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Abstract
Linear complementarity problem (LCP) presents many nice properties when the asso-
ciated matrix belongs to some special matrix classes, especially H -matrices. In this
paper, we put forward a new subclass of H -matrices, called S-QN matrices, which is
the proper generalization of the QN matrices. We have proved that for a given S-QN
matrix A, there exists a diagonal scaling matrix W such that AW is a QN matrix.
Then, we present two kinds of error bounds for LCP of S-QN matrices. The Error
Bound I generalizes the error bound for LCP of QN matrices. The Error Bound II
overcomes the limitation that the Error Bound I cannot be used. Numerical examples
illustrate that the Error Bound I is better than other previous bounds for H -matrices
in some cases. Moreover, in some special cases, the Error Bound II can improve
considerably the Error Bound I.

Keywords Linear complementarity problem · H -matrix · S-SDD matrix ·
QN matrix · S-QN matrix

1 Introduction

The linear complementarity problem is to find a vector x ∈ Rn such that

x ≥ 0, Ax + q ≥ 0, xT (Ax + q) = 0, (1.1)

or to show that no such vector x exists, where A = [aij ] ∈ Rn×n and q ∈ Rn. We
abbreviate the problem by LCP(A, q) and denote its solution by x∗. Many problems
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can be described in the form (1.1), such as problems in linear and quadratic program-
ming, the problem of finding a Nash equilibrium point of a bimatrix game, some
free boundary problems of fluid mechanics and American options pricing problem
(see [1–4]), etc.

It is well-known that the LCP(A, q) has a unique solution for any q ∈ Rn if and
only if A is a P -matrix [2]. When the matrix involved is a P -matrix, Chen and Xiang
[5] gave the error bound for the LCP(A, q) as:

‖ x − x∗ ‖∞≤ max
d∈[0,1]n

‖ (I − Λ + ΛA)−1 ‖∞‖ r(x) ‖∞, (1.2)

where x∗ is the solution of LCP(A, q), r (x) = min {x, Ax + q} , Λ = diag(di)

with 0 ≤ di ≤ 1, and the min operator r(x) denotes the componentwise minimum of
two vectors. Since real H -matrices with positive diagonal entries form a subclass of
P -matrices, the research of special H -matrices has aroused many scholars’ interest,
such as Nekrasov matrices [10], Ostrowski matrices [13], QN matrices [7], and S-
strictly diagonally dominant(S-SDD) matrices [14]. Meanwhile, the error bounds for
these subclasses of H -matrices are presented. For example, the corresponding error
bounds for LCPs of QN matrices are achieved by Dai et al. in [8] and Gao et al. in [9].
More error bounds for the subclasses of H -matrices can be seen in [12, 16, 17], etc.

The paper uses some basic notations. Denote N := {1, . . . , n} by the set of indices,
by S a nonempty subset of N , by S̄ := N\S the complement of S in N , and by
e := (1, . . . , 1)T the unit column vector of n elements, respectively. We also denote
by ri (A) := ∑

k∈N,k �=i

|aik| ith row sum and by rS
i (A) := ∑

k∈S,k �=i

|aik| the part of ith

row sum, which corresponds to the subset S of the index set N . Obviously, for any
subset S of N and any index i ∈ N , we have

ri (A) = rS
i (A) + rS̄

i (A) .

A matrix A = [aij ] ∈ Cn×n is called strictly diagonally dominant (SDD) matrix
if for each i ∈ N , it holds that aii > ri (A). A matrix A = [aij ] ∈ Cn×n is called an
H -matrix if its comparison matrix M(A) = [

ãij

] ∈ Rn×n defined by the formula

aij =
{ |aii | , i = j,

− ∣∣aij

∣
∣ , i �= j,

is a nonsingular M-matrix. It is well-known that a square matrix A is an H -matrix if
and only if there exists a positive diagonal matrix X such that AX is SDD [15].

This paper is organized as follows. In Section 2, we put forward a new subclass of
H -matrices, called S-QN matrices. Moreover, by discussing the relationship among
the subclasses of H -matrices, we find that the set of QN matrices is the proper subset
of S-QN matrices; that is, the conception of S-QN matrix is the proper generalization
of the conception of QN matrix. In Section 3, we present two kinds of error bounds
for LCP(A, q) when the involved matrix A belongs to the set of S-QN matrices. The
Error Bound I generalizes the error bound for LCP of QN matrices in [8] by finding
a positive diagonal matrix P , such that matrix AP is an SDD matrix. However, the
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Error Bound I cannot be used when its hypotheses are not satisfied. To avoid this
case, we propose a new error bound, called the Error Bound II. The main idea of
the Error Bound II is the bound of the inverse of the S-QN matrix, which we get
by extending the bound of the inverse of the QN matrix to S-QN matrix. Numerical
examples show that the Error Bound I is better than the previous error bounds for
H -matrices in some cases and the Error Bound II can improve the Error Bound I in
some special cases for S-QN matrices. The conclusion is provided in the last section.

2 S-QNmatrix

The class of H -matrices plays an important role in linear complementarity problem.
Many convergence analyses of the iterative algorithms for LCP have been consid-
ered when the coefficient matrices of LCP are H -matrices. Dehghan and Hajarian
[18] gave the convergence analysis of SSOR methods for LCP(A, q) when matrix
A is an H -matrix. In [19], Li and Dai presented generalized AOR methods and the
convergence analysis for LCP of H -matrices. Similarly, Hadjidimos and Tzoumas
discussed the convergence of the matrix analogue of the accelerated overrelaxation
iterative method for LCP when the coefficient matrices belong to H+-matrices [20].
At the same time, the error bounds for LCP of H -matrices or its subclasses also
attracted many researchers’ interest [6, 8, 11, 13]. Inspired by the S-SDD matrices
and QN matrices, we first put forward a new subclass of H -matrices, called S-QN
matrices, which is the proper generalization of QN matrices.

Definition 2.1 [10] For any given matrix A = [aij ] ∈ Cn×n, n ≥ 2, and for any
given nonempty proper subset S of N , then A is called as an S-strictly diagonally
dominant (S-SDD) matrix if

(1) |aii | > rs
i (A) for all i ∈ S;

(2)
(|aii | − rs

i (A)
) (∣
∣ajj

∣
∣− rs̄

j (A)
)

> rs̄
i (A) rs

j (A) for all i ∈ S, j ∈ S̄.

S-SDD matrices can be characterized in different ways, the following Theorem
2.2 gives out a general characterization by the form of corresponding diagonal scal-
ing matrices, which can be more convenient in some applications. Moreover, these
scaling characterizations give us another insight into relation between various sub-
classes of the class of H -matrices and the class of SDD matrices. The corresponding
diagonal scaling matrix W belongs to the set W , defined as the set of all diagonal
matrices whose diagonal entries are either 1 or γ , where γ is an arbitrary positive
number, i.e.,

W = ∪
S⊂N

WS,

WS ={W =diag (w1, . . . , wn) : wi = γ > 0 f or i ∈ S and wi = 1 f or i ∈ S̄
}

.

Theorem 2.2 [10] A matrix A is an S-SDD matrix if and only if there exists a matrix
W ∈ W such that AW is an SDD matrix.
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Numerically, if a matrix A is an S-SDD matrix, we can construct the diagonal
matrix W by choosing the scaling parameter γ from the interval (γ1 (A) , γ2 (A))

with

0 ≤ γ1 (A) := max
i∈S

rs̄
i (A)

|aii | − rs
i (A)

, γ2 (A) := min
j∈S̄,rs

j (A)

∣
∣ajj

∣
∣− rs̄

j (A)

rs
j (A)

,

where, if rs
j (A) = 0 for j ∈ S̄, the final fraction is defined to be +∞.

Assume that A = D + L + U is the standard splitting of a matrix A ∈ Cn×n into
its diagonal (D), strictly lower triangular (L), and strictly upper triangular (U ) parts,
respectively. Next, we give a characterization of the QN matrices.

Lemma 2.3 [7] Let A = [aij ] ∈ Cn×n, n ≥ 2, with aii �= 0, i ∈ N . Then A is a QN
matrix if and only if

e > M−1 |L| |D|−1 |U | e. (2.1)

where

M = (|D| − |L|) |D|−1 (|D| − |U |) = M(A) + |L||D|−1|U |. (2.2)

Obviously, the matrix M is monotone, i.e., M−1 is a nonnegative matrix. If we
denote

G = I − M−1 |L| |D|−1 |U | = M−1M (A) , (2.3)

then, G is a Z-matrix (i.e., its off-diagonal entries are nonpositive) and the condi-
tion (2.1) amounts to G is strictly diagonal dominant by rows with positive diagonal
entries. Thus, A is a QN matrix if and only if for i = 1, 2, . . . , n,

[Ge]i = [M(G)e]i > 0. (2.4)

Theorem 3.2 in [7] shows that a QN matrix is an H -matrix; however, an H -matrix
may be not a QN matrix. In this paper, we introduce a new kind of subclass of
H -matrices, called S-QN matrices, which is also the proper generalization of QN
matrices. Next, we give out the definition of S-QN matrix.

Definition 2.4 Let a matrix A = [aij ] ∈ Cn×n, n ≥ 2, with aii �= 0, i ∈ N , and any
given nonempty proper subset S of N . Then A is called an S-QN matrix if the matrix
G defined by (2.3) is an S-SDD matrix with positive diagonal entries.

The following result gives a characterization of S-QN matrices.

Theorem 2.5 A matrix A is an S-QN matrix if and only if there exists a matrix
W ∈ W such that AW is a QN matrix.

Proof At first, we prove the necessity. Let A = D+L+U be an S-QN matrix, by the
Definition 2.4, the matrix G defined by (2.3) is an S-SDD matrix and G = M(G).
According to Theorem 2.2, there exists a positive diagonal matrix W ∈ W such that
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GW is an SDD matrix, i.e., for i = 1, 2, . . . , n, we have

[(GW)e]i = [M (GW) e]i > 0.

The following is to show AW is a QN matrix. According to (2.4), we only need to
prove that Ḡe = M(Ḡ)e > 0, where Ḡ = M̄−1M (AW) = W−1M−1M (A) W =
W−1GW and M̄ = (|DW | − |LW |) |DW |−1 (|DW | − |UW |) = MW . For i =
1, 2, . . . , n,

[Ḡe]i = [M (
Ḡ
)
e]i = [M

(
W−1GW

)
e]i = [W−1M (GW) e]i > 0.

Hence, AW is a QN-matrix. The necessity is proved.
Next, we prove the sufficiency. If there exists a positive diagonal matrix W ∈ W

such that AW is a QN matrix, we need to prove that the matrix A is an S-QN matrix.
That is, we need to show the matrix G is an S-SDD matrix with positive diagonal
entries.

Since AW is a QN matrix, we have that Ḡe = M(Ḡ)e = M̄−1M (AW) e =
W−1GWe = (W−1G)We > 0. By Theorem 2.2, W−1G is an S-SDD matrix.
Moreover, W−1G can be expressed as

W−1G =
⎡

⎢
⎣

1
w1

g11 · · · 1
w1

g1n

...
. . .

...
1

wn
gn1 · · · 1

wn
gnn

⎤

⎥
⎦ . (2.5)

Obviously, the matrix G is also an S-SDD matrix with positive diagonal entries. The
sufficiency is proved.

Remark 2.6 According to the above, the conclusion is that an S-QN matrix is an H -
matrix. When the matrix A is an S-QN matrix, then there exists W ∈ W such that
AW is a QN-matrix. It is well-known that a QN-matrix is also an H -matrix; that is,
there exists diagonal matrix X such that (AW)X is an SDD matrix; i.e., there exists a
positive diagonal matrix WX, such that A(WX) is an SDD matrix. Hence, an S-QN
matrix is also an H -matrix.

Remark 2.7 It is easy to see that the scaling matrix W for an S-QN matrix A is
not unique. Since A is an S-QN matrix, then the matrix G is an S-SDD matrix.
From the proof of Theorem 2.5, the scaling matrix W for A satisfies that GW is an
SDD matrix. Therefore, the parameter γ of matrix W can be taken from the interval
(γ1(G), γ2(G)). It means that any choice from the interval (γ1(G), γ2(G)) can form
a scaling matrix W such that AW is a QN matrix.

The following Example 2.1 shows that the class of QN-matrices is the proper
subset of the class of S-QN matrices.

Example 2.1 The matrix

A =
⎡

⎣
1 −2 0

−1 3 −
0 −1 4

⎤

⎦
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is an S-QN matrix with S = {2, 3}, and it is not a QN matrix.
The following Examples 2.2 and 2.3 illustrate that the set of QN matrices and the

set of S-SDD matrices do not contain each other.

Example 2.2 The matrix

A =

⎡

⎢
⎢
⎣

1 0.5 0 0.4
0.5 1 0.5 0
0 0.5 1 0.5

0.5 0 0.5 1

⎤

⎥
⎥
⎦

is a QN matrix, but not an S-SDD matrix for any subset S.

Example 2.3 The matrix

A =

⎡

⎢
⎢
⎣

1 0.5 0 0
0.5 1 0 0
1 2 1 0.5
1 2 0.3 1

⎤

⎥
⎥
⎦

is an S-SDD matrix for S = {1, 2}, but not a QN matrix.

By Theorem 2.2, for an arbitrary S-SDD matrix A, there exists a diagonal matrix
W ∈ W , such that AW is an SDD matrix. It is well-known that an SDD matrix is
also a QN matrix, so matrix AW is a QN matrix. Then, according to Theorem 2.5,
the matrix A is an S-QN matrix. Therefore, the class of S-QN matrices contains the
class of S-SDD matrices.

Figure 1 displays the relationship among these subclasses of H -matrices.

Fig. 1 The relationship about the subclasses of H -matrices
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3 Error bounds for LCPs of S-QNmatrices

When the matrix involved is a P -matrix, Chen and Xiang proposed the corresponding
error bound for LCP(A, q) in (1.2). A big challenge for (1.2) is due to the difficulty
for solving maxd∈[0,1]n ‖ (I − Λ + ΛA)−1 ‖∞, where Λ = diag(di) with 0 ≤
di ≤ 1. However, if the involved matrix belongs to a subclass of P -matrices, for
example, H -matrices with positive diagonals, then many calculable error bounds for
the LCP(A, q) can be derived. As a subclass of H -matrices, we present two kinds of
error bounds for LCP(A, q) with an S-QN matrix.

3.1 Error bound I for LCPs with an S-QNmatrix

Garcı́a-Esnaola and Peña provided an error bound for LCP(A, q) of H -matrices with
positive diagonal entries in [6], it requires to know the diagonal matrix X in advance
such that AX is strictly diagonally dominant (SDD). Based on this idea, we first
find a diagonal matrix P for an S-QN matrix A such that AP is SDD. Then the
error bound of LCP(A, q) when the involved matrix is an S-QN matrix with positive
diagonal entries is presented. The following Theorem 3.1 can be found in [6].

Theorem 3.1 [6] Assume that A = [aij ] ∈ Rn×n is an H -matrix with positive
diagonal entries. Let D̄ = diag

(
d̄i

)
with d̄i > 0, i ∈ N , be a diagonal matrix such

that AD̄ is strictly diagonal dominant by rows. For any i ∈ N , let β̄i = aii d̄i −∑

j �=i

∣
∣aij

∣
∣ d̄

j
, then

max
d∈[0,1]n

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ max

⎧
⎨

⎩

max
i

{
d̄i

}

min
i

{
β̄i

} ,

max
i

{
d̄i

}

min
i

{
d̄i

}

⎫
⎬

⎭
. (3.1)

where Λ = diag(di) with 0 ≤ di ≤ 1.

In [8], Dai et al. have found the diagonal matrix K for the QN matrix A such that
AK is SDD. Similarly, we can find the corresponding diagonal matrix P = diag(pi)

for S-QN matrices.

Theorem 3.2 [8] Let A = [aij ] ∈ Rn×n be a QN matrix with positive diagonal
entries such that, for each i = 1, . . . , n − 1, aij �= 0 for some j > i, and for
each i = 2, . . . , n, aij �= 0 for some j < i. Let ξ := M−1 |L| |D|−1 |U | e, where
M is defined in (2.2), then the matrix K = diag (k1, . . . , kn) with k1 := ξ1 + ε,

ε ∈
(

0, min

{

1 − ξ1, min
2≤i≤n

[M(A)ξ]i|ai1|
})

, where [M(A)ξ]i|ai1| = ∞ when ai1 = 0, and

ki := ξi for i = 2, . . . , n, has positive diagonal entries and it satisfies that AK is
SDD.

Corollary 3.3 Let A = [aij ] ∈ Rn×n be an S-QN matrix with positive diago-
nal entries such that, when j > i, there exists aij �= 0 for each i = 1, . . . , n −
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1; and when j < i, there exists aij �= 0 for each i = 2, . . . , n. If W =
diag(wi) ∈ W such that AW is a QN matrix, ξ̄ = W−1M−1 |L| |D|−1 |U | We,
where M is defined in (2.2), and K = diag (k1, . . . , kn) with k1 := ξ̄1 + ε,

ε ∈
(

0, min

{

1 − ξ̄1, min
2≤i≤n

[
M(AW)ξ̄

]
i|ai1|w1

})

, where
[
M(AW)ξ̄

]
i|ai1|w1

= ∞ when ai1 = 0,

and ki := ξ̄i for i = 2, . . . , n. Then the matrix P = WK = diag(pi) is the positive
diagonal matrix such that AP is SDD.

The following results present an error bound for the linear complementarity prob-
lem of S-QN matrices, which generalizes the error bound for QN matrices in [8].
This bound can improve the previous bounds for H -matrices.

Theorem 3.4 Let A = [aij ] ∈ Rn×n be an S-QN matrix with positive diagonal
entries such that, when j > i, there exists aij �= 0 for each i = 1, . . . , n − 1; and
when j < i, there exists aij �= 0 for each i = 2, . . . , n. Then

max
d∈[0,1]n

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ max

⎧
⎨

⎩

max
i

{pi}
min

i
{ti} ,

max
i

{pi}
min

i
{pi}

⎫
⎬

⎭
, (3.2)

where t1 := εa11w1, ti := aiiwi ξ̄i − ∑

j∈N\{i}

∣
∣aij

∣
∣wj ξ̄j − ε |ai1| w1 for each i =

2, . . . , n; ξ̄ , W , P and ε are defined in Corollary 3.3.

Proof By Remark 2.6, an S-QN matrix is an H -matrix, we can apply the bound (3.1)
for H -matrices to S-QN matrices. Then, we need to prove that d̄i = pi and ti = β̄i

for all i ∈ N . Obviously, d̄i = pi for all i ∈ N , so we only need to prove that ti = β̄i

for all i ∈ N .
By Theorem 2.5, AW is a QN matrix, and

M̄ = M (AW) + |L| |D|−1 |U | W = MW,

ξ̄ = W−1M−1 |L| |D|−1 |U | We,

we can have M (AW) ξ̄ + |L| |D|−1 |U | Wξ̄ = |L| |D|−1 |U | We, in other words,
M (AW) ξ̄ = |L| |D|−1 |U | W (

e − ξ̄
)
.

Denote ζ = (ε, 0, . . . , 0)T , then Ke = (k1, . . . , kn)
T = (

ξ̄1 + ε, ξ̄2, . . . , ξ̄n

)T =
ξ̄ + ζ ,

M (AP ) e = M (AWK) e

= M (AW) Ke = M (AW) · (ξ̄ + ζ
)

= |L| |D|−1 |U | W (
e − ξ̄

)+ M (AW) · ζ .
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It is easy to get that

|L| |D|−1 |U | =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
0 |a21||a11| |a12| · · · |a21||a11| |a1n|
...

...
. . .

...

0 |ân1||â11| |a12| · · · |an1||a11| |a1n| + · · · |an,n−1||an−1,n−1|
∣
∣an−1,n

∣
∣

⎤

⎥
⎥
⎥
⎥
⎦

.

For i = 1, β̄1 = [M (AP ) e]1 = [M (AWK) e]1 = [M (AW) · ζ ]1 = εa11w1 = t1.
For i = 2, . . . , n,

β̄i = [M (AP ) e]i = [M (AWK) e]i

=
[
M (AW)

(
ξ̄1 + ε, ξ̄2, . . . , ξ̄n

)T
]

i

= aiiwi ξ̄i −
∑

j∈N\{i}

∣
∣aij

∣
∣wj ξ̄j − ε |ai1| w1

= ti .

Hence, we can get

max
d∈[0,1]n

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ max

⎧
⎨

⎩

max
i

{pi}
min

i
{ti} ,

max
i

{pi}
min

i
{pi}

⎫
⎬

⎭
.

The error bound given by [5] of LCP(A, q) for an H -matrix A = [
aij

] ∈ Rn×n

with positive diagonal entries is the following:

max
d∈[0,1]n

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤

∥
∥
∥M(A)−1 max (Γ, I )

∥
∥
∥∞, (3.3)

where M (A) is the comparison matrix of A, Γ = diag(a11, a22, . . . , ann) is the
diagonal part of A and max (Γ, I ) = diag(max {a11, 1} , · · · , max {ann, 1}).

The following Example 3.1 illustrates that the bound (3.2) obtained by Theo-
rem 3.4 is better than the bound (3.3) given in [5].

Example 3.1 Consider the following matrix

A =
⎡

⎣
1 −2.5 0

−1 3 −1
0 −1 4

⎤

⎦ .
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It is easy to check that the matrix A is an S-QN matrix for S = {2, 3} and W =
diag(1, 0.4, 0.4). By Theorem 3.4, we can get ξ̄ = (0.9306, 0.9306, 0.2917)T , if we
choose ε = 0.0347, then

K = diag(0.9653, 0.9306, 0.2917),

P = diag(0.9653, 0.3722, 0.1167),

(t1, t2, t3)
T = M(AP )e = (0.0347, 0.0347, 0.0945)T .

So the bound (3.2) in Theorem 3.4 is

max

⎧
⎨

⎩

max
i

{pi}
min

i
{ti} ,

max
i

{pi}
min

i
{pi}

⎫
⎬

⎭
= 27.8184,

which is smaller than the bound (3.3)

∥
∥
∥M(A)−1 max (Γ, I )

∥
∥
∥∞ = 51.

3.2 Error bound II for LCPs with an S-QNmatrix

In Theorem 3.4, we get an error bound for LCPs of S-QN matrices. Although the
bound (3.2) can improve the previous error bound for H -matrices, it is still worth
improving. For example, for a given S-QN matrix A = [

aij

] ∈ Rn×n with positive
diagonals, if there exists some i ∈ N such that aij = 0 for any j > i or j < i, then
the bound (3.2) can not be used to estimate max

d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞. Besides,

when ε → 0,

t1 = εa11w1 and min
i∈N

{ti} → 0,

which implies that

max

⎧
⎨

⎩

max
i

{pi}
min

i
{ti} ,

max
i

{pi}
min

i
{pi}

⎫
⎬

⎭
→ +∞.

These facts show that when the assumption of Theorem 3.4 is not satisfied or ε −→
0, using the bound (3.2) to estimate max

d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞ is inappropriate.

To overcome these drawbacks, we propose a new error bound for S-QN matrices
which is better than the bound (3.2) in some cases. Some useful lemmas are listed
here.
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Lemma 3.5 [11] Let α > 0 and η > 0. Then for any x ∈ [0, 1],
1

1 − x + αx
≤ 1

min {α, 1} ,

and
ηx

1 − x + αx
≤ η

α
.

Lemma 3.6 [12] Let A = [aij ] ∈ Cn×n be a matrix with aii �= 0 for i ∈ N and
Â = I − Λ + ΛA = [

âij

]
, where Λ = diag(di) with 0 ≤ di ≤ 1. Then

zi(Â) ≤ ηi (A)

and

zi(Â)

âii

≤ ηi (A)

min {aii, 1} ,

where z1(Â) = η1 (A) = 1, zi(Â) =
i−1∑

j=1

|âij |
|âjj |zj (Â) + 1, and

ηi (A) =
i−1∑

j=1

∣
∣aij

∣
∣

min
{∣
∣ajj

∣
∣ , 1

}ηj (A) + 1, i = 2, 3, . . . , n.

Lemma 3.7 [7] Let A = [aij ] ∈ Cn×n, n ≥ 2, be a QN matrix. Then

∥
∥
∥A−1

∥
∥
∥∞ ≤ max

i∈N

{
M−1e

}
i{

M−1M (A) e
}
i

. (3.4)

where M is defined in (2.2).

Next, we will introduce the new error bound for LCPs when the involved matrix is
an S-QN matrix. To calculate max

d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞, we first prove that the

matrix Â = I − Λ + ΛA is also an S-QN matrix when the matrix A is an S-QN
matrix. Then, the error bound is estimated by using the bound of the inverse of the
S-QN matrix Â.

Lemma 3.8 Let A = [aij ] ∈ Cn×n be an S-QN matrix with positive diagonal
entries, and Â = I − Λ + ΛA = [

âij

]
, where Λ = diag(di) with 0 ≤ di ≤ 1. Then

Â is an S-QN matrix.

Proof Since A is an S-QN matrix, there exists a diagonal matrix W = diag(wi) ∈
W such that Ā = AW is a QN matrix. Let ξ̄ = W−1M−1 |L| |D|−1 |U | We =
(ξ̄1, ξ̄2, . . . , ξ̄n)

T , where M is defined in (2.2), then

e > ξ̄ . (3.5)
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Denote

âij =
{

1 − di + diaij , i = j,

diaij , i �= j .

Since A = D + L + U , it follows that Â and Ā can be split in the form of Â =
D̂ + L̂ + Û , Ā = D̄ + L̄ + Ū , respectively.

To prove Â is an S-QN matrix, by Theorem 2.5, we only need to prove that ÂW

is a QN matrix. If we denote

ξ̂ = W−1M̂−1|L̂||D̂−1||Û |We = (ξ̂1, ξ̂2, . . . , ξ̂n)
T , (3.6)

where M̂ = (|D̂| − |L̂|)|D̂−1|(|D̂ − Û |), then we only need to prove e > ξ̂ . Denote

v̂ = |L̂||D̂−1||Û |We = (v̂1, v̂2, . . . , v̂n)
T , (3.7)

where

|L̂||D̂−1||Û |W=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0

0 |â21||â11|
∣
∣â12

∣
∣w2 · · · |â21||â11|

∣
∣â1n

∣
∣wn

...
...

. . .
...

0 |ân1||â11|
∣
∣â12

∣
∣w2 · · · |ân1||â11|

∣
∣â1n

∣
∣wn+· · · |ân,n−1||ân−1,n−1|

∣
∣ân−1,n

∣
∣wn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Then we can get

v̂1 = 0, v̂i =
n∑

j=2

(
i−1∑

k=1

∣
∣âik

∣
∣

∣
∣âkk

∣
∣

∣
∣âkj

∣
∣wj

)

=
i−1∑

k=1

⎛

⎝

∣
∣âik

∣
∣

∣
∣âkk

∣
∣

n∑

j=k+1

∣
∣âkj

∣
∣wj

⎞

⎠ , i = 2, ..., n.

(3.8)
From (3.6) and (3.7), we have ξ̂ = W−1M̂−1v̂ = W−1(|D̂| − |Û |)−1|D̂|(|D̂| −

|L̂|)−1v̂. If we denote λ̂ = (|D̂| − |L̂|)−1v̂ = (λ̂1, . . . , λ̂n)
T , then we get

ξ̂ = W−1(|D̂| − |Û |)−1|D̂|λ̂, (3.9)

and

(|D̂| − |L̂|)λ̂ = v̂. (3.10)

By (3.8) and (3.10), we can obtain the entries of λ̂ as

λ̂1 = 0, λ̂i = v̂i∣
∣âii

∣
∣

+
i−1∑

j=1

∣
∣âij

∣
∣

∣
∣âii

∣
∣
λ̂j , i = 2, . . . , n. (3.11)
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Moreover, followed by (3.9), we have (|D̂| − |Û |)W ξ̂ = |D̂|λ̂, this implies the
following recursive relations

ξ̂n = λ̂n

wn

,

ξ̂i = λ̂i

wi

+
n∑

j=i+1

∣
∣âij

∣
∣wj

∣
∣âii

∣
∣wi

ξ̂j , i = n − 1, . . . , 1. (3.12)

Similarly, if we denote v̄ = |L̄||D̄−1||Ū |We = (v̄1, v̄2, ..., v̄n)
T , λ̄ = (|D̄| −

|L̄|)−1v̄ = (λ̄1, λ̄2, . . . , λ̄n)
T , then

λ̄1 = 0, λ̄i = v̄i

|aii | +
i−1∑

j=1

∣
∣aij

∣
∣

|aii | λ̄j , i = 2, .., n,

where

v̄i =
i−1∑

k=1

⎛

⎝
|aik|
|akk|

n∑

j=k+1

∣
∣akj

∣
∣wj

⎞

⎠, (3.13)

and

ξ̄n = λ̄n

wn

,

ξ̄i = λ̄i

wi

+
n∑

j=i+1

∣
∣aij

∣
∣wj

|aii | wi

ξ̄j , i = n − 1, ..., 1. (3.14)

Next, we use mathematical induction to prove λ̂i ≤ λ̄i for any i ∈ N .

(1) The conclusion is hold for i = 1 and i = 2, since for λ̂1 = λ̄1 = 0, and

λ̂2 = v̂2∣
∣â22

∣
∣

+
∣
∣â21

∣
∣

∣
∣â22

∣
∣
λ̂1 = v̂2∣

∣â22
∣
∣

= 1
∣
∣â22

∣
∣

·
∣
∣â21

∣
∣

∣
∣â11

∣
∣

n∑

j=2

∣
∣â1j

∣
∣wj

= d2 |a21|
1 − d2 + d2|a22| · d2

1 − d1 + d1|a11| ·
n∑

j=2

d1|a1j |wj

≤ |a21|
|a22| · 1

|a11| ·
n∑

j=2

|a1j |wj

= v2

|a22| = λ̄2,
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(2) we assume that λ̂i ≤ λ̄i for i = k, then by (3.8),

λ̂k+1 = v̂k+1∣
∣âk+1,k+1

∣
∣

+
k∑

j=1

∣
∣âk+1,j

∣
∣

∣
∣âk+1,k+1

∣
∣
λ̂j

= 1
∣
∣âk+1,k+1

∣
∣

⎛

⎝
k∑

l=1

⎛

⎝

∣
∣âk+1,l

∣
∣

∣
∣âll

∣
∣

n∑

j=l+1

∣
∣âlj

∣
∣wj

⎞

⎠

⎞

⎠+
k∑

j=1

∣
∣âk+1,j

∣
∣

∣
∣âk+1,k+1

∣
∣
λ̂j

=
k∑

l=1

⎛

⎝

∣
∣âk+1,l

∣
∣

∣
∣âk+1,k+1

∣
∣

n∑

j=l+1

∣
∣âlj

∣
∣

∣
∣âll

∣
∣
wj

⎞

⎠+
k∑

j=1

∣
∣âk+1,j

∣
∣

∣
∣âk+1,k+1

∣
∣
λ̂j

=
k∑

l=1

⎛

⎝
dk+1

∣
∣ak+1,l

∣
∣

1 − dk+1 + dk+1
∣
∣ak+1,k+1

∣
∣

n∑

j=l+1

dlj

∣
∣alj

∣
∣

1 − dl + dl |all |wj

⎞

⎠

+
k∑

j=1

dk+1,l

∣
∣ak+1,j

∣
∣

1 − dk+1 + dk+1
∣
∣ak+1,k+1

∣
∣
λ̂j

≤
k∑

l=1

⎛

⎝

∣
∣ak+1,l

∣
∣

∣
∣ak+1,k+1

∣
∣

n∑

j=l+1

∣
∣alj

∣
∣

|all | wj

⎞

⎠+
k∑

j=1

∣
∣ak+1,j

∣
∣

∣
∣ak+1,k+1

∣
∣
λ̄j

= vk+1∣
∣ak+1,k+1

∣
∣

+
k∑

j=1

∣
∣ak+1,j

∣
∣

∣
∣ak+1,k+1

∣
∣
λ̄j

= λ̄k+1.

So λ̂i ≤ λ̄i is hold for any i ∈ N .
By (3.12), (3.14) and Lemma 3.5, we can get ξ̂ ≤ ξ̄ . From (3.5), we can get e > ξ̂ ,

i.e., ÂW is a QN matrix. Therefore, Â = I − Λ + ΛA is an S-QN matrix.

The following lemma extends the bound of the inverse of the QN matrix given by
Lemma 3.7 to the S-QN matrix.

Lemma 3.9 Let A = [aij ] ∈ Cn×n, n ≥ 2 be an S-QN matrix, if W = diag(wi) ∈
W such that AW is a QN matrix, δ = min{w−1

i }, then

‖A−1‖∞ ≤ 1

δ
max
i∈N

{
W−1M−1e

}
i{

W−1M−1M (A) We
}
i

, (3.15)

where M is defined in (2.2).

Proof Since A is an S-QN matrix, AW is a QN matrix. By Lemma 3.7

‖(AW)−1‖∞ ≤ max
i∈N

{
W−1M−1e

}
i{

W−1M−1M (A) We
}
i

.
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Denote A−1 = [a(−1)
ij ] and Ri(A

−1) =
n∑

j=1
a

(−1)
ij (the ith row sum), then ‖A−1‖∞

and ‖(AW)−1‖∞ can be expressed as

‖A−1‖∞ = max
i

{Ri(A
−1)}, ‖(AW)−1‖∞ = max

i
{w−1

i Ri(A
−1)},

respectively. Let δ = min
i

{w−1
i }, then

δ‖A−1‖∞ = δ max
i

{Ri(A
−1)} ≤ max

i
{w−1

i Ri(A
−1)} = ‖(AW)−1‖∞.

Hence

‖A−1‖∞ ≤ 1

δ
max
i∈N

{
W−1M−1e

}
i{

W−1M−1M (A)We
}
i

.

Theorem 3.10 Let A = [aij ] ∈ Rn×n, and n ≥ 2 be an S-QN matrix with pos-
itive diagonal entries, if W = diag(wi) ∈ W , such that AW is a QN matrix,
δ = min{w−1

i }. Then

max
d∈[0,1]n

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ 1

δ
max
i∈N

{
W−1β

}
i{

e − ξ̄
}
i

, (3.16)

where ξ̄ = W−1M−1 |L| |D|−1 |U | We, M is defined in (2.2), β =
(β1, β2, . . . , βn)

T with βn = ηn(A)
min{ann,1} , βi = ηi(A)

min{aii ,1} +
n∑

j=i+1

|aij |
|aii | βj , i = n −

1, . . . , 1, and ηi (A) is defined in Lemma 3.6.

Proof By Lemmas 3.8 and 3.9, Â = I − Λ + ΛA is an S-QN matrix, and

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ 1

δ
max
i∈N

{
W−1M̂−1e

}

i{
W−1M̂−1M(Â)We

}

i

. (3.17)

By (2.3)

W−1M̂−1M(Â)We = W−1(I − M̂−1|L̂||D̂|−1|Û |)We

= (I − W−1M̂−1|L̂||D̂|−1|Û |W)e

= e − ξ̂ .

Denote z(Â) = (z1(Â), z2(Â), . . . , zn(Â))T given in Lemma 3.6. It follows that
|D̂|(|D̂| − |L̂|)−1e = z(Â), and M̂−1e = (|D̂| − |Û |)−1|D̂|(|D̂| − |L̂|)−1e =
(|D̂| − |Û |)−1z(Â), then

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ 1

δ
max
i∈N

{
W−1(|D̂| − |Û |)−1

z(Â)
}

i{
e − ξ̂

}

i

. (3.18)
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Denote y = (|D̂| − |Û |)−1z(Â) = (y1, y2, . . . , yn)
T , then (|D̂| − |Û |)y = z(Â),

and we can obtain

yi = zi(Â)
∣
∣âii

∣
∣

+
n∑

j=i+1

∣
∣âij

∣
∣

∣
∣âjj

∣
∣
yj , j = n − 1, . . . , 1.

Next, we prove yi ≤ βi for each i ∈ N . In fact, by Lemma 3.6, for i = n,

yn = zn(Â)

ânn

≤ ηn (A)

min {ann, 1} = βn.

For i = n − 1,

yn−1 = zn−1(Â)

ân−1,n−1
+

∣
∣ân−1,n

∣
∣

∣
∣ân−1,n−1

∣
∣

· yn ≤ ηn−1 (A)

min
{
an−1,n−1, 1

} +
∣
∣an−1,n

∣
∣

∣
∣an−1,n−1

∣
∣

· βn =βn−1.

Similarly, for i = n − 2, . . . , 2, 1, we also have

yi = zi(Â)

âii

+
n∑

j=i+1

∣
∣âij

∣
∣

∣
∣âii

∣
∣
yi ≤ ηi (A)

min {aii , 1} +
n∑

j=i+1

∣
∣aij

∣
∣

|aii | βj = βi .

So yi ≤ βi holds for each i ∈ N . If we let β = (β1, β2, . . . , βn)
T , then

W−1M̂−1e = W−1(|D̂| − |Û |)−1z(Â) ≤ W−1β,

therefore, by (3.18), we have

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ 1

δ
max
i∈N

{
W−1M̂−1e

}

i{
W−1M̂−1M(Â)We

}

i

≤ 1

δ
max
i∈N

{
W−1β

}
i{

e − ξ̂
}

i

≤ 1

δ
max
i∈N

{
W−1β

}
i{

e − ξ̄
}
i

.

Remark 3.11 From Theorem 3.4 and Theorem 3.10, the bound (3.2) and the bound
(3.16) both require a scaling matrix W ∈ W , which is closely related with the set of
indices S. Hence, for an S-QN matrix, the choice of the set of indices S will leads to
different scaling matrices. Moreover, the obtained bounds will be different.

The following example shows that the error bound (3.2) with the parameter ε may
be smaller than the error bound (3.16) if the proper ε is taken. However, it is hard to
determine the optimal ε.

Example 3.2 Consider the matrix

A =

⎡

⎢
⎢
⎣

1 − 1
4 − 1

4 − 1
4

5
7 1 4

7 − 3
7

0 − 1
2

9
8

1
8

− 1
3 0 0 4

3

⎤

⎥
⎥
⎦ .
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It is easy to check that A is an S-QN matrix for S = {1, 3, 4} and W =
diag(0.6, 1, 0.6, 0.6). By Theorem 3.4, we can get ξ̄ = (0.5445, 0.7127, 0.7609,

0.2292)T , ε ∈ (0, 0.2233), and

P = diag(0.3267 + 0.6ε, 0.7127, 0.4565, 0.1375).

Then, the error bound (3.2) in Theorem 3.4 with respect to ε is drawn
in Fig. 2. Furthermore, by Theorem 3.10, we can calculate that β =
(2.6926, 3.4316, 2.0053, 1.3333)T and δ = 1, so the new error bound (3.16) is

max
i∈N

1

δ
·
{
W−1β

}
i{

e − ξ̄
}
i

= 13.9783.

The Example 3.3 illustrates that the error bound (3.16) can improve the error
bound (3.2) in some special cases.

Example 3.3 Consider the matrix

A =
⎡

⎣
1 −2 0

0.5 2 0.5
0 −1 1

⎤

⎦ .

Observe that A is an S-QN matrix for S = {2, 3} and W = diag(1, 0.5, 0.5). By
Theorem 3.4, we can get ξ̄ = (0.6875, 0.6875, 0.75)T , ε ∈ (0, 0.3125), and

P = diag(0.6875 + ε, 0.3438, 0.3750).

0 0.05 0.1 0.15 0.2 0.25
0

200

400

600

800

1000

1200

13.9783

The bound (3.2) in Theorem 3.4
The bound (3.16) in Theorem 3.10

0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Fig. 2 The bounds of max
d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞
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Then the error bound (3.2) in Theorem 3.4 with respect to ε is drawn in Fig. 3. By
Theorem 3.10, we can calculate that β = (5.2500, 2.1250, 2.500)T and δ = 1, so the
new error bound (3.16) is

max
i∈N

1

δ
·
{
W−1β

}
i{

e − ξ̄
}
i

= 20,

which is smaller than the bound (3.2) for each ε ∈ (0, 0.3125). So, the bound (3.16)
is better than the bound (3.2).

For an S-QN matrix A = (aij ), if there exists some i ∈ N such that aij = 0 for
any j > i or j < i, then the bound (3.2) can not be used. However, the bound (3.16)
may have a nice performance such as the following example.

Example 3.4 Consider the matrix

A =
⎡

⎣
1 0 −2
0 1 −1
0 −0.5 1

⎤

⎦ .

It is easy to verify that A is an S-QN matrix for S = {2, 3} and W =
diag(1, 0.6, 0.6), we can calculate that ξ̄ = (0.6000, 0.5000, 0.5000)T . Since a21 =
0, A does not satisfy the hypothesis of Theorem 3.4, and the error bound (3.2) can

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

3000

3500

4000

The bound (3.2) in Theorem 3.4
The bound (3.16) in Theorem 3.10

0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

Fig. 3 The bounds of max
d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞
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not be used to estimate max
d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞. However, by Theorem 3.10,

we can get that β = (4, 2.5, 1.5)T and δ = 1, then the error bound (3.16) is

max
i∈N

1

δ
·
{
W−1β

}
i{

e − ξ̄
}
i

= 10,

which implies that the bound (3.16) in Theorem 3.10 can be more effective and has
wider application than the bound (3.2).

It is obvious that the bounds we obtained can be applied to the subclass of S-
QN matrices. We give an SDD matrix in the following example and compare the
pervious bounds with the bound (3.2) and the bound (3.16). The results illustrate that
the bound we obtained have nice performance.

Example 3.5 Consider the matrix

A =
⎡

⎣
3 −1.9 −1

−1 3 −1.9
−2 0 3

⎤

⎦ .

Observe that A is an SDD matrix, then a Nekrasov matrix, a QN matrix and an
S-QN matrix for any set of indices S. Here, we choose S = {1, 2} and W =
diag(1.2, 1.2, 1). Since A is an SDD matrix, it is obvious that I − Λ + ΛA is still
an SDD matrix. By Lemma 3.5, we apply the Varah bound [21] to the inverse of
I − Λ + ΛA, then the bound is

max
d∈[0,1]n

∥
∥
∥(I − Λ + ΛA)−1

∥
∥
∥∞ ≤ 1

min
i∈N

{1−di+di |aii |−diri (A)}

≤ 1
min
i∈N

{|aii |−ri (A)} = 10.

Since A is a Nekrasov matrix, then aii > hi(A) for all i ∈ N , where h(A) =
(2.9, 2.8667, 1.9333)T . By Lemma 3.6, we get η(A) = (1, 1.3333, 1.6667)T . Then
the bound in [12] for Nekrasov matrices is

max
i∈N

ηi(A)

min{aii − hi(A), 1} = 10.0023.

Moreover, we can calculate that ξ = (0.6774, 0.7304, 0.6444)T and β = (3.0685,

2.3889, 1.6667)T . Then, the bound in [9] for QN matrices is

max
i∈N

βi

{e − ξ}i
= 9.5118.

By Theorem 3.10, we get that ξ̄ = (0.6385, 0.6884, 0.7289)T and δ = 1
1.2 . Then the

error bound (3.16) is

max
i∈N

1

δ
·
{
W−1β

}
i{

e − ξ̄
}
i

= 8.4882.

By Theorem 3.4, if we choose ε = 0.1808, then

P = diag(0.9832, 0.8261, 0.7289), (t1, t2, t3)
T = (0.6509, 0.8764, 1.7528)T .
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So the bound (3.2) is

max

⎧
⎨

⎩

max
i

{pi}
min

i
{ti} ,

max
i

{pi}
min

i
{pi}

⎫
⎬

⎭
= 1.5105.

Obviously, the bound (3.2) and the bound (3.16) are smaller than other bounds,
which means that the bounds we obtained not only can be applied to a wider class of
matrices, but also give a sharper bound for some well-known types of matrices.

4 Conclusions

In this paper, we focus on some classes of special matrices and the error bound for lin-
ear complementarity problems. First, we put forward a new subclass of H -matrices,
called S-QN matrices, which properly generalizes the class of QN matrices. Then,
for an S-QN matrix A, we present two kinds of error bounds for LCP(A, q) to esti-
mate the upper bound of max

d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞, called the Error Bound I and

the Error Bound II :

– the Error Bound I: max
d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞ ≤ max

{
max

i
{pi }

min
i

{ti } ,
max

i
{pi }

min
i

{pi }
}

(in

Theorem 3.4);

– the Error Bound II: max
d∈[0,1]n

∥
∥(I − Λ + ΛA)−1

∥
∥∞ ≤ 1

δ
max
i∈N

{
W−1β

}
i{e−ξ̄}i

(in Theo-

rem 3.10).

The Error Bound I is the generalization of the error bound for LCPs of QN matri-
ces but it only applies to some special cases. The Error Bound II can be used for
every S-QN matrix. Numerical examples illustrate that the two error bounds have
nice performances in some cases.
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