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Abstract
This paper introduces a new class of weak second-order explicit stabilized stochastic
Runge-Kutta methods for stiff Itô stochastic differential equations. The convergence
and mean-square stability properties of our newmethods are analyzed. The numerical
results of two examples are presented to confirm our theoretical results.
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1 Introduction

Consider the autonomous d-dimensional Itô stochastic differential equation (SDE)
system

dy(t) = f (y(t))dt +
m∑

j=1

gj (y(t))dWj (t), y(0) = y0, t ∈ [0, T ], (1)

where W(t) is an m-dimensional Wiener process, the vector functions f, gj ∈
R

d , j = 1, 2, . . . , m are assumed to satisfy the standard conditions to guarantee the
existence of unique solution of the SDE (1). The inequality E(‖y(0)‖2) < ∞ holds
for any given initial value y(0). Let CL

P (Rd ,R) be the family of L times continuously
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differentiable real-valued functions on R
d , all of whose partial derivatives of order

up to and including L have polynomial growth.
The standard explicit methods will face a severe step size restriction when the

SDE (1) is stiff (see, e.g., [9, 11]). This restriction can be effectively avoided by
using the (semi)implicit methods (see, e.g., [5, 8, 10, 15]). But the (semi)implicit
methods will be difficult to implement for complex problems and be expensive for
large systems. In recent years, many explicit methods with extended stability regions
have been studied in [1–3, 6, 12, 13]. These methods are well suited for some stiff
problems. In particular, Abdulle, Vilmart, and Zygalakis [6] and Komori and Burrage
[12] have studied the weak second-order explicit stabilized methods for stiff Itô and
Stratonovitch SDEs, respectively.

In this paper, we will introduce a new class of weak second-order explicit sta-
bilized stochastic Runge-Kutta (SRK) methods. Our new methods can be seen as
a combination of the second-order orthogonal Runge-Kutta-Chebyshev (ROCK2)
methods introduced in [4, 6] and the weak second-order SRK methods introduced
in [14]. As shown in the sequel, our new methods have advantages in terms of both
stability and computational cost.

2 The ROCK2methods and the weak second-order SRKmethods

Before introducing the new weak second-order explicit stabilized SRKmethods, let’s
review briefly the ROCK2 methods introduced in [4, 6] and the weak second-order
SRK methods introduced in [14].

For the ordinary differential equation dy(t) = f (y(t))dt, the ROCK2 method
with the damping parameter α can be written as the form

H0 = yn, H1 = H0 + αμ1hf (H0),

Hi = αμihf (Hi−1) − νiHi−1 − κiHi−2, i = 2, 3, . . . , ŝ − 2,

Ĥ1 = Hŝ−2 + 2ταhf (Hŝ−2),

yn+1 = Hŝ−2 +
(
2σα − 1

2

)
hf (Hŝ−2) + 1

2
hf (Ĥ1), (2)

where ŝ ≥ 2, ŝ ∈ Z
+, h = T

N
denotes stepsize, n = 0, 1, . . . , N − 1, y0 = y(0) and

σα = 1 − α

2
+ ασ, τα = (α − 1)2

2
+ 2α(1 − α)σ + α2τ . All the parameters μi , νi ,

κi , σ , τ depend on ŝ (see the literature [6] for more details).
In [14], for SDE (1), we proposed the efficient weak second-order SRK method

yn+1 = yn +
s∑

i=1

α
(0)
i f (H

(0)
i )h +

s∑

i=1

m∑

k=1

β
(0)
i gk(H

(k)
i )Îk

+
s∑

i=1

m∑

k=1

β
(1)
i gk(H

(k)
i )Î(k,k), (3)
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where

H
(0)
i = yn +

s∑

j=1

a
(0)
ij f (H

(0)
j )h +

s∑

i=1

m∑

k=1

b
(0)
ij gk(H

(k)
j )Îk,

H
(k)
i = yn +

s∑

j=1

a
(1)
ij f (H

(0)
j )h +

s∑

j=1

b
(1)
ij gk(H

(k)
j )ξ

+
s∑

i=1

m∑

l=1
l �=k

b
(2)
ij gl(H

(l)
i )Î(k,l).

The random variables Îk, ξ, Î(k,l) are defined by

P(Îk = ±√
3h) = 1

6
, P (Îk = 0) = 2

3
, ξ = η1

√
h, (4)

Î(k,l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2
(Îl − η2Îl ), k < l,

1

2
(Îl + η2Îl ), k > l,

1

2
(
Î 2k

ξ
− ξ), k = l,

(5)

where k, l ∈ {1, 2, . . . , m}, and η1, η2 are independent two-point distributed random
variables with P(ηi = ±1) = 1

2 , i ∈ {1, 2}. Based on [14], we have the following
result.

Theorem 1 Let f, gj ∈ C6
P (Rd ,Rd), j = 1, 2, . . . , m. Then, the SRK method (3)

converges weakly to solution of the SDE (1) with second order if the coefficients of
the SRK method (3) satisfy the system of the following equations

1. α(0)T e = 1, 2. β(0)T e = 1,

3. β(1)T e = 0, 4. α(0)T A(0)e = 1
2 ,

5. α(0)T B(0)e = 1
2 , 6. β(0)T A(1)e = 1

2 ,

7. α(0)T (B(0)e)2 = 1
2 , 8. β(0)T (A(1)(B(0)e)) = 0,

9. β(0)T B(1)e = 0, 10. β(1)T B(1)e = 1,

11. β(0)T B(2)e = 1, 12. β(1)T B(2)e = 0,

13. β(0)T (B(1)e)2 = 1
2 , 14. β(0)T (B(2)e)2 = 1,

15. β(0)T (B(1)(B(1)e)) = 0,
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where

e = (1, 1, . . . , 1)Ts , A(0) = (a
(0)
ij )s×s , A

(1) = (a
(1)
ij )s×s ,

B(0) = (b
(0)
ij )s×s , B

(1) = (b
(1)
ij )s×s , B

(2) = (b
(2)
ij )s×s ,

α(0)T = (α
(0)
i , . . . , α

(0)
s )T , β(0) = (β

(0)
1 , . . . , β

(0)
s )T , β(1) = (β

(1)
1 , . . . , β

(1)
s )T .

3 New explicit stabilized SRKmethods

Combining the methods (2) and (3), we can construct a new class of explicit stabilized
SRK methods for SDE (1). New explicit stabilized SRK methods take the form

H0 = yn, H1 = H0 + αμ1hf (H0),

Hi = αμihf (Hi−1) − νiHi−1 − κiHi−2, i = 2, 3, . . . , ŝ − 1,

Ĥ1 =
n̂∑

i=1

c1iHŝ−n̂+i−1,

n̂∑

i=1

c1i = 1, n̂ ∈ Z
+, n̂ ≤ ŝ,

Ĥ
(k)
2 =

n̂∑

i=1

c2iHŝ−n̂+i−1 + 1

2
gk(Ĥ1)ξ +

m∑

l=1
l �=k

gl(Ĥ1)Î(k,l),

n̂∑

i=1

c2i = 1,

Ĥ
(k)
3 =

n̂∑

i=1

c3iHŝ−n̂+i−1 − 1

2
gk(Ĥ1)ξ,

n̂∑

i=1

c3i = 1, k = 1, 2, . . . , m,

Ĥ4 = Hŝ−2 + 2ταhf (Hŝ−2) +
m∑

k=1

gk(Ĥ1)Îk,

yn+1 = Hŝ−2 + (2σα − 1

2
)hf (Hŝ−2) + 1

2
hf (Ĥ4)

+
m∑

k=1

(
− gk(Ĥ1) + gk(Ĥ

(k)
2 ) + gk(Ĥ

(k)
3 )

)
Îk

+2
m∑

k=1

(
gk(Ĥ1) − gk(Ĥ

(k)
3 )

)
Î(k,k). (6)

The method (6) computes an additional stagesHŝ−1 compared to the ROCK2 method
(2). But it needs to be emphasized that the number of evaluations of the drift coef-
ficient f is still ŝ for the method (6) because we do not need to estimate f (Hŝ−1).
In addition, the method (6) only needs three evaluations of each diffusion function
gk, k = 1, 2, . . . , m and m + 2 simulations of independent random variables at each
step. This implies that the computational cost of our new method (6) is only 60% of
the S-ROCK2 method proposed in [6] when m is large.
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4 Convergence analysis

If A is a s × s matrix (s = ŝ + 4), then A(i, :) denotes the ith row of matrix A, and
A(i, j) denotes the element in ith row and j th column. Let

A(0)(i, :) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, i = 1, ŝ + 1, ŝ + 2, ŝ + 3,

αμ1I(1, :), i = 2,

αμi−1I(i − 1, :) − νi−1A
(0)(i − 1, :)

−κi−1A
(0)(i − 2, :), i = 3, 4, . . . , ŝ,

A(0)(ŝ − 1, :) + 2ταI(ŝ − 1, :), i = ŝ + 4,
(7)

A(1)(i, :) =

⎧
⎪⎨

⎪⎩

n̂∑

l=1

cjlA
(0)(ŝ − n̂ + l, :), i = ŝ + j, j = 1, 2, 3,

0, else,

B(0)(i, :) =
{

I(ŝ + 1, :), i = ŝ + 4,
0, else,

B(1)(i, :) =

⎧
⎪⎨

⎪⎩

1
2 I(ŝ + 1, :), i = ŝ + 2,

− 1
2 I(ŝ + 1, :), i = ŝ + 3,

0, else,

B(2)(i, :) =
{

I(ŝ + 1, :), i = ŝ + 2,

0, else,

α(0)T = A(0)(ŝ − 1, :) +
(
2σα − 1

2

)
I(ŝ − 1, :) + 1

2
I(ŝ + 4, :),

β(0)T = −I(ŝ + 1, :) + I(ŝ + 2, :) + I(ŝ + 3, :),
β(1)T = 2I(ŝ + 1, :) − 2I(ŝ + 3, :), (8)

where 0 is a 1 × s zero vector and I denotes the s × s unit matrix. Then, the SRK
method (6) can be seen as a special case of the SRK method (3) with the coefficients
defined by (7) and (8).

Theorem 2 Let f, gj ∈ C6
P (Rd ,Rd), j = 1, 2, . . . , m. Then, the SRK method (6)

converges weakly to solution of the SDE (1) with second order if

n̂∑

i=1

s∑

j=1

(−c1i + c2i + c3i )A
(0)(ŝ − n̂ + i, j) = 1

2
.

Proof We need only to show that all the order conditions in Theorem 1 can be
fulfilled. Firstly, based on (7) and (8) and some simple calculations, it is easy to ver-
ify that all the conditions are fulfilled except for conditions 1, 4, and 6. Secondly,
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the SRK method (6) degenerates to the ROCK2 method (2) when gj = 0, j =
1, 2, ..., m. This implies that the conditions 1 and 4 are fulfilled. Finally, we need
only to verify β(0)T A(1)e = 1

2 . A direct calculation shows that

β(0)T A(1)e =
n̂∑

i=1

s∑

j=1

(−c1i + c2i + c3i )A
(0)(ŝ − n̂ + i, j). (9)

Thus, the conclusion follows from the (9).

5 Stability analysis

In addition to the order of convergence, the long-term (t → ∞) behavior of numeri-
cal solutions is equally important in many practice applications. The stability theory
is important to understand this behavior. The mean-square stability is a widely used
characterization of stability for an SDE. To give insight into the mean-square stability,
we consider the linear scalar test equation [7, 9]

dy(t) = λ1y(t)dt + λ2y(t)dW(t), y(0) = 1, (10)

where λ1, λ2 are fixed complex scalar parameters. The zero solution of SDE (10) is
called mean-square stable if

lim
t→∞ E(|y(t)|2) = 0. (11)

Because the exact solution of SDE (10) is

y(t) = exp

((
λ1 − 1

2
λ22

)
t + λ2W(t)

)
, (12)

the (10) is mean-square stable if

(λ1, λ2) ∈ S
MS
SDE, SMS

SDE :=
{
(λ1, λ2) ∈ C

2
∣∣R(λ1) + 1

2
| λ2 |2< 0

}
. (13)

Similarly, a numerical solution of SDE (10) is called mean-square stable if

lim
n→∞ E(|yn|2) = 0. (14)

Applying a one-step method to test (10) can yield the following recurrence formula

yn+1 = R(p, q, ζ1, ζ2, . . . , ζk)yn, (15)

where p = λ1h, q = λ2
√

h, ζ1, ζ2, . . . , ζk are some random variables. By [9], we
have

lim
n→∞ E(|yn|2) = 0 ⇔ (p, q) ∈ S

MS
num,

S
MS
num := {(p, q) ∈ C

2
∣∣∣E(|R(p, q, ζ1, ζ2, . . . , ζk)|2) < 1}. (16)
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In particular, let us apply the SRK method (6) to test (10). A direct calculation
shows that

yn+1 = R(p, q, r, r1, r2)yn,

R(p, q, r, r1, r2) = (1 + 2σαp + ταp2)Pŝ−2(αp)

+
(1
2
pP̂1(αp) − P̂1(αp) + P̂2(αp) + P̂3(αp)

)
qr

+
(
2P̂1(αp) − 2P̂3(αp)

)
qr2

+P̂1(αp)q2r1r2, (17)

where r = Î1√
h
, r1 = ξ√

h
, r2 = Î(1,1)√

h
, the polynomials Pi(αp), P̂j (αp), i =

0, 1, . . . , ŝ − 1, j = 1, 2, 3 satisfy

P0(αp) = 1, P1(αp) = 1 + αμ1p,

Pi(αp) = αμipPi−1(αp) − νiPi−1(αp) − κiPi−2(αp), i = 2, 3, . . . , ŝ − 1,

P̂j (αp) =
n̂∑

l=1

cjlPŝ−n̂+l−1(αp), j = 1, 2, 3. (18)

Theorem 3 The numerical mean-square stability domain SMS
num can be given by

S
MS
num = {(p, q) ∈ C

2
∣∣∣A(p) + B(p)|q2| + 1

2
C(p)|q4| < 1},

A(p) = |(1 + 2σαp + ταp2)Pŝ−2(αp)|2,
B(p) = |1

2
pP̂1(αp) − P̂1(αp) + P̂2(αp) + P̂3(αp)|2 + 2|P̂1(αp) − P̂3(αp)|2,

C(p) = |P̂1(αp)|2 (19)

if we apply the SRK method (6) to test equation (10).

Proof It is not difficult to prove that

E(r) = E(r2) = E(r1r2) = E(rr2) = E(rr1r2) = E(r1r
2
2 ) = 0,

E(r2) = 1, E(r22 ) = 1

2
, E(r21 r

2
2 ) = 1

2
(20)

based on the definitions of Î1, ξ, Î(1,1). Combining the (17) and (20) yields

E(|R(p, q, r, r1, r2)|2) = A(p) + B(p)|q2| + 1

2
C(p)|q4|. (21)

Thus, the conclusion follows from the (21).

Some new weak second-order explicit stabilized SRKmethods are proposed based
on Theorem 2, and they are displayed in Table 1, where ci = (ci1, , cin̂), i = 1, 2, 3.

Based on Theorem 3 and Table 1, we can obtain Fig. 1, where the method W2Ito1
is a standard weak second-order explicit SRK method proposed in [14], the green
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Table 1 New weak second-order explicit stabilized SRK methods

Method ŝ α n̂ c1, c2, c3

ROCK2W2Ito1 5 1.0 2
c1 = c3 = (0, 1),

c2 = (−0.7538, 1.7538)

ROCK2W2Ito2 10 1.0 2
c1 = c3 = (0, 1),

c2 = (−2.7962, 3.7962)

ROCK2W2Ito3 5 1.25 2
c1 = c3 = (−0.5000, 1.5000),

c2 = (−0.0817, 1.0817)

ROCK2W2Ito4 10 1.29 3
c1 = c3 = (0,−1.8000, 2.8000),

c2 = (−2.0400, 2.7066, 0.3334)

ROCK2W2Ito5 20 1.33 4
c1 = c3 = (0, 0,−4.3000, 5.3000),

c2 = (−4.7462, 5.2462, 0.2500, 0.2500)

region denotes the corresponding numerical mean-square stability domain S
MS
num of

each method, and the red dotted line denotes the boundary of domain S
MS
SDE .

Figure 1 shows that our new weak second-order explicit SRK methods inherit the
good stability of the deterministic ROCK2 method. The second and third subfigures
show that our new methods with α ≡ 1.0 have the same optimal size as the ROCK2
method along the deterministic p-axis. But there is a small flaw for these methods
because these methods have gaps in the mean-square stability regions close to the
origin. Fortunately, we can avoid these gaps by adjusting the value of the parameters
α, n̂ and ci, i = 1, 2, 3 (see the last three subfigures).

Define

ds̃ = sup{a > 0
∣∣(−a, 0) × {0} ⊂ S

MS
num}, ls̃ = sup{a > 0

∣∣SMS
a ⊂ S

MS
num},

S
MS
a = {(p, q) ∈ (−a, 0) × R

∣∣p + 1

2
|q|2 < 0}, (22)
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Fig. 1 Mean-square stability domains of W2Ito1 and the methods listed in Table 1
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where s̃ denotes the number of evaluations of the drift function at each step. ds̃ and
ls̃ can be seen as two metric sizes to characterize the numerical mean-square sta-
bility domain S

MS
num. Based on (22), we can compare our new methods with other

explicit stabilized methods. The corresponding sizes ds̃, ls̃ of each method are listed
in Table 2, where SROCK2 is a weak second-order explicit stabilized method for
stiff Stratonovitch SDEs introduced in [12], and S-ROCK2 is a weak second-order
explicit stabilized method for stiff Itô SDEs introduced in [6]. Since the first two
methods in Table 1 have similar stability characteristics, we only listed the sizes of
ROCK2W2Ito2 in Table 2. Similarly, we only listed the sizes of ROCK2W2Ito5 for
the last three methods in Table 1.

6 Numerical results

We take the Monte Carlo method to calculate expectation of error and choose M =
106 independent trajectories for each example. We use Err to denote expectation
error, i.e.,

Err =
∣∣∣
1

M

M∑

k=1

G(yk
N) − E(G(y(tN)))

∣∣∣, (23)

where G ∈ C6
P (Rd ,R).

Example 1 We first consider the non-stiff non-linear SDE system with d = 1, m =
10 and non-commutative noise

dy(t) = y(t)dt +
10∑

j=1

σ−1
j

√
y(t) + k−1

j dWj (t), t ∈ [0, 1], y(0) = 1, (24)

where σj , j = 1, 2, . . . , 10 equal to 10, 15, 20, 25, 40, 25, 20, 15, 20, 25 in turn, and
kj , j = 1, 2, . . . , 10 equal to 2, 4, 5, 10, 20, 2, 4, 5, 10, 20 in turn. Take G(y(t)) =
y2(t), then we can obtain

E(G(y(t))) = E(y2(t)) = (−68013 − 458120et + 14926133e2t )/14400000

from [6]. The methods W2Ito1, S-ROCK2 (s̃ = 7) and the five methods in Table 1
will be applied to this example. The detailed numerical results are presented in Fig. 2.
Figure 2 shows that the weak convergence order of our new methods can reach to
2.0. This confirms the theoretical results. At the same time, Fig. 2 shows also that the
error accuracy of SRK method (6) is nearly independent of ŝ.

Table 2 The size of mean-square stability regions for some explicit stabilized methods

Method SROCK2 S-ROCK2 ROCK2W2Ito2 ROCK2W2Ito5

ds̃ 0.54s̃2 0.42s̃2 0.81s̃2 (optimal) 0.61s̃2

ls̃ <
√
2 0.42s̃2 0 0.61s̃2
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Fig. 2 Stepsize h vs. errors Err

Example 2 We consider the stiff non-linear SDE with d = m = 1

dy(t) = −λ1y(t)(1 − y(t))dt − λ2y(t)(1 − y(t))dW(t), t ∈ [0, 10], y(0) = 0.95,
(25)

where λ1 < 0, λ2 = √−λ1(2 − ε), 0 < ε < 2. The SDE (25) leads to the linear
test problem (10) if we linearize it close to the steady solution y(t) = 1. For the first
case, we take λ1 = −15, ε = 1. For the second case, we fix ε = 1 and take λ1 =
−300, −350, −400 in turn. TakeG(y(t)) = y2(t), then the detailed numerical results
can be given by Tables 3 and 4, where Nf , Ng denote the number of evaluations for
the drift coefficient f and the diffusion coefficient g, respectively, and Nr denotes
the number of simulations of independent random variables.

Table 3 shows that instability will occur for the methods ROCK2W2Ito1 and
ROCK2W2Ito2 when λ1 = −15. This is consistent with the result of Fig. 1 because
p (p = hλ1 = − 5

2 ) is close to the origin at this time. The last two lines of
Table 4 show that the method ROCK2W2Ito2 perform better than ROCK2W2Ito4

Table 3 The errors Err for the SDE (25) with λ1 = −15, ε = 1

Method h Cost Err

S-ROCK2 (s̃ = 12) 1
6 Nf = 720, Ng = 300, Nr = 120 0

ROCK2W2Ito1 1
6 Nf = 300, Ng = 180, Nr = 120 ∞

ROCK2W2Ito2 1
6 Nf = 600, Ng = 180, Nr = 120 ∞

ROCK2W2Ito3 1
6 Nf = 300, Ng = 180, Nr = 120 0

ROCK2W2Ito4 1
6 Nf = 600, Ng = 180, Nr = 120 0

ROCK2W2Ito5 1
6 Nf = 1200, Ng = 180, Nr = 120 2.1e−16
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Table 4 The errors Err for the SDE (25) with ε = 1 and λ1 = −300,−350,−400

Method h cost: Nf ,Ng,Nr Err : λ1 = −300,−350,−400

W2Ito1 1
320 9600, 9600, 6400 ∞, ∞, ∞

W2Ito1 1
340 10200, 10200, 6800 0, ∞, ∞

W2Ito1 1
360 10800, 10800, 7200 0, ∞, ∞

W2Ito1 1
380 11400, 11400, 7600 0, 0,∞

W2Ito1 1
440 13200, 13200, 8800 0, 0,∞

W2Ito1 1
460 13800, 13800, 9200 0, 0, 0

S-ROCK2 (s̃ = 12) 1
6 720, 300, 120 1.2e−16, ∞, ∞

ROCK2W2Ito2 1
6 600, 180, 120 1.5e−4, 1.2e−16, 7.3e−16

ROCK2W2Ito4 1
6 600, 180, 120 2.9e−14, 2.6e−13, ∞

when p is far from the origin. This mainly benefits from the fact that the method
ROCK2W2Ito2 has the optimal size along the deterministic p-axis. From the above
two points, we can see that the methods ROCK2W2Ito2 and ROCK2W2Ito4 have
their own advantages.

In addition, Table 4 shows that the method S-ROCK2 and our new explicit stabi-
lized methods perform better than the standard explicit method W2Ito1 for the stiff
SDEs. ŝ = 10 for all the three methods S-ROCK2(s̃ = 12), ROCK2W2Ito2 and
ROCK2W2Ito4. By observing the last three lines of Table 4, we can find that our
new explicit stabilized methods ROCK2W2Ito2 and ROCK2W2Ito4 have better per-
formance than the well-known explicit stabilized method S-ROCK2 not only in the
computational cost, but also in the stability.
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