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Abstract
In this paper, we present a new approach for large-scale Lyapunov matrix equations,
where we present two algorithms named: Adaptive Block Tangential Lanczos-type
and Arnoldi-type algorithms (ABTL and ABTA). This approach is based on the pro-
jection of the initial problem onto tangential Krylov subspaces to produce a low-rank
approximate solution of large Lyapunov equations. These approximations are used
in model reduction of large-scale dynamical systems with multiple inputs and multi-
ple outputs (MIMO). We give some algebraic properties and present some numerical
experiences to show the effectiveness of the proposed algorithms.

Keywords Balanced truncation · Krylov subspaces · Lyapunov · Model reduction ·
Tangential directions

1 Introduction

Consider a multi-input, multi-output linear time-invariant (LTI) dynamical system,
described by the state-space equations as follows:

� :=
{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(1.1)

where x(t) ∈ R
n denotes the state vector, u(t) and y(t) are the input and the output

signal vectors, respectively. The matrix A ∈ R
n×n is assumed to be large and sparse
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and B, CT ∈ R
n×p. The transfer function associated to the system in (1.1) is given

as follows:

H(ω) := C(ωIn − A)−1B ∈ R
p×p. (1.2)

The goal of our model reduction approach consists in defining two orthogonal matri-
ces Vm and Wm ∈ R

n×m (with m � n) to produce a much smaller order system �m

with the state-space form as follows:

�m :
{

ẋm(t) = Amxm(t) + Bmu(t)

ym(t) = Cmxm(t),
(1.3)

and its transfer function is defined by the following:

Hm(ω) := Cm(ωIm − Am)−1Bm ∈ R
p×p, (1.4)

where Am = WT
mAVm ∈ R

m×m, Bm = WT
mB ∈ R

m×p and Cm = CVm ∈ R
p×m,

such that the reduced system �m will have an output ym(t) as close as possible to
the one of the original system to any given input u(t), which means that for some
chosen norm, ‖y − ym‖ is small.

Assume that the matrix (ωIn − A) is non-singular and define X = (ωIn − A)−1B

and Y = (ωIn −A)−T CT . Then, we have H(ω) = CX = YT B, and X and Y solves
the multiple linear systems of equations as follows:

(ωIn − A)X = B, and (ωIn − A)T Y = CT . (1.5)

An approximate solution Xm ∈ Range(Vm) and Ym ∈ Range(Wm) can be determined
by imposing the Galerkin condition on the residuals RB(ω)⊥ Range(Wm) and
RC(ω)⊥ Range(Vm), where,

RB = B − (ωIn − A)Xm,

and

RC = CT − (ωIn − A)T Ym,

which gives Xm = Vm(ωIm − Am)−1WT
mB and Ym = Wm(ωIm − Am)−T V T

m CT ,
hence the (1.4) and the residuals can be expressed as follows:

RB(ω) = B − (ωIn − A)Vm(ωIm − Am)−1WT
mB, (1.6)

RC(ω) = CT − (ωIn − A)T Wm(ωIm − Am)−T V T
m CT . (1.7)

Various model reduction techniques, such as Padé approximation [12, 19], bal-
anced truncation [20], optimal Hankel norm [11], and Krylov subspace methods [5,
6, 9, 15], have been used for large multi-input multi-output (MIMO) dynamical sys-
tems (see [2, 4, 11, 14]). The balanced truncation model reduction (BTMR) method
is a very popular method [1, 10]; the method preserves the stability and provides a
bound for the approximation error. In the case of small to medium systems, BTMR
can be implemented efficiently. However, for large-scale settings, the method is quite
expensive to implement, because it requires the computation of two Lyapunov equa-
tions, and results in a computational complexity of O(n3) and a storage requirement
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of O(n2) (see [1, 3, 13]). In this paper, we project the Lyapunov equations using the
block tangential Krylov subspaces defined as follows:

K̃m(A, B) = Range{B, (σ1In − A)−1BR1, ..., (σmIn − A)−1BRm},
K̃m(AT , CT ) = Range{CT , (μ1In − A)−T CT L1, ..., (μmIn − A)−T CT Lm},

in order to obtain small-scale Lyapunov equations. The {σi}mi=1 and {μi}mi=1 are the
right and left interpolation points and the {Ri}mi=1 and {Li}mi=1 are the right and left
blocks tangent directions with Ri, Li ∈ R

p×s with s ≤ p. Later, we will show how
to choose these tangent interpolation points and directions.

The paper is organized as follows: In Section 2, we give some definitions used
later and we introduce the balanced truncation method. In Section 3, we present the
tangential block Lanczos-type method and the corresponding algorithm to solve a
large-scale Lyapunov equation. Section 4 is devoted to the selection of the inter-
polation points and the tangential directions that are used in the construction of
block tangential Krylov subspaces, and we present briefly the tangential block Lya-
punov Arnoldi-type algorithm. The last section is devoted to numerical tests and
comparisons with some well-known model-order reduction methods.

2 The balanced truncationmethod

First, we recall some definitions that will be used in this paper.

Definition 2.1 Given a stable LTI dynamical system (1.1), the associated controlla-
bility Gramian, denoted by P , is defined as follows:

P =
∫ ∞

0
etABBT etAT

dt, (2.1)

and the observability Gramian Q is defined as follows:

Q =
∫ ∞

0
etAT

CT CetAdt . (2.2)

The two Gramians can be computed by solving two equations. In fact, P and Q
are the unique solutions of the following Lyapunov matrix equations:

AP + PAT + BBT = 0, (2.3)

and
AT Q + QA + CT C = 0. (2.4)

Definition 2.2 TheH∞-norm of the transfer function H is defined by the following:

‖ H ‖H∞= max
ω∈R

γmax(H(jω)), (2.5)

where γmax denotes the maximum singular value.

The balanced truncation method for model reduction was first introduced by
Mullis and Roberts [17] and later in systems and control theory by Moore and Glover
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(see [10, 16]). If we assume that the LTI system (1.1) is stable, controllable, and
observable, in this case, we call it also stable and minimal, then the controllability
and observability Gramians are unique positive definite. The balanced truncation of a
LTI dynamical model� is obtained by applying a non-singular matrix transformation
T ∈ R

n×n to get the following:

Ã = T −1AT, B̃ = T −1B, C̃ = CT .

Hence, the associated controllability and observability Gramians P̃ and Q̃ are
expressed as follows:

P̃ = T −1PT −T , Q̃ = T T QT .

The aim of the balanced truncation method is to find the transformation T such that
the new Gramians P̃ and Q̃ are diagonal as follows:

P̃ = Q̃ = diag(γ1, ..., γn), (2.6)

where the γi, i = 1, ..., n are called the Hankel singular values. For controllable,
observable, and stable systems, they can be computed as follows:

γi = √
λi(PQ).

Notice that the Hankel singular values are invariant by transformation, contrary to
the Gramians. Now, we show how to obtain the Gramians P̃ and Q̃ that verify (2.6).
First, we compute directly the lower Cholesky factorization of the Gramians P and
Q as follows:

P = LcL
T
c , Q = LoL

T
o ,

then, we compute the singular value decomposition of the matrix LT
o Lc,

LT
o Lc = UDV T , (2.7)

where D is the diagonal matrix containing the Hankel singular values of the system
(1.1). The balanced transformation is given by the following:

T = LcVD− 1
2 , T −1 = D− 1

2 UT LT
o .

It is proved in [1] that if the system (1.1) is stable and minimal, and having the new
equivalent LTI dynamical system �̃ as follows:

�̃ :=
[

T −1AT T −1B

CT 0

]
≡

⎡
⎣ A11 A12 B1

A21 A22 B2

C1 C2 0

⎤
⎦ ,

with P̃ = Q̃ = diag(γ1, ..., γm, γm+1, ..., γn), then,

‖ H(.) − Hm(.) ‖H∞≤ 2(γm+1 + ... + γn). (2.8)

Inequality (2.8) shows that the dynamical system (1.1) can be represented by a
reduced-order LTI system �̃m, if the singular values γm+1, ..., γn are small enough
as follows:

�̃m ≡
[

A11 B1

C1 0

]
.
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Let us now construct the reduced model �m. First, we define the following matrices
as follows:

Vm = LcVmD
− 1

2
m , Wm = LoUmD

− 1
2

m ,

where Dm, Um, and Vm correspond to the first m columns of the matrices D, U , and
V in (2.7). Then, the reduced model �m is given as follows:

�m ≡
[

Am Bm

Cm 0

]
,

where Am = WT
mAVm, Bm = WT

mB, and Cm = CVm.

Next, we apply the tangential block Lanczos-type algorithm for solving large Lya-
punov matrix equations that are used in the construction of reduced-order models
using the balanced truncation method.

3 Tangential block Lanczos-typemethod for Lyapunovmatrix
equations

Consider the following Lyapunov matrix equations as follows:

AX(1) + X(1)AT + BBT = 0, (3.1)

and
AT X(2) + X(2)A + CT C = 0, (3.2)

where A ∈ R
n×n is non-singular, B ∈ R

n×p and C ∈ R
p×n. To extract low-rank

approximate solutions to the Lyapunov (3.1) and (3.2), we project the initial problems
onto the following tangential block Krylov subspaces as follows:

K̃m(A, B) = Range{B, (σ1In − A)−1BR1, ..., (σmIn − A)−1BRm}, (3.3)

and

K̃m(AT , CT ) = Range{CT , (μ1In −A)−T CT L1, ..., (μmIn −A)−T CT Lm}, (3.4)

where {σi}mi=1 and {μi}mi=1 are the right and left interpolation points respectively and{Ri}mi=1, {Li}mi=1 are the right and left tangent directions with Ri, Li ∈ R
p×s .

A tangential Lanczos-type method consists in constructing two bi-orthonormal
bases, spanned by the columns of {V1, V2, . . . , Vm} and {W1, W2, . . . , Wm}, of the
tangential Krylov subspaces K̃m(AT , CT ), respectively.
Let Vm = [V1, V2, . . . , Vm] and Wm = [W1, W2, . . . , Wm]. Then, we should have
the bi-orthogonality conditions for i, j = 1, . . . , m:{

WT
i Vj = I, i = j,

WT
i Vj = 0, i 	= j .

(3.5)

The low-rank approximate solutions X (1)
m and X (2)

m to the solutions of the Lyapunov
matrix (3.1) and (3.2) are defined as follows:

X (1)
m = VmY(1)

m V
T
m, X (2)

m = WmY(2)
m W

T
m, (3.6)
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such that the following Galerkin conditions are satisfied as follows:

W
T
mR1(X (1)

m )Wm = 0, V
T
mR2(X (2)

m )Vm = 0, (3.7)

where the residuals are given by the following:

R1(X (1)
m ) = AX (1)

m + X (1)
m AT + BBT , (3.8)

and
R2(X (2)

m ) = AT X (2)
m + X (2)

m A + CT C. (3.9)

Replacing X (1)
m and X (2)

m in (3.7), we obtain the following:

W
T
mAVmY(1)

m + Y(1)
m V

T
mAT

Wm + W
T
mBBT

Wm = 0,

and
V

T
mAT

WmY(2)
m + Y(2)

m W
T
mAVm + V

T
mCT CVm = 0,

which gives the low-dimensional Lyapunov matrix equations as follows:

AmY(1)
m + Y(1)

m AT
m + BmBT

m = 0, (3.10)

and
AT

mY(2)
m + Y(2)

m Am + CT
mCm = 0, (3.11)

where Am = W
T
mAVm, Bm = W

T
mB, and Cm = CVm.

The main problem now is the computation of the two bi-orthogonal bases
{V1, V2, . . . , Vm} and {W1, W2, . . . , Wm} of the tangential Krylov subspaces in (3.3)
and (3.4). The following Block Tangential Lanczos (BTL) algorithm allows us to
construct such bases. It is summarized in the following steps.

Here, we suppose that we already have the set of interpolation points σ = {σi}mi=1,
μ = {μi}mi=1 and the tangential matrix directions R = {Ri}mi=1 and L = {Li}mi=1.
The upper block upper Hessenberg matrices H̃m = [

H̃
(1), ..., H̃(m)

]
and F̃m =[̃

F
(1), ..., F̃(m)

] ∈ R
(ms+p)×ms are obtained from the BTL algorithm, with the

following:

H̃
(j) =

⎡
⎢⎢⎢⎢⎢⎣

H1,j
...

Hj,j

Hj+1,j
0

⎤
⎥⎥⎥⎥⎥⎦

and F̃
(j) =

⎡
⎢⎢⎢⎢⎢⎣

F1,j
...

Fj,j

Fj+1,j
0

⎤
⎥⎥⎥⎥⎥⎦

, for j = 1, ..., m.

The matrices Hi,j and Fi,j constructed in step 3 of Algorithm 1 are of size p × s if
i = 1 and are of size s × s otherwise. We define the (ms + p) × p matrices H̃(0) and
F̃

(0) as follows:

H̃
(0) =

[
H1,0
0

]
and F̃

(0) =
[

F1,0
0

]
,

where 0 is the zero matrix of size (m − j) × s. We define also the following matrices
as follows:

D̃(1)
m =

[
Op Op,ms

Oms,p D
(1)
m ⊗ Is

]
, D̃(2)

m =
[

Op Op,ms

Oms,p D
(2)
m ⊗ Is

]
,
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Algorithm 1 The Block Tangential Lanczos (BTL) algorithm.

– Inputs: A, B, C, σ = {σi}mi=1, μ = {μi}mi=1, R = {Ri}mi=1, L = {Li}mi=1, Ri, Li ∈
R

p×s .
– Output: Vm+1 = [

V1, ..., Vm+1
]
, Wm+1 = [

W1, ..., Wm+1
]
.

• Compute B = V1H1,0, CT = W1F1,0 (QR decomposition).
• Initialize: V1 = [V1], W1 = [W1].
• For j = 1,...,m

1. If σj 	= ∞, Ṽj+1 = (σj In − A)−1BRj , else Ṽj+1 = ABRj .
2. If μj 	= ∞, W̃j+1 = (μj In − A)−T CT Lj , else W̃j+1 = ACT Lj .
3. For i = 1,...,j

– Hi,j = WT
i Ṽj+1, – Fi,j = V T

i W̃j+1,
– Ṽj+1 = Ṽj+1 − ViHi,j , – W̃j+1 = W̃j+1 − WiFi,j ,

4. End.
5. Ṽj+1 = Vj+1Hj+1,j , W̃j+1 = Wj+1Fj+1,j , (QR decomposition).
6. WT

j+1Vj+1 = PjDjQ
T
j , (singular value decomposition).

7. Vj+1 = Vj+1QjD
−1/2
j , Wj+1 = Wj+1PjD

−1/2
j .

8. Hj+1,j = D
1/2
j QT

j Hj+1,j , Fj+1,j = D
1/2
j P T

j Fj+1,j .

9. Vj+1 = [
Vj , Vj+1

]
, Wj+1 = [

Wj , Wj+1
]
.

• End

where D
(1)
m = Diag{σ1, ..., σm} and D

(2)
m = Diag{μ1, ..., μm}. With all those

notations, we have the following theorem.

Theorem 3.1 Let Vm+1 and Wm+1 be the bi-orthonormal matrices of Rn×(ms+p)

constructed by Algorithm 1. Then, we have the following relations as follows:

AVm+1 =
[
Vm+1Gm+1D̃

(1)
m − K

B
m+1

]
G

−1
m+1, (3.12)

and
AT

Wm+1 =
[
Wm+1Qm+1D̃

(2)
m − K

C
m+1

]
Q

−1
m+1. (3.13)

Let Tm+1 and Ym+1 be the matrices as follows:

Tm+1 =
[
B, (σ1I − A)−1BR1, ..., (σmI − A)−1BRm

]
and

Ym+1 =
[
CT , (μ1I − A)−T CT L1, ..., (μmI − A)−T CT Lm

]
,

then, we have the following:

Tm+1 = Vm+1Gm+1 and Ym+1 = Wm+1Qm+1, (3.14)

where KB
m+1 = [−AB BRm], KC

m+1 = [−AT CT CT
Lm

]
, Rm = [R1, ..., Rm], and

Lm = [L1, ..., Lm]. Gm+1 = [
H̃

(0)
H̃m

]
and Qm+1 = [̃

F
(0)

F̃m

]
are block upper

triangular matrices of sizes (ms+p)×(ms+p) and are assumed to be non-singular.
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Proof From Algorithm 1, we have the following:

Vj+1Hj+1,j = (σj In − A)−1BRj −
j∑

i=1

ViHi,j j = 1, ..., m. (3.15)

Multiplying (3.15) on the left by (σj In − A) and re-arranging terms, we get the
following:

A

j+1∑
i=1

ViHi,j = σj

j+1∑
i=1

ViHi,j − BRj j = 1, ..., m,

which gives the following:

AVj+1

⎡
⎢⎢⎢⎣

H1,j
...

Hj,j

Hj+1,j

⎤
⎥⎥⎥⎦ = σjVj+1

⎡
⎢⎢⎢⎣

H1,j
...

Hj,j

Hj+1,j

⎤
⎥⎥⎥⎦ − BRj , j = 1, . . . , m,

that written as follows:

AVm+1

⎡
⎢⎢⎢⎢⎢⎣

H1,j
...

Hj,j

Hj+1,j
0

⎤
⎥⎥⎥⎥⎥⎦

= σjVj+1

⎡
⎢⎢⎢⎢⎢⎣

H1,j
...

Hj,j

Hj+1,j
0

⎤
⎥⎥⎥⎥⎥⎦

− BRj , j = 1, . . . , m, (3.16)

where 0 is the zero matrix of size (m − j) × s. Then, for j = 1, . . . , m, we have the
following:

AVm+1H̃
(j) = σjVj+1H̃

(j) − BRj ; (3.17)

Therefore, we can deduce from (3.17), the following expression is as follows:

AVm+1

[
H̃

(1), ..., H̃(m)
]

= Vm+1

[
H̃

(1), ..., H̃(m)
]
(D(1)

m ⊗ Is) − BRm,

Now, since V1H1,0 = B, we get the following:

AVm+1

[
H̃

(0), H̃(1), ..., H̃(m)
]

= Vm+1

[
H̃

(0), H̃(1), ..., H̃(m)
]
D̃(1)

m − [−AB BRm] ,

which ends the proof of (3.12). The same proof can be done for the relation (3.13).
For the proof of (3.14), we first use (3.15) to obtain the following:

j+1∑
i=1

ViHi,j = (σj In − A)−1BRj j = 1, . . . , m,

which gives the following:

Vm+1

⎡
⎢⎢⎢⎢⎢⎣

H1,j
...

Hj,j

Hj+1,j
0

⎤
⎥⎥⎥⎥⎥⎦

= (σj In − A)−1BRj , j = 1, . . . , m.
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It follows that

Vm+1

[
H̃

(0), H̃(1), ..., H̃(m)
]

=
[
B, (σ1In − A)−1BR1, ..., (σmIn − A)−1BRm

]
,

which ends the proof of the first relation of (3.14). In the same manner, we can prove
the second relation.

In the following theorem, we give the exact expression of the residual norms in a
simplified and economical computational form.

Theorem 3.2 LetVm = [V1, ..., Vm] andWm = [W1, ..., Wm] be the bi-orthonormal
matrices obtained by Algorithm 1. Let X (1)

m = VmY(1)
m V

T
m, X (2)

m = WmY(2)
m W

T
m, be

the approximate solutions of the Lyapunov matrix (3.1) and (3.2), then the residual
norms are given as follows:

‖ R1(X (1)
m ) ‖2=‖ S

(1)
m J (S(1)

m )T ‖2 and ‖ R2(X (2)
m ) ‖2=‖ S

(2)
m J (S(2)

m )T ‖2,
(3.18)

where S(1)
m and S

(2)
m are the upper triangular matrices obtained from the skinny QR

decomposition of the matrices U(1)
m and U(2)

m defined by the following:

U
(1)
m =

[
VmY(1)

m G
−T
m (VmW

T
m − In)K

B
m

]
and U

(2)
m =

[
WmY(2)

m Q
−T
m (WmV

T
m − In)K

C
m

]
.

The matrix J is defined as J =
[
0 I

I 0

]
.

Proof We know that in the following:

R1(X (1)
m ) = AX (1)

m + X (1)
m AT + BBT

= AVmY(1)
m V

T
m + VmY(1)

m V
T
mAT + BBT .

Using the (3.12), we get the following:

Am = W
T
mAVm =

[
GmD̃m−1 − W

T
mK

B
m

]
G

−1
m ,

which gives
AVm = VmAm + (VmW

T
m − In)K

B
mG

−1
m . (3.19)

It follows that

R1(X (1)
m ) = [

VmAm + (VmW
T
m − In)K

B
mG

−1
m

]
Y(1)

m V
T
m

+VmY(1)
m

[
VmAm + (VmW

T
m − In)K

B
mG

−1
m

]T + BBT .

Using the fact that Y(1)
m solves the low-dimensional Lyapunov (3.10), we get the

following:

R1(X (1)
m ) = (VmW

T
m − In)K

B
mG

−1
m Y(1)

m V
T
m + VmY(1)

m G
−T
m (KB

m)T (VmW
T
m − In)

=
[
VmY(1)

m G
−T
m (VmW

T
m − In)K

B
m

] [
0 I

I 0

] [
G

−1
m Y(1)

m V
T
m

(KB
m)T (VmW

T
m − In)

]

= U
(1)
m J (U

(1)
m )T .
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We proceed in the same way for the proof of the second relation.

4 An adaptive choice of the interpolation points and tangent
directions

In the section, we will see how to chose the interpolation points {σi}mi=1, {μi}mi=1
and tangential directions {Ri}mi=1, {Li}mi=1, where Ri, Li ∈ R

p×s . In this paper, we
adopted the adaptive approach, inspired by the work in [7]. For this approach, we
extend our subspaces K̃m(A, B) and K̃m(AT , CT ) by adding new blocks Ṽm+1 and
W̃m+1 defined as follows:

Ṽm+1 = (σm+1In − A)−1BRm+1, and W̃m+1 = (σm+1In − A)−T CT Lm+1, (4.1)

where the new interpolation point σm+1, μm+1 and the new tangent direction Rm+1,
Lm+1 are computed as follows:

(Rm+1, σm+1) = arg max
ω ∈ Sm

R ∈ R
p×s

‖R‖2 = 1

‖RB(ω)R‖ 2, (4.2)

(Lm+1, μm+1) = arg max
ω ∈ Sm

L ∈ R
p×s

‖L‖2 = 1

‖RC(ω)L‖ 2. (4.3)

Here, Sm ⊂ C
+ is defined as the convex hull of {−λ1, ..., −λm} where {λi}mi=1 are

the eigenvalues of the matrix Am.
For solving the problem (4.2), we proceed as follows. First, we compute the next
interpolation point, by computing the norm of RB(ω) for each ω in Sm, i.e., we solve
the following problem:

σm+1 = argmax
ω∈Sm

‖RB(ω)‖2. (4.4)

Then, the tangent direction Rm+1 is computed by evaluating (4.2) at ω = σm+1,

Rm+1 = arg max
R ∈ R

p×s

‖R‖2 = 1

‖RB(σm+1)R‖2 . (4.5)

We can easily prove that the tangent matrix direction Rm+1 is given as follows:

Rm+1 = [r(m+1)
1 , ..., r(m+1)

s ],
where the r

(m+1)
i ’s are the right singular vectors corresponding to the s largest singu-

lar values of the matrix RB(σm+1). This approach of maximizing the residual norm,
works efficiently for small to medium matrices, but cannot be used for large-scale
systems. To overcome this problem, we give the following proposition.

Proposition 4.1 Let RB(ω) = B − (ωIn −A)VmUB
m(ω) and RC(ω) = CT − (ωIn −

A)T WmUC
m(ω) be the residuals given in (1.6) and (1.7), where UB

m(ω) = (ωI −
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Am)−1
W

T
mB and UC

m(ω) = (ωI − Am)−T
V

T
mCT . Then, we have the following new

expressions as follows:

RB(ω) = (VmW
T
m − In)K

B
mG

−1
m UB

m(ω), (4.6)

and
RC(ω) = (WmV

T
m − In)K

C
mQ

−1
m UC

m(ω). (4.7)

Proof The residual RB(ω) can be written as follows:

RB(ω) = B − ωVmUB
m(ω) + AVmUB

m(ω)

= B + AVmUB
m(ω) − Vm(ωIms − Am)(ωIms − Am)−1

W
T
mB

−VmAm(ωIms − Am)−1
W

T
mB

= B + AVmUB
m(ω) − VmW

T
mB − VmAmUB

m(ω)

= (In − VmW
T
m)B + (AVm − VmAm)UB

m(ω),

Since B ∈ Range{V1, ...Vm}, then (In − VmW
T
m)B = 0. Using (3.19), we get the

following:
AVm − VmAm = −K

B
mG

−1
m + VmW

T
mK

B
mG

−1
m ,

which proves (4.6). In the same way, we can prove (4.7).

The expression of RB(ω) given in (4.6) allows to reduce the computational
cost while computing the next pole and direction. In fact, applying the skinny QR
decomposition is as follows:

(VmW
T
m − In)KmG

−1
m = QL,

we get the new expression of the residual norm as follows:

‖RB(ω)‖2 =
∥∥∥LUB

m(ω)

∥∥∥
2
. (4.8)

This means that, solving the problem (4.2) requires only the computation of matrices
of size ms × ms for each value of ω.

The next algorithm, summarizes all the steps of the adaptive choice of tangent
interpolation points and tangent directions.

In order to save memory, Algorithm 2 allows us to compute the approximations
X (1)

m = Z
(1)
m (Z

(1)
m )T and X (2)

m = Z
(2)
m (Z

(2)
m )T in a factored form, where,

Z(1)
m = VmŨ1�

1
2
1 Z(2)

m = WmṼ1�
1
2
1 . (4.9)

The matrices Ũ1, �1, Ṽ1, and �1 are obtained via the eigenvalue decomposition of
the low-rank solutions Y(1)

m = Ũ�ŨT , Y(2)
m = Ṽ �Ṽ T , and Ũ = [Ũ1 Ũ2], Ṽ =

[Ṽ1 Ṽ2] such that � = diag(�1, �2), � = diag(�1, �2) verify max(diag(�1)) >

dtol and max(diag(�1)) > dtol for some given tolerance dtol.
In this section, we presented the ABTL algorithm inspiring from [8], where the

adaptive approach was used for the selection of the interpolation points and tangent
directions, as mentioned before. The main differences of the new method and the
existing ones in [7, 8] are the following: first was the oblique projection onto Krylov
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subspaces and constructing two bi-orthonormal subspaces from those latter, using the
Lanczos procedure. Secondly, the tangent directions in our method are blocks of size
p × s where s ≤ p and it is fixed, when in [8] the s is depending on the iteration m.
Moreover, the residual norms used for stopping criterion (Algorithm 2, line 14) are
simplified to new expressions given in 3.2, which allows for faster time execution
and smaller memory occupancy, as reported in the numerical experiments.

Algorithm 2 The Adaptive Block Tangential Lanczos (ABTL) algorithm

• Given A, B, C, mmax, ε.
• Outputs: Z(1)

mmax , Z
(2)
mmax .• Set B = H1,0V1 and CT = F1,0W1 such that WT

1 V1 = Ip.
• Initialize: V1 = [V1], W1 = [W1].

1. For m = 1 : mmax
2. Set Am = W

T
mAVm, Bm = W

T
mB, Cm = CVm.

3. Compute σm, and μm

– Compute {λ1, ..., λm} eigenvalues of Am.
– Determine Sm, convex hull of {−λ1, ..., −λm}.
– Solve (4.4). The same for μm.

4. Compute right and left vectors Rm, Lm.
5. Ṽm = (A − σmIn)

−1BRm, W̃m = (A − μmIn)
−T CT Lm.

6. For i = 1,...,m

– Hi,m = WT
i Ṽm+1, – Fi,m = V T

i W̃m+1,
– Ṽm+1 = Ṽm+1 − ViHi,m, – W̃m+1 = W̃m+1 − WiFi,m,

7. End.
8. Ṽm+1 = Vm+1Hm+1,m, W̃m+1 = Wm+1Fm+1,m. (QR decomposition).
9. WT

m+1Vm+1 = PmDmQT
m. (singular value decomposition).

10. Vm+1 = Vm+1QmD
−1/2
m , Wm+1 = Wm+1PmD

−1/2
m .

11. Hm+1,m = D
1/2
m QT

mHm+1,m, Fm+1,m = D
1/2
m P T

m Fm+1,m.
12. Vm+1 = [

Vm, Vm+1
]
, Wm+1 = [

Wm, Wm+1
]
.

13. Solve (3.10) and (3.11) to get Y(1)
m and Y(2)

m .
14. If max(‖ R1(X (1)

m ) ‖2, ‖ R2(X (2)
m ) ‖2) < ε Stop.

15. End.

• Compute Z
(1)
mmax , Z

(2)
mmax as in (4.9).

4.1 Adaptive Block Tangential Arnoldi (ABTA) algorithm

Consider the following Lyapunov equation as follows:

AX + XAT + BBT = 0. (4.10)
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The solution X is approximated by Xm such as the following:

Xm = VmYmV
T
m, (4.11)

and satisfying the Galerkin condition as follows:

V
T
mR(Xm)Vm = 0, (4.12)

where the residual is given by R(Xm) = AXm + XmAT + BBT and
Vm = [V1, V2, . . . , Vm] is a matrix obtained from the orthonormal basis
Vm = Range{V1, V2, . . . , Vm} constructed from the following tangential subspace
Range{B, (σ1In − A)−1BR1, ..., (σmIn − A)−1BRm}. From (4.11) and (4.12) , Ym

is obtained by solving the low-dimensional Lyapunov matrix equation as follows:

AmYm + YmAT
m + BmBT

m = 0,

where Am = V
T
mAVm, Bm = V

T
mB. Notice that, we consider here only one tangen-

tial subspace. All the results obtained in the previous section can be adapted for the
adaptive block Arnoldi method. For the computation of the residual norms, we have
the following result.

Theorem 4.1 Let Vm = [V1, ..., Vm] obtained from BTAA. Let Xm = VmYmV
T
m, be

the approximate solution of the Lyapunov matrix equation, then the residual norm is
given as follows:

‖ R(Xm) ‖2=‖ SmJSm ‖2, (4.13)

where Sm is an upper triangular matrix obtained from the skinny QR decomposition
of the matrix as follows:

Um =
[
VmYmG

−T
m (In − VmV

T
m)KB

m

]
.

The matrix J is defined as J =
[
0 I

I 0

]
.

Proof The proof is similar to the one given in the proof of Theorem 3.2.

The choice of the interpolation points and tangent directions is the same as in the
previous section, as shown in the following:

(Rm+1, σm+1) = arg max
ω ∈ Sm

R ∈ R
p×s

‖R‖2 = 1

‖RB(ω)R‖ 2. (4.14)

where RB(ω) = B − (ωIn − A)Vm(ωIm − Am)−1Bm. The algorithm will be named
Adaptive Block Tangential Arnoldi (ABTA) and is summarized as follows.
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Algorithm 3 The Adaptive Block Tangential Arnoldi (ABTA) algorithm

• Inputs A, B, mmax, ε and dtol.
• Set B = H1,0V1 and initialize: V1 = [V1].

1. For m = 1 : mmax

– Set Am = V
T
mAVm, Bm = V

T
mB.

– Compute the interpolation points σm and the directions Rm.
– Ṽm = (A − σmIn)

−1BRm.
– For i = 1,...,m

∗ Hi,m = V T
i Ṽm+1,

∗ Ṽm+1 = Ṽm+1 − ViHi,m,

– End.
– Ṽm+1 = Vm+1Hm+1,m. (QR decomposition).
– Vm+1 = [

Vm, Vm+1
]
.

– Compute the approximate Ym.
– If ‖ R(Xm) ‖2< ε, stop.
– End.

• Compute Zmmax .

5 Numerical experiments

In this section, we present some numerical examples to show the effectiveness of
the adaptive block tangential Arnoldi and Lanczos-types algorithms (ABTA and
ABTL). All the experiments were carried out using the CALCULCO computing plat-
form, supported by SCoSI/ULCO (Service Commun du Système d’Information de
l’Université du Littoral Côte d’Opale). The algorithms were coded inMatlab R2017a.
We used the following functions from LYAPACK [18]:

• lp lgfrq: Generates a set of logarithmically distributed frequency sampling points
• lp gnorm: Computes ‖H(jω) − Hm(jω)‖2

Example 1 In this first experiment, we used the rail3113 model (n = 3113, p = 6). The
model describes the steel rail cooling problem and is from the Oberwolfach collec-
tion.1 Figures 1 and 2 represent the norm of the original transfer function ‖H(jω)‖2
and the norm of the reduced transfer function ‖Hm(jω)‖2 versus the frequencies
ω ∈ [10−6, 106] for both methods ABTL (left) and ABTA (right). The dimension of
the reduced model m = 20.

In this part, we compared the ABTA and ABTL algorithms with (RKSM) that
solves a large-scale Lyapunov matrix equation by means of the adaptive Ratio-
nal Krylov method with Galerkin condition; for more, see [8] and (TRKSM)

1Oberwolfach model reduction benchmark collection 2003. http://www.imtek.de/simulation/benchmark.
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Fig. 1 The RAIL3113 model: ABTL

where the tangential approach is used [7]. The Matlab implementations of (RKSM)
and (TRKSM) have been downloaded from Simoncini’s web page.2 We used the
FDM model, where the matrix A is obtained from the centered finite difference
discretization of the operator as follows:

LA(u) = 
u − f (x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions
with the following: ⎧⎨

⎩
f (x, y) = log(x + 2y + 1)
g(x, y) = ex+y

h(x, y) = x + y.
Different choices of columns for B and C were performed. The number of inner grid
points in each direction is n0 and the dimension of A is n = n20, various value of n0
are used.

Example 2 Plots in Figs. 3 and 4 represent the exact error ‖H(jω) − Hm(jω)‖2
versus the frequenciesω ∈ [10−6, 106] of the four methods, the ABTAmethod (solid

2http://www.dm.unibo.it/∼simoncin/software.html
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Fig. 2 The RAIL3113 model: ABTA.

line), the ABTL method ( dashed-dotted line), the RKSM (dashed-dashed line), and
TRKSM (dotted line). The matrices B and C were random, the stopping tolerance
for the Frobenius norm of the Lyapunov equation residual was set to 10−8. Plots in
Fig. 4 represent the same thing but with the matrix C = BT .

We present below Table 1 that gives more information about the plots in Figs. 3
and 4, where we present the execution time, the maximum space dimension, the rank
dimension, and the H∞ and H2 error norms obtained by each method. The maxi-
mum space dimension is the dimension of the matrices obtained after the stopping
tolerance tol = 10−8 and the rank dimension is dimension obtained as in (4.9).

Example 3 In this example we compared, the Rank dimension (Fig. 5), the Err-H∞
norm (Fig. 6) and the execution time (Fig. 7) as p the rank of the matrix B is grown.
In all plots of Figs. 5, 6, and 7, the ABTL method (solid line), the ABTA method
(dashed-dotted line), the RKSM (dashed-dashed line), and TRKSM (black dashed-
dotted line) were seen. We used the FDM model of size n = 10000 and the matrix
B = A−1Ip with p ranging from 4 to 24.

Figure 5 shows that the four methods have the same rank dimension and is growing
with as p grows. In Fig. 6, we notice that our both methods and RKSM give better
H∞-err norm than TRKSM method, but in Fig. 7, we can see clearly that TRKSM
have the best execution time, followed by our both methods, and finally, RKSM
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Fig. 4 B = rand(n,p), C = BT
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Table 1 The calculation time and dimension of convergence

n = 4900 p = 6 Time S. dim Rank Err-H∞ Err-H2

ABTA 3.90 s 96 96 2.5×10−9 5.7×10−9

B = rand(n, p) ABTL 5.67 s 126 126 1.2×10−11 2.5×10−11

C = rand(p, n) RKSM 73.28 s 66 60 3.1×10−4 3.4×10−3

TRKSM 2.59 s 88 88 5.7×10−6 6.4×10−5

ABTA 3.11 s 90 90 3.7×10−9 1.3×10−8

B = rand(n, p) ABTL 3.12 s 96 96 5.5×10−10 2.2×10−9

C = BT RKSM 76.37 s 60 66 4.4×10−5 4.9×10−4

TRKSM 2.56 s 89 89 5.8×10−8 2.3×10−7

method with very bad execution time as shown above. In short, we can say that, our
both methods have the performance of the RKSM method with a execution time near
to that of the TRSKM method.

Example 4 For this experiment, we used the FLOW matrix of size n = 9669, from
the Oberwolfach collection, we compared the four methods, the results are reported
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Fig. 5 FDM model: the rank dimension
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Table 2 The execution time and dimension of convergence

FLOW p = 6, s = p Time S. dim Rank Err-H∞ Err-H2

ABTA 13.94 s 132 132 3.07×10−5 1.22×10−4

B = rand(n, p) ABTL 13.01 s 132 132 3.06×10−5 1.22×10−4

C = rand(p, n) RKSM 20.43 s 12 8 6.82×10+5 4.88×10+6

TRKSM 8.85 s 126 126 6.54×10−5 2.54×10−4

ABTA 10.00 s 84 84 1.21×10−5 7.42×10−5

B = rand(n, p) ABTL 8.73 s 84 84 1.21×10−5 7.42×10−5

C=BT RKSM 33.65 s 12 8 4.08×10+4 1.99×10+5

TRKSM 6.38 s 73 73 2.05×10−4 1.16×10−3

in Table 2 and implemented in Figs. 8 and 9. We notice that for the RKSM method,
the space dimension is so small compared to the other methods, because RKSM
achieved the stopping tolerance after two iterations, which gives bad results as shown
in the plots and the table and also still have the longest execution time.
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Fig. 8 B = rand(n, p), C = BT
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Example 5 In this experiment, we used the rail20209 and rail79841 models with a
fixed m = 20. These models describe the steel rail cooling problem and are also from
the Oberwolfach collection. The plots below represent the exact error ‖H(jω) −
Hm(jω)‖2 versus the frequencies of the tree methods ABTA (solid line), the ABTL
(dashed-dotted line), and TRKSM (dashed-dashed line), the stopping tolerance was
set to 10−6.

Figure 10 represents the rail20209 model (n = 20209, p = 6), we notice
that the tree methods coincide, with an execution time almost the same (TRKSM,
9.26 s; ABTL, 9.76 s; ABTA, 10.45 s). Figure 11 represents the rail79841 model
(n = 79841, p = 6), the matrices B and C were random. The execution
time for this example is as follows: (ABTL, 85.99 ; ABTA, 99.45 ; TRKSM,
119.76 s).

Example 6 In this last experiment, we present the Table 3 below, that contains the
execution time, space dimension, rank dimension, the H∞ and H2-err norms of the
FDM model with a large dimension (n = 122500 and n = 90000), the stopping
tolerance was set to 10−6. We notice that for this large-scales system, our methods
are faster and give better error norms.
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Table 3 The execution time and dimension of convergence

n = 122500 p = 6, s = 6 Time S. dim Rank Err-H∞ Err-H2

ABTA 151.57 s 108 108 7.64×10−7 3.28×10−6

B = rand(n, p) ABTL 84.58 s 102 102 1.53×10−6 7.36×10−6

TRKSM 596.04 s 92 92 2.53×10−4 2.81×10−3

n = 90000 p = 6, s = 3 Time S. dim Rank Err-H∞ Err-H2

ABTA 108.13 s 66 3 2.21×10−15 2.53×10−14

B = A−1Ip ABTL 64.82 s 72 3 2.22×10−15 2.53×10−14

TRKSM 150.95 s 60 3 2.03×10−15 2.33×10−14

6 Conclusion

In the present paper, we proposed a new approach based on block tangential Krylov
subspaces to compute low-rank approximate solutions to large Lyapunov equations.
These approximate solutions are given in factored forms and are used to build
reduced-order models that approximate the initial large-scale dynamical systems with
multiple inputs and multiple outputs (MIMO). The method constructs sequences of
orthogonal blocks from matrix tangential Krylov subspaces using the block Lanczos-
type or Arnoldi-type approaches. We construct approximate Gramians which are
used in the balanced truncation method. The interpolation shifts and the tangential
directions are selected in an adaptive way by maximizing the residual norms. We
presented some new algebraic properties and gave some numerical experiments on
some benchmark examples showing that the proposed methods return good results,
as compared to some well-knowing methods, for large problems.
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