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Abstract
Recently, continuous-stage Runge-Kutta-Nyström (CSRKN) methods for solving
numerically second-order initial value problem q ′′ = f (q) have been proposed and
developed by Tang and Zhang (Appl. Math. Comput. 323, 204–219, 2018). This
problem is equivalent to a separable Hamiltonian system when f (q) = −∇U(q)

with smooth function U(q). Symplecticity-preserving discretizations of this system
were studied in that paper. However, as an important representation of the Hamilto-
nian system, energy preservation has not been studied. In addition, many Hamiltonian
systems in practical applications often have oscillatory characteristics so we should
design special algorithms adapted to this feature. In this paper, we propose and study
energy-preserving trigonometrically fitted CSRKN methods for oscillatory Hamilto-
nian systems. We extend the theory of trigonometrical fitting to CSRKNmethods and
derive sufficient conditions for energy preservation. We also study the symmetry and
stability of the methods. Two symmetric and energy-preserving trigonometrically fit-
ted schemes of order two and four, respectively, are constructed. Some numerical
experiments are provided to confirm the theoretical expectations.
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1 Introduction

In this paper, we consider numerical integration of second-order ordinary differential
equations of the form {

q ′′(t) = f (q(t)), t ∈ [t0, T ],
q(t0) = q0, q ′(t0) = q ′

0,
(1)

whose solution has an oscillatory character, where q ∈ Rd , f : Rd → Rd

is sufficiently differentiable. This problem usually arises in mechanics, theoretical
physics, quantum dynamics, molecular biology, etc. Regarding the oscillatory fea-
ture of the problem (1), researchers have proposed to develop special integrators
by some techniques like trigonometrical/exponential fitting (see [1]). All of these
methods integrate exactly the oscillatory system q ′′(t) = −w2q(t) where w is the
approximate value of the main frequency. Early presentations of these techniques are
due to Gautschi [2] and Lyche [3]. Since then, a lot of exponentially (or trigono-
metrically) fitted linear multi-step methods and RKN methods have been developed
[4–10]. In the past 10 years, the technology of trigonometrical/exponential fitting has
been applied to more methods such as multi-step hybrid methods [11–16] and to high
dimensional problem [17, 18].

When the function f (q) satisfies f (q) = −∇U(q) for some smooth function
U(q), problem (1) is equivalent to a separable Hamiltonian system of the following
form: ⎧⎨

⎩
q ′(t) = p(t)

p′(t) = −∇U(q(t)), t ∈ [t0, T ],
q(t0) = q0, p(t0) = p0

(2)

where q : R → Rd and p : R → Rd are generalized position and generalized
momenta, respectively. The Hamiltonian is

H(q, p) = 1

2
pT p + U(q), (3)

which is also referred to as the energy. It is well known that the exact flow of
Hamiltonian systems is symplectic for every t . Another important property of the
flow is that it preserves energy H(q, p), i.e., H(q(t), p(t)) ≡ H(q0, p0) for all
t ∈ [t0, T ]. From a viewpoint of geometric numerical integration, an integrator that
inherits such geometric properties as much as possible would be preferable. But since
a numerical integrator cannot inherit both symplecticity and energy preservation [19,
20], the methods satisfying one of these properties have been developed in the last
decades.We call such methods symplectic or energy-preserving methods, respec-
tively. It is widely accepted that such methods produce qualitatively nice numerical
solutions over a long time [21]. Although there are already a lot of symplecitic RKN
methods, energy-preserving methods are not RKN methods in general [22].

For first-order ordinary differential equations of the form{
y′(t) = F(y(t)), t ∈ [t0, T ],
y(t0) = y0,

(4)
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Hairer [23] proposed a family of continuous-stage Runge-Kutta (CSRK) meth-
ods which exactly preserve energy when this problem is an Hamiltonian system.
Miyatake et al. [24] proved a sufficient and necessary energy-preserving condition
of CSRK methods and presented high-order energy-preserving methods. For fur-
ther work, we see [25, 26]. Recently, Tang et al. [27] developed continuous-stage
Runge-Kutta-Nyström (CSRKN) methods for numerical integration of second-order
ordinary differential equations (1) and studied symplecticity-preserving algorithms.
However, the authors of [27] did not study the nature of energy preservation, which is
also very important in practical applications. In addition, many Hamiltonian systems
in practical applications often have oscillatory characteristics so we should design
special algorithms adapted to this feature.

In this paper, we will extend the idea of trigonometrical fitting to CSRKNmethods
and study their energy preservation. The rest of this paper is organized as follows:
In Section 2, we restate the RKN methods and their trigonometrical version for the
problem (1). In Section 3, trigonometrically fitted CSRKN (TFCSRKN) methods are
presented and then the energy-preserving conditions and symmetric conditions are
studied. In Section 4, the stability properties are analyzed. With these conditions,
two new energy-preserving and symmetric TFCSRKN methods of order two and
four, respectively, are constructed in Section 5. In Section 6, numerical experiments
are carried out and the numerical results show the robustness of the new methods.
Section 7 is concerned with conclusions and discussions.

2 Trigonometrically fitted Runge-Kutta-Nyströmmethods

As we all know, an s-stage Runge-Kutta-Nyström (RKN) method for the numerical
integration of problem (1) is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = qn + hciq
′
n + h2

s∑
j=1

aij f
(
Qj

)
, i = 1, · · · , s,

qn+1 = qn + hq ′
n + h2

s∑
i=1

b̄if (Qi) ,

q ′
n+1 = q ′

n + h

s∑
i=1

bif (Qi)

(5)

where ci , aij , b̄i , and bi with i, j = 1, · · · , s are all real coefficients. Method (5) can
also be expressed briefly in the Butcher-type tableau as

c A

b̄T

bT

=

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b̄1
· · ·

b̄s

b1
· · ·

bs
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or equivalently by the four-elements group (c, A, b̄, b). The conditions for an RKN
method (5) to have algebraic order of accuracy p have been given in [28] by using
the theory of B-series [29]. It is well known that the theory of B-series provides an
essential tool to analyze the properties of numerical methods for ordinary differential
equations. The theory is attributed to a smart intuition of J. C. Butcher [30]. For
second-order differential equations, the related theory has been given in [31]. Here,
we restate the conditions for a RKN method having order p as follows.

Theorem 1 The RKN method (5) is convergent of order p if and only if

s∑
i=1

b̄i�i(t) = 1

(ρ(t) + 1)γ (t)
, ρ(t) ≤ p − 1,

s∑
i=1

bi�i(t) = 1

γ (t)
, ρ(t) ≤ p, (6)

where the rooted trees t (no confusion with the time variable t shall arise) and
functions ρ(t), γ (t), and �i(t) are defined in [28].

In order to let method (5) behave better in integrating oscillatory problems
(1), some authors [32] modified method (5) by introducing frequency-depending
coefficients and proposed the following modified RKN methods:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = βi(v)qn + hγi(v)ciq
′
n + h2

s∑
j=1

aij (v)f
(
Qj

)
, i = 1, · · · , s,

qn+1 = βs+1(v)qn + hγs+1(v)q ′
n + h2

s∑
i=1

b̄i (v)f (Qi) ,

q ′
n+1 = αs+1(v)q ′

n + h

s∑
i=1

bi(v)f (Qi) .

(7)

The idea of constructing methods which integrate exactly a set of linearly indepen-
dent functions different of the polynomials has been proposed by several authors. The
corresponding technique is often called functional fitting and the methods are called
functionally fitted methods. This idea consists of selecting the available parameters
of modified RKN method (7) in order to make the method exact for a linear space of
functions with basis

F = 〈 ϕ1(t), ϕ2(t), · · · , ϕr(t) 〉, r ≤ s + 1.

The bases can be given in different ways and some examples of bases have been
listed in [33]. When F contains only polynomial functions up to a certain degree
(ϕm(t) = tm+1), the corresponding methods are the standard RKN methods. Here,
we consider the following exponential functions as reference set of functions:

F1 = 〈 exp(iwt), exp(−iwt) 〉, with i2 = −1,
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where w is an approximate value of the main frequency. This leads to the following
equations:

exp (±iciv) = βi(v) ± ivγi(v)ci ∓ v2
s∑

j=1

aij (v) exp (±icj v),

exp (±iv) = βs+1(v) ± ivγs+1(v) ∓ v2
s∑

i=1

b̄i (v) exp (±iciv),

exp (±iv) = αs+1(v) ± iv
s∑

i=1

bi(v) exp (±iciv), v = wh. (8)

With the Euler formula exp(±iv) = cos(v) ± i sin(v), (8) is equivalent to the
following trigonometrical fitting (TF) conditions:

sin (civ) = γi(v)civ − v2
s∑

j=1

aij (v) sin (cj v),

cos (civ) = βi(v) − v2
s∑

j=1

aij (v) cos (cj v),

sin (v) = γs+1(v)v − v2
s∑

i=1

b̄i (v) sin (civ),

cos (v) = βs+1(v) − v2
s∑

i=1

b̄i (v) cos (civ),

cos (v) = αs+1(v) − v

s∑
i=1

bi(v) sin (civ), sin (v) = v

s∑
i=1

bi(v) cos (civ).

(9)

A modified RKNmethod (7) satisfying the TF conditions (9) will be called a trigono-
metrically fitted RKN (TFRKN)method. As shown in [32], the local truncation errors
in the approximation of the solution and of its derivative can be expressed as

q(tn + h) − qn+1 =
p−1∑
j=1

hj+1

⎛
⎝

kj∑
i=1

d
j+1
i F (j)(qn)

⎞
⎠ + O(hp+1),

q ′(tn + h) − q ′
n+1 =

p∑
j=1

hj

⎛
⎝

k̇j∑
i=1

ḋ
j
i F (j)(qn)

⎞
⎠ + O(hp+1), (10)

where F (j)(qn) denotes an elementary differential and the terms d
j+1
i and ḋ

j
i depend

on the coefficients of the method. For more detailed analysis, we see [32]. So an
TFRKN method is of order p if

q(tn + h) − qn+1 = O(hp+1), q ′(tn + h) − q ′
n+1 = O(hp+1). (11)
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Using these assumptions and computing the terms d
j+1
i and ḋ

j
i associated to the local

truncation errors, the order conditions for an TFRKN method (up to fourth order) are
listed in [32].

In recent years, some symplectic TFRKN methods have been proposed for the
oscillatory problem (1). It is worth noting that all the methods approximately rather
than exactly preserve the energy H(p, q) determined by (3). In practical applica-
tions, high-precision energy preservation is often required and energy-preserving
algorithms are becoming more and more popular.

3 Continuous-stage RKNmethods and energy preserving

An s-degree continuous-stage Runge-Kutta (CSRK) method for problem (4) is
defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yτ = yn + h

1∫
0

Aτσ F (Yσ ) dσ,

yn+1 = yn + h

1∫
0

B̄τF (Yτ ) dτ,

(12)

where Yτ is a polynomial of degree s with respect to τ satisfying Y0 = yn, Aτσ be
a function of variables τ, σ ∈ [0, 1] and Bτ be a function of τ ∈ [0, 1]. The CSRK
methods were proposed firstly in [23]. Following [23] is [24], in which a sufficient
and necessary energy-preserving condition of CSRK methods is proved. Recently,
similarly as the CSRKmethod, Tang et al. [27] proposed the continuous-stage Runge-
Kutta-Nyström (CSRKN) method as follows.

Definition 1 Let Aτσ be a function of variables τ, σ ∈ [0, 1] and B̄τ , Bτ , and
Cτ be functions of τ ∈ [0, 1]. An s-degree continuous-stage Runge-Kutta-Nyström
(CSRKN) method for the numerical integration of problem (1) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ = qn + hCτq
′
n + h2

1∫
0

Aτσ f (Qσ ) dσ,

qn+1 = qn + hq ′
n + h2

1∫
0

B̄τ f (Qτ ) dτ,

q ′
n+1 = q ′

n + h

1∫
0

Bτf (Qτ ) dτ,

(13)
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where Qτ is a polynomial of degree s with respect to τ satisfying Q0 = qn. The
method (13) can be characterized by the following Butcher tableau:

Cτ Aτσ

B̄τ

Bτ

(14)

As stated in the paper [27], in general, a CSRKN method (13) directly solving the
problem (1) is not necessarily equivalent to the method induced by converting (1) to
a first-order differential equation (4) and then using the method a CSRK scheme (12)
to solve it. This fact is similar to the classical case (see [28]).

The conditions for CSRKN methods having order p can be given as order condi-
tions for classical RKN methods with

∑
, ci , aij , b̄i , and bi replaced by

∫ 1
0 , Cτ , Aτσ ,

B̄τ , and Bτ , respectively. For a more detailed description of the order conditions of
the CSRKN methods, we see [27].

In order to integrate oscillatory problems (1) more accurately, we modify the
method (13) by introducing frequency-depending coefficients and introduce a modi-
fication of the CSRKN method.

Definition 2 Let Aτσ (v) be a function of variables τ, σ ∈ [0, 1] and v ∈ [0, +∞),
B̄τ (v) and Bτ (v) be functions of τ ∈ [0, 1] and v ∈ [0, +∞), and Cτ be a func-
tion of τ ∈ [0, 1]. An s-degree-modified continuous-stage Runge-Kutta-Nyström
(MCSRKN) method for the numerical integration of the oscillatory problem (1) is
defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ = βτ (v)qn + hγτ (v)Cτ q
′
n + h2

1∫
0

Aτσ (v)f (Qσ ) dσ,

qn+1 = βs+1(v)qn + hγs+1(v)q ′
n + h2

1∫
0

B̄τ (v)f (Qτ ) dτ,

q ′
n+1 = αs+1(v)q ′

n + h

1∫
0

Bτ (v)f (Qτ ) dτ,

(15)

where Qτ is a polynomial of degree s with respect to τ satisfying Q0 = qn, the
coefficients βτ (v), γτ (v), Aτσ (v), βs+1(v), γs+1(v), B̄τ (v), αs+1(v), and Bτ (v) are
even functions of v = wh.

Actually, given s distinct values ci , i = 1, · · · , s with c0 = 0 and cs = 1, we
always can write Qτ as a linear combination of Qci

with i = 1, · · · , s, Qc0 = qn

and Qcs = qn+1.

Qτ =
s∑

i=0

Li(τ)Qci
.
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where Lagrange interpolation function

Li(τ) =
s∏

j=0,j �=i

τ − cj

ci − cj

, i = 0, · · · , s.

Let methods integrate exactly linearly independent functions from the reference set

F1 = 〈 exp(iwt), exp(−iwt) 〉, with i2 = −1.

This leads to the following equations:

s∑
i=0

exp(±iciv)Li(τ )=βτ (v)±ivγτ (v)Cτ ∓v2

1∫
0

Aτσ (v)

s∑
i=0

exp (±iciv)Li(σ )dσ,

exp (±iv)=βs+1(v) ± ivγs+1(v) ∓ v2

1∫
0

B̄τ (v)

s∑
i=0

exp (±iciv)Li(τ )dτ,

exp (±iv)=αs+1(v) ± iv

1∫
0

Bτ (v)

s∑
i=0

exp (±iciv)Li(τ )dτ, v = wh. (16)

With the Euler formula exp(±iv) = cos(v) ± i sin(v), (16) is equivalent to the
following trigonometrical fitting (TF) conditions:

s∑
i=0

Li(τ) sin (civ) = γτ (v)Cτ v − v2

1∫
0

Aτσ (v)

s∑
i=0

Li(σ ) sin (civ)dσ,

s∑
i=0

Li(τ) cos (civ) = βτ (v) − v2

1∫
0

Aτσ (v)

s∑
i=0

Li(σ ) cos (civ)dσ,

sin (v) = γs+1(v)v − v2

1∫
0

B̄τ (v)

s∑
i=0

Li(τ) sin (civ)dτ

cos (v) = βs+1(v) − v2

1∫
0

B̄τ (v)

s∑
i=0

Li(τ) cos (civ)dτ

cos (v) = αs+1(v) − v

1∫
0

Bτ (v)

s∑
i=0

Li(τ) sin (civ)dτ,

sin (v) = v

1∫
0

Bτ (v)

s∑
i=0

Li(τ) cos (civ)dτ . (17)
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An MCSRKN method (15) satisfying the TF conditions (17) will be called a
trigonometrically fitted CSRKN (TFCSRKN) method. In order to obtain the order
conditions for TFCSRKN methods, we consider the following assumptions:

βτ (v) =
∞∑

k=0

β(2k)
τ v2k, γτ (v) =

∞∑
k=0

γ (2k)
τ v2k, Aτσ (v) =

∞∑
k=0

A(2k)
τσ v2k,

βs+1(v) =
∞∑

k=0

β
(2k)
s+1v2k, γs+1(v) =

∞∑
k=0

γ
(2k)
s+1 v2k, B̄τ (v) =

∞∑
k=0

B̄(2k)
τ v2k,

αs+1(v) =
∞∑

k=0

α
(2k)
s+1v

2k, Bτ (v) =
∞∑

k=0

B(2k)
τ v2k . (18)

The conditions for a TFCSRKN method (15) having order p can be given as order
conditions for TFRKN methods (7) in [32] with

∑
, β

(2k)
i , γ

(2k)
i , a

(2k)
ij , b̄

(2k)
i , and

b
(2k)
i replaced by

∫ 1
0 , β

(2k)
τ , γ (2k)

τ , A(2k)
τσ , B̄(2k)

τ , and B
(2k)
τ , respectively. Now, we list

the p-th order conditions with p ≤ 4.

• Order 1 requires:∫ 1

0
B

(0)
τ dτ = 1.

• Order 2 requires in addition:∫ 1

0
B

(0)
τ Cτdτ = 1

2 , α
(2)
s+1 = 0,

∫ 1

0
B̄

(0)
τ dτ = 1

2 , β
(2)
s+1 = 0.

• Order 3 requires in addition:∫ 1

0
B

(0)
τ C2

τ dτ = 1
3 ,

∫ 1

0

∫ 1
0 B

(0)
τ A

(0)
τσ dτdσ = 1

6 ,
∫ 1

0
B

(0)
τ β

(2)
τ dτ = 0,

∫ 1

0
B

(2)
τ dτ = 0,

∫ 1

0
B̄

(0)
τ Cτdτ = 1

6 , γ
(2)
s+1 = 0.

• Order 4 requires in addition:∫ 1

0
B

(0)
τ C3

τ dτ = 1
4 ,

∫ 1

0

∫ 1
0 B

(0)
τ CτA

(0)
τσ dτdσ = 1

8 ,∫ 1

0

∫ 1
0 B

(0)
τ A

(0)
τσ Cσdτdσ = 1

24 ,
∫ 1

0
B

(0)
τ Cτβ

(2)
τ dτ = 0,

∫ 1

0
B

(0)
τ Cτ γ

(2)
τ dτ = 0,

∫ 1

0
B

(2)
τ Cτdτ = 0,

α
(4)
s+1 = 0,

∫ 1

0
B̄

(0)
τ C2

τ dτ = 1
12 ,∫ 1

0

∫ 1
0 B̄

(0)
τ A

(0)
τσ dτdσ = 1

24 ,
∫ 1

0
B̄

(0)
τ β

(2)
τ dτ = 0,
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∫ 1

0
B̄

(2)
τ dτ = 0, β

(4)
s+1 = 0.

We note that the conditions of orders higher than four can be obtained following the
approach of this paper. The following proposition is helpful for further studying the
TFCSRKN methods.

Proposition 1 If Cτ = τ and the coefficients satisfy

βτ (v) − 1 = O(v5), γτ (v) − 1 = O(v5), β(v) − 1 = O(v5),

γ (v) − 1 = O(v5), α(v) − 1 = O(v5),

with v → 0, then the TFCSRKN method satisfies the following relations:

1∫
0

B̄τ (v)dτ = 1

2
+ O(v2),

1∫
0

B̄τ (v)Cτdτ = 1

6
+ O(v2),

1∫
0

Bτ (v)dτ = 1 + O(v2),

1∫
0

Bτ (v)Cτdτ = 1

2
+ O(v2),

1∫
0

Aτσ (v)dσ = C2
τ

2
+ O(v2),

1∫
0

Aτσ (v)Cσdσ = C3
τ

6
+ O(v2), (19)

and therefore it has algebraic order at least two.

Proof First of all, we prove the second expression. Using the third condition given
in (17) and expressing the trigonometric function, we have

∞∑
m=0

(−1)mv2m+1

(2m + 1)! = v

∞∑
m=0

γ
(2m)
s+1 v2m

−v2

1∫
0

s∑
i=0

Li(τ)B̄τ (v)

∞∑
m=0

(−1)mc2m+1
i v2m+1

(2m + 1)! dτ

In a more detailed manner, the above formula can be expressed as

v − v3

3! +
∞∑

m=2

(−1)mv2m+1

(2m + 1)! = vγ
(0)
s+1 + γ

(2)
s+1v

3 + v

∞∑
m=2

γ
(2m)
s+1 v2m

−v3

1∫
0

s∑
i=0

Li(τ)B̄τ (v)cidτ
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−v2

1∫
0

s∑
i=0

Li(τ)B̄τ (v)

∞∑
m=1

(−1)mc2m+1
τ v2m+1

(2m + 1)! dτ

which implies that

−v3

3! + O(v5) = −v3

1∫
0

B̄τ (v)Cτdτ + O(v5).

Therefore, we obtain

1∫
0

B̄τ (v)Cτ dτ = 1

6
+ O(v2).

The other expressions can be proved in a similar way. From the first, third, and fourth
conditions of (19), the order conditions are satisfied for p = 2 and the TFCSRKN
method has algebraic order at least 2.

The following theorem gives the sufficient conditions for energy preservation.

Theorem 2 A TFCSRKN method (15) solving Hamiltonian systems is energy-
preserving if the coefficients satisfy

αs+1(v) = 1, βτ (v) = C(v), (γτ (v)Cτ )
′ = Bτ (v),

Bτ (v)Bσ (v) = A′
τσ (v) + A′

στ (v), (20)

where A′
τσ (v) = d

dτ Aτσ (v), (γτ (v)Cτ )
′ = d

dτ (γτ (v)Cτ ), and C(v) depends only on
v but not on τ .

Proof For Hamiltonian or energy, having pn = q ′
n in mind, we have

H(qn+1, pn+1) − H(qn, pn)

= 1

2
pT

n+1pn+1 + U(qn+1) − 1

2
pT

n pn − U(qn)

= 1

2

⎛
⎝αs+1(v)pn + h

1∫
0

Bτ (v)f (Qτ ) dτ

⎞
⎠

T ⎛
⎝αs+1(v)pn + h

1∫
0

Bτ (v)f (Qτ ) dτ

⎞
⎠

+
1∫

0

(∇U (Qτ ))
T dQτ − 1

2
pT

n pn. (21)
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Further calculation results in

H(qn+1, pn+1) − H(qn, pn) = 1

2

⎡
⎣α2

s+1(v)pT
n pn + 2hαs+1(v)pT

n

1∫
0

Bτ (v)f (Qτ ) dτ

+h2

⎛
⎝

1∫
0

Bτ (v)f (Qτ ) dτ

⎞
⎠

T ⎛
⎝

1∫
0

Bσ (v)f (Qσ ) dσ

⎞
⎠

⎤
⎥⎦ − 1

2
pT

n pn

+
1∫

0

(∇U (Qτ ))T d

⎛
⎝βτ (v)qn + γτ (v)Cτ hpn + h2

1∫
0

Aτσ f (Qσ ) dσ

⎞
⎠ .

Simplifying the above formula, we obtain

H(qn+1, pn+1) − H(qn, pn)

= 1

2

(
α2

s+1(v) − 1
)

pT
n pn − β ′

τ (v)qT
n

1∫
0

Bσ (v)f (Qσ ) dσ

+hpT
n

1∫
0

(
αs+1(v)Bτ (v) − [γτ (v)Cτ ]′

)
f (Qτ ) dτ

+h2

2

1∫
0

1∫
0

f (Qτ )
T Bτ (v)Bσ (v)f (Qσ ) dτdσ

+
1∫

0

(∇U (Qτ ))
T d

⎛
⎝h2

1∫
0

Aτσ (v)f (Qσ ) dσ

⎞
⎠ , (22)

where β ′
τ (v) and [γτ (v)Cτ ]′ mean the derivatives with respect to τ . Using (20) and

f (Qτ ) = −∇U (Qτ ), we have

H(qn+1, pn+1) − H(qn, pn)

= h2

2

1∫
0

1∫
0

f (Qτ )
T

(
Bτ (v)Bσ (v) − 2A′

τσ (v)
)
f (Qσ ) dτdσ . (23)

Letting τ ↔ σ and adding the resulting results, we have

2H(qn+1, pn+1) − 2H(qn, pn)

= h2

1∫
0

1∫
0

f (Qτ )
T

(
Bτ (v)Bσ (v) − A′

τσ (v) − A′
στ (v)

)
f (Qσ ) dτdσ . (24)

From (20), we know that H(qn+1, pn+1) − H(qn, pn) = 0. This implies the result.
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Remark 1 We know from Theorem 2 that energy-preservation properties of TFC-
SRKN methods (15) have nothing to do with βs+1(v) and γs+1(v). However, if we
regard problem (1) as an equivalent representation as a first-order system of the form
(4) but with doubled dimension, and then solve it by using the trigonometrically fitted
CSRK (TFCSRK) methods of [34], the coefficients of resulting method must satisfy
βs+1(v) = 1. This shows that the TFCSRKN method solving directly problem (1)
has more flexibility of the coefficient than TFCSRK methods of [34].

A detailed investigation of the numerical integration of reversible systems has been
carried out in [28]. There it is shown that symmetric integration methods often have
an excellent long-term behavior on such systems. Therefore, this section turns to the
discussion about the symmetry of TFCSRKN methods.

Definition 3 (See [28].) The adjoint method �∗
h of a method �h is defined as the

inverse map of the original method with reversed time step −h, i.e., �∗
h = �−1

−h. A
method with �∗

h = �h is called symmetric.

Theorem 3 The TFCSRKN method (15) is symmetry if and only if the coefficients
satisfy

βs+1(v) = 1, αs+1(v) = 1,

Bτ (v) = B1−τ (v), γs+1(v)Bτ (v) − B̄τ (v) = B̄1−τ (v),

βτ (v)γs+1(v) − γτ (v)Cτ = γ1−τ (v)C1−τ ,

βτ (v)
(
γs+1(v)Bσ (v) − B̄σ (v)

) − γτ (v)CτBσ (v) + Aτσ (v)

= A1−τ,1−σ (v) − B̄1−σ (v). (25)

Proof Exchanging qn+1 ↔ qn, pn+1 ↔ pn and replacing −h by h in the TFCSRKN
formulas (15) yield

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̄τ = βτ (v)qn+1 − hγτ (v)Cτ q
′
n+1 + h2

1∫
0

Aτσ (v)f
(
Q̄σ

)
dσ,

qn = βs+1(v)qn+1 − hγs+1(v)q ′
n+1 + h2

1∫
0

B̄τ (v)f
(
Q̄τ

)
dτ,

q ′
n = αs+1(v)q ′

n+1 − h

1∫
0

Bτ (v)f
(
Q̄τ

)
dτ .

(26)

To make the method symmetric, the conditions βs+1(v) = 1 and αs+1(v) = 1 are
necessary. From (26), we obtain

q ′
n+1 = q ′

n + h

1∫
0

Bτ (v)f
(
Q̄τ

)
dτ,



1392 Numerical Algorithms (2019) 81:1379–1401

qn+1 = qn + hγs+1(v)q ′
n + h2

1∫
0

(
γs+1(v)Bτ (v) − B̄τ (v)

)
f

(
Q̄τ

)
dτ,

Q̄τ = βτ (v)qn + h (βτ (v)γs+1(v) − γτ (v)Cτ ) q ′
n

+h2

1∫
0

[
βτ (v)

(
γs+1(v)Bσ (v) − B̄σ (v)

)

−γτ (v)CτBσ (v) + Aτσ (v)] f
(
Q̄σ

)
dσ . (27)

Replacing all indices τ and σ by 1− τ and 1−σ , respectively, and denoting Q̄1−τ =
Qτ , we know that the scheme defined by (27) coincides with the scheme (15) if and
only if the coefficients satisfy the conditions (25). This proves the theorem.

Remark 2 When v → 0 (w → 0), we have

βτ (v) → 1, γτ (v) → 1, βs+1(v) → 1, γs+1(v) → 1, αs+1(v) → 1.

In this case, the TFCSRKN method (15) reduces a CSRKN method (13) and the
symmetric conditions (25) reduce to

Bτ = B1−τ , Bτ − B̄τ = B̄1−τ , 1 − Cτ = C1−τ

Bσ − B̄σ − CτBσ + Aτσ = A1−τ,1−σ − B̄1−σ , (28)

where Aτσ , B̄τ , and Bτ are the limit values of Aτσ (v), B̄τ (v), and Bτ (v) as v → 0.

4 Stability

In order to analyze the stability of TFCSRKN methods in this paper, we choose to
consider the following linear scalar problem:

y′′(t) = −λ2y(t), (29)

where λ > 0. Applying method (15) to problem (29) yields

Qi = βi(v)qn + hγi(v)Ciq
′
n − H 2

1∫
0

Aiσ (v)

s∑
j=0

Lj (σ )Qjdσ,

qn+1 = βs+1(v)qn + hγs+1(v)q ′
n − H 2

1∫
0

B̄τ (v)

s∑
i=0

Li(τ)Qidτ,

hq ′
n+1 = αs+1(v)hq ′

n − H 2

1∫
0

Bτ (v)

s∑
i=0

Li(τ)Qidτ, (30)
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where Ci = Cci
, βi(v) = βci

(v), γi(v) = γci
(v), Aiσ (v) = Aciσ (v), and H = λh.

We can express (30) in a vector form

Q = β(v)qn + hγ (v)Cq ′
n − H 2A(v)Q,

qn+1 = βs+1(v)qn + hγs+1(v)q ′
n − H 2B̄(v)Q,

hq ′
n+1 = αs+1hq ′

n − H 2B(v)Q,

with β(v) = (β0(v), · · · , βs(v))T , γ (v)C = (γ0(v)C0, · · · , γs(v)Cs)
T and

A(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1∫
0

A0σ (v)L0(σ )dσ · · ·
1∫
0

A0σ (v)Ls(σ )dσ

...
. . .

...
1∫
0

Asσ (v)L0(σ )dσ · · ·
1∫
0

Asσ (v)Ls(σ )dσ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B̄(v) =
⎛
⎝

1∫
0

B̄σ (v)L0(σ )dσ, · · · ,

1∫
0

B̄σ (v)Ls(σ )dσ

⎞
⎠ ,

B(v) =
⎛
⎝

1∫
0

Bσ (v)L0(σ )dσ, · · · ,

1∫
0

Bσ (v)Ls(σ )dσ

⎞
⎠ .

Elimination of the vector Q delivers the recursion

(
qn+1
hq ′

n+1

)
= M(H, v)

(
qn

hq ′
n

)
, (31)

where

M =
(

βs+1(v) − H 2B̄(v)N−1β(v) γs+1(v) − H 2B̄(v)N−1γ (v)C

−H 2B(v)N−1β(v) αs+1(v) − H 2B(v)N−1γ (v)C

)
, (32)

and N = I + H 2A(v). The matrix M(H, v) is called stability matrix. The behav-
ior of the numerical solution will depend on the stability matrix M(H, v) of (32).
Geometrically, the characterization of stability becomes a two-dimensional region in
(H, v) space for a TFCSRKN method.

Definition 4 For the TFCSRKN method (15) with the stability matrix (32), the
region of the two-dimensional space

� := {(H, v) : |M(H, v)| ≤ 1}
is called the region of stability. And any closed surface defined by |M(H, v)| = 1 is
a stability boundary of the method.
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Definition 5 For the TFCSRKN method with the stability matrix M(H, v), the two
quantities

φ(H, v) = H − arccos

(
tr(M)

2
√
det(M)

)
, d(H, v) = 1 − √

det(M)

are called the dispersion error and the dissipation error, respectively. The method is
said to be dispersive of order q and dissipative of order r , if φ(H, v) = O(Hq+1)

and d(H, v) = O(Hr+1), respectively. If φ(H, v) = 0 and d(H, v) = 0, then the
method is said to be zero dispersive and zero dissipative. Here, the pair H, v should
be replaced by the new pair H, r = H/v.

5 Construction of energy-preservingmethods

In this section, we derive second- and fourth-order symmetric and energy-preserving
TFCSRKN schemes. The derivation process of higher-order methods is completely
similar. In the construction of the method, we always choose Cτ = τ .

5.1 Themethod of order two

Let us start with a one-degree TFCSRKN formulation:

Aτσ (v) = a11(v)τ, B̄τ (v) = b̄1(v), Bτ (v) = b1(v).

In this case, from the TF conditions (17), symmetric conditions (25), and energy-
preserving conditions (20), we have

αs+1(v) = 1, βs+1(v) = 1, βτ (v) = 1, γs+1(v) = γτ (v),

Aτσ (v) = 1

v2

(
2τ tan2

(v

2

))
, B̄τ (v) = 2 tan2

(
v
2

)
v2

,

Bτ (v) = 2 sin
(v

2

) / (
v cos

(v

2

))
, γτ (v) = 2

v
tan

(v

2

)
. (33)

For small values |v| → 0, the above formulae are subject to heavy cancellations and
in that case, the following Taylor series expansions must be used:

Aτσ (v) = τ

2
+ τv2

12
+ 17τv4

1440
+ 31τv6

20160
+ · · · ,

B̄τ (v) = 1

2
+ v2

12
+ 17v4

1440
+ 31v6

20160
+ · · · ,

Bτ (v) = 1 + v2

12
+ v4

120
+ 17v6

20160
+ · · · ,

γτ (v) = 1 + v2

12
+ v4

120
+ 17v6

20160
+ · · · . (34)
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It is easy to verify that the symmetric and energy-preserving TFCSRKN method
defined by (33) has the accuracy of order two. We denote this method as SEPTFC-
SRKN2P and for this method, we have

φ(H) = −−2r4 + √
3r2

24(r2 + 1)2
H 3 + O(H 5), d(H) = 0,

which shows that the method SEPTFCSRKN2P is dispersive of order 2 and zero
dissipative, respectively. The region of stability for the method SEPTFCSRKN2P is
depicted in Fig. 1.

5.2 Themethod of order four

Now, we consider two-degree TFCSRKN method whose coefficients have the
following form:

Aτσ (v) = a11(v)τ + a12(v)τσ + a21(v)τ 2 + a22(v)τ 2σ,

B̄τ (v) = b̄1(v) + b̄2(v)τ, Bτ (v) = b1(v) + b2(v)τ . (35)

From the TF conditions (17), symmetric conditions (25), and energy-preserving
conditions (20), we have

αs+1(v) = 1, βs+1(v) = 1, βτ (v) = 1, γs+1(v) = γτ (v),

Āτσ (v) = 12τ(3 − 8σ + 4τ + (3 − 4σ + 2τ) cos
(

v
2

)
) sin2

(
v
4

)
v2(2 + cos

(
v
2

)
)2

,

B̄τ (v) = −12(−7 + 8τ + (−5 + 4τ) cos
(

v
2

)
) sin2

(
v
4

)
v2(2 + cos

(
v
2

)
)2

,

Bτ (v) = −6(cos(v) − 1)

v(4 sin
(

v
2

) + sin(v))
, γτ (v) = 6 sin

(
v
2

)
2v + v cos

(
v
2

) . (36)

Note that for the numerical computation, the following series expansions should be
employed:

Aτσ (v) = 1

2
τ(1 − 2σ + τ) + 1

96
τ(−2σ + τ)v2 + τ(−4 − 2σ + τ)v4

11520

−τ(80 − 34σ + 17τ)v6

7741440
+ · · · ,

B̄σ (v) = (1 − σ) + 1

96
(1 − 2σ)v2 + (−3 − 2σ)v4

11520
+ (−97 + 34σ)v6

7741440
+ · · · ,

Bσ (v) = 1 − v4

2880
− v6

96768
− v8

6635520
+ · · · ,

γτ (v) = 1 − v4

2880
− v6

96768
− v8

6635520
+ · · · . (37)
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Fig. 1 The stability region for the method SEPTFCSRKN2P (left) and SEPTFCSRKN4P (right)

It is easy to verify that the coefficients of (37) satisfy the conditions of order four. We
denote the symmetric and energy-preserving TFCSRKN method (15) determined by
(37) as SEPTFCSRKN4P. For this method, we have

φ(H) = −5r4 + r2

360(r3 + 1)2
H 5 + O(H 7), d(H) = 0,

which shows that the method SEPTFCSRKN4P is dispersive of order 4 and zero
dissipative, respectively. The region of stability for the method SEPTFCSRKN4P is
depicted in Fig. 1.

6 Numerical experiments

In this section, in order to show the competence and superiority of the new meth-
ods compared with the well-known methods in the scientific literature, we use three
model problems. Nonlinear equations were solved by fixed point iteration with tol-
erance 10−15 and the right hand side of method (15) were integrated numerically by
using quad with tolerance 10−12. The integrators we select for comparison are:

• SEPTFCSRKN2P: The symmetric and energy-preserving TFCSRKN method of
order two derived in Section 5 of this paper

• SEPTFCSRKN4P: The symmetric and energy-preserving TFCSRKN method of
order four derived in Section 5 of this paper

• EPCSRK2P: The energy-preserving CSRK method of order two derived in [23]
• EPCSRK4P: The energy-preserving CSRK method of order four introduced in

[23]

Problem 1 We consider the Duffing equation{
q ′′ + 25q = 2k2q3 − k2q, t ∈ [0, tend ],
q(0) = 0, q ′(0) = w.

(38)
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The Hamiltonian of this system is given by

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4.

where k = 0.03. The exact solution of this initial value problem is y(t) =
sn(wt; k/w), the so-called Jacobian elliptic function. In this test, we choose the
frequency w = 5 as fitting parameter.

This problem has been solved in the interval [0, 100] with the step sizes h = 1/2j

for each method, where j = 1, 2, 3, 4. Then, we integrate the problem with a fixed
step size h = 1/5 in [0, 100] and see the preservation of the Hamiltonian by each
code. The numerical results are presented in Fig. 2.

Problem 2 Two coupled oscillators with different frequencies
{

q ′′
1 + q1 = 2εq1q2, q1(0) = 1, q ′

1(0) = 0,
q ′′
2 + 2q2 = εq2

1 + 4εq3
2 , q2(0) = 1, q ′

2(0) = 0.

The Hamiltonian of this system is given by

H(p, q) = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + 2q2
2 ) − ε

(
q2
1q2 + q4

2

)
.
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In this numerical test, we choose ε = 10−3 and the fitting parameter w = √
2. We

fist solve this problem in the interval [0, 100] and step sizes h = 1/2j for all the
methods, where j = 1, · · · , 4. Then, we integrate the problem with a fixed step size
h = 1/2 in [0, 100] and see the preservation of the Hamiltonian by each code. The
numerical results are presented in Fig. 3.

Problem 3. Consider the pendulum system with the Hamiltonian

H(p, q) = 1

2
p2 − cos(q), q(0) = 0, p(0) = 1,

where q is the angle between the rod and a vertical, downward oriented axis. The
equations of motion are

q ′′ = − sin(q), q(0) = 0, q ′(0) = 1.

In the numerical integration of this problem, the fitting frequency (a reasonable esti-
mate of the principal frequency) is taken as w = 1.0415. Firstly, we integrate the
problem in the interval [0, 100] with step sizes h = 1/2j , j = 1, 2, 3, 4 for all the
methods. Then, we integrate the problem with a fixed step size h = 1/5 in [0, 100]
and see the preservation of the Hamiltonian by each code. The results are shown in
Fig. 4.
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Fig. 4 Efficiency curves (left) and energy conservation (right) for problem 3

For the above three problems, the right figures show all schemes preserve the
Hamiltonian well. The reason why the accuracy of the fourth-order schemes falls
behind that of the second-order schemes might be due to the tolerance of quad. In
the left figures, one can see that the errors are growing linearly with time for all
four schemes. The results of the numerical experiments confirm that for a given
step size h, our new methods are more accurate than CSRK methods with the same
convergence order.

7 Conclusions and discussions

We present and study symmetric, energy-preserving, and trigonometrically fitted
continuous-stage Runge-Kutta-Nyström (TFCSRKN) method in this paper. These
methods integrate exactly second-order systems (1) whose solution can be expressed
as linear combination of functions from the set of functions {exp(iwt), exp(−iwt)}
or equivalently the set {cos(wt), sin(wt)} with w the approximation of the main fre-
quency. The symmetric and energy-preserving conditions for TFCSRKNmethods are
derived. Based on these conditions, two new symmetric and energy-preserving meth-
ods of orders two and four, respectively, are constructed. The results of the numerical
experiments confirm the theoretical expectations.
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The determination of the main frequencyw for a trigonometrically fitted method is
a critical issue, because the coefficients of the trigonometrically fitted method depend
on w. The knowledge of an estimation to the unknown frequency is needed in order
to apply the numerical method efficiently. For the technique of frequency choice in
trigonometrically fitted methods, the reader is referred to [35, 36].
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