for
the parameters κ and ρ for the
Kepler problem (44)–(45), when
using decreasing time-steps

h κ ρ

2π/5 9.4 2.2

2π/10 14.3 3.2

2π/20 18.2 5.6

2π/40 21.5 10.6

2π/80 16.1 19.8
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Table 2 Numerical result for the s-stage Gauss method, s = 1, 2, used for solving the Kepler problem
(44)–(45), ε = 0.5, with stepsize h = 2π/n

n Time eH Rate eM eL Rate ey Rate

Gauss-1

100 2.52 6.56e−03 – 5.88e−15 4.97e−01 – 3.04e 00 –

200 4.74 1.63e−03 2.0 1.04e−14 3.54e−01 0.5 2.39e 00 0.3

400 9.78 3.82e−04 2.1 2.09e−14 9.76e−02 1.9 1.61e 00 0.6

800 17.26 3.05e−05 3.6 7.66e−15 2.45e−02 2.0 7.49e−01 1.1

1600 33.74 6.07e−07 5.6 1.93e−14 6.11e−03 2.0 2.08e−01 1.8

3200 65.46 9.65e−09 6.0 3.04e−14 1.53e−03 2.0 5.25e−02 2.0

Gauss-2

50 2.33 2.05e−06 – 3.44e−15 3.81e−02 – 3.17e−01 –

100 4.09 5.37e−10 11.9 5.77e−15 2.43e−03 4.0 2.09e−02 3.9

200 7.52 1.44e−13 11.9 7.55e−15 1.53e−04 4.0 1.32e−03 4.0

400 14.48 9.55e−15 3.9 9.99e−14 9.55e−06 4.0 8.29e−05 4.0

800 26.75 1.53e−14 *** 1.49e−14 5.97e−07 4.0 5.18e−06 4.0

1600 52.46 3.81e−14 *** 1.95e−14 3.73e−08 4.0 3.24e−07 4.0

3200 101.74 3.49e−14 *** 4.71e−14 2.33e−09 4.0 2.04e−08 4.0

• the SHBVM method described above, where s and k are determined according
to (23) and (25), respectively, with tol ≈ 10−8. This tolerance, in turn, should
provide us with full accuracy, according to the result of Theorem 2, because of
the super-convergence of the method, which is valid for any used step-size.11

It is worth mentioning that the execution times that we shall list for the Gauss,
HBVM, and SHBVMmethods are perfectly comparable, since the same Matlab code
has been used for all of them. This code, in turn, is a slight variant of the hbvm
function available at the url “http://web.math.unifi.it/users/brugnano/LIMbook/”.

In Tables 2, 3, and 4, we list the obtained results when using a time-step h = 2π/n

over 100 periods. In more details, we list the maximum errors, measured at each
period, in the invariants (43) and (46), eH , eM, eL, respectively, the solution error,
ey , and the execution times (in sec). As it is expected, the symplectic methods
conserve the angular momentum (since it is a quadratic invariant), whereas the
energy-conserving HBVMs conserve the Hamiltonian function.12 On the other hand,
the SHBVM conserves all the invariants and has a uniformly small solution error, by
using very large stepsizes. Further, its execution time is the lowest one (less than 0.5
sec, when using h = 2π/5), thus confirming the effectiveness of the method.

11As matter of fact, considering more stringent tolerances does not improve the accuracy of the computed
numerical solution.
12In this case, the Gauss methods exhibit a super-convergence in the conservation of the Hamiltonian (3
times the usual order) and HBVMs do the same with the angular momentum. This is due to the fact that
the error is measured only at the end of each period.
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Table 3 Numerical result for the HBVM(6, s) methods, s = 1, 2, used for solving the Kepler problem
(44)–(45), ε = 0.5, with stepsize h = 2π/n

n Time eH eM Rate eL Rate ey Rate

HBVM(6,1)

100 3.55 4.44e−16 9.09e−04 – 4.99e−01 – 2.94e 00 —

200 7.10 4.44e−16 2.12e−05 6.0 3.52e−01 1.9 9.68e−01 1.9

400 12.47 6.66e−16 3.39e−07 6.0 9.70e−02 2.0 2.58e−01 2.0

800 22.86 4.44e−16 5.29e−09 6.0 2.44e−02 2.0 6.46e−02 2.0

1600 45.46 4.44e−16 8.26e−11 6.0 6.10e−03 2.0 1.62e−02 2.0

3200 86.34 6.66e−16 1.30e−12 6.0 1.53e−03 2.0 4.04e−03 2.0

HBVM(6,2)

50 2.92 4.44e−16 1.09e−07 – 3.82e−02 – 4.64e−02 –

100 4.50 4.44e−16 2.72e−11 12.0 2.43e−03 4.0 2.94e−03 4.0

200 8.10 4.44e−16 5.88e−15 12.1 1.53e−04 4.0 1.84e−04 4.0

400 15.48 4.44e−16 3.89e−15 *** 9.55e−06 4.0 1.15e−05 4.0

800 28.42 4.44e−16 1.40e−14 *** 5.97e−07 4.0 7.20e−07 4.0

1600 52.29 6.66e−16 1.73e−14 *** 3.73e−08 4.0 4.50e−08 4.0

3200 107.41 6.66e−16 1.40e−14 *** 2.33e−09 4.0 2.81e−09 4.0

4.2 A Lotka-Volterra problem

We consider the following Poisson problem [20],

ẏ = B(y)∇H(y), B(y)� = −B(y), (47)

with y ∈ R
3 and, for arbitrary real constants a, b, c, ν, μ,

B(y)=
⎛
⎝ 0 c y1y2 bc y1y3

−c y1y2 0 −y2y3
−bc y1y3 y2y3 0

⎞
⎠, H(y)=ab y1+y2−a y3+ν ln y2−μ ln y3.

(48)
Moreover, assuming that abc = −1, there is a further invariant besides the
Hamiltonian H , i.e., the Casimir

C(y) = ab ln y1 − b ln y2 + ln y3. (49)

Table 4 Numerical result for the SHBVMmethod used for solving the Kepler problem (44)–(45), ε = 0.5,
with stepsize h = 2π/n

n k s Time eH eM eL ey

5 24 22 0.47 4.44e−16 2.01e−14 1.66e−14 8.00e−13

10 20 16 0.71 4.44e−16 6.22e−15 2.34e−14 6.13e−13

20 20 11 1.22 4.44e−16 6.66e−16 3.89e−15 3.87e−13

40 20 9 2.16 2.22e−16 1.89e−15 3.28e−15 5.75e−13
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The solution turns out to be periodic, with period T ≈ 2.878130103817, when
choosing

a = −2, b = −1, c = −0.5, ν = 1, μ = 2, y(0) = (1, 1.9, 0.5)�.
(50)

For this problem, the HBVM(k, s) is no more energy-conserving, as well as the s-
stage Gauss method. As matter of fact, both exhibit a drift in the invariants and
a quadratic error growth in the numerical solution. The obtained results for the
SHBVM, with tol ≈ 10−8 in (23) for choosing s, κ given by (25), and using a step-
size h = T/n, are listed in Table 5, where it is reported the maximum Hamiltonian
error, eH , the Casimir error, eC , and the solution error ey , measured at each period,
over 100 periods. In such a case, all the invariants turn out to be numerically con-
served, and the solution error is uniformly very small. Moreover, the SHBVM using
the largest time-step (i.e., h = T/5 ≈ 0.57) turns out to be the most efficient one. For
comparison, in the table, we also list the results obtained by using the Matlab solver
ode45 used with the default parameters, requiring 5600 integration steps and step-
sizes approximately in the range [2.2·10−2, 1.1·10−1], and the same solver used with
parameters AbsTol=1e-15, RelTol=1e-10, now requiring 121760 integration
steps, with stepsizes approximately in the range [10−3, 4.2 · 10−3].

4.3 A stiff ODE-IVP

At last, we consider a stiff ODE-IVP,

ẏ(t) =
⎛
⎝−9999 1 1

9900 −100 1
98 98 −2

⎞
⎠ [y(t) − g(t)] + ġ(t), y(0) = g(0), (51)

with g(t) a known function, having evidently solution y(t) = g(t). We choose

g(t) = (
cos 2πt, cos 4πt, cos 6πt

)�
, (52)

and consider the SHBVM with tol ≈ 10−8 in (23) for choosing s (as before, κ is
chosen according to (25)), so that full accuracy is expected in the numerical solution.

Table 5 Numerical result for the SHBVM method used for solving the Lotka-Volterra problem (47)–(50)
with stepsize h = T/n

n k s Time eH eC ey

5 20 16 0.88 8.26e−14 4.89e−14 4.24e−11

10 20 11 1.37 1.33e−14 1.33e−14 5.01e−11

15 20 9 1.84 3.11e−14 1.62e−14 4.92e−11

ode45 0.23 7.41e−01 7.27e−01 3.62e 00

ode45* 4.12 1.14e−08 8.71e−09 8.44e−07

We also list the results obtained by using ode45, both with the default parameters, and with parameters
AbsTol=1e-15, RelTol=1e-10 (which we denote by ode45*)
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Table 6 Numerical result for the
SHBVM method used for
solving the stiff problem
(51)–(52) with stepsize
h = 100/n, and ode15s with
the default parameters

n k s Time ey

50 40 38 0.09 2.92e−11

75 32 30 0.12 1.53e−11

100 28 26 0.17 1.93e−12

125 25 23 0.21 6.28e−12

150 22 20 0.27 9.43e−12

ode15s 0.68 3.76e−04

The time-step used is h = 100/n for n steps. The measured errors in the last point
(coinciding with the initial condition), are then reported in Table 6. For comparison,
also the results obtained by the Matlab solver ode15s, using its default parame-
ters, are listed in the table. This latter solver requires 6006 steps, with time-steps
approximately in the range [1.9 · 10−3, 2 · 10−2].

5 Conclusions

In this paper, we provide a thorough analysis of SHBVMs, namely HBVMs used as
spectral methods in time, which further confirms their effectiveness. From the anal-
ysis, one obtains that the super-convergence of HBVMs is maintained also when
using relatively large time-steps. SHBVMs become a practical method, due to the
very efficient nonlinear blended iteration inherited from HBVMs. As a consequence,
SHBVMs appear to be good candidates as general ODE solvers. This is indeed con-
firmed by a few numerical tests concerning a Hamiltonian problem, a Poisson (not
Hamiltonian) problem, and a stiff ODE-IVP. The same tests show the numerical
assessment of the theoretical achievements.

Acknowledgments The authors are very grateful to two unknown referees, for the careful reading of the
manuscript, and for their precious comments, which allowed to formulate in a cleaner and more precise
way the results presented in the paper.
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