
https://doi.org/10.1007/s11075-019-00730-w

ORIGINAL PAPER

A new algorithm that generates the image
of the attractor of a generalized iterated function
system

RaduMiculescu1 ·Alexandru Mihail2 ·Silviu-Aurelian Urziceanu3

Received: 27 July 2018 / Accepted: 15 May 2019 /
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We provide a new algorithm (called the grid algorithm) designed to generate
the image of the attractor of a generalized iterated function system on a finite
dimensional space and we compare it with the deterministic algorithm regarding gen-
eralized iterated function systems presented by Jaros et al. (Numer. Algorithms 73,
477–499, 2016).

Keywords Generalized infinite iterated function system (GIFS) · Attractor ·
Deterministic algorithm · Grid algorithm

Mathematics Subject Classification (2010) Primary 28A80; Secondary 37C70 ·
41A65 · 65S05 · 65P99

� Radu Miculescu
radu.miculescu@unitbv.ro

Alexandru Mihail
mihail alex@yahoo.com

Silviu-Aurelian Urziceanu
fmi silviu@yahoo.com

1 Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu
Street, nr. 50, 500091, Braşov, Romania

2 Faculty of Mathematics and Computer Science, University of Bucharest, Romania, Academiei
Street 14, 010014, Bucharest, Romania

3 Faculty of Mathematics and Computer Science, University of Piteşti, Romania, Târgul din Vale
1, 110040, Piteşti, Argeş, Romania

Numerical Algorithms (2020) 83:1399–1413

Published online: 28 May 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-019-00730-w&domain=pdf
http://orcid.org/0000-0002-5516-6193
mailto: radu.miculescu@unitbv.ro
mailto: mihail_alex@yahoo.com
mailto: fmi_silviu@yahoo.com

1 Introduction

As part of the effort to extend the classical theory of iterated function systems due
to J. Hutchinson (see [2]), R. Miculescu and A. Mihail introduced the concept of
generalized iterated function system (see [7] and [9]) which was obtained by consid-
ering contractions from Xp into X rather than contractions from X into itself (here
(X, d) is a metric space and p is a natural number). Sufficient conditions for the
existence and uniqueness of the attractor of a generalized iterated function system
(for short GIFS) F = ((X, d), (fi)i∈{1,2,...,L}), an upper bound for the Hausdorff–
Pompeiu distance between the attractors of two such GIFSs, an upper bound for the
Hausdorff–Pompeiu distance between the attractor of such a GIFS and an arbitrary
compact set of X have been provided and the continuous dependence of the attractor
on the functions fi was proved. In the last years, this concept has been intensively
studied. Let us mention some lines of research regarding this subject:

In [15], F. Strobin and J. Swaczyna extended the concept of GIFS by using weaker
types of generalized contractions which are similar to those introduced by F. Browder
(see [1]) or J. Matkowski (see [5]). In [14], Strobin emphasized the fact that the set of
the attractors generated by GIFSs is larger than the one generated by iterated function
systems. Other related topics can be found in [4, 6, 8, 10–13] and [16].

Moreover, in [3], Strobin and his collaborators provided four algorithms which
generate images of attractors of GIFSs, one of them being the deterministic algorithm
for GIFSs (a counterpart of the classical deterministic algorithm for iterated function
systems). Note that in [3] one can also find a list of papers dealing with algorithms
generating images of the attractors of iterated function systems.

In this paper, we present another algorithm (called the grid algorithm) allowing the
generation of images of the attractors of GIFSs on finite dimensional spaces and we
compare it with the deterministic algorithm for GIFSs. The deterministic algorithm
for GIFSs consists in choosing a finite set of points and applying to this set each of the
constitutive functions of the system obtaining in this way a new finite set of points.
To each of these new points, we apply again each of the constitutive functions of the
system. Continuing the procedure described above, we approach the attractor. The
main idea of the grid algorithm is to simplify the deterministic algorithm by dividing,
at each step, the space that we are working with into small pieces and to choose for
each such piece just one point.

2 Preliminaries

Given a metric space (X, d), we adopt the following notation:

Pcp(X)
not= {K ⊆ X | K is non-empty and compact}.

For K1, K2 ∈ Pcp(X), we consider:

d(K1, K2)
def= sup

x∈K1

d(x, K2),

Numerical Algorithms (2020) 83:1399–14131400

where d(x, K2)
def= inf

y∈K2
d(x, y).

The function h : Pcp(X) × Pcp(X) → [0, ∞) given by:

h(K1, K2) = max{d(K1, K2), d(K2, K1)},
for every K1, K2 ∈ Pcp(X), turns out to be a metric which is called the Hausdorff-
Pompeiu metric.

If (X, d) is complete, then (Pcp(X), h) is complete.
Given a metric space (X, d) and p ∈ N

∗, by Xp we denote the Cartesian product
of p copies of X. We endow Xp with the maximum metric dmax defined by:

dmax((x1, ..., xp), (y1, ..., yp)) = max{d(x1, y1), ..., d(xp, yp)},
for all (x1, ..., xp), (y1, ..., yp) ∈ Xp.

Definition 2.1 A generalized iterated function system (of order p) is a pair F =
((X, d), (fi)i∈{1,2,...,L}), where (X, d) is a metric space, p, L ∈ N

∗ and fi : Xp → X

is contraction for each i ∈ {1, ..., L}. The function FF : (Pcp(X))p → Pcp(X),
described by:

FF (K1, ..., Kp) = ∪
i∈{1,...,L}fi(K1 × ... × Kp),

for all K1, ..., Kp ∈ Pcp(X), is called the fractal operator associated to F .

We shall use the abbreviation GIFS for a generalized iterated function system.

Theorem 2.2 (see Theorem 3.9 from [9]). Given a complete metric space (X, d) and
a GIFS F =((X, d), (fi)i∈{1,...,L}) of order p, there exists a unique AF ∈ Pcp(X)

such that:

FF (AF , ..., AF) = AF .

In addition, for every K1, ..., Kp ∈ Pcp(X), the sequence (Kn)n defined by

Kn+p = FF (Kn, ..., Kn+p−1),

for every n ∈ N
∗, converges, with respect to the Hausdorff-Pompeiu metric, to AF .

Definition 2.3 In the framework of the above theorem, the set AF is called the fractal
generated by F .

Remark 2.4 (see Remark 12 from [3]). In the framework of the above definition, the
function GF : Pcp(X) → Pcp(X), described by:

GF (K) = FF (K, ..., K) = ∪
i∈{1,...,L}fi(K × ... × K),

for all K ∈ Pcp(X), is a contraction on the complete metric space (Pcp(X), h) since
it has the Lipschitz constant less than or equal to max{lip(f1), ..., lip(fL)} < 1.

Numerical Algorithms (2020) 83:1399–1413 1401

3 The presentation of the algorithms

For (x1,, xM) ∈ R
M , we shall use the following notation:

[(x1,, xM)] = ([x1],, [xM]),
where [x] designates the greatest integer less than or equal to the real number x.

In the sequel, without loss of generality,

F = (([0, D]M, d), {f1, ..., fL}),
where L, M ∈ N and d is the Euclidean distance in R

M , will be a generalized iterated
function system of order p ≥ 2 (so fi : ([0, D]M)p → [0, D]M for every i ∈
{1, ..., L}).

We shall use the following notation:

• max{lip(f1), ..., lip(fL)} not= C < 1
• β = pM .

We also consider the following functions:

• FF : (Pcp([0, D]M))p → Pcp([0, D]M) described by

FF (K1, ..., Kp) = f1(K1 × ... × Kp) ∪ ... ∪ fL(K1 × ... × Kp),

for all K1, Kp ∈ Pcp([0, D]M)

• GF : Pcp([0, D]M) → Pcp([0, D]M) described by

GF (K) = FF (K, K),

for every K ∈ Pcp([0, D]M)

• (nk)k∈N∗ a sequence of natural numbers.

For a finite set K0 ∈ Pcp([0, D]M), we shall use the following notations:

•
Ak

not= G[k]
F (K0),

where k ∈ N

•
∼
Ak

not= { D

nk

[nk

D
fl(u1, ..., up)] | u1, ..., up ∈ ∼

Ak−1, l ∈ {1, ..., L}},

where k ∈ N
∗ and

∼
A0 = K0

•
D

√
M

nk

not= εk ,

where k ∈ N.

Numerical Algorithms (2020) 83:1399–14131402

Let us recall the pseudocode for the deterministic algorithm for a GIFS (see [3]):

Now, let us present the pseudocode for our new algorithm.

4 The complexity of the algorithms

By xk , we denote the number of points computed at the step k of the deterministic algo-
rithm and by yk the number of points computed up to the step k of the grid algorithm.

A. The case of the deterministic algorithm

We have xk+1 ≤ L(xk)
p, so, with the notation zk

not= ln xk , we obtain zk+1 ≤ ln L +
pzk for every k ∈ N. Therefore zk ≤ pk−1

p−1 ln L + pkz0, i.e.:

xk ≤ 1

L
1

p−1

(x0L
1

p−1)p
k

, (1)

for every k ∈ N.
Note that, according to Remark 2.4, we have h(Ak, AF) ≤ h(A0,A1)

1−C
Ck for every

k ∈ N. Therefore, in order to be sure that Ak approximates the attractor AF with
accuracy ε

h(A0,A1)
1−C

, we need k > logC−1(ε−1). Hence, based on (1), the quan-

tity 1

L
1

p−1
(x0L

1
p−1)p

log
C−1 (ε−1) = 1

L
1

p−1
(x0L

1
p−1)(

1
ε
)
log

C−1 (p)

describes the number of

points that we have to compute in order to be sure that Ak is an approximation of AF
with an error less than ε

h(A0,A1)
1−C

.

Numerical Algorithms (2020) 83:1399–1413 1403

Conclusion The complexity of the deterministic algorithm is described by the
function Cc : (0, ∞) → R given by:

Cc(ε) = (x0L
1

p−1)(
1
ε
)
log 1

C

(p)

,

for every ε > 0.

B. The case of the grid algorithm

Remark 4.1 Since yk+1 ≤ L(nk)
β for every k ∈ N

∗, up to the step N , we have to

compute L
N∑

k=1
(nk)

β = L(D
√

M)β
N∑

k=1
(1
εk

)β points.

Remark 4.2 We have

h(
∼
Ak,GF (

∼
Ak−1)) ≤ εk ,

for every k ∈ N
∗.

Remark 4.3 We have

h(
∼
A0, AF) ≤ diam([0, D]M) = D

√
M .

As the inequality:

h(
∼
Ak, AF) ≤ h(

∼
Ak,GF (

∼
Ak−1)) + h(GF (

∼
Ak−1),GF (AF)) ≤

Remarks 2.4 and 4.2≤ εk + Ch(
∼
Ak−1, AF),

is valid for every k ∈ N
∗, we get:

h(
∼
Ak, AF) ≤ εk + Cεk−1 + C2εk−2 + ... + Ck−2ε2 + Ck−1ε1 + Ckh(

∼
A0, AF),

so, taking into account Remark 4.3, we obtain:

h(
∼
Ak, AF) ≤ εk + Cεk−1 + C2εk−2 + ... + Ck−2ε2 + Ck−1ε1 + CkD

√
M ,

for every k ∈ N
∗. Consequently, we arrive to the following problem: given a fixed

natural number N and ε > 0 such that ε
CN − D

√
M > 0, find the minimum of the

function f : [0, ∞)N → [0, ∞), given by:

f (ε1, ..., εN) =
N∑

k=1

(
1

εk

)β ,

for every ε1, ..., εN ∈ [0, ∞), with the constraint:

εN + CεN−1 + C2εN−2 + ... + CN−2ε2 + CN−1ε1 + CND
√

M = ε.

We adopt the following notations:

• t
not= C

− β
β+1 N − 1

Numerical Algorithms (2020) 83:1399–14131404

• K1
not= C

1
β+1 −C

C
1

β+1
= 1 − C

β
β+1

• K2
not= K

−β−1
1

• K3
not= K2ε

−β

• a
not= D

√
M

ε

• y
not= 1

CN .

Since we are going to use the method of Lagrange multipliers, we consider the
function F = f + λg, where λ ∈ R and the function g : [0, ∞)N → [0, ∞) is given
by:

g(ε1, ..., εN) = εN + CεN−1 + ... + CN−2ε2 + CN−1ε1 + CND
√

M − ε,

for every ε1, ..., εN ∈ [0, ∞). The equation ∂F
∂εk

= 0, i.e. −β(εk)
−β−1 +λCN−k = 0,

has the solution:

ε0
k = kNC

k
β+1 , (1)

for every k, where kN = 1

C
N

β+1
(
β
λ
)

1
β+1 . As g(ε0

1, ..., ε0
N) = 0, we get:

kN(C
N

β+1 + C
1+ N−1

β+1 + C
2+ N−2

β+1 + ... + C
N−2+ 2

β+1 + C
N−1+ 1

β+1) = ε − CND
√

M ,

i.e.:

kNC
N

β+1 (1 + C
β

β+1 + C
2 β

β+1 + ... + C

(N−2)
β

β+1 + C
(N−1)

β
β+1) = ε − CND

√
M ,

so kNC
N

β+1 (C
β

β+1)N−1

C
β

β+1 −1
= ε − CND

√
M , which implies kN

CN−C
N

β+1

C−C
1

β+1
= ε−CND

√
M

C
1

β+1
.

The last equality takes the form kN
C

− β
β+1 N−1

C
1

β+1 −C

=
ε

CN −D
√

M

C
1

β+1
. Thus, we obtain:

kN = K1

t
(

ε

CN
− D

√
M). (2)

We have:

f (ε0
1, ..., ε0

N)=
N∑

k=1

(ε0
k)

−β (1)= (kN)−β

N∑

k=1

C
− β

β+1 k =(kN)−βC
− β

β+1
(C

− β
β+1)N − 1

C
− β

β+1 − 1
=

(2)= tβK
−β

1 (
ε

CN
− D

√
M)−β t

1 − C
β

β+1

= tβ+1(
ε

CN
− D

√
M)−β K

−β

1

K1
=

= tβ+1(
ε

CN
− D

√
M)−βK

−β−1
1 = K2(

ε

CN
− D

√
M)−β(C

− β
β+1 N − 1)β+1.

Therefore, the last equality can be written as:

f (ε0
1, ..., ε0

N) = K3(y
β

β+1 − 1)β+1(y − a)−β . (3)

Numerical Algorithms (2020) 83:1399–1413 1405

As the right-hand side of (3) gives us the optimal number of points that we have to

compute, after N steps, in order to approximate AF by
∼
Ak with an error not greater

than ε, we need to find the minimum value of the function h : (a, ∞) → R given by:

h(y) = K3(y
β

β+1 − 1)β+1(y − a)−β ,

for every y ∈ (a, ∞). One can easily see that:

h
′
(y) = K3β(y

β
β+1 − 1)β(y − a)−β−1(1 − ay

− 1
β+1),

for every y ∈ (a, ∞). As we can suppose that a > 1 (since we are interested in
the case when ε is small), lim

y→∞h(y) = K3 and lim
y→a
y>a

h(y) = ∞, we conclude that h

attains its minimum at aβ+1 and the value of the minimum is:

h(aβ+1) = K3(a
β − 1)β+1(aβ+1 − a)−β =

= K3
aβ − 1

aβ
= ε−β(1 − C

β
β+1)−β−1 (D

√
M

ε
)β − 1

(D
√

M
ε

)β
,

so

lim
ε→0
ε>0

h(aβ+1)

(1 − C
β

β+1)−β−1(1
ε
)β

= 1.

Conclusion The complexity of the grid algorithm is described by the function Cg :
(0, ∞) → R given by:

Cg(ε) = (1 − C
β

β+1)−β−1(
1

ε
)pM ,

for every ε > 0.
In the final part of this section, we mention that (in order to avoid very complicated

computations) we did not pay attention to the fact that the best values of nk and N

that we obtained (namely D
√

M

ε0
k

and (β + 1)
ln(ε

D
√

M
)

ln(C)
) may not be integers. In reality,

we could work with nk = [D
√

M

ε0
k

] + 1 and N = [(β + 1)
ln(ε

D
√

M
)

ln(C)
] + 1 without a

significant change.

5 Final remarks

Remark 5.1 We have:

lim
ε→0
ε>0

Cg(ε)

Cc(ε)
= lim

ε→0
ε>0

(1 − C
β

β+1)−β−1(1
ε
)pM

(x0L
1

p−1)(
1
ε
)
log 1

C

(p)
= 0,

so, the grid algorithm is more efficient than the deterministic algorithm.

Numerical Algorithms (2020) 83:1399–14131406

Remark 5.2 As
∣
∣
∣u − [u + 1

2]
∣
∣
∣ ≤ 1

2 , we can improve our grid algorithm (which is

based on the inequality |u − [u]| < 1) in the following way:

Remark 5.3 On the one hand, repeating the arguments used in 4, A, for the case
of an iterated function system (i.e., p = 1), we obtain that the complexity of the
corresponding algorithm is described by the function C : (0, ∞) → R given by:

C(ε) = (
1

ε
)

ln L

ln 1
C ,

for every ε > 0, so C is involved at the exponent of 1
ε
. We stress upon the fact that

since lim
C→1
C<1

1
ln 1

C

= ∞, the closer is C to 1, the bigger is the number of points that we

have to compute in order to approximate the attractor with an error less that ε.
On the other hand, in the rule that gives Cg(ε), the constant C is involved only in

the coefficient (1 − C
β

β+1)−β−1.
Moreover, note that lim

C→1
C<1

Cg(ε)

Cc(ε)
= 0 for each ε ∈ (0, 1).

6 Examples

In Section 4, we compared the algorithms with respect to a fixed preassigned
error. In this section, our goal is to get an optimal image (with respect to the
computer that we worked with) for three examples. For this reason, we chose
a version of the grid algorithm for which nk = k2, the error being less than

D
√

M
(

1
n2 + C 1

(n−1)2 + C2 1
(n−2)2 + ... + Cn

)
, where n is the number of steps and

C is the contraction constant of the system.

A.

Consider the GIFS F = (([0, 1]2, d), {f1, f2, f3}), where, for x = (x1, y1) and
y = (x2, y2), we have:

f1(x, y) = (0.2x1 + 0.2y2; 0.2x2 + 0.1y2)

Numerical Algorithms (2020) 83:1399–1413 1407

f2(x, y) = (0.15x1 + 0.07x2 + 0.4; 0.15y1 + 0.07y2).

and

f3(x, y) = (0.15y1 + 0.07x2; 0.15x1 + 0.07y2 + 0.04).

Using the deterministic algorithm, we get the image indicated in Fig. 1 and using
the grid algorithm, we get the image in Fig. 2.

The deterministic algorithm ran 4 steps in 10 s, while the grid algorithm 8 steps in
less than 10 s.

Figure 1 has approximately 324 = 43, 046, 721 points, while Fig. 2 comprises
around 20,000 points.

Remark 6.1 If we allow the deterministic algorithm to run 5 steps, it needs about
90 min and we get a very similar image with the one in Fig. 2.

Fig. 1 Image obtained using the deterministic algorithm running 4 steps in 10 s

Numerical Algorithms (2020) 83:1399–14131408

Fig. 2 Image obtained using the grid algorithm running 8 steps in less than 10 s

B.

Consider the GIFS F = (([0, 1]2, d), {f1, f2}), where, for x = (x1, y1) and y =
(x2, y2), we have:

f1(x, y) = (0.1x1 + 0.16y1 − 0.01x2 + 0.3y2; −0.05y1 + 0.15x2 + 0.15y2)

and

f2(x, y) = (0.09x1−0.1y1−0.15x2+0.14y2+0.4; 0.14x1+0.14y1+0.14x2+0.04).

The deterministic algorithm yields the image in Fig. 3 and the grid algorithm
produces the image in Fig. 4.

The deterministic algorithm needed 20 s to run 5 steps, while the grid algorithm
needed about 10 min to run 14 steps.

Figure 3 consists of about 225 = 4, 294, 967, 296 points, while Fig. 4 is built up
using around 2,000,000 points.

Remark 6.2 With the aid of the computer that we utilized, the deterministic algorithm
would need 42 days to run 6 steps.

Numerical Algorithms (2020) 83:1399–1413 1409

Fig. 3 Produced from using the deterministic algorithm which needed 20 s to run 5 steps

C.

Consider the GIFS F = (([0, 1]2, d), {f1, f2}), where, for x = (x1, y1) and y =
(x2, y2), we have:

f1(x, y) = (0.5x1 − 0.5y1 + 0.001x2 + 0.45; 0.5x1 + 0.5y1 + 0.001y2 − 0.05)

and

f2(x, y) = (0.2x1 + 0.01x2 + 0.14y2 + 0.147; 0.2y1 + 0.01y2 + 0.105).

The image in Fig. 5 indicates what we get running the deterministic algorithm and
the image in Fig. 6 what we obtain using the grid algorithm.

Both algorithms ran about 2 min, the deterministic one running 5 steps, while the
grid one 22 steps.

Figure 5 consists of about 225 = 4, 294, 967, 296 points, while Fig. 6 is made up
of circa 217,800 points.

Remark 6.3 Even though the number of points making up Fig. 5 is considerably
bigger than the number of points building up Fig. 6, one can observe that the grid
algorithm produces a much better approximation of the attractor.

Numerical Algorithms (2020) 83:1399–14131410

Fig. 4 Produced from using the grid algorithm which needed about 10 min to run 14 steps

Fig. 5 The deterministic algorithm ran for about 2 min, running 5 steps

Numerical Algorithms (2020) 83:1399–1413 1411

Fig. 6 The grid algorithm ran for about 2 min, running 22 steps

Acknowledgments The authors are very grateful to the reviewers whose extremely generous and valuable
remarks and comments brought substantial improvements to the paper.

References

1. Browder, F.: On the convergence of successive approximations for nonlinear functional equations.
Indag. Math. 30, 27–35 (1968)

2. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)
3. Jaros, P., Maślanka, Ł., Strobin, F.: Algorithms generating images of attractors of generalized iterated

function systems. Numer. Algorithm 73, 477–499 (2016)
4. Maślanka, Ł., Strobin, F.: On generalized iterated function systems defined on l∞-sum of a metric

space. J. Math. Anal. Appl. 461, 1795–1832 (2018)
5. Matkowski, J.: Integrable solutions of functional equations. Diss. Math. 127, 68 (1975)
6. Miculescu, R.: Generalized iterated function systems with place dependent probabilities. Acta Appl.

Math. 130, 135–150 (2014)
7. Mihail, A., Miculescu, R.: Applications of Fixed Point Theorems in the Theory of Generalized IFS,

Fixed Point Theory Appl. Volume 2008, Article ID 312876, 11 pages. https://doi.org/10.1155/2008/
3128762017WR022284

8. Mihail, A., Miculescu, R.: A generalization of the Hutchinson measure. Mediterr. J. Math. 6, 203–213
(2009)

9. Mihail, A., Miculescu, R.: Generalized IFSs on Noncompact Spaces, Fixed Point Theory Appl.
Volume 2010, Article ID 584215, 11 pages. https://doi.org/10.1155/2010/584215

10. Oliveira, E.: The Ergodic Theorem for a new kind of attractor of a GIFS. Chaos Solitons Fractals 98,
63–71 (2017)

11. Oliveira, E., Strobin, F.: Fuzzy attractors appearing from GIFZS. Fuzzy Sets Syst. 331, 131–156
(2018)

12. Secelean, N.A.: Invariant measure associated with a generalized countable iterated function system.
Mediterr. J. Math. 11, 361–372 (2014)

13. Secelean, N.A.: Generalized iterated function systems on the space l∞(x). J. Math. Anal. Appl. 410,
847–858 (2014)

14. Strobin, F.: Attractors of generalized IFSs that are not attractors of IFSs. J. Math. Anal. Appl. 422,
99–108 (2015)

Numerical Algorithms (2020) 83:1399–14131412

https://doi.org/10.1002/2017WR022284
https://doi.org/10.1155/2008/312876
https://doi.org/10.1155/2010/584215

15. Strobin, F., Swaczyna, J.: On a certain generalisation of the iterated function system. Bull. Aust. Math.
Soc. 87, 37–54 (2013)

16. Strobin, F., Swaczyna, J.: A code space for a generalized IFS. Fixed Point Theory 17, 477–493 (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Numerical Algorithms (2020) 83:1399–1413 1413

	A new algorithm that generates the image of the attractor of a generalized iterated function system
	Abstract
	Introduction
	Preliminaries
	The presentation of the algorithms
	The complexity of the algorithms
	A. The case of the deterministic algorithm
	Conclusion

	B. The case of the grid algorithm
	Conclusion

	Final remarks
	Examples
	A.
	B.
	C.
	References

