Numerical Algorithms (2019) 82:623-639
https://doi.org/10.1007/5s11075-018-0617-9

ORIGINAL PAPER

@ CrossMark

The quasi-boundary value method for identifying the initial
value of heat equation on a columnar symmetric domain

Fan Yang' - Ya-Ru Sun’ - Xiao-Xiao Li' - Can-Yun Huang'

Received: 4 October 2017 / Accepted: 19 October 2018 / Published online: 27 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

In this paper, we consider an inverse problem for determining the initial value of
heat equation with inhomogeneous source on a columnar symmetric domain. The
quasi-boundary value regularization method is applied to solve this inverse problem.
Under the a priori and a posteriori regularization parameter choice rules, the conver-
gence estimates between the regularization solution and the exact solution are given.
The numerical examples show this regularization method is effective and stable for
dealing with this problem.
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1 Introduction

The initial value problem is one of the backward heat conduction problem (BHCP).
The solution which satisfies the heat conduction equation with final data and the
boundary conditions does not exist. Even if a solution exists, it will not be continu-
ously dependent on the final data, i.e., any small perturbation in the input data may
cause large change to the solution. To overcome these difficulties, some regulariza-
tion techniques are required. Several regularization methods have been proposed for
the BHCP, such as the kernel-based method [2], the Fourier regularization method
[8], optimal filtering method [22], the iterative method [10], the quasi-reversibility
method [1, 11, 20, 23, 26], the central difference method [26], the filter regulariza-
tion method [21], the method of fundamental solutions [18], the boundary element
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method [9, 19], the group preserving scheme [13, 19], the Tikhonov regularization
method [15], quasi-boundary value method [7, 12, 14], and so on. But above these
references about BHCP, there are some drawbacks as follows: firstly, the regulariza-
tion parameter is a priori choice rule, according to this choice rule, the parameter
depends on the priori bound of the exact solution. But in practice, we can not obtain
the exact solution, and the inaccurate priori bound may lead to the bad regular-
ized solution. Secondly, they only considered the one-dimensional BHCP; however,
about high-dimensional BHCP, there is little research results. Thirdly, the equation
is homogenous and the measurement data is only one. In this paper, we consider an
inhomogeneous heat equation on a symmetric domain as follows:

u,—%u,—urrzf(r,t),0<t<T, 0<r <o,

u(r,0) = o(r), 0<r=<ro,

u(rg, t) =0, 0<tr<T, (D
lin%)u(r, t) is bounded, O<t<T, O0<r<r,

r—>

u(r,T) = g(r), 0<r=<n,

where rq is the radius, ¢(r) is the initial value. We use the additional condition
u(r, T) = g(r) and f(r, t) to determine the initial value ¢ (7). The measured data of
g(r) and f(r,t) are g®(r) and f°(r, t), which satisfy the following:

18°C) = 8Ol 2i0r9ry <85 NG = FC Do, 7: 2210000 <8 (D

This problem is ill-posed, we use the quasi-boundary value regularization to solve
this problem. We not only give the priori choice of the regularization parameter, but
also we give the a posteriori choice of the regularization parameter, which depends
only on the measurable data. Moreover, we give different type examples to show the
effectiveness of this method. We also compare the effectiveness between the pos-
teriori choice rule and the priori choice rule. The quasi-boundary value method,
also called nonlocal boundary value method, is a regularization technique by replac-
ing the final condition or boundary condition by a new approximate condition. This
method has been used to solve some inverse problems for parabolic equation [4],
hype-parabolic equations [24], and elliptic equations [5, 6].

Using the separation of variables, we obtain the solution of the problem (1) as
follows:

s HKn t Hn
urin =3 (e(fo)z’gon +f e%’z"”fn(r)dr) o), )
n=1 0
where
2 \
onr) = —Y2 ol “)

——J
roJ1(in) ro

is the eigenfunction system and is orthonormal with weight » on [0, rg]. It is also
a complete system in LZ[O, ro; r], Jo(x), and Jy(x) denote the zero order and
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first-order Bessel functions, respectively [3], and {1, };° | are the sequence of roots
of the equation Jy(x) = 0 which satisfy the following:

O<pr<pr<pz<---<py<--- lim p, =oo0. ®)
n—0o0

Now let ¢, = (¢(r), @a(r)), fu(t) = (f(r, 1), 0, (r)) and g, = ((r), wp (1)), hy =

n 2
on+ [0 £ (D)dr and h(r) = Y22 | hyw, (). Using u(r, T) = g(r), we have
the following:

s _(kny2p T (M2
g =) (e 0T, +f o (R ”ﬁ(r)dr) wn(r), ©)
0
n=1
(ka2 Ty
gn=e 0 On + e 0 fa(r)dr. @)
0

Define operator K : h(r) — g(r), then

HKn T K“n
g(r) =Kh(r) = Ze( ’T ( / e‘ro>2’fn(r)dr>wn(r). 8)

The operator K is a linear self adjoint compact operator [17]. Using (4) and (7), (8)
can be rewritten as follows:

(@), @n(r)) = (h(r), warpe” D7 ©)
So

T~ (5T —1)
ign_fo e i Ja(T)dT

_(Hny2
oGt

p(r) = wn (r). (10)

n=1

_(kn
When n — oo, u, — o0, therefore (e o T))_l — 00. Thus, problem (1) is
ill-posed.

We give a priori bound on the initial value, i.e.,

le®) lp<E, p=>0, (11)

where E > 0is a constant and || - ||, denotes the norm in Sobolev space which is
defined as follows:

1

leOllp == (Z(—)pl(fp() a)n())|2) . (12)

This article is organized as follows. In Section 2, we present some preliminary results.
Section 3 presents the convergence estimates under the two parameter choice rules.
In Section 4, some numerical examples are proposed to show the effectiveness of this
method. In Section 5, at the end of the article, the brief conclusion is given.
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2 Some auxiliary results

Throughout this paper, we use the following definition and lemmas. L2[0, ro; r]
denotes the Hilbert space of Lebesgue measurable function ¢ with weight r on [0, rg].
(-, ) and || - || denote the inner and norm on L2[0, ro; r], respectively. The norm of ¢
is defined as follows:

SR
lell = (/ rle(r)] dr> - (13)
0
_(Hny2

Lemma 2.1 {e o) T};i1 mentioned from [16, 25, w, is the infinite number real
root of the equation Jo(r) = 0, then

C (M2 C

e <22 (14)

Mﬂ /’Ln

where C1, Cy are constants.

Lemma 2.2 For any positive constant p > 0, 0 < u <1, s> u; > 0, we
have the following:

2-p

e 2
F(s):Lf Ciu 4 ,0<p<?2, (15)

us + Cq Cult, p=>2.
where C3 = C3(p, C1), C4 = C4(p, 1, C).
Proof (1) 1If p > 2, itis clear to see that

2-p

7

For = M+C = i
us 1 (Ms+cl)s 4 ClS 4 C1/~’L14

(2) If0 < p < 2,itis clear to see that lin}) F(s) = lim F(s) = 0. F(s) attains
S—> §—>00

maximum value at s = so which satisfies F'(sg) = 0 for F”(s9) < 0. Solving

F'(s0) = 0, we get sg = ((22:5))2‘.
Hence
2 0
Q=p)Ci\ 4 2=
2—-p)C ( p) ) ms
Fs) < F(SO):F<( P) 1) _ (+p>4
C+pu (m)Cl

O

Lemma 2.3 For any positive constant p > 0, 0 < pu <1, s> u; > 0, we
have the following:

_p p
s'=2 {C5u12,0<p<2, (16)

j%
F(s) = — <
) us +Cp — | Cep, p=2,

where Cs = C5(p, C1), Ce = Co(p, 1, C1).
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The proof is similar to proof of Lemma (2.2), we omit it.

(2
Lemma 2.4 Let f € L>(0, T; L?[0, ro; r]) and give g, — OTe ()" (T=9)

in (10). Then, there exists a positive M such that

fu(T)dT

T
—(GXT-0)
Il gn— /O e VT f(nydt ||s\/2(||g||iz[o,,0;,] +M ||f||io<,(0,T;Lz[o,,o;,D),
(17)

S —(HnN2ep
where M .= Z(fOTe G (T T)dr)z.
n=1

Proof Fort € [0, T], there holds

o0
| fl’l(t) |2§ Z | (f(v t), wn) |2§” f ||%°°(0,T;L2[O,ro;r]) .

n=1

Thus,
T o T
—(kn)2(T—1) — (U217 1) 2
||gn—f e 0 T @y dr)? = Z(gn—/ e o) ar)
0 =1 0
o) [e’) T A )
522g5+22‘/ e 0 f @)
n=1 n=1 0
< 2(llel} + Ml fII7 :
= L2[0,rg;r] L%(0,T;L2[0,ro;r])
[

3 Regularization method and convergence estimate

In this section, through modifying u(r, T) = g(r) as u(r, T) 4 pu(r, 0) = g*(r), we
use quasi-boundary value method to solve the following problem:

u#’a—%u’f‘a—uﬁ"s:f‘s(nt), O<t<T, O<r<ry,

utd(r, 0) = "9 (r), 0<r<r,

utd(rg, 1) = 0, 0<t=<T, (18)
lin}) ut3 (r, 1) is bounded, O<t<T, O<r<ry,

r—

uS(r, T) + putd (r,0) = g2 (r), 0 < r < ro,

where u is regularization parameter.
By the separation of variables, we obtain the solution of problem (18) as follows:

1.8 _y —(5% s ! —(X=0) 5 19
W=y (e ot | e fi@dt ) op(r).  (19)

n=1
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Using ut%(r, T) + pu-*(r, 0) = g°(r), we obtain the following:

i —(Hny2p T _(BnN2er_
g‘*(r)=2((u+e ) )go,’;’5+/ e (o ”f,f(ﬂdr) on(r).  (20)
0
n=1
Hence,
00§ T —(5)X(T—1) 5
g — e 70 f2(vydr
Py =) =" Jo Taerm o (r). 1)
(55T
n=1 w+e 0

3.1 Error estimate under an a prior parameter choice rule

Theorem 3.1.1 Let ¢(r) given by (11) be the exact solution of problem (1). Let
"% (r) given by (21) be the regularization solution.

2
(@) When 0 < p < 2, choosing the regularization parameter (L = (%)m, then we
obtain the following estimate:

| 93() — o) 1< (V2O + 1) + Csrd ) EF25757. (22)

(b) As p > 2, choosing the regularization parameter . = (%)%, then we obtain
the following estimate:

1 0"2() = () < (V2 + 1) + Corg )EF8 @3)

Proof By the triangle inequality, we have the following:

1" ()=o) 11 @™°) = ") I+ 11" () — () Il (24)
Due to (2), we can get the following:
oo [ s _ T, ~CPT-0) .5 J (G- - (o)
o gy 2 = Y[ D e e a L
n=1 n+e 70 nw+e 70
0 5 2 0o | (T —(E2XT—1) .5, 2
3 22( g fnnw) +22|foe 0 (fzﬁlT fu(@)dT |
o\ +e o n=1 (u+e 0Ty
(8 =\ (o L@
< 22(*?7") +2MZ<¥>
n=1 H n=1 ®
52 52
82
= 2(M + I)E
Thus,
)
I @2 — " () 1< V2(M + 1); (25)

@ Springer



Numerical Algorithms (2019) 82:623-639 629

Now, we estimate the second term of (24) as follows:

< (g —jTe’(%)z(T’”f dr  ga—fTe —(“—")2<T—r>f (t)dt
n n n n
" O=eO I =1 )| ="z - = @ n (1)l
n=1 n+e "0 0
1
T i y2 o _ 2\ 2
_ i n gn— Jge 0T pyar
n=1 M+e7(%)2T T
1
2\ 2
n T —(Bny2 (17—
— i M(M )t (7 8n— Jo € G r)f (v)dt
- T (B _(Htn N2
S\ e G o e T
< sup(A))E,
)4
w(E)™2
where A, = 0

T (Bmyr
Using Lemmas 2.1 and 2.3, we obtain the following:

4 1-2
<"0Mll~n2 {Csroug 0<p<?2,
<=

MI’LI’L-’_C] C6r0 ", p 22

Hence,

S

Csr 2,qu 0<p<2,
CerouE, p=>2.

8
Ie*° () —oC) Il < V2(M + 1); + { (26)

2
Choosing regularization parameter u = (%)P+2 O < p<2)and p = (%)%
(p = 2), we obtain the following:

P 2 4
(VI F1) + Csrd )EPR8772, 0 < p < 2, o

I @™%() — () ||s{ =
(V2(M +1) + Cerg )E2682, p>2.

O
3.2 Error estimate under an a posteriori parameter choice rule

Applying a discrepancy principle, we choose the solution of the following equation
as a posteriori regularization parameter:

r HKn 7
Ik + 1D~ (Ko () — (8 — /0 eI pPoyany) =18, (28)

where T > +/2(M + 1) is constant.
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_(kny2
Lemma 3.2.1 Let p() = [lu(K + uD " (K@b(r) — (8 — [ 0" T70

Padol, if 18 — [Te" % T f(ydr)|| > 8, then we have the following

conclusions:

(@) p(w) is a continuous function;
(b) ,}i?op(“) =0;

. T —(4)X(T—
© lim o =g~ e T oo
(d) p(w) is a strictly increasing function, for any u € (0, 00).

Proof It can be proven by the following:

= ! Ty g g
p(p) = Z (,Ln)z <g‘s—/ e fa(l')dt)
u+e 0

n=1

1

2

here, we skip it. O

Theorem 3.2.2 Let ¢(r) given by (11) be the exact solution of problem (1). Let
"% (r) given by (21) be the regularization solution, the regularization parameter
is chosen in (28). Then we obtain the following:

(@) If0 < p < 2, the following estimate holds as follows:

VAT 7
|I¢”8()—¢()II<[””(T+ cfl T )

r 003 B N
2(M+1) Ty m Er+25r+2, (29)

(b) If p = 2, the following estimate holds as follows:

r; <r +V2(M + 1) )
0

WSy o
I ™) — () |l < C

=

1
M+ 1) (ﬁQ—C‘%)Z EYst. (30)
0 T .

—2M+1)

where C1, Ca, C3, and C4 are positive constants.
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Proof According to (24), we have the following:

I "2 () —

o) 1<l () —

O+ 1" =) Il .

€2V

Now, we estimate the second term of (31). As 0 < p < 2, using (19), Lemma 2.1
and Holder inequality, we have the following:

—(B)2(T—7)

(Gay(T-1)

T —_
8&n— j o fa(@)dr gn_f e fo(@dt
lo" () —p (I = ||Z 0° Ty - o ()]
wte 7 T GoT
- —1t
= 1) —— eI
n=1 1 +e
00 2
= Z( (/J-n 2T (Pn>
n=1
p 2
.S (;An 2T 17 l—g
Z < “ ) Pn
ZZRVY (2 IR
= u+e( 2T ute BT @ BT 8
2 )
. (lln 2T 14 B 27”5 p %
n
- 2; pte T (/A-ﬁ-e_(‘:n)zT @07k
n=
o e
13 Dn m
(u + e(ﬁ‘gﬂr) ((e(%)zT)g>
2p
2 P 2p—p? 2p % e
00 —(*,‘*”)‘T pi2 72
pe I3 @n
S Z _(Mn )2T _(Mn )2T _(Mn )ZT
n=1\ \u+e 70 u+e 70 (e "0 )2
4-2p 4 pTJrZ pA?
i w P2 on P2
=\ 7 (@ WT)s
2
- +
00 (#n 2T 221 7
_ Z ) bn
= T _(Bayer —(Eny2 (B2
n=I1 M+e( o ,U-+e( T (e (rU)T)g
4
00 T’ P2
n=
ri2
00 (un )2 pg )
7% 2p
=l Z T _(Bwyar —(Eny2 — an > wp ()| P+2
1\ M+ o7 ;L—i—e( o (e(fo)T)i
n=
s 4
2
“Z /,L+€ (Hn)ZT (Mn)ZT)gw"(r)||p+
n=1
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M

2
g —(kay’T )
ﬁ) ane” 5 Ty )77 ||Z (M)ZT,,wn(nuM
0

u+e nle 7

3
I
—_

M2

2
T
5 —(5)X(T —7) 22,
—ww) (gn — /0 e 0 T fa(@dT)n () |72
pte 0

3
Il
_

2p 2p

P
M\ 2 BN |
<r0> ‘pnwn(r)”pﬂrop C1 v

M

3
I
—_

IA

. 2
b (%) (8n(r) — )(r)
n=1 "0

u+e

Ty, 2
_ /0 T (4 (1) — @)D 0|7

2
+ 1 Z ( g )2T> (8n(r)
2p 2p

T - L o
- /0 e f(r)dr)wn<r>||p+2)Ep+ZC g

u+e

(T+ 2(M—i—1>f’+2 4 2p

PR P ST,
C

Thus, we obtain the following:

r p+2 E p+2§p+2

o () — Ol < 0

(er/z(M+1)>Pp+2 £ 2 p 32)
Ci

When p > 2, we estimate the second term of (31). H?” compacts into H 1 then there
exists an a such that || f ()|l g1 < al|lf()||mr < aE, where a is a constant.

Il () = 9O ||Zw<pnwn(r)n2
n=1 W+

2
(ll-n )ZT (pn>
[L

>

n=1 (
2
) (Hn )2
=2 &
- Mn )2T (I:J)ZT
n=1 \ U + 0
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1

— (b2 3 5

_ 55 pe 70 ( n )2 ( P )2
- _(Hny2 _(Hny2 _(Hny2
S\ e BT\ T T

o0 —(5nyT
_ Z e Pn Pn
- _(Hny2 _(tny2  _(Hny2
T\ pr e GIT ) PTG
) N .
00 (Mn)2 (p 00 2 2
n
S Z Hn 2 _(Hny2 T _(Hn2t
—(5* ) (FH°T ( ) T
n=1 n+e e 0 n=1
2\ 2 !
00 < )2 (yy 00 2\ 2
=2 may | om0 ( o 2T)
n=1 M+€ ( ) n=1 -G
v p ~(ty2y
=1\ ——@r ) e 0 @l > (M,,)szn<r>||
n=1 H/"’e "0 n=1 €

M

2
T
H —(Bry2(T—
—_(un)zr> (gn - / e 0 ”fmdr) on (1)l
nw+e 0 0

o
1Y 2 guwn)liroCy !

n=1 "o
00 2

< ||Z<%> ((8n () = g5))

n=1 \L+e 0

Ty,
~ fo T (@) = fA Do)

Ty,
+ ||Z( (WT> (gn(r) / G0 i ydnon ) | @E)CT o
ute 0
T Kn -

< (n > () — g2(r) — / T () — LA ONdTon )]

n=1

2
T —(BnN2(T_
(WT) CHOE /0 e 0T @ dnenI@E)CT o

+||Z(

u+e
roat + roa«/2(M + 1) ES
< C .
So
1
roat +roa2M + D\2 1 1
o () — Ol < ( c, ) E2§2 (33)
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From (28), we obtain the following:

z T Kn\2
ra—nZ( (W> (g;i— /0 e ”‘”f,f(r)dr) on ()]
u+e
T (B2 Ty
< ”Z( wm) <(gn—g:3>— /O e 0" T g (o) f,f(r))dr)wn(mn
e
3 s i Ty
+ IIZ<W> (gn—/o e ' fn(t)dr) wn (1)
n=1 "0

n+e
N ) N
_(Mn ZT M _p M
2(M+ + Z (Mn)ZT) ( ) (r_n) 2(_n)2(/7n
n=1 u+e 0
2 2
(i
< V2(M + 1)§ + E sup (,m)z ) e ) T(?)—%
,u +e 0
< v2( )6 %
M+ 1)+ Esu Cy
P C + Hln 0
< V2(M + 1)§ + E sup(B,)* r0 Cs. (34)
According to Lemma 2.2, we obtain the following:
2—p
- p+2
Hn Ciu+,0<p<?2,
T+ /mn Cap, p=12.
Hence,
CrC5r, E\ >3
(W) (5)72, 0<p<2
=< 1 (35)

1
L 2

H Cchroz (E) % )

=21 D 5) ., pP==
Substituting (35) into (34), we can get the following:

=
2 D

«/2(M+1 r0 — jzz(fwj)” E72§7% 0<p <2,

1
;02 2
V2HM+T +1 (m) ) E

2=
[SE

82, p=2.

lp™® () —™ ()l <m<l
(36)
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Combining (32) and (36), we obtain the following:

L
+~/2( W\ i 5 aa +2 2 o5
((r ) rg H2(M+1) (ro — 2(*“ )EHr 57 ,0<p<2,

le"*O—¢0Oll <
((“*“%W) re +m<)’0 — Cziﬂl)) ) . pz2
(37
Theorem 3.2.2 is proved. O

4 Numerical examples

In this section, we present numerical experiments for above regularization method.
The exact solution of problem (18) is difficult to obtain. So we give ¢ () to solve the
direct problem.

up— Yy —ug = fr,1), 0<1<T, 0<r<r,

u(r,0) = o(r), 0<r <ny,

( )_(ﬂ() 0 (38)
u(ro, 1) =0, 0<t<T,

lirr(l)u(r,t)isbounded, O<t<T, O<r<n.

r—

Time and space of grid step size are At = % and Ar = 2%, The grid point on the
time interval [0, T]is t, = nAt,(n =0,1,2--- ,N).r; =iAr,(i =1,2,--- , M)
is grid points on the space interval.

Using the finite difference scheme, we discrete the equation of problem (1.1) as
follows:

n+1 n

u T —u” 1u —u"_ u” 2u +u”
LD e (GO ED)
At rj 2Ar (Ar)2
Denote U™ = @it uy™, o ui DT Lo = (). 0.+ o)
and source term function f"*! = (f"* (), " (), -, 7 (r—1))T, then

we get following iterative scheme as follows:

U' = Ap + Arf9,

U" = A"+ AtA" O 4 ArAP 2 b A 40
where the matrix A = (g;j) is non-symmetric tridiagonal, and a; ; is defined as
follows:

3tk i=j -1
ajj = 1 — 2k, i=], 41
A . .
— ﬁ, L= + 1.
With A : and K = (Ar)2 , we get g(r) = U"t! by (4.3). Similar to forward prob-

lem that above mention, we use the finite difference scheme mentioned to discrete
equation of problem (3.1). Denote

1 n,é ) T
VUL = @Oy, ty1), w0 (ra, tg1)s - W0 g1, tag)) s
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we get scheme
Vit = AV 4 Arf (42)
From above, we can get the following:

V= A¢® + A1f0?,

U" = AP+ ArAP 00 4 ApAn2 p1o o agprte, )

By using boundary condition of regularization problem (18), we have the following:
VN = G% — . (44)

Noise data is generated by adding random perturbation, that is as follows:

g%() =g +e-g()- (2rand(-) — 1),
£oC) = fG,)+e- f(, ) (2rand(-, ) — 1),
where ¢ is relative error level.

Let T = 1, rp = m. In the computational procedure, we take source function

f@r, ) =rt

Example 1 Take initial function ¢(r) = rsin(r).

V)
(o

0.8

0.6

i}
w.d
0 — — — Exact solution '

—©6— A priori regularization solution
A posterior regularization solution

0.4, — — — Exact solution &
—6— A priori regularization solution

\
0.2 % ¥ A posterior regularization solution i

0 0.5 1 15 2 25 3 3.5 0 0.5 1 15 2 25 3 3.5
r

The exact solution o(r) and its approximations
The exact solution ¢(r) and its approximations

C,

@

c

2
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Fig. 1 The comparison of numerical effects between the exact solution and its regularization solution for
Example l:ap =2, =0.01,bp =2, =0.001,c p =2, e =0.0001
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Example 2 Consider a piecewise smooth function

0, 0<r=<%,
4 i b
) zr—1 F<r=3,
() = —§r+3, Z<r=< 4§7T, “45)
0, %r{<r§n.

Example 3 Consider the following discontinuous function

T
3
I <r<im (46)

Figures 1, 2, and 3 show the comparisons of the numerical effects between the
exact solution and its regularization solution for the a priori and a posteriori regular-
ization parameter choose rule. We can find that the smaller ¢, the better the computed
approximation is. Moreover, we can also easily find that the a posteriori parame-
ter choice rule works better than the a priori parameter choice rule well. This is
consistent with our theoretical analysis.

Q
O

The exact solution ¢(r) and its approximations

— — — Exact solution
—o6— A priori regularization solution
A posterior regularization solution

The exact solution ¢(r) and its approximations

~ — — Exact solution
—o— A priori regularization solution
A posterior regularization solution
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|
o
N

— — — Exact solution
—6— A priori regularization solution
A posterior regularization solution

The exact solution ¢(r) and its approximations o
o o
> (=]
)

|
<
~

o

0.5 1 15 2 25
r

3.5

Fig.2 The comparison of numerical effects between the exact solution and its regularization solution for

Example 2:a p =2, =0.001,b p =2, =0.0001, ¢ p =2, ¢ = 0.00001
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The exact solution ¢(r) and its approximations
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Fig.3 The comparison of numerical effects between the exact solution and its regularization solution for
Example 3:a p =2, =0.001,b p =2, =0.0001, ¢ p =2, ¢ = 0.00001

5 Conclusion

We consider an inverse problem to determine an initial value for heat equation
with inhomogeneous source on a columnar symmetric domain. We construct the
quasi-boundary value method to solve this inverse problem and obtain regulariza-
tion solution. Moreover, we obtain the Holder type error estimate under a priori and
a posteriori parameter choice rules. Finally, several examples are given to show the
effectiveness of quasi-boundary value method.
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