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Abstract
In this article, a class of upwind schemes is proposed for systems, each of which yields an
incomplete set of linearly independent eigenvectors. The theory of Jordan canonical
forms is used to complete such sets through the addition of generalized eigenvectors.
A modified Burgers’ system and its extensions generate δ, δ′, δ′′, · · ·, δn waves as
solutions. The performance of flux difference splitting-based numerical schemes is
examined by considering various numerical examples. Since the flux Jacobian matrix
of pressureless gas dynamics system also produces an incomplete set of linearly
independent eigenvectors, a similar framework is adopted to construct a numerical
algorithm for a pressureless gas dynamics system.

Keywords Weakly hyperbolic systems · Jordan canonical forms ·
Generalized eigenvectors · Upwind schemes
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1 Introduction

The main motivation of this work is to develop upwind methods for weakly hyper-
bolic systems. A system is said to be hyperbolic if the Jacobian matrix of its flux
vector has all the real eigenvalues with a complete set of linearly independent (LI)
eigenvectors. A system is said to be weakly hyperbolic if two or more distinct eigen-
values become equal in some part of the flow field, resulting in an incomplete set
of eigenvectors; for example, the formation of dry beds in shallow water equa-
tions leads to such situations [23, 31]. Similarly, a system is also said to be weakly
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hyperbolic if the corresponding flux Jacobian matrix contains an incomplete set of
LI eigenvectors throughout the flow field; in that case, the Jacobian matrix is not
diagonalizable but can be made similar to a Jordan matrix. Examples include mod-
ified Burgers’ system and system of pressureless gas dynamics equations. A square
matrix J with a repeated eigenvalue λ ∈ R is called a Jordan matrix if each entry
on the diagonal is λ, each entry on the super-diagonal is 1 and every other entry is
zero. The construction process of some of the well-known upwind methods based
on flux difference splitting (FDS) like the Roe scheme [24] requires a complete set
of LI eigenvectors (also known as hyperbolicity property) which is missing for the
considered systems. Thus, the application of such schemes is limited to those hyper-
bolic conservation laws that generate a complete set of LI eigenvectors. However,
traditional simple and robust central solvers like Lax-Friedrichs [7, 18] or local Lax-
Friedrichs (LLF) also known as the Rusanov method [25], can be effectively used to
simulate the considered systems effortlessly; but, such solvers include a high dose
of numerical diffusion resulting in smeared solutions. For example, the numerical
investigations for multi-phase geometrical optics, a weakly hyperbolic system, is car-
ried out using the Lax-Friedrichs method in [6] and with its second-order extension
in [14].

In the present study, we start with a modified Burgers’ system [15], which is a
simplified version of the pressureless system and can be derived from it by using a
non-conservative form. This system is likely to have singular solutions like the delta
distribution type solution. For this system, the matrix analysis of the flux Jacobian
matrix shows that it has u as an eigenvalue with arithmetic multiplicity (AM) equal
to 2, whereas the geometric multiplicity (GM) is only 1. Thus, the theory of Jor-
dan canonical forms was used to construct a generalized basis for any column vector
associated with the modified Burgers’ system. The ideas presented in this work were
first tried out to develop an approximate Riemann solver in [9], utilizing the Toro and
Vázquez [32] convection-pressure (C-P) splitting approach. However, later authors
realized that reproducing an ideal Roe scheme might not be feasible with the con-
sidered C-P splitting approach as shown in [10]. Similarly, [8] can be regarded as a
special case of the current work.

In Section 2, a detailed procedure that helps in generating generalized eigenvec-
tors is presented. Section 3 deals with the construction process of an accurate upwind
solver in the case of a modified Burgers’ system. For such systems, in [28], a Roe-like
solver is developed by converting a weakly hyperbolic system into a strictly hyper-
bolic system. However, both [8] and [28] may not be applicable to a broader class
of test cases and their applications are limited to sufficiently smooth non-Riemann
data-based initial condition problems in the case of 2 × 2 modified Burgers’ and
other extended systems. In order to check the performance of the Jordan-based FDS
solver, several numerical examples including Riemann data-based initial problems
are considered. The numerical results show that the FDS-based solver captures nor-
mal shock either exactly or within one interior zone and the accuracy of δ shocks
turns out better than the traditional LLF method. Generally, accurate solvers tend to
produce unphysical expansion shocks in the expansion region of the domain. To avoid
unwanted expansion shocks, an entropy stable version is developed utilizing the the-
ories given in [12, 29, 30]. Further, the entropy stable version retains the accuracy of
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the original method at shocks. In Section 4, an FDS-based solver is formulated for
a 3 × 3 extended modified Burgers’ system [16, 26] that is known to develop more
singular δ′ shocks and this typically happens when the first equation develops nor-
mal shock as a solution. Through a numerical example, it is observed that the third
component of the extended modified Burgers’ system may generate two beams of δ

shocks in opposite directions, in addition to a vacuum state even for those cases that
develop expansion waves as solutions in the first component of the system. Further, a
4 × 4 system is considered and numerical results indicate that the δ′′ shocks are even
more singular than δ′shocks.

In Section 5, a pressureless gas dynamics system is considered; this can be derived
either from the Euler equations by letting the pressure goes to zero or from the micro-
scopic level by allowing the temperature goes to zero in the Boltzmann equation.
The present system is related to the sticky particle model of Zeldovich [34] in which
the effect of gravitational forces is also considered. According to the theory of sticky
particles, the particles stick together after collision and form a new bigger particle.
The mass and velocity of a new particle are given by the laws of conservation of mass
and momentum. Thus, the pressureless gas dynamics system is closely connected to
systems that are helpful in explaining the formation of large-scale structures in the
universe. One of the important works that is related to the study of a pressureless
gas dynamics system at a discrete level using the kinetic theory framework is due to
the contribution of Bouchut et al. [3]. Further, in a Godunov-type method [19], the
author enforced upwinding based on the sign of a well-known Roe-average veloc-
ity. Similarly, a Roe-like method [28] is one of the latest works in the development
of numerical methods for a system of pressureless gas dynamics but is computation-
ally more expensive as compared to the FDS-based numerical method developed in
this article. It is because of this reason that both the eigenvector structure and wave-
strengths have to be computed in a Roe-like method, whereas the FDS-based solver
is free from such complications and through a numerical example from [28]; it is
observed that the FDS method captures δ shocks with almost double the accuracy
as compared to a Roe-like method. However, the FDS method blows up for a class
of numerical examples which helps in generating vacuum in the case of a pressureless
system; precisely, for the uL < 0 < uR condition, this system is known to develop
a vacuum region [19, 27]. In order to capture such phenomena, fluxes of the FDS
method are further modified in case of stated condition. In Section 6, on a similar line
as done in one-dimensional case, the FDS method is extended to a two-dimensional
pressureless system. The computational results clearly show that the modified ver-
sion preserves the positivity property of the density variable on both coarse and
fine grids.

2 Jordan canonical forms

Every square matrix is similar to a triangular matrix with all the eigenvalues on its
main diagonal. A square matrix is said to be similar to a diagonal matrix only if it
has a complete set of LI eigenvectors. But every square matrix can be made similar
to a Jordan matrix.
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Re-visit of typical cases Let a be an n × n matrix with n real eigenvalues, namely
λ1, λ2, λ3, · · · , λn. Now the following typical cases may arise:

Case 1: When all λi , where 1 ≤ i ≤ n, are distinct. In this case, matrix A will have
a complete set of LI eigenvectors, and hence will be similar to a diagonal matrix.

Case 2: When some λi are equal, i.e., let λ1 = λ2 = λ3 = · · · = λp =
λ, where p is a natural number ≤ n. Then, any of the following sub-cases may
happen.

Sub-case 1: If the AM of an eigenvalue λ, which is p in the assumed case, is equal
to the GM, and moreover, if this is true for all the subsets of equal eigenvalues,
then the square matrix A will again be similar to a unique diagonal matrix.

Sub-case 2: In the case in which GM is strictly less than AM, the LI set of eigen-
vectors will not be a complete one. In order to recover the full LI set of generalized
eigenvectors, the theory of Jordan canonical forms is helpful; this is given below.

Procedure to find generalized eigenvectors In this article, we mainly focus on sys-
tems that belong to the category discussed in Sub-case 2. If all the eigenvalues of a
given matrix are equal, then the following steps need to be followed to recover the
full set of LI generalized eigenvectors:

(i) For an eigenvalue λ, compute the ranks of the matrices A − λI , (A − λI )2,
· · · ; then, find the least positive integer s such that rank(A−λI )s = rank(A−
λI )s+1. There will be a single Jordan block only if s comes out equal to the
dimension of a given matrix.

(ii) Once s is equal to the dimension of a matrix, generalized eigenvectors can be
computed from the system of equations AP = PJ , where,

J (λ) =

⎡
⎢⎢⎢⎢⎢⎣

λ 1

. . .
. . .

. . . 1

λ

⎤
⎥⎥⎥⎥⎥⎦

s×s

.

Let P equal to [X1, X2, X3, ...,Xs] be a set of column vectors that need to be
evaluated. Then,

A [X1, X2, X3, ........., Xs] = [X1, X2, X3, ........., Xs]

⎡
⎢⎢⎢⎢⎢⎣

λ 1

. . .
. . .

. . . 1

λ

⎤
⎥⎥⎥⎥⎥⎦

s×s

,
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gives

AX1 = λX1,

AX2 = λX2 + X1,

AX3 = λX3 + X2,
...

AXs = λXs + Xs−1.

(2.1)

Now, the eigenvectors can be computed along with the generalized eigenvectors from
the system of relations (2.1).

3 Modified Burgers’ system

In this section, a 2 × 2 system of conservation laws are considered as given below:

ut +
(

u2

2

)

x

= 0,

vt + (uv)x = 0.
(3.1)

The system (3.1) is obtained from the following set of equations:

At +
(

A2

2

)

x

= 0, (3.2)

where A is a lower triangular matrix with each diagonal entry as u and has the
following form:

A =
[

u 0

v u

]
.

Since the first equation of the system (3.1) is known to develop shock waves even
for a sufficiently smooth initial data u(x, 0), it is not obvious to solve the second
equation of a considered system. In fact, K. T. Joseph [15] showed the existence of
solutions to the system (3.1) by using the vanishing viscosity method by considering
the following parabolic approximation:

uε
t +

(
(uε)2

2

)

x

= 1

2
εuε

xx,

vε
t + (

uεvε
)
x

= 1

2
εvε

xx,

(3.3)

with the given discontinuous initial data. The solutions of (3.1) are then obtained
by taking lim ε → 0 to the solutions of (3.3) in the sense of distributions. The
system (3.2) can be recast into the following vector form, which is called the modified
Burgers’ system:

∂U

∂t
+ ∂F (U)

∂x
= 0. (3.4)
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Here, U =
[

u

v

]
is a vector of conserved variables and F (U) =

[
u2

2

uv

]
is a flux

function. Further, (3.4) can be written in a quasi-linear form, which is as follows:

∂U

∂t
+ A (U)

∂U

∂x
= 0, (3.5)

with A (U) ≡ A. The matrix A has a repeated eigenvalue u with AM equal to 2. For
v �= 0, the matrix analysis of A shows that the given system is weakly hyperbolic as
it has only one eigenvector R1 = (0, 1)t . Next, it is seen that rank(A−uI )2 = 0 =
rank(A − uI )3. Thus, s will be 2 in this case; so, there will be one Jordan block of
order 2. On expanding the relation AP = PJ , it is shown as follows:

A[X1 X2] = [X1 X2][J 1 J 2], (3.6)

where X1 and X2 are 2×1 column vectors that are required to be evaluated. Similarly,
J 1 and J 2 are column vectors of the form as follows:

J 1 =
[

u

0

]

2×1

, J 2 =
[

1

u

]

2×1

.

If (3.6) is expanded, the following relations are obtained as follows:

AX1 = uX1,

AX2 = uX2 + X1.
(3.7)

From the first relation of (3.7), R1 is obtained and on using this in the second relation
as follows: [

u 0

v u

][
x1

x2

]
= u

[
x1

x2

]
+

[
0

1

]
,

R2 = (
1

v
, x2)

t is obtained as a generalized eigenvector, where .

3.1 Formulation of FDS scheme for modified Burgers’ system

Because of the non-linearity of the Jacobian matrix A, it is difficult to solve the
system (3.5). But locally, inside each cell, the matrix A can be linearized to form a
constant matrix Ā, which is now a function of the left- and right-state variables UL

and UR , i.e., Ā = Ā (UL, UR). So, (3.5) becomes as follows:

∂U

∂t
+ Ā

∂U

∂x
= 0. (3.8)

On comparing (3.4) and (3.8), it is shown as follows:

dF = ĀdU .

The finite difference analogue of the above differential relation is as follows:

�F = Ā�U , (3.9)

where �F = FR − FL and �U = UR − UL. In the above system of equations,
the subscripts R and L represent the right and left states respectively. The relation
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(3.9) ensures the conservation property. As already explained, the present system is
weakly hyperbolic but, on the basis of the above-mentioned procedure, a basis of
eigenvectors and generalized eigenvectors can be constructed for the column vector
�U , i.e.,

�U =
2∑

j=1

ᾱj R̄j , (3.10)

where each ᾱj , 1 ≤ j ≤ 2, represents the wave strength attached with the respective
LI eigenvectors corresponding to the given system. On using (3.10) in (3.9), it is
shown as follows:

�F = Ā

2∑
j=1

ᾱj R̄j . (3.11)

For a weakly hyperbolic system, Ā is non-diagonalizable, resulting in as follows:

ĀR̄j �= λ̄j R̄j ,

for some j ’s. Since R̄1 is an eigenvector and R̄2 a generalized eigenvector, it is shown
as follows:

ĀR̄1 = λ̄1R̄1, ĀR̄2 = λ̄2R̄2 + R̄1.

On using the above relations in (3.11), it is shown as follows:

�F = ᾱ1λ̄1R̄1 + ᾱ2λ̄2R̄2 + ᾱ2R̄1.

Next, the standard Courant splitting procedure to split eigenvalues is defined as
follows:

λ̄+
j − λ̄−

j = |λ̄j |.
After splitting each of the eigenvalues into a positive and a negative part, �F+ and
�F− can be written as follows:

�F+ = ᾱ1λ̄
+
1 R̄1 + ᾱ2λ̄

+
2 R̄2 + ᾱ2R̄

′
1, (3.12)

�F− = ᾱ1λ̄
−
1 R̄1 + ᾱ2λ̄

−
2 R̄2 + ᾱ2R̄

′
1, (3.13)

respectively, where R̄
′
1 = 1

2 R̄1. On using (3.12) and (3.13) in the upwinding part of
the interface flux, it is shown as follows:

F I = 1

2
[FL + FR] − 1

2

[(
�F+ − �F−)]

,

the following relation is obtained as follows:

F I = 1

2
[FL + FR] − 1

2

2∑
j=1

ᾱj |λ̄j |R̄j .
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Since generalized eigenvector R2 is not unique, it may lead to infinitely many
variants of the interface flux F I . To avoid uncertainty, |λ̄j | is taken out from the
summation as both eigenvalues are the same, i.e.,

F I = 1

2
[FL + FR] − 1

2
|λ̄|

2∑
j=1

ᾱj R̄j ,

= 1

2
[FL + FR] − 1

2
|λ̄|�U . (3.14)

For the present case, �U = (�u, �v)t and λ̄ = ū. In order to solve (3.14) fully, the
average value of u has to be found out from the relation �F = Ā�U . In expanded
form, it can be written as follows:[

�( 1
2u2)

�(uv)

]
=

[
ū 0

v̄ ū

][
�u

�v

]
.

From the first equation, it is shown as follows:

1

2
�

(
u2

)
= 1

2

(
u2

R − u2
L

)
= ū�u = ū(uR − uL). (3.15)

From (3.15), ū = 1
2 (uL + uR) is obtained and the average value of v does not need

to be solved as the interface flux requires only ū to be evaluated. The update formula
in a finite volume framework can be written as follows:

Un+1
j = Un

j − �t

�x

[
F n

j+ 1
2

− F n

j− 1
2

]
,

where the interface flux is defined as given in (3.14).

3.2 Numerical examples

For a modified Burgers’ system, various numerical examples are considered to check
the ability of the FDS scheme in resolving various flow features accurately. In the first
numerical example, the initial conditions are chosen as (uL, vL) = (2, 2), (uR, vR) =
(4, −2) with the initial discontinuity at location xo = 0.0 and the numerical results
are computed at the final time t = 0.15 units. For any Riemann data with uL < uR

condition, the considered system evolves an expansion wave in the u variable and
a constant zero state in the v variable. The computational domain x ∈ [−1, 1] is
divided into 500 equally spaced cells and the CFL condition equal to 0.99 is used for
all computations. The numerical results with the FDS scheme are given in Fig. 1 a
and b. It is necessary to review the performance of any scheme on the refined mesh
as numerical solvers may tend to generate oscillations or converge to wrong solutions
as the mesh size goes towards zero. The above specified numerical example was used
to authenticate the empirical convergence of a numerical solution towards an exact
solution. The formula for finding the experimental order of convergence (EOC) is
given below:

s =
(
log Enorm,h1 − log Enorm,h2

)

(log h1 − log h2)
,
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Fig. 1 a Formation of expansion wave in u variable and b v variable solution for a modified Burgers’
system

where s is the order of accuracy, h1, h2 = 1
2h1 are grid spacings and Enorm,h is

the error between the exact solution and the numerical solution expressed in some
appropriate norm. In particular, for the discrete L1 norm, it is shown as follows:

Enorm,h = EL1,h = h
∑
j

|uj,exact − uj,numerical|.

In Table 1, the discrete L1 error estimates are provided. It is observed that as the mesh
size goes to zero the numerical solutions approach exact solutions under the L1 error
norm.

Next, a test case is considered, as motivated from [21] with the following smooth
initial conditions as follows:

U(x, 0) =
{

1
2 + sin(πx)

π cos(πx)
∀x ∈ [0, 2],

and periodic boundary conditions are imposed to compute solutions. Later, near time
t = 3

(2π)
, the given system develops a normal shock and a δ shock in the u and v

variables respectively. For the u variable, results with the FDS scheme are given in
Fig. 2a and results using the local Lax-Friedrichs method are provided in Fig. 2b. The
FDS scheme captures normal shock with one interior zone, whereas results with the
LLF solver are diffusive. Similarly, for the v variable, results with both the schemes

Table 1 L1 error estimates for u

variable using an expansion
problem in the case of a
modified Burgers’ system

Grid points L1 estimates with FDS EOC

500 0.014750 -

1000 0.009448 0.642634

2000 0.005326 0.826957

4000 0.002957 0.848918

8000 0.001613 0.874388

16000 0.000860 0.907338
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Fig. 2 Formation of normal shock in u variable a with FDS scheme and b result with LLF method for a
modified Burgers’ system

are presented in Fig. 3 a and b. Since the FDS scheme is an accurate scheme and as
such schemes tend to produce unphysical expansion shocks in the expansion region
of the domain, a test case that contains a sonic point with the initial conditions as
(uL, vL) = (−2, 2), (uR, vR) = (4, −2) at xo = 0.2 is considered. For this problem,
the final solutions are obtained at time t = 0.15 units. The numerical results with the
FDS scheme are given in Fig. 4 a and b. To avoid expansion shocks, an entropy stable
scheme is constructed using the theories developed in [12, 29, 30]. Let E = 1

2u2 be
the entropy and H = 1

3u3 be the entropy flux function. Define v = ∇UE(U) =
(u, 0)t as the entropy variable. Now, the potential function ψ = 〈v,F 〉 − H comes
out equal to 1

6u3, which further yields entropy conservative fluxes as given below:

F EC
1,j+ 1

2
= 1

6
(2ū2

j+ 1
2

+ ū2
j+ 1

2
),

F EC
2,j+ 1

2
= arbitrary.
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Fig. 3 Formation of δ shock in v variable a with FDS scheme and b result with LLF method for a modified
Burgers’ system
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Fig. 4 a Sonic point problem, results for u variable and b results for v variable with FDS-based scheme
for a modified Burgers’ system

Next, the entropy stable scheme EC-FDS is formulated utilizing the idea developed
in [12] and after employing similar techniques, the interface fluxes are written as
follows:

F EC-FDS
1,j+ 1

2
= 1

6
(u2

j + ujuj+1 + u2
j+1) − 1

2
(αFDS + 1

6
|�u|)�u,

F EC-FDS
2,j+ 1

2
= 1

2
(uj vj + uj+1vj+1) − 1

2
αFDS�v,

where αFDS = |ū|
j+ 1

2
. In Table 2, L1 error estimates are provided with the EC-

FDS scheme utilizing test case one. On comparing Tables 1 and 2, it is recognized
that the EC-FDS solver brings a little extra diffusion in comparison to the original
FDS-based solver in the expansion region of the flow field but still performs slightly
better than the LLF method. Further, the performance of both FDS and EC-FDS
are compared for a test case that develops a standing shock in the u variable. Both
the solvers perform identically at normal and δ shocks as shown in Fig. 5 a and b.
Subsequently, with the EC-FDS scheme, unphysical expansion shocks are overcome
as evident from Fig. 6 a and b.

Table 2 L1 error estimates for u

variable for a first-test problem
in the case of a modified
Burgers’ system

Grid points EC-FDS LLF

500 0.016179 0.016994

1000 0.010108 0.010480

2000 0.005653 0.005837

4000 0.003119 0.003211

8000 0.001695 0.001740

16000 0.000902 0.000925

Numerical Algorithms (2020) 83:1091–1121 1101



0 0.5 1 1.5 2

x

-0.5

0

0.5

1

1.5

u

FDS

EC-FDS

(a)

0 0.5 1 1.5 2

x

-350

-300

-250

-200

-150

-100

-50

0

50

v

FDS

FDS-EC

(b)

Fig. 5 a Results for u variable and b results for v variable with FDS and EC-FDS schemes for a modified
Burgers’ system

4 Extendedmodified Burgers’ system

In this section, a 3 × 3 system of conservation laws is considered as follows:

ut + (
u2

2
)x = 0,

vt + (uv)x = 0, (4.1)

wt + (
v2

2
+ uw)x = 0,

as discussed in [16]. The main significance of this system is that it allows more
singular δ′ shocks to develop in the solution in addition to δ shocks. Similarly, by a
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Fig. 6 a Sonic point problem, results for u variable and b results for v variable with EC-FDS scheme for
a modified Burgers’ system
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change of variables u �−→ 2u, v �−→ 2v, w �−→ w, this system can be transformed
into the following:

ut + (u2)x = 0,

vt + (2uv)x = 0,

wt + 2(v2 + uw)x = 0,

which is studied in [26]. To maintain consistency with a 2 × 2 system as discussed
in the previous section, (4.1) is used to construct an upwind solver utilizing the idea
developed in the last section. In vector form, the considered system can be written as
follows:

∂U

∂t
+ ∂F (U)

∂x
= 0,

where U = (u, v, w)t and F = ( u2

2 , uv, v2

2 + uw)t . Similarly, the given system
can be written in quasi-linear form as follows:

∂U

∂t
+ A

∂U

∂x
= 0,

where,

A =
⎡
⎢⎣

u 0 0

v u 0

w v u

⎤
⎥⎦ ,

is a 3 × 3 Jacobian matrix with u as a repeated eigenvalue of multiplicity 3. More-
over, for v �= 0, A has only one eigenvector e3 and generalized eigenvectors can be
calculated from the following relations:

AX1 = uX1,

AX2 = uX2 + X1, (4.2)

AX3 = uX3 + X2.

On solving the first relation of (4.2), X1 = R1 = e3 = (0, 0, 1)t is obtained as
an eigenvector. On expanding and solving the second relation, it is shown as follows:

⎡
⎣

u 0 0
v u 0
w v u

⎤
⎦

⎡
⎣

x1

x2

x3

⎤
⎦ = u

⎡
⎣

x1

x2

x3

⎤
⎦ +

⎡
⎣

0
0
1

⎤
⎦ ,

X2 = R2 = (0, 1
v
, x3)

t is obtained as a first generalized eigenvector. Again,
on solving the third relation, an other generalized eigenvector comes out as X3 =
R3 = ( 1

v2 ,
x3
v

+ w

v3 , y3)
t , where x3 and y3 ∈ IR. Let P be the matrix formed using

eigenvectors and generalized eigenvectors as column vectors, i.e.,

P =
⎡
⎣

0 0 1
v2

0 1
v

x3
v

− w

v3

1 x3 y3

⎤
⎦ ,
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then, det(P ) = − 1
v3 �= 0 for v �= 0.

4.1 Formulation of FDS scheme for extendedmodified Burgers’ system

Since �F = Ā�U and

�U =
3∑

j=1

ᾱj R̄j , therefore �F = Ā

3∑
j=1

ᾱj R̄j .

In the expanded form �F , on using (4.2), it can be written as follows:

�F = ᾱ1λ̄R̄1 + ᾱ2(λ̄R̄2 + R̄1) + ᾱ3(λ̄R̄3 + R̄2)

Now, after splitting an eigenvalue λ̄ = ū into a positive part and a negative part, �F+
and �F− are given by the following:

�F+ = ᾱ1λ̄
+R̄1 + ᾱ2(λ̄

+R̄2 + R̄
′
1) + ᾱ3(λ̄

+R̄3 + R̄
′
2),

�F− = ᾱ1λ̄
−R̄1 + ᾱ2(λ̄

−R̄2 + R̄
′
1) + ᾱ3(λ̄

−R̄3 + R̄
′
2),

where R̄
′
1 = 1

2 R̄1 and R̄
′
2 = 1

2 R̄2. Now, the diffusion part of the FDS scheme for the
extended modified Burgers’ system is given as follows:

�F+ − �F− = |λ̄|�U ,

where �U = (�u, �v, �w)t and the average value ū is found from the first
equation of the relation �F = Ā�U and is equal to 1

2 (uL + uR).

Remark 4.1 It is shown that for v �= 0, the Jacobian matrix A possesses only one
eigenvector e3 but in numerical examples, v can be identically zero throughout the
domain and in that case, there will be two eigenvectors R1 = e2 and R2 = e3
corresponding to the matrix A. Then, the Jordan matrix will be made up of two
smaller Jordan blocks of order one and two respectively and R2 = e3 forms a
Jordan chain of order two. Further, on using a similar procedure as done earlier,
the required generalized eigenvector X3 = R3 can be found using the relation
AX3 = uX3 + R2 and after simplifications, R3 comes out equal to ( 1

w
, x2, x3)

t .
Even for this case, �F+ − �F− = |λ̄|�U holds and R1, R2, and R3 constitute a
complete set of LI eigenvectors provided w �= 0. Moreover,

P −1AP =
⎡
⎣

u 0 0

0 u 1

0 0 u

⎤
⎦ .

If v and w are zero, then the given system becomes a non-strict hyperbolic as then A

has a complete set of LI eigenvectors.
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Fig. 7 a Results with FDS scheme for the formation of normal shock in u variable and b numerical results
showing δ shocks with FDS scheme for an extended modified Burgers’ system

4.2 Numerical examples

In the first numerical example, the following c∞ initial conditions are taken as
follows:

U(x, 0) =
⎡
⎣

sin(2πx)

2π cos(2πx)

−4π2 sin(2πx)

⎤
⎦ ,

and periodic boundary conditions are imposed to generate numerical solutions. At
time t = 1

2π
, the first equation starts developing normal shock and at a later time t =

0.5, the solution forms standing shock. As δ′ shocks are known to be more singular
than δ shocks [16], a similar behavior is also observed in computational results with
the FDS scheme as shown in Figs. 7 and 8. Further, a comparison of the FDS scheme
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Fig. 8 Numerical results of δ′ shocks a with FDS scheme and b with LLF method for an extended modified
Burgers’ system
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Fig. 9 Numerical results with FDS scheme showing a that v component is identically zero and b formation
of δ shocks in w variable for vL + vR = 0 case

with the LLF method is made for the w variable in Fig. 8b and from numerical results,
it is clear that the FDS scheme produces results with almost double the strength as the
LLF method. In the second numerical example, an initial Riemann data is selected
in such a way that uL > uR and the v variable is chosen to be zero in the entire
[−1,1] domain, i.e., (uL, vL, wL) = (3, 0, 2) and (uR, vR, wR) = (1, 0, 2). All
the numerical solutions are obtained at time t = 0.125 units. In [26], it is reported
that if vL + vR = 0 and wL + wR �= 0, the system develops a constant state in the v

variable and δ shock in the w variable, which is justified by the FDS scheme as shown
in Fig. 9 a and b. In the last numerical example, Riemann data with uL < uR , i.e.,
(uL, vL, wL) = (1, 2, 2) and (uR, vR, wR) = (3, 2, 2) with initial discontinuity
placed at 0 was considered and all solutions were obtained at time t = 0.125 units.
The numerical results for u variable and v variable with the FDS scheme are given
in Fig. 10 a and b. Both results agree with the theory proposed in [26], but for the w
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Fig. 10 Numerical results with FDS scheme showing a pure expansion in u variable and b formation of
vacuum state in v variable for uL < uR initial conditions
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variable, the numerical result as given in Fig. 11 exhibits two beams of delta shocks
in opposite directions in addition to a vacuum state.

4.3 Further extendedmodified Burgers’ system

In this section, a 4 × 4 system known to produce δ′′ shocks [17, 22] that are more
singular than δ′ shocks is considered. This system of conservation laws is given as
follows:

ut + (
u2

2
)x = 0, vt + (uv)x = 0,

wt + (
v2

2
+ uw)x = 0, zt + (uz + vw)x = 0.

In vector form, the considered system can be written as follows:

∂U

∂t
+ ∂F (U)

∂x
= 0,

where U = (u, v, w, z)t and F = ( u2

2 , uv, v2

2 + uw, uz + vw)t . Similarly, the
given system can be written in quasi-linear form as follows:

∂U

∂t
+ A

∂U

∂x
= 0,

and

A =

⎡
⎢⎢⎢⎣

u 0 0 0

v u 0 0

w v u 0

z w v u

⎤
⎥⎥⎥⎦ .
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Fig. 11 Numerical result with FDS scheme showing existence of δ shocks in opposite sides of w variable
for uL < uR initial conditions
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The eigenvalues corresponding to matrix A are u, u, u, u and for v �= 0, w �= 0, z �=
0, rank(A − uI )4 = 0 = rank(A − uI )5, which means that matrix A possesses
only one eigenvector. Thus, a Jordan chain of order 4 corresponding to matrix A is
given as follows:

AX1 = uX1,

AX2 = uX2 + X1,

AX3 = uX3 + X2,

AX4 = uX4 + X3.

(4.3)

On solving the first relation of (4.3), X1 = R1 = e4 = (0, 0, 0, 1)t is obtained as an
eigenvector. On expanding the second relation, it is shown as follows:

⎡
⎢⎢⎣

u 0 0 0
v u 0 0
w v u 0
z w v u

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = u

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

the first equation of which is an identity. From the second and third equations,
x1 = 0, x2 = 0 are obtained and on further using these values in the fourth equa-
tion, x3 comes out equal to 1

v
where x4 ∈ IR is an arbitrary constant. Thus, the

column vector X2 = R2 = (0, 0, 1
v
, x4) will be, by definition, a generalized eigen-

vector. Other generalized eigenvectors can be found from successive relations and
after simplifications, it is shown as follows:

X3 = R3 =

⎡
⎢⎢⎢⎣

0
1
v2

x4
v

− w

v3

y4

⎤
⎥⎥⎥⎦ , X4 = R4 =

⎡
⎢⎢⎢⎣

1
v3

x4
v2 − 2w

v4

y4
v

− z

v4 − wx4
v3 + 2w2

v5

t4

⎤
⎥⎥⎥⎦ ,

where y4, t4 ∈ IR. Let P be a matrix whose column vectors are R1, R2, R3, and R4,
i.e.,

P =

⎡
⎢⎢⎢⎣

0 0 0 1
v3

0 0 1
v2

x4
v2 − 2w

v4

0 1
v

x4
v

− w

v3
y4
v

− z

v4 − wx4
v3 + 2w2

v5

1 x4 y4 t4

⎤
⎥⎥⎥⎦ ,

then, det(P ) = 1
v6 �= 0. If v = 0 and w �= 0, z �= 0, then the matrix A has two

LI eigenvectors e3 and e4 each of them forming a Jordan chain of order two. Thus,
the required Jordan matrix is made up of two smaller 2 × 2 Jordan blocks. Similarly,
�F+ and �F− are given by the following:

�F+ = ᾱ1λ̄
+R̄1 + ᾱ2(λ̄

+R̄2 + R̄
′
1) + ᾱ3(λ̄

+R̄3 + R̄
′
2) + ᾱ4(λ̄

+R̄4 + R̄
′
3),

and

�F− = ᾱ1λ̄
−R̄1 + ᾱ2(λ̄

−R̄2 + R̄
′
1) + ᾱ3(λ̄

−R̄3 + R̄
′
2) + ᾱ4(λ̄

−R̄4 + R̄
′
3).
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On subtracting, the diffusion part of the further extended Burgers’ system comes out
as follows:

�F+ − �F− = |λ̄|�U ,

and similarly the average value λ̄ = ū is equal to 1
2 (uL + uR). Next, a numerical

example is considered to demonstrate that δ′′ is more singular than δ′. The numerical
results corresponding to the initial conditions as given below for z variable with the
FDS scheme are presented and compared with the LLF method as given in Fig. 12 a
and b.

U(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 + sin(πx)

π cos(πx)

−π2 sin(πx)

−π3 cos(πx)

∀x ∈ [0, 2].

5 1-D pressureless system

Consider the one-dimensional pressureless gas dynamics system as follows:

∂U

∂t
+ ∂F (U)

∂x
= 0,

where U is the conserved variable vector and F (U) is the flux vector defined by the
following:

U =
[

ρ

ρu

]
, F (U) =

[
ρu

ρu2

]
.

This system can also be written in quasi-linear form as follows:

∂U

∂t
+ A

∂U

∂x
= 0.
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Fig. 12 a Formation of δ′′ shocks in z variable with FDS scheme and b formation of δ′′ shocks with LLF
method
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Here, A is the Jacobian matrix for the pressureless system and is given by the
following:

A =
[

0 1

−u2 2u

]
.

The eigenvalues corresponding to the flux Jacobian matrix A are λ1 = λ2 = u,
and it has only one eigenvector X1 = R1 = (1, u)t . A generalized eigenvector X2
can be computed from the relation AX2 = uX2 + X1, and after simplifications,
X2 = R2 = (x1, 1 + ux1)

t is obtained, where x1 ∈ IR.

5.1 Formulation of FDS scheme for pressureless system

On using similar concepts as explained in previous sections, it is shown as follows:

�F = ᾱ1λ̄1R̄1 + ᾱ2λ̄2R̄2 + ᾱ2R̄1

Now, after splitting �F into a positive part and a negative part and further after
simplifications, the interface flux can be written as follows:

F I = 1

2
[FL + FR] − 1

2
|ūI |�U ,

or

F I = 1

2
[FL + FR] − 1

2
|ūI |

[
�ρ

�(ρu)

]
, (5.1)

and �(ρu) is further equal to ū�ρ + ρ̄�u, where ū is some average of uL and
uR , ρ̄ is another average of ρL and ρR and both are to be determined. Expanding
�F = Ā�U to find the average values, i.e.,

[
�(ρu)

�(ρu2)

]
=

[
0 1

−ū2 2ū

][
�(ρ)

�(ρu)

]
. (5.2)

The first relation of (5.2) is automatically satisfied for any average value. From the
second relation, it is shown as follows:

�(ρu2) = −ū2�(ρ) + 2ū�(ρu),

where,

�(ρ) = (ρ)R − (ρ)L,

�(ρu) = (ρu)R − (ρu)L,

�(ρu2) = (ρu2)R − (ρu2)L.

After rearrangement of terms, it is shown as follows:

ū2�(ρ) − 2ū�(ρu) + �(ρu2) = 0,

which is a quadratic equation in ū, the solution of which is obtained as follows:

ū =
√

ρLuL ± √
ρRuR√

ρL ± √
ρR

.
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The root having negative signs in both numerator and denominator is neglected as it
is not physical and may become infinity as

√
ρR �−→ √

ρL or vice versa. Thus, the
average value of u is defined as follows:

ū =
√

ρLuL + √
ρRuR√

ρL + √
ρR

.

On using ū in the relation, it is shown as follows:

ρRuR − ρLuL = ū(ρR − ρL) + ρ̄(uR − uL),

the following relation is obtained as follows:

ρRuR − ρLuL =
√

ρLuL + √
ρRuR√

ρL + √
ρR

(ρR − ρL) + ρ̄(uR − uL),

which further leads to ρ̄ = √
ρR

√
ρL = √

ρRρL. As the interface flux (5.1) is now
completely defined, the final update formula for the numerical scheme in the finite
volume framework is written as follows:

Un+1
j = Un

j − �t

�x

[
F n

j+ 1
2

− F n

j− 1
2

]
.

5.2 Numerical examples

In the first numerical example, the initial data is selected with uL > uR condition
and for such set of data, the system develops a δ shock and a normal shock in the
density and velocity variables respectively. As an example, (ρL, uL) = (1.0, 2.0) and
(ρR, uR) = (0.5, 1.0) are chosen as initial conditions with xo = 0.0. Further, the
computational domain [−1.0, 1.0] is divided into 200 equally spaced cells and all the
final solutions are obtained at time t = 0.2 units. The exact solution corresponding
to the u variable [27, pp. 12] is given as follows:

u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uL, x
t

< ωδ

uδ,
x
t

= ωδ

uR, x
t

> ωδ

,

where,

ωδ = uδ =
√

ρLuL + √
ρRuR√

ρL + √
ρR

.

Similarly, the system develops δ waves in the density variable at the location x =
ωδt , where other states are given as follows:

ρ(x, t) =
⎧⎨
⎩

ρL, x
t

< ωδ

ρR, x
t

> ωδ .

For the given set of data, ωδ ≈ 1.585786 and after time t = 0.2 units, the initial
discontinuity moves a distance approximately equal to 0.317157. The FDS solver
generates a δ shock exactly at the location ωδt as presented in Fig. 13a. Similarly,

Numerical Algorithms (2020) 83:1091–1121 1111



it captures a moving shock without any oscillations exactly at the ωδt location in
Fig. 13b.

Next, a test problem is taken from [1, Example 2] with uL < 0 < uR across a jump
in the initial conditions. In the beginning, a discontinuity is placed at point xo = 0.0
and the computational domain [−0.5, 0.5] is divided into 200 equally spaced cells.
The details of an initial data are as follows:

ρ(x, 0) = 0.5 , u(x, 0) =
{ −0.5, x < 0

0.4, x > 0.

The exact solution at time t = 0.5 is given as follows:

u(x, t) =
⎧⎨
⎩

−0.5, x < −0.25
undefined, −0.25 < x < 0.2
0.4, x > 0.2.

and

ρ(x, t) =
{

0, −0.25 < x < 0.2
0.5, otherwise.

Since the system generates a vacuum state in the density variable, then there should
not be any fluid particles in the region of the domain corresponding to such situa-
tions; this means that there must not be any particles with velocities ranging between
(−0.5, 0.4) in the supposed domain. For this test case, the FDS solver fails to gener-
ate results. Thus, to avoid a blow-up of solutions, an additional diffusion is added to
the interface velocity λ̄I = ūI using the concept of Harten’s [11] entropy fix, i.e.,

|λ̃I | = |λ̄I | if |λ̄I | ≥ ε

|λ̃I | = 1

2

(
λ̄2

I

ε
+ ε

)
if |λ̄I | < ε,

where ε is some arbitrary constant. It is observed that to avoid a blow-up of solutions,
it is required to use ε ≥ 0.9 in the definition of entropy fix (E-fix) together with
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Fig. 13 a Numerical results for density variable, formation of δ shocks and b formation of normal shocks
in u variable with the FDS-based method for a pressureless system
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Fig. 14 a Numerical results of density variable for the vacuum problem and b numerical results for u

variable, FDS scheme with entropy fix

the FDS scheme. In Fig. 14a, positivity preserving density results with E-fix are pre-
sented, but the solver fails to satisfy the maximum principle as displayed in Fig. 14b.

For uL < 0 < uR condition, the flow particles move away from the interface
leading to a vacuum state. Thus, the interface flux is set as follows:

F I =
{

0 if uL < 0 < uR
1
2 [FL + FR] − 1

2 |ūI |�U , otherwise.
(5.3)

The modified FDS solver turns out to be reasonably satisfactory in handling both
the vacuum state and the maximum principle without adding any extra diffusion
mechanism to the algorithm as shown in Fig. 15 a and b.
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Fig. 15 a Numerical results of density variable for the vacuum problem and b numerical results
corresponding to u variable and the satisfaction of maximum principle with a modified FDS scheme
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Fig. 16 a Numerical results for density variable and b numerical results for u variable with the modified
FDS scheme

Similarly, a more complex test case is considered from [3, Example 1] to check
the performance of the modified FDS scheme. The details of an aimed test case are
provided as follows:

ρ(x, 0) = 0.5 , u(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

−0.5, x < −0.5
0.4, −0.5 < x < 0
0.4 − x, 0 < x < 0.8
−0.4, x > 0.8.

The exact solution at time t = 0.5 is given as follows:

u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.5, x < −0.75
undefined, −0.75 < x < −0.3
0.4, −0.3 < x < 0.2
0.8 − 2x, 0.2 < x < 0.6
−0.4, x > 0.6

and

ρ(x, t) =
⎧⎨
⎩

0, −0.75 < x < −0.3
1, 0.2 < x < −0.6
0.5, otherwise.

The numerical results with 200 grid points are presented in Fig. 16 a and b. The
modified FDS scheme appears to generate some undesired overshoots in the density
variable. It is observed that such behavior plagues most of the well-known numer-
ical algorithms; for example, a numerical study of a Godunov-type flux [19] and a
Rusanov method also yield similar overshoots as shown in Figs. 17a and 18a respec-
tively. In addition to this, we emphasize that the Rusanov method also indicates the
presence of fluid particles in the vacuum region of the domain in Fig. 18b, whereas
a Godunov-type flux correctly preserves the maximum principle in Fig. 17b. The
appearance of overshoots in the density variable with most of the algorithms is prob-
ably due to the premature sensing of the presence of a “shock point” in the u variable;
in other words, at x = ξ = 0.4, u(ξ) = 0 and in the deleted neighborhood of u(ξ),
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Fig. 17 a Numerical results for density variable and b numerical results for u variable with a Godunov-
type flux [19]

uL > uR which is the required condition to form a δ shock in the density variable.
If the present test case is run for a time t ≥ 1 units, the system develops a standing
shock in the u variable and a δ shock in the density variable precisely at point ξ = 0.4.
Next, a test case with initial conditions as given in [28, Eq. (116)] is simulated with
the FDS-based scheme. It is observed that the present scheme captures δ shocks with
almost double the accuracy in Fig. 19a as compared to the results shown in Figure
4(a) of [28, pp. 132]. Similarly, the FDS-based scheme captures a normal shock at the
right position in Fig. 19b. Finally, the performance of the newly constructed scheme
is examined on a special case [2, Example 2.1] with ρo = 2δ, (ρu)o = qo ≡ 0
as initial conditions. For this particular test problem, the uniqueness of a solution set
is not granted by the authors. To perform computations, the δ distribution is replaced
with the 1

π
ε

x2+ε2 function, where ε ≈ 10−5, which fairly mimics the various proper-
ties of the δ distribution at a discrete level. In Fig. 20 a and b, numerical solutions with
the FDS scheme are presented, which are in agreement with the time-independent
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Fig. 18 a Numerical results for density variable and b numerical results for u variable with a Rusanov
method [25]
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Fig. 19 a Numerical results for density and b u variables respectively with 1280 grid points using a
modified FDS-based numerical fluxes for a test case from [28, Eq. 116, pp. 132]

solutions ρ(t, x) = 2δ(x), q(t, x) ≡ 0. Similarly, the authors show that a time-
dependent solution can also be constructed on replacing ρo by δ(x−ε)+δ(x+ε) and
qo by δ(x −ε)− δ(x +ε) in the above initial conditions. In Fig. 21 a and b, reference
solutions are plotted utilizing the exact solutions as given in the above-mentioned
article with 200 grid points at t = 0.2 units. From the reference solutions, it is clear
that a small perturbation in the initial conditions may lead to large variations in the
final solutions. On the other hand, computations with the FDS scheme as given in
Figs. 22a, b, 23 a and b generate time-independent numerical solutions with a single
beam of delta shocks. Moreover, the FDS scheme retains an almost identically zero
numerical product ρu and keeps the numerical velocity at approximately zero level.
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Fig. 20 Numerical results with a modified FDS scheme for a density variable and b ρu with 200 grid
points at t = 0.3 units for a test case from [2, Example 2.1]

Numerical Algorithms (2020) 83:1091–11211116



-0.5 -0.2 0 0.2 0.5

X

0

0.5

1

1.5

2

2.5

3

3.5
10

4

Reference

(a)

-0.5 -0.2 0 0.2 0.5

X

-1

-0.5

0

0.5

1

u

Reference

(b)

Fig. 21 Reference solutions for a density variable and b u variable with 200 grid points at t = 0.2 units
utilizing the exact solutions for a weakly perturbed test case as given in [2, Example 2.1]

6 2-D pressureless system

In a multi-dimension, the system of presureless gas dynamics can be written as
follows:

∂U

∂t
+ ∇.H = 0.

Here, U is the vector of conserved variables and H is the flux vector and are given
as follows:

U =

⎡
⎢⎢⎣

ρ

ρu

ρv

⎤
⎥⎥⎦ , H = F î + Gĵ =

⎡
⎢⎢⎣

ρu

ρu2

ρuv

⎤
⎥⎥⎦ î +

⎡
⎢⎢⎣

ρv

ρuv

ρv2

⎤
⎥⎥⎦ ĵ ,
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Fig. 22 Numerical results with a modified FDS scheme for a density variable and b ρu using 200 grid
points at t = 0.1 units for a weakly perturbed test case from [2, Example 2.1]
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Fig. 23 Numerical results with a modified FDS scheme for u variable using 200 grid points at a t = 0.1
units and b t = 0.2 units for a weakly perturbed test case from [2, Example 2.1]

where F = (F1, F2, F3)
t = (ρu, ρu2, ρuv)t and G = (G1, G2, G3)

t =
(ρv, ρuv, ρv2)t . The update formula in a finite volume framework for Cartesian
geometry can be written as follows:

Un+1
i,j = Un

i,j − �t

�x

[
F

i+ 1
2 ,j

− F
i− 1

2 ,j

]
− �t

�y

[
G

i,j+ 1
2

− G
i,j− 1

2

]
.

On using a similar approach as employed in the 1-D case, both interface fluxes are
written as follows:

F
i+ 1

2 ,j
=

{
0 if ui,j < 0 < ui+1,j ,
1
2

[
F i,j + F i+1,j

] − 1
2 |ū

i+ 1
2 ,j

|�U otherwise,

and

G
i,j+ 1

2
=

{
0 if vi,j < 0 < vi,j+1,
1
2

[
Gi,j + Gi,j+1

] − 1
2 |v̄

i,j+ 1
2
|�U otherwise,

respectively.
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Fig. 24 Numerical results for density variable a with 50×50 computational cells, ρ ∈ [5.0113×10−3, 0.5]
and b with 100×100 cells, ρ ∈ [5.0226×10−5, 0.5] in the case of a modified FDS scheme at t = 0.1 units
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Fig. 25 Numerical results for density variable a with Rusanov method and b with a modified FDS method
using 200 × 200 computational cells at t = 0.5 units

6.1 Numerical examples

In this section, some numerical examples are considered [33, Examples 9,11] to
check the performance of a modified FDS-based method for vacuum and δ shock-
related problems. In the beginning, a test case with the following initial conditions is
taken as follows:

ρ(x, y, 0) = 0.5 , (u, v)(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩

(0.3, 0.4), x > 0, y > 0,

(−0.4, 0.3), x < 0, y > 0,

(−0.3, −0.4), x < 0, y < 0,

(0.4,−0.3), x > 0, y < 0.

For all 2-D computations, CFL = 0.5 is used and the numerical results corre-
sponding to the density variable on coarse and fine grids are shown in Fig. 24 a and
b respectively. Similarly, the δ shock capturing property of a modified FDS-based
method is demonstrated through the following example as follows:

ρ(x, y, 0) = 0.1 , (u, v)(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩

(−0.25,−0.25), x > 0, y > 0,

(0.25,−0.25), x < 0, y > 0,

(0.25, 0.25), x < 0, y < 0,

(−0.25, 0.25), x > 0, y < 0.

On comparing Fig. 25 a and b, it is found that the FDS-based method captures δ

shocks with almost three times better accuracy than Rusanov method.

7 Summary

The upwind methods developed in this study are simple to adopt as there is no direct
contribution of eigenvectors or generalized eigenvectors in the final formulation of
each scheme for the considered systems. In particular, the FDS schemes are free
from complicated Riemann solvers, and thus, they can be used to construct higher
order weighted essentially non-oscillatory [13, 20] or discontinuous Galerkin [4, 5]
schemes without many difficulties. The strategy presented in this work can be further
used to investigate more complex systems.
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