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Abstract
In this paper, we study strong convergence of some proximal-type algorithms to
a solution of split minimization problem in complete p-uniformly convex metric
spaces. We also analyse asymptotic behaviour of the sequence generated by Halpern-
type proximal point algorithm and extend it to approximate a common solution of a
finite family of minimization problems in the setting of complete p-uniformly convex
metric spaces. Furthermore, numerical experiments of our algorithms in comparison
with other algorithms are given to show the applicability of our results.
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1 Introduction

Let X be a geodesic space and f be any real-valued function defined on X. If there
exists a point v̄ ∈ X such that f (v̄) = min

v∈X
f (v), then v̄ is called a minimizer of f and

is denoted by v̄ :=argmin
v∈X

f (v) (that is, argmin
v∈X

f (v) denotes the set of minimizers of

f ). The problem of finding such a point v̄ ∈ X for which f (v̄) = min
v∈X

f (v) is called a

minimization problem (MP), which is very useful in optimization theory, convex and
nonlinear analysis. Many authors have proposed some efficient and implementable
algorithms and obtain some convergence theorems for solving MPs and some of their
generalizations (see for example, [19–21, 29, 31, 39, 45]). The proximal point algo-
rithm (PPA) is a well-known method for finding solutions of MPs. It was introduced
by Martinet [28] and was further developed by Rockafellar [37] in Hilbert spaces.
Rockafellar [37] proved that the PPA converges weakly to a minimizer of a proper
convex and lower semicontinuous functional (to be defined in Section 2) and raised a
very important question as to whether the PPA converges strongly or not. The ques-
tion was resolved in the negative by Güler [19] who constructed a counterexample
showing that the PPA does not necessarily converges strongly (see also [8, 9] for
more counterexamples on this subject matter). In other words, except additional con-
ditions are imposed on either the convex functional or on the underlying space, only
weak convergence results for PPA are expected. In 2000, Kamimura and Takahashi
[22] modified the PPA into Halpern-type PPA, so that its strong convergence is guar-
anteed. The study of PPA has been generalized from Hilbert spaces to differentiable
manifolds, in particular, the Hadamard manifolds (Riemannain manifolds of non-
positive sectional curvature) see for example [18, 26, 36] and the references therein.
Bačák [6] continued along this line and introduced the PPA in Hadamard spaces
(complete CAT(0) spaces) as follows: For arbitrary point x1 in a Hadamard space X,
define the sequence {xn} iteratively by

xn+1 = J f
μn

(xn), (1.1)

where μn > 0 for all n ≥ 1,and J
f
μ : X → X is the Moreau-Yosida resolvent of a

proper convex and lower semicontinuous functional defined by

J f
μ (x) = arg min

v∈X

(
f (v) + 1

2μ
d2(v, x)

)
.

Bačák [6] proved that the PPA �-converges (to be defined in Section 2) to a min-
imizer of f under the assumption that

∑∞
n=1 μn = ∞ and that f has a minimizer

in X. Since then, different modifications of the PPA have been studied in Hadamard
spaces, as well as in Hilbert and Banach spaces (see [4, 5, 40, 44] and the references
therein).

The PPA have now been generalized to p-uniformly convex metric spaces, intro-
duced by Noar and Silberman [30] in 2011 as follows: Let 1 < p < ∞, a metric
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space (X, d) is called p-uniformly convex with parameter c > 0 if and only if (X, d)

is a geodesic space (to be defined in Section 2) and

d(v, (1 − t)x ⊕ ty)p ≤ (1 − t)d(v, x)p + td(v, y)p − c

2
t (1 − t)d(x, y)p∀x, y,

v ∈ X, t ∈ [0, 1]. (1.2)

Let X be a p-uniformly convex metric space. Choi and Ji [12] introduced the notion
of resolvent mapping of a proper, convex and lower semicontinuous functional f in
X as follows: For x ∈ X and μ > 0, J

f
μ : X → X is defined by

J f
μ (x) = arg min

v∈X

(
f (v) + 1

2μ
dp(v, x)

)
. (1.3)

Clearly, if p = 2, then (1.3) reduces to the Moreau-Yosida resolvent. Using (1.3),
they obtained the following result.

Theorem 1.1 [12, Theorem 3.6] Let X be a p-uniformly convex metric space with
parameter c > 0 and diameter α > 0. Let f : X → (−∞, ∞] be a proper uniformly
convex, lower semicontinuous function, and {μn} be a sequence of positive real num-
bers such that lim

n→∞
n

(
∑n

i=1 μi)
= 0. Suppose that the sequence {xn} in X is generated

by the following PPA:

xn = J f
μn

(xn−1), n ≥ 1, (1.4)

where J
f
μn is defined in (1.3). Then, {xn} converges to a minimizer of f .

Kuwae [24] defined the resolvent J
f
μ of f in p-uniformly convex metric space

slightly different from that in (1.3) as follows:

J f
μ (x) = arg min

v∈X

(
f (v) + 1

pμp−1
d(v, x)p

)
. (1.5)

off course, (1.5) is more general and known to be applicable in obtaining solutions
of initial boundary value problems for p-harmonic maps (see [24] for more details).
Kuwae [24] also established the unique existence of the resolvent J

f
μ of f under

Assumption 3.21 of [24] (see [24, Proposition 3.26]). Furthermore, he proved the
existence of the minimizer of a coercive proper lower semicontinuous functionals.

We emphasize here that the results of Kuwae [24], Choi and Ji [12] naturally
extend contemporary results in Hadamard spaces (as well as Hilbert and Banach
spaces). For example, Theorem 1.1 is an extension of [6, Theorem 1.4] from
Hadamard space to p-uniformly convex spaces. In general, existing results concern-
ing PPA in Hadamard spaces cannot be simply carried into p-uniformly convex
metric spaces due to the structure of the space; the smoothness constant c (see
inequality (1.2)) among others, always serves as a natural obstacle to be overcome in
order to extend existing results on PPA to p-uniformly convex metric space. More-
over, CAT(0) spaces are 2-uniformly convex metric spaces with parameter c = 2
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and CAT(k) spaces (k > 0) with diam(X) < π

2
√

k
are 2-uniformly convex metric

spaces with parameter c = (π − 2
√

kε) tan(
√

kε) for any 0 < ε ≤ π

2
√

k
−diam(X)

(see [38]). Furthermore, p-uniformly convex metric spaces are obvious generaliza-
tion of p-uniformly convex normed spaces without using the modulus of convexity
for p ∈ (1, ∞) (see [12, Example 2.2]). It is also known in [43] that normed spaces
and their convex subsets are convex metric spaces but the converse of this statement is
not always the case. In addition, inequality (1.2) has numerous applications in Finsler
geometry and metric geometry; the nonlinearization of the geometry of Banach space
and other related fields (see for example [25, 30, 32–35, 41]). For more details on
p-uniformly convex metric spaces, see [25, 30, 32–35] and the references therein.

Motivated by the above results and facts, we study some proximal-type algo-
rithms for finding solutions of split minimization problems (SMP) in p-uniformly
convex metric spaces. We also study the asymptotic behaviour of the sequence gener-
ated by Halpern-type PPA and extend it to approximate a common solution of finite
family of MPs in p-uniformly convex metric spaces. Furthermore, numerical exper-
iments of our algorithms in comparison with other algorithms are given to show the
applicability of our results

This paper is organized as follows: In Section 2, we study the geometry of p-
uniformly convex metric spaces. We also study some fundamental properties of the
resolvent defined in (1.5). In Section 3, we carry out strong convergence analysis
on some proximal-type algorithms. First (in Section 3.1), we study the backward-
backward algorithm (BBA) and its convergence to a SMP. Secondly (in Section 3.2),
we recall the importance of the alternating proximal algorithm (APA) and prove
that it converges strongly to a SMP. Finally (in Section 3.3), we study asymptotic
behaviour of the sequence generated by Halpern-type PPA and extend it to exam-
ine the behaviour of the sequence given by Halpern-type algorithm involving a finite
composition of resolvents of proper convex and lower semicontinuous functions. We
then employ this algorithm to approximate a common solution of finite family of
MPs in a complete p-uniformly convex metric space. In Section 4, we give numerical
example of our algorithms and compare them with other useful algorithms.

2 Preliminaries

2.1 Geometry of p-uniformly convexmetric space

Definition 2.1 A metric space X is called a geodesic space if every two points x, y ∈
X are joined by a geodesic path c : [0, d(x, y)] → X such that c(0) = x and
c(d(x, y)) = y. In this case, c is an isometry and the image of c is called a geodesic
segment joining x to y. The space X is said to be uniquely geodesic if every two
points of X are joined by exactly one geodesic segment.

Inequality (1.2) ensures that p-uniformly convex metric spaces are uniquely
geodesic (see [34, Lemma 2.2]). Also, CAT(0) spaces are examples of uniquely
geodesic metric spaces (see [16]). Concrete examples of p-uniformly convex metric
spaces can be found in [12].
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Definition 2.2 Let {xn} be a bounded sequence in a geodesic metric space X. Then,
the asymptotic center A({xn}) of {xn} is defined by

A({xn}) = {v̄ ∈ X : lim sup
n→∞

d(v̄, xn) = inf
v∈X

lim sup
n→∞

d(v, xn).

The sequence {xn} in X is said to be �-convergent to a point v̄ ∈ X if A({xnk
}) =

{v̄} for every subsequence {xnk
} of {xn}. In this case, we write �- lim

n→∞xn = v̄ and

we say that v̄ is the �-limit of {xn}. The notion of �-convergence in a metric space
was introduced by Lim [27], and it is known as an analogue of the notion of weak
convergence in a Banach space. Thus, it is sometimes referred to as the notion of
weak convergence in metric space.

Definition 2.3 Let X and Y be two complete p-uniformly convex metric spaces.
Then the Cartesian product X × Y is a complete p-uniformly convex metric space
endowed with the metric d : (X × Y ) × (X × Y ) → [0, ∞) defined by

d((x1, y1), (x2, y2)) = [
dX(x1, x2)

p + dY (y1, y2)
p
] 1

p , ∀x1, x2 ∈ X, y1, y2 ∈ Y .(2.1)

The following lemma plays an important role in this paper.

Lemma 2.4 For 1 < p < ∞, let X be a p-uniformly convex metric space with
parameter c > 0 and f : X → (−∞, +∞] be a proper convex and lower
semicontinuous function. Then, for all a, b, c, d ∈ X, we have

d(a, b)p + d(c, d)p ≤ 2

c

(
d(a, c)p + d(a, d)p + d(b, c)p + d(b, d)p

)
.

Proof From (1.2), we obtain that

0 ≤ d

(
1

2
a ⊕ 1

2
b,

1

2
c ⊕ 1

2
d

)p

≤ 1

4

[
d(a, c)p + d(a, d)p + d(b, c)p + d(b, d)p − c

2

(
d(c, d)p + d(a, b)p

)]
,

which implies

d(a, b)p + d(c, d)p ≤ 2

c

(
d(a, c)p + d(a, d)p + d(b, c)p + d(b, d)p

)
.

2.2 Fundamental properties of resolvent of convex functions

Definition 2.5 Let X be a geodesic space. A mapping f : D ⊆ X → (−∞, ∞] is
called convex if for any geodesic path [x, y] := {tx ⊕ (1 − t)y : 0 ≤ t ≤ 1} joining
x, y ∈ X, we have that

f (tx ⊕ (1 − t)y) ≤ tf (x) + (1 − t)f (y),
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and is called uniformly convex (see [12]), if there exists a strictly increasing function
ψ : R+ → R+ such that

f

(
1

2
x ⊕ 1

2
y

)
≤ 1

2
[f (x) + f (y)] − ψ(d(x, y)).

We also recall that f : D ⊆ X → (−∞, ∞] is called proper, if its domain D :=
{v ∈ X : f (v) < +∞} �= ∅, and f is said to be lower semi-continuous at a point
v̄ ∈ D if f (v̄) ≤ lim inf

n→∞ f (xn) for each sequence {xn} in D such that lim
n→∞xn = v̄.

Proposition 2.6 [42] Let X be a geodesic space and f : X → (−∞, +∞] be
a proper uniformly convex and lower semicontinuous function. Then, there exists a
unique minimizer v̄ ∈ X of f (that is v̄ :=argmin

v∈X
f (v)).

Proposition 2.7 For 1 < p < ∞, let X be a p-uniformly convex metric space
with parameter c > 0 and f : X → (−∞, +∞] be a proper convex and lower
semicontinuous function. Then, for any μ > 0 and x ∈ X, there exists a unique point,
say J

f
μ (x) ∈ X such that

f (J f
μ (x)) + 1

pμp−1
d(J f

μ (x), x)p = inf
v∈X

(
f (v) + 1

pμp−1
d(v, x)p

)
.

Proposition 2.7 (referred to as the unique existence of resolvent of a proper con-
vex and lower semicontinuous function) is proved in [24, Proposition 3.26] under
Assumption 3.21 of [24]. Using Proposition 2.6, we prove Proposition 2.7 without
this assumption. Our proof is similar to the proof of [12, Lemma 3].

Proof Let G
f
μ(v) := f (v)+ 1

pμp−1 d(v, x)p. Clearly, Gf
μ is a proper and lower semi-

continuous mapping. Also, G
f
μ is uniformly convex. For this, let v = tv1 ⊕ (1 − t)v2

for all v1, v2 ∈ X and t ∈ [0, 1] (in particular, t = 1
2 ), we obtain from the convexity

of f and (1.2) that

Gf
μ

(
1

2
v1 ⊕ 1

2
v2

)
≤ 1

2

(
f (v1) + 1

pμp−1
d(v1, x)p

)

+1

2

(
f (v2) + 1

pμp−1
d(v2, x)p

)

− c

8pμp−1
d(v1, v2)

p

= 1

2
Gf

μ(v1) + Gf
μ(v2) − c

8pμp−1
d(v1, v2)

p,

which implies that G
f
μ is uniformly convex. Hence, by Proposition 2.6, we obtain the

desired conclusion.

We now obtain some basic properties of the resolvent of a proper convex and lower
semicontinuous function.
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Lemma 2.8 (Firmly nonexpansive-type property) For 1 < p < ∞, let X be a p-
uniformly convex metric space with parameter c > 0 and f : X → (−∞, +∞] be a
proper convex and lower semicontinuous function. Then, for all x1, x2 ∈ X, we have

d(J f
μ x1, J

f
μ x2)

p ≤ 1

c

[
d(J f

μ x1, x2) + d(J f
μ x2, x1)

p − d(J f
μ x1, x1)

p

−d(J f
μ x2, x2)

p
]

.

Proof From (1.5), we obtain that

f (J f
μ x) + 1

pμp−1
d(J f

μ x, x)p ≤ f (z) + 1

pμp−1
d(z, x)p∀z ∈ X.

Now, set z = (1 − t)v ⊕ tJ
f
μ x, t ∈ [0, 1). Then, we obtain from the convexity of f

and the inequality (1.2) that

f (J f
μ x) + 1

pμp−1
d(J f

μ x, x)p ≤ (1 − t)f (v) + tf (J f
μ x) + (1 − t)

pμp−1
d(v, x)p

+ t

pμp−1
d(J f

μ x, x)p − ct (1 − t)

2pμp−1
d(v, J f

μ x)p,

which implies (since t �= 1) that

pμp−1f (J f
μ x) + d(J f

μ x, x)p ≤ pμp−1f (v) + d(v, x)p − ct

2
d(v, J f

μ x)p. (2.2)

As t → 1 in (2.2), we obtain

pμp−1f (J f
μ x) + d(J f

μ x, x)p ≤ pμp−1f (v) + d(v, x)p − c

2
d(v, J f

μ x)p. (2.3)

Now, for x1, x2 ∈ X, we obtain from (2.3) that

pμp−1f (J f
μ x1) + d(J f

μ x1, x1)
p ≤ pμp−1f (J f

μ x2) + d(J f
μ x2, x1)

p

− c

2
d(J f

μ x2, J
f
μ x1)

p (2.4)

and

pμp−1f (J f
μ x2) + d(J f

μ x2, x2)
p ≤ pμp−1f (J f

μ x1) + d(J f
μ x1, x2)

p

− c

2
d(J f

μ x1, J
f
μ x2)

p. (2.5)

Adding (2.4) and (2.5), we obtain

d(J f
μ x1, J

f
μ x2)

p ≤ 1

c

[
d(J f

μ x1, x2) + d(J f
μ x2, x1)

p − d(J f
μ x1, x1)

p

−d(J f
μ x2, x2)

p
]

.
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Remark 2.9 (a) Observe that if c ≥ 2 and p = 2 in Lemma 2.8, then by the def-
inition of quasilinearization mapping in CAT(0) space (see [10] and [45]), one
obtains that J

f
μ is a firmly nonexpansive mapping in a CAT(0) space. That is,

d(J f
μ x1, J

f
μ x2)

2 ≤ 〈−−−−−−→
J f

μ x1J
f
μ x2,

−−→
x1x2〉∀x1, x2 ∈ X,

which by Cauchy-Swartz inequality gives that J
f
μ is nonexpansive in CAT(0)

space.

(b) From (2.3), we obtain that

d(v, J f
μ x)p ≤ 2

c

[
d(v, x)p − d(J f

μ x, x)p − pμp−1
(
f (J f

μ x) − f (v)
)]

,

∀v ∈ X.

(c) If we replace convexity of f with uniform convexity in Lemma 2.8, then (b)
becomes

d(v, J f
μ x)p ≤ 2

c

[
d(v, x)p − dp(J f

μ x, x) − pμp−1
(
ψ(d(v, J f

μ x))

+ f (J f
μ x) − f (v)

)]
, ∀v ∈ X.

Lemma 2.10 (Nonexpansive property) For 1 < p < ∞, let X be a p-uniformly
convex metric space with parameter c ≥ 2 and f : X → (−∞, +∞] be a
proper convex and lower semicontinuous function. Then, the resolvent J

f
μ of f is

nonexpansive. That is, for all x1, x2 ∈ X, we have

d(J f
μ x1, J

f
μ x2) ≤ d(x1, x2).

Proof By Lemma 2.4 and Lemma 2.8 (note that c ≥ 2), we obtain that

d(J f
μ x1, J

f
μ x2)

p ≤ 1

c

[
2

c

(
d(J f

μ x1, J
f
μ x2)

p + d(J f
μ x1, x1) + d(J f

μ x2, x2)
p

+ d(x1, x2)
p
)

− d(J f
μ x1, x1)

p − d(J f
μ x2, x2)

p
]

≤ 1

2

[
d(J f

μ x1, J
f
μ x2)

p + d(x1, x2)
p
]
,

which yields the desired conclusion.

Lemma 2.11 (Monotonicity of resolvent) For 1 < p < ∞, let X be a p-uniformly
convex metric space with parameter c > 0 and f : X → (−∞, +∞] be a proper
convex and lower semicontinuous function. Then, for 0 < μ1 < μ2, we have

d(J f
μ1

x, x) ≤ d(J f
μ2

x, x)∀x ∈ X.
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Proof Let x ∈ X. We obtain from (1.5) that

f (J f
μ2

x) + 1

pμ
p−1
2

d(J f
μ2

x, x)p ≤ f (J f
μ1

x) + 1

pμ
p−1
2

d(J f
μ1

x, x)p. (2.6)

Similarly, we obtain

f (J f
μ1

x) + 1

pμ
p−1
1

d(J f
μ1

x, x)p ≤ f (J f
μ2

x) + 1

pμ
p−1
1

d(J f
μ2

x, x)p. (2.7)

Adding (2.6) and (2.7), we obtain that(
1 − μ

p−1
1

μ
p−1
2

)
d(J f

μ1
x, x)p ≤

(
1 − μ

p−1
1

μ
p−1
2

)
d(J f

μ2
x, x)p.

Since, 0 < μ1 < μ2, therefore 1 −
(

μ1
μ2

)p−1
> 0. Thus, we obtain that

d(J f
μ1

x, x) ≤ d(J f
μ2

x, x).

We end this section with the following important result which is an analogue of
[23, Lemma 3.1] in the setting of CAT(0) space.

Lemma 2.12 For 1 < p < ∞, let X be a p-uniformly convex metric space with
parameter c > 0 and f : X → (−∞, +∞] be a proper, convex and lower semi-
continuous function. For μ1, μ2 > 0 and x1, x2 ∈ X, the following inequality
holds:

c

2
(μ

p−1
1 + μ

p−1
2 )d(J f

μ1
x1, J

f
μ2

x2)
p + μ

p−1
2 d(J f

μ1
x1, x1)

p + μ
p−1
1 d(J f

μ2
x2, x2)

p

≤ μ
p−1
1 d(J f

μ1
x1, x2)

p + μ
p−1
2 d(J f

μ2
x2, x1)

p.

Proof Put x = x1 and v = J
f
μ2x2 in (2.3) to obtain

pμ1
p−1f (J f

μ1
x1) + d(J f

μ1
x1, x1)

p ≤ pμ1
p−1f (J f

μ2
x2) + d(J f

μ2
x2, x1)

p

− c

2
d(Jμ2x2, J

f
μ1

x1)
p.

That is,
c

2
d(J f

μ1
x1, J

f
μ2

x2)
p + d(J f

μ1
x1, x1)

p

+ pμ
p−1
1

(
f (J f

μ1
x1) − f (J f

μ2
x2)
)

≤ d(J f
μ2

x2, x1)
p,

from which we obtain that

pμ
p−1
2

[ c

2
d(J f

μ1
x1, J

f
μ2

x2)
p + d(J f

μ1
x1, x1)

p+pμ
p−1
1

(
f (J f

μ1
x1) −f (J f

μ2
x2)
)]

≤ pμ
p−1
2 d(J f

μ2
x2, x1)

p. (2.8)
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Similarly, we obtain

pμ
p−1
1

[ c

2
d(J f

μ2
x2, J

f
μ1

x1)
p + d(J f

μ2
x2, x2)

p+pμ
p−1
2

(
f (J f

μ2
x2) −f (J f

μ1
x1)
)]

≤ pμ
p−1
1 d(J f

μ1
x1, x2)

p. (2.9)

Adding (2.8) and (2.9), we obtain the desired conclusion.

3 Strong convergence analysis

In this section, we study strong convergence of some proximal-type algorithms.

Remark 3.1 In general, PPA is known to converge only weakly even in a Hilbert
space; to obtain strong convergence results for PPA (see [6]), we need to impose
additional assumption(s) on either the convex function or on the underlying space.

Since our interest in this paper is to obtain strong convergence results, we shall rely
on the above remark in our study. That is, we shall assume in the next two subsections
that, the proper lower semicontinuous function f is uniformly convex, and in the last
subsection that, the smoothness constant c of X is in [2, ∞) (in this case, f needs
not to be uniformly convex).

3.1 Backward-backward algorithm

The BBA is defined for an initial point x1 ∈ X as:{
yn = J

g
μnxn,

xn+1 = J
f
μnyn, n ≥ 1,

(3.1)

where {μn} is a sequence of positive real numbers and f, g : X → (−∞, ∞] are two
proper, convex and lower semicontinuous functions (see [7] for related work in the
frame work of Hadamard spaces). In what follows, we shall study strong convergence
of Algorithm (3.1) to a solution of the following SMP:

min �(x, y) such that (x, y) ∈X × X,

where �(x, y) =f (x) + g(y)∀x, y ∈ X. (3.2)

We begin with the following lemma.

Lemma 3.2 For 1 < p < ∞, let X be a p-uniformly convex metric space with
parameter c > 0 and f, g : X → (−∞, +∞] be two proper, convex and lower
semicontinuous functions. Let {xn} and {yn} be defined by (3.1), where {μn} is a
sequence of positive real numbers. Then, for any v = (x, y) ∈ X × X, we have

�(vn) − �(v) ≤
∑n−1

i=1 d(v, vi)
p − c

2

∑n
i=2 d(v, vi)

p

p
∑n−1

i=1 μ
p−1
i

, (3.3)

where vn = (xn, yn) ∈ X × X.
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Proof By (3.1) and (1.5), we obtain that

g(yn) + 1

pμ
p−1
n

d(yn, xn)
p ≤ g(y) + 1

pμ
p−1
n

d(xn, y)p (3.4)

and

f (xn+1) + 1

pμ
p−1
n

d(xn+1, yn)
p ≤ f (x) + 1

pμ
p−1
n

d(yn, x)p (3.5)

Adding (3.4) and (3.5), we obtain for all x, y ∈ X that

f (xn+1) + g(yn) + 1

pμ
p−1
n

[
d(xn+1, yn)

p + d(yn, xn)
p
] ≤ f (x) + g(y)

+ 1

pμ
p−1
n

[
d(yn, x)p + d(xn, y)p

]
. (3.6)

In particular, for y = yn, we obtain that

f (xn+1) + 1

pμ
p−1
n

[
d(xn+1, yn)

p + d(yn, xn)
p
] ≤ f (x)

+ 1

pμ
p−1
n

[
d(yn, x)p + d(xn, yn)

p
]

. (3.7)

Now, by interchanging f and g, and starting the iteration process at y1 in (3.1), then
by an argument similar to above, we obtain that

g(yn+1) + f (xn) + 1

pμ
p−1
n

[
d(yn+1, xn)

p + d(xn, yn)
p
] ≤ g(y) + f (x)

+ 1

pμ
p−1
n

[
d(xn, y)p + d(yn, x)p

]
. (3.8)

By setting x = xn in (3.8), we obtain

g(yn+1) + 1

pμ
p−1
n

[
d(yn+1, xn)

p + d(xn, yn)
p
] ≤ g(y)

+ 1

pμ
p−1
n

[
d(xn, y)p + d(yn, xn)

p
]

. (3.9)

Adding (3.7) and (3.9), we obtain

f (xn+1) + g(yn+1) + 1

pμ
p−1
n

[
d(xn+1, yn)

p + d(yn+1, xn)
p
] ≤ f (x) + g(y)

+ 1

pμ
p−1
n

[
d(xn, y)p + d(yn, x)p

]
,

which gives by (2.1) that

�(vn+1) + 1

pμ
p−1
n

d(vn+1, vn)
p ≤ �(v) + 1

pμ
p−1
n

d(vn, v)p. (3.10)
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Thus, by Remark 2.9 (b) (or inequality (2.3)), we obtain that

pμ
p−1
n (�(vn+1) − �(v)) ≤ d(v, vn)

p − c

2
d(v, vn+1)

p. (3.11)

By letting v = vn in (3.10), we obtain that

�(vn+1) + 1

pμ
p−1
n

d(vn+1, vn)
p ≤ �(vn),

which implies that {�(vn)} is monotone non-increasing. Thus, we obtain from (3.11)
that

p (�(vn) − �(v))

n−1∑
i=1

μ
p−1
i ≤ p

n−1∑
i=1

μ
p−1
i (�(vi+1) − �(v))

≤
n−1∑
i=1

d(v, vi)
p − c

2

n∑
i=2

d(v, vi)
p, (3.12)

which yields the desired conclusion.

Theorem 3.3 For 1 < p < ∞, let X be a complete p-uniformly convex metric space
with parameter c > 0 such that the diameter of X × X is K > 0. Let f, g : X →
(−∞, +∞] be two proper, uniformly convex and lower semicontinuous functions
and {xn}, {yn} be sequences defined by (3.1), where {μn} is a sequence of positive
real numbers such that lim

n→∞
n∑n

i=1 μ
p−1
i

= 0. Then, {(xn, yn)} converges to a solution

of (3.2).

Proof Since the diameter of X × X is K > 0, therefore we obtain from (3.3) that

�(vn) − �(v) ≤
∑n−1

i=1 d(v, vi)
p − c

2

∑n
i=2 d(v, vi)

p

p
∑n−1

i=1 μ
p−1
i

(3.13)

≤ (n − 1)Kp

p
∑n−1

i=1 μ
p−1
i

→ 0, asn → ∞.

That is, lim
n→∞�(vn) ≤ �(v) for all v ∈ X × X,which implies that

lim
n→∞�(vn) = inf

v∈(X×X)
�(v). (3.14)

Furthermore, we obtain by Proposition 2.6 that, there exists a unique minimizer v̄ ∈
(X × X) of �. Thus, by (3.14), we obtain that

lim
n→∞ �(vn) = �(v̄). (3.15)

Also, using the uniform convexity of �, we obtain that there exists a function ψ :
R+ → R+ with ψ(t) = 0 ⇐⇒ t = 0 such that

�

(
1

2
vn ⊕ 1

2
vm

)
≤ 1

2
(�(vn) + �(vm)) − ψ(d(vn, vm)), ∀n,m ≥ 1.
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Since ψ(t) = 0 ⇐⇒ t = 0, we obtain from (3.15) that d(vn, vm) → 0, asn,m →
∞. Thus, {vn} is a Cauchy sequence in X × X. As X is complete, so X × X is also
complete. Thus, {vn} converges to a point say v̂ ∈ X × X. It follows from the lower
semicontinuity of � (since f and g are lower semicontinuous functions) and (3.3)
that �(v̂) = inf

v∈X×X
�(v). Therefore, we conclude that {vn} = {(xn, yn)} converges

to a solution of (3.2).

Remark 3.4 If X is a complete 2-uniformly convex metric space in Theorem 3.3 with
parameter c = 2 for X × X, then (3.13) becomes

�(vn) − �(v) ≤
∑n−1

i=1 d(v, vi)
2 −∑n

i=2 d(v, vi)
2

2
∑n−1

i=1 μi

≤ d(v, v1)
2

2
∑n−1

i=1 μi

,

which implies that lim
n→∞�(vn) = inf

v∈(X×X)
�(v), provided lim

n→∞
∑n−1

i=1 μi = ∞. In

this case, we do not need the assumption that X × X has a diameter K > 0. Thus,
we obtain the following result from Theorem 3.3.

Corollary 3.5 Let X be a complete 2-uniformly convex metric space (in particular,
a complete CAT(0) space) and f, g : X → (−∞, +∞] be two proper, uni-
formly convex and lower semicontinuous functions. Suppose that {xn} and {yn} are
sequences defined by (3.1), where {μn} is a sequence of positive real numbers such
that

∑∞
n=1 μn = ∞. Then, {(xn, yn)} converges to a solution of (3.2).

3.2 Alternating proximal algorithm

In problem (3.2), the functions f and g are defined on the same space X. In this
subsection, we shall consider the SMP for the case where f and g are defined on two
different p-uniformly convex metric spaces, say X and Y respectively. That is, we
consider the following SMP:

min �(x, y)such that(x, y) ∈ X × Y, (3.16)

where X and Y are p-uniformly convex metric spaces and � : X×Y → (−∞, +∞]
is a function defined by �(x, y) = f (x)+g(y); f : X → (−∞, +∞] and g : Y →
(−∞, +∞] are two proper convex and lower semicontinuous functions.

To solve problem (3.16), we define the following algorithm called the APA: For
arbitrary point v1 = (x1, y1) in X × Y , the sequence {vn} = {(xn, yn)} in X × Y is
defined as follows:

(xn, yn) → (xn+1, yn) → (xn+1, yn+1),⎧⎪⎪⎨
⎪⎪⎩

xn+1 = argmin
x∈X

(
�(x, yn) + 1

pμ
p−1
n

d(xn, x)p
)

, x ∈ X,

yn+1 = argmin
y∈Y

(
�(xn+1, y) + 1

pμ
p−1
n

d(yn, y)p
)

, y ∈ Y, n ≥ 1,

(3.17)
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where {μn} is a sequence of positive numbers. We remark here that, in each iteration,
we have to solve the following subproblems:

min �(x, yn) + 1

pμ
p−1
n

d2(xn, x), wherex ∈ X (3.18)

and

min �(xn+1, y) + 1

pμ
p−1
n

d2(yn, y), wherey ∈ Y . (3.19)

In order to solve the subproblem (3.18) or (3.19), we employ the following PPA: For
arbitrary x1 ∈ X, {xn} is generated by

xn+1 = arg min
x∈X

(
f (x) + 1

pμ
p−1
n

d(xn, x)p

)
, n ≥ 1, (3.20)

where f (x) = �(x, yn). This process has been studied in several settings. For
instance, in Euclidean spaces (see [1, 3]), Hilbert spaces (see [2, 11]), Hadamard
manifolds (see [14]) and Hadamard spaces (see [13]).

Algorithm (3.17) has many applications, for instance, it has applications in deci-
sion science ([1]), game theory ([2, 14]), PDE’s and many other disciplines (see [2,
13]). Furthermore, unlike Algorithm (3.1), Algorithm (3.17) allows us to check or
monitor what happens in each space of action after a given iteration (see [13]).

Therefore, it is of practical importance to study problems of the form (3.16)
using Algorithm (3.17). To this end, we present the following convergence result for
problem (3.16).

Theorem 3.6 For 1 < p < ∞, let X and Y be two complete p-uniformly convex
metric spaces with parameter c > 0 and such that the diameter of X × Y is K > 0.
Let f : X → (−∞, +∞] and g : Y → (−∞, +∞] be two proper, uniformly convex
and lower semicontinuous functions and {(xn, yn)} be the sequence defined by (3.17),
where {μn} is a sequence of positive real numbers such that lim

n→∞
n∑n

i=1 μ
p−1
i

= 0.

Then, {(xn, yn)} converges to a solution of (3.16).

Proof By (3.17) (also see (3.20)), we obtain that

f (xn+1)+g(yn)+ 1

pμp−1
d(xn, xn+1)

p ≤f (x) + g(yn)+ 1

pμp−1
d(xn, x)p (3.21)

and

g(yn+1) + f (xn+1) + 1

pμp−1
d(yn, yn+1)

p ≤ g(x) + f (xn+1)

+ 1

pμp−1
d(yn, y)p. (3.22)
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Adding above two inequalities, we obtain that

f (xn+1) + g(yn+1) + 1

pμp−1

[
d(xn, xn+1)

p + d(yn, yn+1)
p
] ≤ f (x) + g(y)

+ 1

pμp−1

[
d(xn, x)p + d(yn, y)p

]
,

which gives by (2.1) that

�(xn+1, yn+1) + 1

pμ
p−1
n

d((xn, yn), (xn+1, yn+1))
p ≤ �(x, y)

+ 1

pμ
p−1
n

d((xn, yn), (x, y))p. (3.23)

Set v = (x, y) and vn = (xn, yn) in (3.23), to get

�(vn+1) + 1

pμ
p−1
n

d(vn, vn+1)
p ≤ �(v) + 1

pμ
p−1
n

d(vn, v)p. (3.24)

As in the proof of (3.10)–(3.12), we can show that that

�(vn) − �(v) ≤
∑n−1

i=1 d(v, vi)
p − c

2

∑n
i=2 d(v, vi)

p

p
∑n−1

i=1 μ
p−1
i

. (3.25)

Hence, by a proof similar to that of Theorem 3.3, we obtain the desired conclusion.

Corollary 3.7 Let X and Y be two complete 2-uniformly convex metric spaces (in
particular, complete CAT(0) spaces). Let f : X → (−∞, +∞] and g : Y →
(−∞, +∞] be two proper, uniformly convex and lower semicontinuous functions.
Suppose that {(xn, yn)} is a sequence defined by (3.17), where {μn} is a sequence
of positive real numbers such that

∑∞
n=1 μn = ∞. Then, {(xn, yn)} converges to a

solution of (3.16).

Proof It follows from Theorem 3.6 and Remark 3.4.

3.3 Halpern-type proximal point algorithm

In this subsection, we study the asymptotic behaviour of the sequence {xn} generated
by the following Halpern-type PPA:

{
u, x1 ∈ X,

xn+1 = αnu ⊕ (1 − αn)J
f
μnxn,

(3.26)

where {αn} and {μn} are sequences in [0, 1) and (0, ∞) respectively, and f :
X → (−∞, +∞] is a proper convex and lower semicontinous function. We also
extend our study to examine the behaviour of the sequence given by the following
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Halpern-type PPA involving finite composition of resolvents of proper convex and
lower semicontinuous functions:{

u, x1 ∈ X,

xn+1 = αnu ⊕ (1 − αn)
∏m

j=1 J
fj
μnxn, n ≥ 1,

(3.27)

where
∏m

j=1 J
fj
μn = J

f1
μn ◦J

f2
μn ◦· · ·◦J

fm−1
μn ◦J

fm
μn , {αn} is a sequence in [0, 1) and {μn}

is a sequence in (0, ∞). We shall employ Algorithm (3.27) to find common solution
of a finite family of MPs.

For our strong convergence results in this subsection, we only need the proper
lower semicontinuous function f to be convex (not uniformly convex). However, we
shall assume that the smoothness constant c of the p-uniformly convex metric space
X is in [2, ∞) (see Remark 3.1).

Lemma 3.8 For 1 < p < ∞, let X be a p-uniformly convex metric space with
parameter c ≥ 2 and f : X → (−∞, +∞] be proper, convex and lower semicontin-
uous function such that for μ > 0 F(J

f
μ ) �= ∅ (where F(J

f
μ ) denotes the set of fixed

points of J f
μ ). Then, F(J

f
μ ) = argmin

y∈X
f (y).

Proof Let v̄ ∈ F(J
f
μ ). Then, by (1.5), we obtain that

f (v̄) ≤ f (v) + 1

pμp−1
d(v, v̄)p.

Let v = (1 − t)y ⊕ t v̄ for all y ∈ X and t ∈ [0, 1). Then, by the convexity of f and
(1.2), we obtain that

(1−t)f (v̄) ≤ (1−t)f (y)+ (1 − t)

pμp−1
d(y, v̄)p+ t

pμp−1
d(v̄, v̄)p− ct (1 − t)

2pμp−1
d(y, v̄)p.

Since c ≥ 2, therefore we obtain that

t (1 − t)

pμp−1
d(y, v̄)p ≤ (1 − t) (f (y) − f (v̄)) + (1 − t)

pμp−1
d(y, v̄)p,

which implies that

td(y, v̄)p ≤ pμp−1 (f (y) − f (v̄)) + d(y, v̄)p.

As t → 1, we obtain that

0 ≤ f (y) − f (v̄)∀y ∈ X.

Hence, v̄ ∈ argmin
y∈X

f (y).

Conversely, suppose that v̄ ∈ argmin
y∈X

f (y). Then, we obtain by (1.5) that

f (J f
μ v̄) + 1

pμp−1
d(J f

μ v̄, v̄)p ≤ f (v) + 1

pμp−1
d(v, v̄)p.
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Let v = (1 − t)v̄ ⊕ tJ
f
μ v̄, for t ∈ [0, 1). Then, we obtain by the convexity of f and

(1.2) that

1

pμp−1
d(J f

μ v̄, v̄)p ≤ (1 − t)f (v̄) − (1 − t)f (J f
μ v̄)

+ 1

pμp−1
d((1 − t)v̄ ⊕ tJ f

μ v̄, v̄)p

≤ (1 − t)

pμp−1
d(v̄, v̄)p + t

pμp−1
d(J f

μ v̄, v̄)p

−ct (1 − t)

2pμp−1
d(J f

μ v̄, v̄)p,

which implies that (
1 + ct (1 − t)

2
− t

)
d(J f

μ v̄, v̄)p ≤ 0.

Since t �= 1,we obtain that v̄ ∈ F(J
f
μ ). Hence, F(J

f
μ ) = argmin

y∈X
f (y).

We now recall important results which will be needed in the proofs of the main
theorems of this subsection.

Remark 3.9 Inequality (1.2) ensures that the function x �→ d(., x)p : X → [0, ∞)

is a convex and lower semicontinuous function.

Remark 3.10 [17, 38]. Let X be a complete p-uniformly convex metric space. Then,

(i) every bounded sequence in X has a unique asymptotic center,
(ii) every bounded sequence in X has a �-convergent subsequence.

Lemma 3.11 [46]. Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], 
∞

n=0αn = ∞,
(ii) lim supn→∞ δn ≤ 0,

(iii) γn ≥ 0(n ≥ 0), 
∞
n=0γn < ∞.

Then lim
n→∞an = 0.

Lemma 3.12 For 1 < p < ∞, let X be a complete p-uniformly convex metric
space with parameter c ≥ 2 and f : X → (−∞, +∞] a proper, convex and lower
semicontinuous function. Let {μn} be a sequence of positive real numbers. Suppose
lim

n→∞μn = ∞ and A({J f
μnxn}) = {v̄} for some bounded sequence {xn} of X. Then v̄

is a minimizer of f , that is, v̄ ∈ argmin
y∈X

f (y).
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Proof By Lemma 2.12, we obtain that
c

2
(μ

p−1
n + 1)d(J f

μn
xn, J

f v̄)p + d(J f
μn

xn, xn)
p + μ

p−1
n d(J f v̄, v̄)p ≤ d(J f v̄, xn)

p

+ μ
p−1
n d(J f

μn
xn, v̄)p,

which implies

c

2
d(J f

μn
xn, J

f v̄)p ≤ 1

μ
p−1
n

d(J f v̄, xn)
p + d(J f

μn
xn, v̄)p.

By lim
n→∞μn = ∞ and {xn} is bounded, we obtain that

c

2
lim sup
n→∞

d(J f
μn

xn, J
f v̄)p ≤ lim sup

n→∞
d(J f

μn
xn, v̄)p.

Furthermore, since A({J f
μnxn}) = {v̄} and c ≥ 2, we obtain that

lim sup
n→∞

d(J f
μn

xn, J
f v̄) ≤ lim sup

n→∞
d(J f

μn
xn, v̄) = inf

y∈X
lim sup
n→∞

d(J f
μn

xn, y). (3.28)

By (3.28), Remark 3.10 (i) and Lemma 3.8, we obtain that v̄ ∈ F(J f ) =
argmin

y∈X
f (y).

Theorem 3.13 For 1 < p < ∞, let X be a complete p-uniformly convex metric
space with parameter c ≥ 2 and f : X → (−∞, +∞] a proper, convex and lower
semicontinuous function. Let {xn} be the sequence defined by (3.26), where {αn} is a
sequence in [0, 1) and {μn} is a sequence in (0, ∞) such that lim

n→∞μn = ∞. Then,

the following hold:

(i) The sequence {J f
μnxn} is bounded if and only if argmin

y∈X
f (y) �= ∅.

(ii) If lim
n→∞αn = 0,

∑∞
n=1 αn = ∞ and argmin

y∈X
f (y) �= ∅, then {xn} and {J f

μnxn}
converge to an element of argmin

y∈X
f (y).

Proof (i) Suppose that {J f
μnxn} is bounded. Then by Remark 3.10 (i), there exists

v̄ ∈ X such that A({J f
μnxn}) = {v̄}. Thus, from (3.26) and Remark 3.9, we obtain that

d(xn+1, v̄)p ≤ αnd(u, v̄)p + (1 − αn)d(J f
μn

xn, v̄)p,

which implies that {xn} is bounded. Also, since lim
n→∞μn = ∞ and A({J f

μnxn}) = {v̄},
we obtain by Lemma 3.12 that v̄ is a minimizer of f . Hence, argmin

y∈X
f (y) �= ∅.

Conversely, let argmin
y∈X

f (y) �= ∅. Then, we may assume that v̄ is a minimizer of

f . Thus by (3.26), Remark 3.9 and Lemma 2.10, we obtain that

d(xn+1, v̄)p ≤ αnd(u, v̄)p + (1 − αn)d(J f
μn

xn, v̄)p

≤ αnd(u, v̄)p + (1 − αn)d(xn, v̄)p

≤ max{d(u, v̄)p, d(xn, v̄)p},
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which implies by induction that

d(xn, v̄)p ≤ max{d(u, v̄)p, d(x1, v̄)p}∀n ≥ 1. (3.29)

Therefore, {xn} is bounded. Consequently, {J f
μnxn} is also bounded. (ii) Since argmin

y∈X

f (y) �= ∅, we obtain from (3.29) that {xn} and {J f
μnxn} are bounded. Furthermore,

we obtain by (1.2) and Lemma 2.10 that

d(xn+1, v̄)p ≤ αnd(u, v̄)p + (1 − αn)d(J f
μn

xn, v̄)p − αn(1 − αn)c

2
d(u, J f

μn
xn)

p

≤ αnd(u, v̄)p + (1 − αn)d(xn, v̄)p − αn(1 − αn)d(u, J f
μn

xn)
p

= (1 − αn)d(xn, v̄)p + αnδn∀n ≥ 1, (3.30)

where δn = d(u, v̄)p + (αn − 1)d(u, J
f
μnxn)

p. Now, set vn = J
f
μnxn∀n ≥ 1. Then,

by the boundedness of {J f
μnxn}, we obtain by Remark 3.10 (ii) that there exists a

subsequence {vnk
} of {vn} that �-converges to some v̂ ∈ X. Thus, by Remark 3.10

(i), we obtain that A({vnk
}) = {v̂}. Moreover, lim

k→∞μnk
= ∞ and {xnk

} is bounded.

Hence, by Lemma 3.12, we obtain that v̂ is a minimizer of f .
Next, we show that {xn} converges to v̂. Observe that

d(u, v̂)p ≤ lim inf
k→∞ d(u, vnk

)p = lim
k→∞ d(u, vnk

)p = lim inf
n→∞ d(u, vn)

p.

Thus,
lim sup
n→∞

δn ≤ d(u, v̂)p − lim inf
n→∞ d(u, vn)

p ≤ 0.

Now, Lemma 3.11 applied to (3.30), gives that {xn} converges to v̂.

In what follows, we intend to apply Theorem 3.13 to establish convergence of
Halpern-type PPA (3.27) involving finite composition of resolvents of f .

Lemma 3.14 For 1 < p < ∞, let X be a p-uniformly convex metric space
with parameter c ≥ 2 and f : X → (−∞, +∞] a proper, convex and lower
semicontinuous function. Then, for μ > 0, we have the following:

(i) d(x∗, J f
μ x)p +d(J

f
μ x, x)p ≤ d(x∗, x)p for all x ∈ X and x∗ ∈ F(J

f
μ ) (where

F(J
f
μ ) denotes the set of fixed points of J f

μ );

(ii) F
(∏m

j=1J
(j)
μ

)
= ∩m

j=1F
(
J

(j)
μ

)
,where

∏m
j=1J

(j)
μ = J

f1
μ ◦ J

f2
μ ◦ · · · ◦ J

fm−1
μ ◦

J
fm
μ .

Proof (i) Let x ∈ X and x∗ ∈ F(J
f
μ ). Then by setting v = x∗ in (2.3), we obtain that

c

2
d(J f

μ x, x∗)p ≤ pμp−1
(
f (x∗) − f (J f

μ x)
)

+ d(x∗, x)p − d(J f
μ x, x)p.

Since x∗ ∈ F(J
f
μ ), therefore by Lemma 3.8 we obtain that f (x∗) ≤ f (J

f
μ x). Hence,

we obtain that
d(x∗, J f

μ x)p + d(J f
μ x, x)p ≤ d(x∗, x)p.

Numerical Algorithms (2019) 82:909–935 927



(ii) Clearly, ∩m
j=1F

(
J

(j)
μ

)
⊆ F

(∏m
j=1J

(j)
μ

)
. Thus, we only have to show that

F
(∏m

j=1J
(j)
μ

)
⊆ ∩m

j=1F
(
J

(j)
μ

)
. For this, let x ∈ F

(∏m
j=1J

(j)
μ

)
and y ∈ ∩m

j=1

F
(
J

(j)
μ

)
, we obtain by Lemma 2.10 that

d(x, y)p = d

⎛
⎝ m∏

j=1

J (j)
μ x,

m∏
j=1

J (j)
μ y

⎞
⎠

p

≤ d

⎛
⎝ m∏

j=2

J (j)
μ x, y

⎞
⎠

p

. (3.31)

Furthermore, we obtain by (i), Lemma 2.10 and (3.31) that

d

⎛
⎝ m∏

j=2

J (j)
μ x,

m∏
j=1

J (j)
μ x

⎞
⎠

p

≤ d

⎛
⎝ m∏

j=2

J (j)
μ x, y

⎞
⎠

p

− d

⎛
⎝ m∏

j=1

J (j)
μ x, y

⎞
⎠

p

...

≤ d(x, y)p − d

⎛
⎝ m∏

j=1

J (j)
μ x − y

⎞
⎠

p

= d

⎛
⎝ m∏

j=1

J (j)
μ x, y

⎞
⎠

p

− d

⎛
⎝ m∏

j=1

J (j)
μ x − y

⎞
⎠

p

,

which implies

m∏
j=1

J (j)
μ x =

m∏
j=2

J (j)
μ x. (3.32)

Similarly, we obtain that

d

⎛
⎝ m∏

j=3

J (j)
μ x,

m∏
j=2

J (j)
μ x

⎞
⎠

p

≤ d

⎛
⎝ m∏

j=3

J (j)
μ x, y

⎞
⎠

p

− d

⎛
⎝ m∏

j=2

J (j)
μ x, y

⎞
⎠

p

...

≤ d(x, y)p − d

⎛
⎝ m∏

j=2

J (j)
μ x, y

⎞
⎠

p

≤ d

⎛
⎝ m∏

j=1

J (j)
μ x, y

⎞
⎠

p

− d

⎛
⎝ m∏

j=1

J (j)
μ x − y

⎞
⎠

p

,
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which implies

m∏
j=2

J (j)
μ x =

m∏
j=3

J (j)
μ x. (3.33)

Continuing in this manner, we can show that

m∏
j=3

J (j)
μ x =

m∏
j=4

J (j)
μ x = · · · =

m∏
j=m−1

J (j)
μ x = J (m)

μ x = x. (3.34)

From (3.34), we have

x = J fm
μ x. (3.35)

From (3.34) and (3.35), we obtain

x =
m∏

j=m−1

J (j)
μ x = J

fm−1
μ J fm

μ x = J
fm−1
μ x. (3.36)

Continuing in this manner, we obtain from (3.32)–(3.36) that

x = J
fm−2
μ x = · · · = J f2

μ x = J f1
μ x. (3.37)

That is,

J f1
μ x = J f2

μ x = · · · = J
fm−1
μ x = J fm

μ x = x. (3.38)

Hence, we obtain the desired conclusion.

Theorem 3.15 For 1 < p < ∞, let X be a complete p-uniformly convex metric
space with parameter c ≥ 2 and fj : X → (−∞, +∞] be proper, convex and lower
semicontinuous functions. Let {xn} be a sequence generated by (3.27), where {αn} is
a sequence in [0, 1) and {μn} is a sequence in (0, ∞) such that lim

n→∞μn = ∞. If

lim
n→∞αn = 0,

∑∞
n=1 αn = ∞ and � := ∩m

j=1argmin
y∈X

fj (y) �= ∅, then the sequence

{xn} converges to an element of �.

Proof By Theorem 3.13 (ii) and Lemma 3.8, we obtain that {xn} converges to an

element of F
(∏m

j=1 J
fj
μ

)
. Therefore, we conclude by Lemma 3.14 (ii) and Lemma

3.8 that {xn} converges to an element of �.

Corollary 3.16 Let X be a complete 2-uniformly convex metric space (in particular,
complete CAT(0) space) and fj : X → (−∞, +∞] be proper, convex and lower
semicontinuous functions. Let {xn} be a sequence generated by (3.27), where {αn} is
a sequence in [0, 1) and {μn} is a sequence in (0, ∞) such that lim

n→∞μn = ∞. If

lim
n→∞αn = 0,

∑∞
n=1 αn = ∞ and � := ∩m

j=1argmin
y∈X

fj (y) �= ∅, then the sequence

{xn} converge to an element of �.
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Table 1 Numerical results for BBA (4.1)

No. of iterations xn = (xn1, xn2, xn3, xn4)
t Errors=‖xn − xn−1‖2

1 (1.0000, 0.5000, − 1.0000, 1.0000)

2 (0.7135 0.2351, − 0.2993, − 0.5831) 1.7746

3 (0.7233, 0.2384, − 0.3074, − 0.5963) 0.0186

4 (0.7237, 0.2385, − 0.3077, − 0.5966) 0.0006

5 (0.7237, 0.23852, − 0.3077, − 0.5967) 0.0000

6 (0.7237, 0.2385, − 0.3077, − 0.5967) 0.0000

7 (0.7237, 0.2385, − 0.3077, − 0.5967) 0.0000

Proof Take p = 2 = c in Theorem 3.15.

4 Numerical examples

Let X = R
4 be endowed with the Euclidean norm. For x = (x1, x2, x3, x4) ∈ X,

define f, g : X → (−∞, ∞] by

f (x) = 1

2
||A(x) − a||22, g(x) = 1

2
||B(x) − b||22,

where

A =

⎡
⎢⎢⎣

3 1 −2 2
1 3 4 5
2 3 1 4
5 2 3 1

⎤
⎥⎥⎦ and a =

⎡
⎢⎢⎣

−1
3
5
4

⎤
⎥⎥⎦ ,

Table 2 Numerical results for the classical PPA (4.2) of Choi and Ji

No. of iterations xn = (xn1, xn2, xn3, xn4)
t Errors=‖xn − xn−1‖2

1 (1.0000, 0.5000, − 1.0000, 1.0000)

2 (0.0853, 1.3349, 0.3046, − 0.2646) 2.1988

3 (− 0.1074, 2.1758, 0.2707, − 0.7311) 0.9814

4 (− 0.2410, 2.8344, 0.1748, − 1.0603) 0.7544

5 (− 0.3439, 3.3444, 0.0962, − 1.3126) 0.5836

6 (− 0.4236, 3.7390, 0.0350, − 1.5077) 0.4514

.

.

.

41 (− 0.6956, 5.0868, − 0.1739, − 2.1738) 0.0001

42 (− 0.6956, 5.0868, − 0.1739, − 2.1738) 0.0000

43 (− 0.6956, 5.0868, − 0.1739, − 2.1738) 0.0000
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Table 3 Numerical results for Halpern-type PPA (4.3)

No. of iterations xn = (xn1, xn2, xn3, xn4)
t Errors=‖xn − xn−1‖2

1 (1.0000, 0.5000, − 1.0000, 1.0000)

2 (0.0513, 1.5315, 0.3144, − 0.4422) 2.4024

3 (0.0444, 1.5491, 0.3271, − 0.4470) 0.0233

4 (0.0439, 1.5615, 0.3292, − 0.4516) 0.0133

5 (0.0436, 1.5691, 0.3304, − 0.4545) 0.0083

6 (0.0433, 1.5742, 0.3311, − 0.4564) 0.0055

.

.

.

9 (0.0425, 1.5960, 0.3344, − 0.4647) 0.0000

10 (0.0425, 1.5960, 0.3344, − 0.4647) 0.0000

11 (0.0425, 1.5960, 0.3344, − 0.4647) 0.0000

B =

⎡
⎢⎢⎣

2 3 1 −1
4 −4 3 2
−1 3 2 −4
5 7 4 3

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

3
0
1
2

⎤
⎥⎥⎦ .

Then, f and g are proper convex and lower semicontinuous functions (see [15,
28]). Thus, by [28], we know that

J
f

1 (x) = proxf (x) = (I + AtA)−1(x + Ata) and J
g

1 (x) = proxg(x)

= (I + BtB)−1(x + Btb).

Table 4 Numerical results for Hybrid PPA (4.4)

No. of iterations xn = (xn1, xn2, xn3, xn4)
t Errors=‖xn − xn−1‖2

1 (1.0000, 0.5000, − 1.0000, 1.0000)

2 (0.0853, 1.3349, 0.3046, − 0.2646) 2.1988

3 (− 0.1002, 2.0308, 0.2526, − 0.6824) 0.8343

4 (− 0.2054, 2.5399, 0.1752, − 0.9386) 0.5847

5 (− 0.2809, 2.9218, 0.1191, − 1.1259) 0.4357

6 (− 0.3386, 3.2175, 0.0771, − 1.2700) 0.3366

.

.

.

221 (− 0.6866, 5.0385, − 0.1678, − 2.1507) 0.0003

222 (− 0.6867, 5.0387, − 0.1678, − 2.1508) 0.0002

223 (− 0.6867, 5.0389, − 0.1679, − 2.1509) 0.0002
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Hence, the BBA (3.1) (studied in this paper) becomes

{
yn = (I + BtB)−1(xn + Btb),

xn+1 = (I + AtA)−1(yn + Ata), n ≥ 1,
(4.1)

the classical PPA (1.4) (studied by Choi and Ji [12]) becomes

xn+1 = (I + AtA)−1(xn + Ata), n ≥ 1, (4.2)

the Halpern-type PPA (3.27) (studied in this paper) becomes

xn+1 = αnu + (1 − αn)J
f

1 (J
g

1 xn), n ≥ 1, (4.3)
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Fig. 1 Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case 3 (bottom left); Case 4
(bottom right)
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where αn = 1
10(n+1)

, ∀n ≥ 1,

and the hybrid PPA in [45, Algorithm 3.1] becomes⎧⎨
⎩

zn = (I + AtA)−1(xn + Ata),

yn = (1 − αn)zn,

xn+1 = (1 − βn)zn + βnyn, n ≥ 1,

(4.4)

where αn = 1
10(n+1)

and βn = 3n−1
50n

for all n ≥ 1 (Tables 1, 2, 3 and 4).

Case 1: Take x1 = (1, 0.5, −1, 1)t .

Case 2: Take x1 = (−1, 2, −1, 3)t .

Case 3: Take x1 = (6, 7, 9, 11)t .

Case 4: Take x1 = (−6, −2, −0.2, −0.5)t .

Using different choices of the initial vector x1 (that is, Case 1–Case 4), we com-
pared Algorithms (4.1)–(4.4) as shown in the graphs and table below. Notice that we
only considered the table for Case 1 since the tables for other cases are similar to it.
The graphs and table show that our algorithms (Algorithms (4.1) and (4.3)) converges
faster than Algorithms (4.2) and (4.4) studied by Choi and Ji [12], and Ugwunnadi
et al. [44] respectively (Fig. 1).
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