
Numerical Algorithms (2019) 80: 1437–1465
https://doi.org/10.1007/s11075-018-0601-4

ORIGINAL PAPER

Alternating iterative methods for solving tensor equations
with applications

Maolin Liang1,2 ·Bing Zheng1 ·Ruijuan Zhao1

Received: 6 February 2018 / Accepted: 17 September 2018 / Published online: 29 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Recently, the alternating direction method of multipliers (ADMM) and its variations
have gained great popularity in large-scale optimization problems. This paper is con-
cerned with the solution of the tensor equation A xm−1 = b in which A is an
mth-order and n-dimensional real tensor and b is an n-dimensional real vector. By
introducing certain auxiliary variables, we transform equivalently this tensor equa-
tion into a consensus constrained optimization problem, and then propose an ADMM
type method for it. It turns out that each limit point of the sequences generated by this
method satisfies the Karush-Kuhn-Tucker conditions. Moreover, from the perspective
of computational complexity, the proposed method may suffer from the curse-of-
dimensionality if the size of the tensor equation is large, and thus we further present
a modified version (as a variant of the former) turning to the tensor-train decompo-
sition of the tensor A , which is free from the curse. As applications, we establish
the associated inverse iteration methods for solving tensor eigenvalue problems. The
performed numerical examples illustrate that our methods are feasible and efficient.

Keywords Tensor equations · ADMM · Tensor-train decomposition · Tensor
eigenvalue problems · Inverse iteration methods

Mathematics Subject Classification (2010) 15A69 · 65H10 · 90C30 · 65F15

� Bing Zheng
bzheng@lzu.edu.cn

Maolin Liang
liangml2005@163.com

Ruijuan Zhao
zhaobin7755382@163.com

1 School of Mathematics and Statistics, Lanzhou University,
Lanzhou 730000, People’s Republic of China

2 School of Mathematics and Statistics, Tianshui Normal University,
Tianshui 741001, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0601-4&domain=pdf
mailto: bzheng@lzu.edu.cn
mailto: liangml2005@163.com
mailto: zhaobin7755382@163.com

1438 Numerical Algorithms (2019) 80:1437–1465

1 Introduction

Let R (C) be the real (complex) field. A tensor of order m and dimension n1 ×
n2 × · · · × nm is an m-way array whose entries are addressed via m indices [24, 35].
The set of all mth-order and n1 × n2 × · · · × nm-dimensional tensors over the real
field is denoted by R

n1×n2×···×nm . Particularly, if the dimensions of a tensor satisfy
n1 = n2 = · · · = nm = n, we call it an mth-order and n-dimensional tensor, and
then denote this class of tensors by R

[m,n] for short. For example, a tensor A =
(ai1i2...im) ∈ R

[m,n], it consists of nm entries ai1i2...im ∈ Rwith 1 ≤ i1, i2, . . . , im ≤ n.
Especially, we say that the tensor A is symmetric if its entries ai1i2...im are invariant
under any permutation of their indices i1, i2, . . . , im.

In this paper, we consider the following tensor equation

A xm−1 = b, (1.1)

where A = (ai1i2...im) is an mth-order and n-dimensional tensor over the real field,
b is a real vector in Rn, and A xm−1 is a vector in Rn with entries defined by

(A xm−1)i =
∑

i2,...,im

aii2...imxi2 . . . xim, i = 1, 2, . . . , n.

This equation is sometimes called a multilinear system in literature, since it is linear
over x for each mode of the tensor A , which has practical applications in scientific
and engineering fields [35], including data mining [28], numerical partial differential
equations [7], and tensor complementarity problems [32].

Specifically, one application of (1.1) is the numerical solution of the following
Klein-Gordon equation with Dirichlet’s boundary condition [33, 46]

{
u(x)m−2 · �u(x) = −f (x), in �,

u(x) = g(x), on ∂�,

where � =
d∑

k=0

∂2

∂x2k
, � = [0, 1]d and m = 3, 4, As stated by Ding and Wei in

[7], this equation can be discretized into the following tensor equation

L (d)
h um−1 = f, (1.2)

in which h = 1

n − 1
and L (d)

h =
d−1∑
k=0

I ⊗ · · · ⊗ I︸ ︷︷ ︸
k

⊗Lh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−k−1

satisfying

(Lhum−1)i = um−1
i · (Lhu)i with

Lh = 1

h2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

Numerical Algorithms (2019) 80:1437–1465 1439

and Lh = ((Lh)i1i2...im) ∈ R
[m,n] with the entries defined by

(Lh)11...1 =(Lh)nn...n = 1

h2
, (Lh)ii...i = 2

h2
, i = 2, 3, . . . , n − 1,

(Lh)ii−1i...i =(Lh)iii−1i...i = · · · = (Lh)i...ii−1 = − 1

h2(m − 1)
, i = 2, 3, . . . , n − 1,

(Lh)ii+1i...i =(Lh)iii+1i...i = · · · = (Lh)i...ii+1 = −1/h2(m − 1), i = 2, 3, . . . , n − 1.

Particularly, one can refer to [7] for another specific real-life example on a particle’s
movement under the gravitation.

Recently, some theoretical results and algorithms related to (1.1) have been devel-
oped in the sense that A is a structured tensor. For instance, Ding and Wei [7] proved
that the tensor equation (1.1) has only one positive solution when A is a nonsingular
M-tensor and b is a positive vector (called M-tensor equation for short). They also
generalized the classical iterative methods including Jacobi and Gauss-Seidel meth-
ods for linear systems to find the unique positive solution. After that, a homotopy
method was proposed for searching the positive solution [16]. Furthermore, Liu et al.
[31] extended the iterative methods in [7], including the SOR method for linear sys-
tems, to the M-tensor equation (1.1) by means of tensor splittings, and proved their
linear convergence. Besides, Li et al. [27] also extended the classical iterative meth-
ods for linear systems to theM-tensor equation (1.1), which are different from those
given in [7, 31]. When the nonsingularM-tensor A in (1.1) is symmetric, Ding and
Wei [7] also established Newton method for it, which is a promising method. Very
recently, Xie et al. [43] introduced an algorithm based on the fast Fourier transform
for the tensor equation (1.1) when the tensor A is a circulant tensor.

The purpose of this paper is to solve the tensor equation (1.1) under the condi-
tion that the tensor A is a general one. Unfortunately, the aforementioned algorithms
are not applicable of solving the class of unstructured tensor equations. On the other
hand, those approaches could be intractable if the size of tensor equations is large,
because they suffer from the so-called curse-of-dimensionality — the storage and
complexity grow exponentially scaling with the dimension of the problems. As a
result, it is increasingly desirable to develop certain algorithms that are both rich
enough to capture the complexity of data, and scalable enough to process huge vari-
ables. We shall propose a class of iterative algorithms sharing such characteristics
to address the tensor equation (1.1). As far as we are informed, there are no related
works on the general case.

The idea of our approach is based on the well-known alternating direction method
of multipliers (ADMM) for solving some large-scale optimization problems. This
method is firstly proposed by Gabay and Mercier [11] in the 1970s (see Section
2 for details), which and its variants have gained great popularity in modern big
data-related problems, especially in image processing, statistical learning, and data
mining: see, e.g., the celebrated survey [3] and the references therein. By introducing
a series of auxiliary variables, we convert (1.1) into a multi-block optimization prob-
lem with consensus constrained conditions (see Section 3 for details), and propose an
ADMM type method for it (i.e., Algorithm 3.1). This is a multi-block generalization

1440 Numerical Algorithms (2019) 80:1437–1465

of ADMM, and so we denote it by G-ADMM for short. Under some assumptions, it
is proved that each limit point of the sequences generated by this method satisfies the
Karush-Kuhn-Tucker (KKT) optimality conditions.

Compared with the existing iterative algorithms of solving structured tensor equa-
tions, one advantage of G-ADMM is that it is theoretically feasible for any tensor
equations, and the other one is that it is easier to be carried out in an efficient and per-
haps highly parallel manner. Nevertheless, from the computational complexity point
of view, it still suffers from the curse, since the main operations of which lie in the
multiplications between the tensor A and m − 2 iteration vectors.

To overcome this problem, we apply the tensor-train (TT) format/decomposition
of tensors [37] to the tensor-vector multiplications, and then derive a modified version
of the G-ADMM method, which is denoted by TT-ADMM for short. It is shown that
the amount of calculations corresponding to TT-ADMM is estimated conservatively
by O((m − 1)n2r2), which is far less than that of the former if m is large, and is
free from the curse naturally. The provided numerical examples also illustrate that
the methods we propose here are feasible for any tensor equation. Particularly, they
are superior to the Newton method [7] and the SOR-type method [31] as long as the
involved parameters are selected appropriately.

In addition, as an application of the methods we propose here, two kinds of inverse
iteration methods for solving tensor eigenvalue problems (TEP) are given, which are
theoretically feasible for any tensor. It is worth mentioning that the inverse itera-
tion stemming from the TT-ADMM method is free from the curse-of-dimensionality
as well. Compared with the prevalent shifted symmetric higher-order power method
(SS-HOPM) [25] for symmetric tensors, it is shown numerically that our meth-
ods have competitive advantages in both the success rate and the computational
complexity of finding Z-eigenvalues.

The outline of this paper is as follows. In Section 2, we introduce some nota-
tions and definitions, and then review the tensor-train decomposition of tensors and
the classical ADMM followed by one variant of which. In Section 3, we propose
the alternating iterative methods for solving the tensor equation (1.1), and the con-
vergence analysis of which is given in Section 4. In Section 5, we set up inverse
iteration methods for solving tensor eigenvalue problems. In Section 6, we provide
some numerical examples to illustrate the effectiveness of our methods. Finally, we
conclude this paper with some remarks.

2 Preliminaries

2.1 Notations and definitions

Throughout this paper, scalars are denoted by lower-case letters, e.g., a, b, c; vectors
are denoted by boldface lower-case letters, e.g., a, b, c; matrices are denoted by bold-
face capital letters, e.g., A,B,C; tensors are denoted by calligraphic script letters,
e.g., A , B, C .

We need the following definitions related to tensors: see, e.g., [24] for details.

Numerical Algorithms (2019) 80:1437–1465 1441

Definition 2.1 (The k-mode (vector) product) Let T = (ti1i2...im) ∈ R
n1×n2×···×nm

and v ∈ R
nk . Then the k-mode (vector) product, denoted by T •k v, is an n1 × · · · ×

nk−1 × nk+1 × · · · × nm tensor, elementwise,

(T •k v)i1...ik−1ik+1...im =
nk∑

ik=1

ti1...ik ...imvik .

Definition 2.2 (The k-mode (matrix) product) Let T = (ti1i2...im) ∈ R
n1×n2×···×nm

and A = (ajkik) ∈ R
lk×nk . Then the k-mode (matrix) product, denoted by T ×k A,

is an n1 × · · · × nk−1 × lk × nk+1 × · · · × nm tensor, elementwise,

(T ×k A)i1...ik−1jkik+1...im =
nk∑

ik=1

ti1...ik ...imajkik .

By Definition 2.1, one can rewrite the symbol A xm−1 in (1.1) as

A xm−1 = A •2 x · · · •m x.

This notation is firstly used when Qi [34] introduced the notion of eigenvalues and
eigenvectors of tensors that was also put forward independently by Lim [29] with
variational approach.

Definition 2.3 Let A ∈ R
[m,n] be a given tensor. Then (λ, x) ∈ C × (Cn \ {0})

is called an eigenvalue-eigenvector (or simply eigenpair) of the tensor A if λ and x
satisfy the following homogeneous polynomial equation

A xm−1 = λx[m−1],

where x[m−1] ∈ C
n is the vector defined by

x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n)T .

Particularly, we call it an H -eigenpair if they are both real.
Moreover, (λ, x) ∈ C × (Cn \ {0}) is said to be an E-eigenpair of the tensor A if

λ and x satisfy the following nonhomogeneous polynomial equations

A xm−1 = λx and xT x = 1.

Especially, we call (λ, x) a Z-eigenpair if they are both real.

2.2 Low-rank tensor formats

Unlike the matrix case, there are several possibilities to define the rank of a ten-
sor, and thus there are several low-rank tensor formats available [13, 24]. For A =
(ai1i2...im) ∈ R

[m,n], the CANDECOMP/PARAFAC (CP) format is

ai1i2...im =
r∑

k=1

v1,k(i1) · · · vm,k(im), vl,k = (vl,k(il)) ∈ R
n, l = 1, 2, . . . , m,

1442 Numerical Algorithms (2019) 80:1437–1465

in which r is the minimal number that the tensorA can be represented, and is referred
to as the CP-rank. This format is data sparse in the sense that storing the factors vl,k

amounts to O(mnr) storage units, as opposed to the nm storage units of the full and
unstructured tensor A .

In the Tucker format,

ai1i2...im =
l1∑

k1

· · ·
lm∑

km

ck1k2...kmv1(i1, k1) · · · vm(im, km),

in which Vj = (vj (ij , kj)) ∈ R
n×n, j = 1, 2, . . . , m. Since the core tensor

C = (ck1k2...km) requires
m∏

j=1
lj storage units, this format is limited to small order m,

but can be derived by applying the standard matrix approximation techniques to the
unfolded tensor.

The low-rank tensor format to be utilized in our approach is the tensor-train
(TT) format, which, as a simplified form of the hierarchical scheme, was indepen-
dently proposed by Hackbusch [15] and later Grasedyck [12] and Oseledets and
Tyrtyshnikov [39]. In the TT-format,

ai1i2...im = G1(i1)G2(i2) · · · Gm(im), (2.1)

where Gk(ik) ∈ R
rk−1×rk is the ikth lateral slice of the TT-core Gk with size rk−1 ×

n × rk , and rk (k = 0, 1, . . . , m) are the tensor-train ranks imposed the “boundary
conditions” r0 = rm = 1.

The TT-format of a tensor can be derived by using the singular value decomposi-
tions (SVD) of its matricizations, i.e., the TT-SVD algorithm [37], and the number of
operations required by this approach is O(mnr3) if rk ≈ r with r = max

i=1,2,...,m
ri . At

this time, the total number of parameters of the TT-format is O(mnr2). Notably, TT-
SVD algorithm returns the quasi-optimal TT-approximation of a tensor. Obviously,
this format combines the advantages of both the CP-format and the Tucker format. At
present, it has become a powerful tool in scientific computing to address large-scale
linear and multilinear algebra problems that would be intractable by using common
techniques: see, e.g., [2, 8, 21, 45].

2.3 ADMM

We review the classical ADMM for solving the following minimization problem

{
min

x∈Rn,z∈Rm
f (x) + g(z),

s.t. Ax + Bz = c,
(2.2)

Numerical Algorithms (2019) 80:1437–1465 1443

where A ∈ R
l×n, B ∈ R

l×m, c ∈ R
l , and f : Rn → R is a (smooth) function, and

g : Rm → R ∪ {+∞} is a convex (proper) but possibly non-smooth regularization
function. Let μ > 0, then the augmented Lagrangian function for (2.2) is defined by

Lμ(x, z, y) = f (x) + g(z) + yT (Ax + Bz − c) + μ

2
‖Ax + Bz − c‖2,

in which y ∈ R
l is the dual variable. For a chosen initial point (x(0), z(0), y(0)),

ADMM consists of iterating the updates
⎧
⎪⎪⎨

⎪⎪⎩

x(k+1) =argmin
x

Lμ(x, z(k), y(k)),

z(k+1) =argmin
z

Lμ(x(k+1), z, y(k)),

y(k+1) =y(k) + μ(Ax(k+1) + Bz(k+1) − c).

The convergence of the above classical 2-block ADMM was firstly proved by Gabay
and Mercier [11] under certain assumptions.

To facilitate the establishment of our methods, we now review a variant of the
classical ADMMmethod for solving the minimization problem involving a separable

f (x) =
m∑

i=1
fi(x), namely,

min
x∈Rp

m∑

i=1

fi(x) + g(x), (2.3)

which covers many important statistical learning problems such as the LASSO prob-
lem [41], logistic regression problem [30], and support vector machine problem [17].
In many practical applications, fi (i = 1, 2, . . . m) need to be handled by a sin-
gle agent, such as a thread or a processor. This motivates the following consensus
formulation ⎧

⎪⎨

⎪⎩

min
xi ,z∈Rp

m∑

i=1

fi(xi) + g(z)

s.t. xi = z, i = 1, 2, . . . , m,

(2.4)

in which z is a separate copy of the unknowns, xi , and g(z) is a regularizer. For
example, it can be used to represent a computer network with a star topology [4], in
which a master node coordinates the computation of a set of distributed workers (see
Fig. 1 for illustration).

Fig. 1 A star computer cluster with one master and m workers

1444 Numerical Algorithms (2019) 80:1437–1465

If set x = (x1; . . . ; xm) ∈ R
pm, A = Ipm ∈ R

pm×pm, B = (Ip; . . . ; Ip) ∈
R

pm×p, where Ip denotes the p × p identity matrix, then one can observe that the
problem (2.4) coincides with the problem (2.2) in the case c = 0. Applying the
classical ADMM to (2.4) yields, a multi-block ADMM consists of the iterations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(k+1)
i =argmin

xi

fi(xi)+
(
y(k)
i

)T

(xi − z(k)) + μi

2
‖xi − z(k)‖2, i = 1, 2, . . . , m,

z(k+1) =argmin
z

m∑

i=1

(
y(k)
i

)T (
x(k+1)
i − z

)
+

m∑

i=1

μi

2
‖x(k+1)

i − z‖2,

y(k+1)
j =y(k)

j + μj

(
x(k+1)
j − z(k+1)

)
, j = 1, 2, . . . , m,

(2.5)
in which μi > 0 (i = 1, 2, . . . , m) are penalty parameters, and yj (j = 1, 2, . . . , m)
are dual variables.

The above ADMM type method is a multi-block generalization of the classical 2-
block ADMM for solving (2.2). The multiple-block iterations often work very well in
many cases: see, e.g., [10, 26, 44]; however, the behavior of this class of ADMMs has
been largely a mystery [5], especially when the involved functions fi are nonconvex.
Recently, several researchers have made serious attempts in analyzing the conver-
gence of the multi-block case: see, e.g., [19, 20, 22, 40, 42]. In Section 3, we shall
transform the tensor equation (1.1) as a consensus constrained optimization problem
being similar to (2.4) but involving a nonseparable object.

In addition, the following results are necessary when analyzing the convergence
of the algorithms we propose later.

Proposition 2.1 ([36]) Let D ⊆ R
n be a convex set, and h : D −→ R be a

differentiable function, then the following expressions are equivalent:

(a) h is strongly convex with respect to parameter γ > 0.

(b) h(tx+ (1− t)y) ≤ t · h(x) + (1− t)h(y) − γ

2
t (1− t)‖x− y‖2 for any x, y ∈ D

and t ∈ [0, 1].
(c) h(x) − h(y) ≥< h(y), x − y > +γ

2
‖x − y‖2 holds for any x, y ∈ D.

(d) < h(x) − h(y), x − y > γ ‖x − y‖2 holds for any x, y ∈ D.

It is known that if the function h in this proposition is twice continuously differ-
entiable, then it is strongly convex with parameter γ > 0 if and only if 2h − γ I

is symmetric positive semi-definite for all x ∈ D, where 2h is the Hessian matrix.
The above analysis indicates that the following result holds true.

Lemma 2.1 Suppose that A ∈ R
m×n is full column rank, and b ∈ R

m, then ψ(x) =
1

2
‖Ax − b‖2 is strongly convex with 0 < γ ≤ λmin(AT A), where λmin(·) denotes the

minimal eigenvalue of a matrix.

Numerical Algorithms (2019) 80:1437–1465 1445

3 Alternating iterative methods for tensor equation (1.1)

In this section, we shall introduce an alternating iterative algorithm (i.e., G-ADMM),
following the line of mind of the consensus ADMM (2.5), for approximating the
solution of the tensor equation (1.1). After that a modified version of this method
will be given by means of the TT-format of the tensor A (i.e., TT-ADMM). It will be
shown that the computational complexity of the later scales linearly with increasing
m, that is, it does overcome the curse.

3.1 G-ADMM

We give an equivalent formulation for the tensor equation (1.1). Introducing a set of
variables {xp ∈ R

n} with p = 2, 3, . . . , m, then the tensor equation (1.1) can be
changed equivalently as

{
A •2 x2 •3 x3 · · · •m xm = b,

s.t. x2 = x3 = · · · = xm.
(3.1)

Then the least-square problem of (1.1) has the following form

⎧
⎨

⎩
min

xp∈Rn,p=2,...,m
f (x2, . . . , xm) = 1

2
‖A •2 x2 •3 x3 · · · •m xm − b‖2

s.t. (x2, . . . , xm) ∈ �,

where � = {(x2, . . . , xm) | x2 = · · · = xm, xp ∈ R
n, p = 2, 3, . . . , m}, and it can

be rewritten as the consensus constrained optimization problem

⎧
⎨

⎩

min
xp,zp∈Rn,p=2,...,m

f (x2, . . . , xm) + g(z2, . . . , zm)

s.t. xp = zp, xp, zp ∈ R
n, p = 2, 3, . . . , m,

(3.2)

in which g is the indicator function of �, i.e., g(z2, . . . , zm) = 0 for (z2, . . . , zm) ∈
� and g(z2, . . . , zm) = +∞ otherwise.

It is clear that the consensus problem (3.2) coincides with the problem (2.2) if
letting x = (x2; . . . ; xm), ẑ = (z2; . . . ; zm) ∈ R

n(m−1), c = 0, and A = B =
In(m−1) ∈ R

n(m−1)×n(m−1). Furthermore, similar to (2.4), we rewrite (3.2) as

⎧
⎨

⎩

min
xp,z∈Rn,p=2,...,m

f (x2, . . . , xm)

s.t. xp = z, xp ∈ R
n, p = 2, 3, . . . , m,

(3.3)

in which z ∈ R
n can be viewed as the “central” copy of the unknown variables

xp. Being similar to (2.5), and updating the variables xp in a Gauss-Seidel scheme,

1446 Numerical Algorithms (2019) 80:1437–1465

we obtain the multi-block ADMM for solving the tensor equation (1.1), denoted by
G-ADMM for short, which performs the following updates iteratively:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k+1)
2 =argmin

x2
Lμ

(
x2, x

(k)
3 , . . . , x(k)

m , z(k), y(k)
2 , . . . , y(k)

m

)
,

...

x(k+1)
m =argmin

xm

Lμ

(
x(k+1)
2 , . . . , x(k+1)

m−1 , xm, z(k), y(k)
2 , . . . , y(k)

m

)
,

z(k+1) =argmin
z

Lμ

(
x(k+1)
2 , . . . , x(k+1)

m , z, y(k)
2 , . . . , y(k)

m

)
,

y(k+1)
2 =y(k)

2 + μ2

(
x(k+1)
2 − z(k+1)

)
,

...

y(k+1)
m =y(k)

m + μm

(
x(k+1)
m − z(k+1)

)
,

(3.4)

where Lμ is the augmented Lagrangian function, defined by

Lμ(x2, . . . , xm, z, y2, . . . , ym) = f (x2, . . . , xm) +
m∑

p=2

yT
p (xp − z) +

m∑

p=2

μp

2
‖xp − z‖2

(3.5)

with primal variables xp and z, dual variables yp, and penalty parameters μp > 0 for
p = 2, 3, . . . , m.

The iteration scheme (3.4) can be written in a slightly different form, which is
often more convenient to carry out. As a matter of fact, for each p ∈ {2, 3, . . . , m},
pulling the linear item into the second one, the update x(k+1)

p becomes

x(k+1)
p =argmin

xp

(
f
(
x(k+1)
2 , . . . , x(k+1)

p−1 , xp, x(k)
p+1, . . . , x

(k)
m

)
+ μp

2
‖xp − z(k) + 1

μp

y(k)
p ‖2

)

:=argmin
xp

(
1

2
‖Ak�=pxp − b‖2 + μp

2
‖xp − z(k) + 1

μp

y(k)
p ‖2

)
,

(3.6)

in which

Ak�=p = A •2 x(k+1)
2 · · · •p−1 x

(k+1)
p−1 •p+1 x

(k)
p+1 · · · •m x(k)

m ∈ R
n×n. (3.7)

Similarly,

z(k+1) =argmin
z

m∑

p=2

μp

2
‖z −

(
x(k+1)
p + 1

μp

y(k)
p

)
‖2.

By straightforward computation, it holds that

z(k+1) =
m∑

p=2

(
μpx(k+1)

p + y(k)
p

)
/

m∑

p=2

μp. (3.8)

Numerical Algorithms (2019) 80:1437–1465 1447

Denote

x(k+1) =
m∑

p=2

μpx(k+1)
p /

m∑

p=2

μp, y(k) =
m∑

p=2

y(k)
p /

m∑

p=2

μp, (3.9)

then (3.8) becomes
z(k+1) = x(k+1) + y(k).

On the other hand, the dual updates in (3.4) follow that

y(k+1) = y(k) + x(k+1) − z(k+1).

The last two equalities indicate that y(k+1) = 0, then we have, for k ≥ 1,

z(k+1) = x(k+1). (3.10)

Setting u(k)
p = y(k)

p /μp, and connecting with (3.6), (3.9), and (3.10), we obtain a
scaled version of (3.4), which is summarized in the following algorithm.

Algorithm 3.1 (G-ADMM)
STEP 1: Input A ∈ R

[m,n], b ∈ R
n, and initial values x(0)

p , u(0)
p ∈ R

n, μp > 0 for
p = 2, 3, . . . , m. Then compute x(0) by (3.9).
STEP 2: For p = 2, 3, . . . , m
Compute the matrix Ak�=p given in (3.7), and then update

x(k+1)
p =argmin

xp

(
1

2
‖Ak�=pxp − b‖2 + μp

2
‖xp − x(k) + u(k)

p ‖2
)
.

(3.11)
STEP 3: Compute

x(k+1) =
m∑

p=2

μpx(k+1)
p /

m∑

p=2

μp. (3.12)

STEP 4: For p = 2, 3, . . . , m, update

u(k+1)
p =u(k)

p + x(k+1)
p − x(k+1). (3.13)

STEP 5: If the termination criterion is satisfied, return x(k+1).
Otherwise, let k = k + 1, and go to Step 2.

For this algorithm, we have the following comments:
First of all, the primal update x(k+1)

p in (3.11) is unique. In fact, (3.11) can be
reformulated equivalently as

x(k+1)
p = argmin

xp

1

2

∥∥∥∥

[
Ak�=p√
μp In

]
xp −

[
b√

μp (x(k) − u(k)
p)

]∥∥∥∥
2

.

Obviously, the coefficient matrix of the above least-squares subproblem is full
column rank, thus the solution of which is unique, and can be expressed as

x(k+1)
p =

(
(Ak�=p)T Ak�=p + μp In

)−1 (
(Ak�=p)T b + μp (x(k) − u(k)

p)
)
. (3.14)

Notably, the primal updates x(k+1)
p (p = 2, 3, . . . , m) in Step 2 could be carried out

in parallel manner if all x(k+1)
p are derived by using the kth iterative values only, thus

our method is easier to parallelize than the existing ones.

1448 Numerical Algorithms (2019) 80:1437–1465

Secondly, if all the penalty parameters μp in (3.12) are identical, then x(k+1)

reduces to

x(k+1) = 1

m − 1

m∑

p=2

x(k+1)
p ,

the average value of the primal updates x(k+1)
p for p = 2, 3, . . . , m. In our numeri-

cal experiments, we shall choose these parameters as a constant for simplicity. The
stopping rule of Algorithm 3.1 is to be discussed in Section 4.

In addition, notice that the main operations of Algorithm 3.1 hinge on the reformu-
lation of the matricesAk�=p with p = 2, 3, . . . , m, which means that its computational

complexity is about O((m − 1)nm−2), suffering from the curse-of-dimensionality.
In next subsection, a modified version of G-ADMM will be given by employing the
TT-format of the tensor A , which is immune to the curse.

3.2 TT-ADMM

In this subsection, we consider to alleviate the curse of the G-ADMM method for
solving the tensor equation (1.1). Since the main operations of Algorithm 3.1 hinge
on the computations of the matrices Ak�=p ∈ R

n×n with p = 2, 3, . . . , m, it suffices
to change the treatment way to compute them by means of the TT-format of the
tensor A .

Let the tensorA in (1.1) be characterized by the TT-cores Gi with i = 1, 2, . . . , m,
i.e., (2.1). From the definition of tensor-vector multiplication we obtain that, for ip ∈
{1, 2, . . . , n},

Ak�=p(:, ip) =G1

(
G2 •2 x(k+1)

2

)
· · ·
(
Gp−1 •2 x(k+1)

p−1

)
Gp(ip)

(
Gp+1 •2 x(k)

p+1

)
· · ·
(
Gm •2 x(k)

m

)
.

(3.15)

Denote

Ak
<p =

{
G1, if p = 2,

G1

(
G2 •2 x(k+1)

2

)
· · ·
(
Gp−1 •2 x(k+1)

p−1

)
∈ R

n×rp−1 , if 2 < p ≤ m,

and

Ak
>p =

{ (
Gp+1 •2 x(k)

p+1

)
· · ·
(
Gm •2 x(k)

m

)
∈ R

rp×1, if 2 ≤ p < m,

In, if p = m,

then the matrix Ak�=p defined in (3.15) can be represented as

Ak�=p = Gp ×1 Ak
<p ×3 (Ak

>p)T . (3.16)

Combining with this formula and Algorithm 3.1, we derive the TT-based multi-block
alternating direction method of multipliers for solving the tensor equation (1.1),
denoted by TT-ADMM for short, which is stated as follows.

Numerical Algorithms (2019) 80:1437–1465 1449

Algorithm 3.2 (TT-ADMM)

STEP 1: Input A ∈ R
[m,n] characterized by the TT-cores Gi with i = 1, 2, . . . , m,

and
b ∈ R

n. Let the initial values be x(0)
p , u(0)

p ∈ R
n, μp > 0, p = 2, 3, . . . , m.

Then compute x(0) by (3.9).
STEP 2: For p = 2, 3, . . . , m, compute Ak�=p by (3.16), and then update x(k+1)

p by
(3.11).

STEP 3: Compute x(k+1) according to (3.12).
STEP 4: For p = 2, 3, . . . , m, update u(k+1)

p by (3.13).
STEP 5: If the termination criterion is satisfied, return x(k+1).

Otherwise, let k = k + 1, and go to Step 2.

In what follows, we investigate the computational complexity of Algorithm 3.2.
Actually, if we compute all the matrices Ak�=p by (3.16), the details of their computa-
tional amounts are listed in Table 1, in which we let r = max

1≤i≤m
ri and suppose r ≤ n.

In this case, the amount of operations contained in this algorithm is estimated con-
servatively by O((m − 1)n2r2), and is obviously far less than that of Algorithm 3.1.
Therefore, the TT-ADMM algorithm is a promising approach for solving large-scale
tensor equations because of its lower computational complexity.

In addition, to guarantee the lower complexity of Algorithm 3.2, the TT-format of
the tensor A should also be employed if some other tensor-vector operations (e.g.,
the residual of the tensor equation (1.1)) are desired.

Remark 3.1 If the tensor A is given in CP-format, then the TT-format of which
can be exactly obtained [37]. However, for a full tensor, it is not easy to obtain the
CP-format of a tensor because it is NP-hard to determine the CP-rank [18]. In con-
trast, one can use the TT-SVD algorithm to approximate a tensor into the TT-format
quasi-optimally [37]. Compared with Algorithm 3.1, it will be shown numerically
that the TT-ADMM method is feasible and effective if the error caused by the
TT-approximation is small enough.

Table 1 The detail of the amount of computations in Algorithm 3.2

Operations Amount of calculations Index p

Bi := Gi •2 x(k+1)
i , i = 2, 3, . . . , p − 1 2nr2 × (p − 2)

Cj := Gj •2 x(k)
j , j = p + 1, . . . , m 2nr2 × (m − p − 1) + 2nr

A1 = G1B2 · · ·Bp−1 2r3 × (p − 3) + 2nr

A2 = (Cp+1 · · · (Cm−1Cm)) 2r3 × (m − p − 2)

Ak�=p = Gp ×1 A1 ×3 A2
T 2n2r2 + 2nr2 p ∈ {2, 3, . . . , m − 1}

Bi := Gi •2 x(k+1)
i , i = p, . . . , m − 1 2nr2 × (m − p)

Ak�=m = G1B2 · · ·Bm−1 2r3 × (m − 3) + 2nr p = m

x(k+1)
p -update by (3.14) 2n2 + 3n + 1 p ∈ {2, 3, . . . , m}

x(k+1)-update by (3.12) mn

1450 Numerical Algorithms (2019) 80:1437–1465

4 Convergence analysis

Although the alternating iterative methods we propose in preceding section are also
the multi-block generalizations of the classical ADMM, but they are very different
from the multi-block ADMM (2.5), since the objective function in our problem (3.3)
is nonseparable, which means that the convergence analysis of which may be more
difficult than that of the later. In this section, we shall give the convergence analy-
sis of Algorithm 3.1 under some hypotheses, which is similar but different from that
presented in [44], since the problems we considered here and studied in [44] are dif-
ferent. By the same arguments, we can discuss the convergence analysis of Algorithm
3.2, so it is omitted here.

For ease of expression, we, in this section, use the iteration scheme (3.4) to analyze
the convergence, and specially introduce the following notations:

x̃ :=(̃x2, . . . , x̃m), ỹ := (̃y2, . . . , ỹm),

x̂ :=(x2, . . . , xm), ŷ := (y2, . . . , ym),

x̂(k+1,p) :=
(
x(k+1)
2 , . . . , x(k+1)

p , x(k)
p+1 . . . x(k)

m

)
, p = 2, . . . , m − 1,

ŷ(k+1,p) :=
(
y(k+1)
2 , . . . , y(k+1)

p , y(k)
p+1 . . . y(k)

m

)
, p = 2, . . . , m − 1,

x̂(k+1) :=̂x(k+1,m) =
(
x(k+1)
2 , . . . , x(k+1)

m

)
,

ŷ(k+1) :=̂y(k+1,m) =
(
y(k+1)
2 , . . . , y(k+1)

m

)
.

Let us recall the augmented Lagrangian function (3.5)

Lμ(̂x, z, ŷ) = f (̂x) +
m∑

p=2

μp

2

(
‖xp − z + 1

μp

yp‖2 − 1

μ2
p

‖yp‖2
)

,

and the Karush-Kuhn-Tucker (KKT) optimality conditions for the problem (3.3):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AT�=p(A �=pxp − b) + yp = 0,
m∑

p=2

yp = 0, p = 2, 3, . . . , m,

xp − z = 0.

(4.1)

Then we have the following theorem.

Theorem 4.1 Let {̂x(k), z(k), ŷ(k)} be a sequence generated by Algorithm 3.1, and

assume that
∞∑

k=0

m∑
p=2

1

μp

‖y(k+1)
p − y(k)

p ‖2 < ∞. Then (̂x(k+1), z(k+1))− (̂x(k), z(k)) →
0 as k → ∞.

Numerical Algorithms (2019) 80:1437–1465 1451

Proof For each p ∈ {2, 3, . . . , m}, we rewrite the augmented Lagrangian function as

Lμ(̂x, z, ŷ) = 1

2
‖A �=pxp − b‖2 + μp

2
‖xp − z + 1

μp

yp‖2 + c�=p

= 1

2

∥∥∥∥∥∥

[
A�=p√
μp In

]
xp −

⎡

⎣
b

√
μp z − 1√

μp

yp

⎤

⎦

∥∥∥∥∥∥

2

+ c�=p,

where c�=p is the term being independent with xp, which, together with Lemma 2.1,
indicates that Lμ over xp is strongly convex regarding αp = λmin(AT�=pA�=p) + μp,
namely,

Lμ(x2, . . . , x′
p, . . . , xm, z, ŷ) − Lμ(x2, . . . , xp, . . . , xm, z, ŷ)

≥<
∂

∂xp

Lμ(x2, . . . , xp, . . . , xm, z, ŷ), x′
p − xp > +αp

2
‖x′

p − xp‖2.

Notice that x(k+1)
p is the minimizer of Lμ over the variable xp in (3.6), then the last

inequality implies that

Lμ(̂x(k), z(k), ŷ(k)) − Lμ(̂x(k+1,2), z(k), ŷ(k)) ≥ α′
2

2
‖x(k)

2 − x(k+1)
2 ‖2,

Lμ(̂x(k+1,2), z(k), ŷ(k)) − Lμ(̂x(k+1,3), z(k), ŷ(k)) ≥ α′
3

2
‖x(k)

3 − x(k+1)
3 ‖2,

...

Lμ(̂x(k+1,m−1), z(k), ŷ(k)) − Lμ(̂x(k+1), z(k), ŷ(k)) ≥ α′
m

2
‖x(k)

m − x(k+1)
m ‖2,

where α′
p = λmin((Ak�=p)T Ak�=p) + μp for p = 2, 3, . . . , m. Summing these

inequalities yields

Lμ(̂x(k), z(k), ŷ(k)) − Lμ(̂x(k+1), z(k), ŷ(k)) ≥
m∑

p=2

α′
p

2
‖x(k)

p − x(k+1)
p ‖2. (4.2)

Furthermore, after rearrangement, we obtain another form of the augmented
Lagrangian function Lμ as follows:

Lμ(̂x, z, ŷ) =
m∑

p=2

μp

2
‖xp − z + 1

μp

yp‖2 + f (̂x) − 1

2

m∑

p=2

1

μp

‖yp‖2

= 1

2

∥∥∥∥∥∥∥∥∥∥∥

⎡

⎢⎣

√
μ2 In

. . . √
μm In

⎤

⎥⎦

⎡

⎢⎣
z
...
z

⎤

⎥⎦−

⎡

⎢⎢⎢⎢⎢⎣

√
μ2 x2 + 1√

μ2
y2

...
√

μm xm + 1√
μm

ym

⎤

⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥

2

+ f (̂x) − 1

2

m∑

p=2

1

μp

‖yp‖2.

1452 Numerical Algorithms (2019) 80:1437–1465

Using Lemma 2.1 once more, we therefore conclude that Lμ over the variable z is
strongly convex with respect to β = min

2≤p≤m
μp, then

Lμ(̂x(k+1), z(k), ŷ(k)) − Lμ(̂x(k+1), z(k+1), ŷ(k)) ≥ β

2
‖z(k) − z(k+1)‖2. (4.3)

In addition, from the definition of Lμ, we obtain

Lμ(̂x(k+1), z(k+1), ŷ(k)) − Lμ(̂x(k+1), z(k+1), ŷ(k,2))

= y(k)
2

T
(
x(k+1)
2 − z(k+1)

)
− y(k+1)

2
T
(
x(k+1)
2 − z(k+1)

)

= − 1

μ2
‖y(k)

2 − y(k+1)
2 ‖2.

(4.4)

In the same treatment as utilized in (4.4), we have

Lμ(̂x(k+1), z(k+1), ŷ(k,2)) − Lμ(̂x(k+1), z(k+1), ŷ(k,3)) = − 1

μ3
‖y(k)

3 − y(k+1)
3 ‖2,

...

Lμ(̂x(k+1), z(k+1), ŷ(k,m−1)) − Lμ(̂x(k+1), z(k+1), ŷ(k+1)) = − 1

μm

‖y(k)
m − y(k+1)

m ‖2.
(4.5)

Summing the equalities in (4.4) and (4.5) gives

Lμ(̂x(k+1), z(k+1), ŷ(k)) − Lμ(̂x(k+1), z(k+1), ŷ(k+1)) = −
m∑

q=2

1

μq

‖y(k+1)
q − y(k)

q ‖2,

which, together with the inequalities (4.2) and (4.3), derives that

Lμ(̂x(k), z(k), ŷ(k)) − Lμ(̂x(k+1), z(k+1), ŷ(k+1))

≥
m∑

p=2

α′
p

2
‖x(k+1)

p − x(k)
p ‖2 + β

2
‖z(k+1) − z(k)‖2 −

m∑

q=2

1

μq

‖y(k+1)
q − y(k)

q ‖2. (4.6)

This formula is essential for completing the proof. As a matter of fact, according
to the definition of Lμ, we know that Lμ(̂x(k), z(k), ŷ(k)) is bounded below for any
positive integer k. Taking summation of the inequalities in (4.6) from k = 0 to ∞,
we obtain

∞∑

k=0

⎛

⎝
m∑

p=2

α′
p

2
‖x(k+1)

p −x(k)
p ‖2 + β

2
‖z(k+1)−z(k)‖2−

m∑

p=2

1

μq

‖y(k+1)
q −y(k)

q ‖2
⎞

⎠< ∞,

which implies from the assumption that

∞∑

k=0

⎛

⎝
m∑

p=2

α′
p

2
‖x(k+1)

p − x(k)
p ‖2 + β

2
‖z(k+1) − z(k)‖2

⎞

⎠ < ∞,

and then (̂x(k+1), z(k+1), ŷ(k+1)) − (̂x(k), z(k), ŷ(k)) → 0 as k → ∞.

By Theorem 4.1, we obtain the following result.

Numerical Algorithms (2019) 80:1437–1465 1453

Theorem 4.2 Let {̂x(k), z(k), ŷ(k)} be a sequence generated by Algorithm 3.1. Then
any limit point of the above sequence satisfies the KKT equations in (4.1).

Proof Because x(k+1)
p is a minimizer of the subproblem (3.6), then we have

((
Ak�=p

)T

Ak�=p + μpIn

)(
x(k+1)
p − x(k)

p

)

=
(
Ak�=p

)T

b + μpx(k)
p − y(k)

p −
((

Ak�=p

)T

Ak�=p + μpIn

)
x(k)
p (4.7)

=
(
Ak�=p

)T (
b − Ak�=px

(k)
p

)
− y(k)

p .

Moreover, it follows from (3.8) that
m∑

p=2

μp(z(k+1) − z(k)) =
m∑

p=2

(
y(k)
p + μpx(k+1)

p

)
−

m∑

p=2

μpz(k)

=
m∑

p=2

y(k)
p +

m∑

p=2

μp

(
x(k+1)
p − x(k)

p

)
+

m∑

p=2

μp

(
x(k)
p − z(k)

)
.

(4.8)
Rewriting the dual updates in (3.4) as

y(k+1)
p − y(k)

p = μp

(
x(k+1)
p − z(k+1)

)
. (4.9)

Then we conclude from Theorem 4.1 that all the right-hand sides in (4.7)–(4.9) tend
to zero as k → ∞, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
Ak�=p

)T (
b − Ak�=px

(k)
p

)
− y(k)

p → 0,

m∑

p=2

y(k)
p → 0, p = 2, 3, . . . , m,

x(k+1)
p − z(k+1) → 0.

(4.10)

On the other hand, for any limit point (̃x, z̃) of the sequence {̂x(k), z(k)}, that is,
there exists a subsequence {̂x(kj), z(kj)} such that {̂x(kj), z(kj)} → (̃x, z̃) as j →
∞. Moreover, the boundedness of {̂y(k)} guarantees the existence of a subsequence
{̂y(kj)} converging to some point ỹ as j → ∞. Then it follows that (̃x, z̃, ỹ) is a limit
point of the sequence {̂x(k), z(k), ŷ(k)}. Replacing k by kj in (4.10), which means that
x̃, z̃, and ỹ constitute a solution pair of the system of (4.1).

Following this theorem, we can derive the termination criterion of the algorithms
proposed in previous section.

Remark 4.1 The convergence analysis suggests that a feasibility termination criterion
of Algorithms 3.1 and 3.2 is that both the norm of the primal residual r(k+1) =(
x(k+1)
2 − x(k+1), . . . , x(k+1)

m − x(k+1)
)
, and the dual residual s(k+1) = x(k+1) − x(k)

1454 Numerical Algorithms (2019) 80:1437–1465

are small enough. At this time, x(k+1) is viewed as an approximate solution of the
tensor equation (1.1). Certainly, one can also use the residual of the tested tensor
equations to terminate the iteration if they are solvable.

5 An application

In this section, we apply the alternating iterative methods given in Section 3 to the
solution of tensor eigenvalue problems by establishing the associated inverse iteration
methods as in [7].

Here, we consider only the Z-eigenvalue problem of tensors, and the others can
be addressed in the similar manner. The inverse iteration method for searching the
Z-eigenpairs of a tensor A ∈ R

[m,n] is described as follows, which is twisted from
Algorithm 3.1 and is denoted by INV-GADMM for short.

Algorithm 5.1 (INV-GADMM)

STEP 1: Input A ∈ R
[m,n], and initial unit vector x(0).

STEP 2: While the terminate criterion is not satisfied, for k = 1, 2, . . .

1) Solve tensor equation A (y(k))m−1 = λk−1x(k−1) by Algorithm 3.1;
2) Compute x(k) = y(k)/‖y(k)‖;
3) Compute λk = A (x(k))m.

STEP 3: Return (λk, x(k)) as an approximate Z-eigenpair of A .

Furthermore, depending on Algorithm 3.2, the inverse iteration method for solving
the Z-eigenvalue problem of tensors is given below, and is denoted by INV-TTADMM
for short.

Algorithm 5.2 (INV-TTADMM)

STEP 1: Input A ∈ R
[m,n] characterized by the TT-cores Gi with i = 1, 2, . . . , m.

Let the initial unit vector be x(0) ∈ R
n.

STEP 2: While the terminate criterion is not satisfied, for k = 1, 2, . . .

1) Solve tensor equation A (y(k))m−1 = λk−1x(k−1) by Algorithm 3.2;
2) Compute x(k) = y(k)/‖y(k)‖;
3) Compute

λk = G1
{
(G2 •2 x(k))

[
(G3 •2 x(k))· · ·((Gm−1 •2 x(k))(Gm •2 x(k))

)]}
.

STEP 3: Return (λk, x(k)) as an approximate Z-eigenpair of A .

Theoretically speaking, both the two algorithms are feasible for solving the eigen-
value problem of any given tensor, because Algorithm 3.1 and Algorithm 3.2 are
capable of solving general tensor equations. Moreover, based on the analysis of the
computational complexity of Algorithm 3.2, we know that Algorithm 5.2 is also free
from the curse-of-dimensionality, which means that Algorithm 5.2 may be promis-
ing for solving large-scale tensor eigenvalue problems, while Algorithm 5.1 and the

Numerical Algorithms (2019) 80:1437–1465 1455

existing methods presented in, e.g., [7, 25], may be still intractable for large-scale
problems.

6 Numerical experiments

In this section, we test the feasibility and effectiveness of the algorithms we propose
in this paper for solving tensor equations and tensor eigenvalue problems, respec-
tively. All codes were written in MATLAB (version R2016a) and run on a personal
computer with Inter(R) Core(TM) i5-4200M@2.5 GHz and 4.00 G memory, and
all the operations were implemented via the tensor toolbox (version 2.6) [1] and
the tensor-train toolbox [38]. For the sake of convenience, we use respectively “IT”
and “CPU” to represent the number of iteration steps and the elapsed CPU time in
seconds, and RES = ‖A (x(k))m−1 − b‖, where x(k)

p and x(k) are the kth iteration
values.

6.1 Numerical results related to tensor equations

For the sake of comparison, the tested tensor equations are all consistent, and then
the stopping rule is that RES < ε := 1.0e−05, or the iteration number exceeding the
prescribed iteration kmax = 10000. Particularly, we choose the penalty parametersμp

(p = 2, 3, . . . , m) in both Algorithms 3.1 and 3.2 as an invariant constant, denoted by
μ. In addition, the number of iteration steps, the CPU time, and the residual contained
in the tables below are respectively the average of 5 runs from different starting points
unless otherwise stated. Besides, if the coefficient tensor of a tested tensor equation
is a full tensor, we obtain its TT-format by using the involved function tt_tensor

in the tensor-train toolbox with accuracy =1.0e−014.

Example 6.1 We consider the solution of the discretized Klein-Gordon equation,
i.e., the tensor equation (1.2), and let the right-hand side f be the vector such that
L (d)

h (u∗)m−1 = f with u∗ = 2 ∗ ones(n, 1) for simplicity.

For convenience, we consider the case d = 1. Since the tensor Lh in the tensor
equation is a nonsymmetric nonsingular M-tensor equation [7], and the SOR-type
method [31] has better performance than some others, for instance, Jacobi and Gauss-
seidel methods and their variants proposed in [7], then we compared only with the
SOR-type method. Starting with randomly chosen initial vector u(0) = rand(n, 1) ∗
10 and μ = rand∗1000, we ran the three algorithms mentioned above, and reported
the numerical results in Table 2, in which the relaxation parameter ω involved in the
SOR-type method was chosen randomly by ω = 1 + rand, and particularly, the
symbol ‘’—” means that the residual did not satisfy the tolerance before the number
of iteration steps arrives at the maximum.

From Table 2, one can observe that the three algorithms are convergent before the
maximal number kmax except the cases m = 3, n = 100 and m = 4, n = 40, 50
for the SOR-type method and the case m = 4, n = 20 for the G-ADMM method.

1456 Numerical Algorithms (2019) 80:1437–1465

Table 2 Numerical results for the tensor equation in Example 6.1

Algorithms G-ADMM TT-ADMM SOR-type [31]

[m, n]

IT 52 53 419

[3, 10] CPU 0.3055 0.2815 2.2412

RES 7.2183e−06 7.4410e−06 9.5562e−06

IT 67 63 1881

[3, 20] CPU 0.4078 0.3413 12.1793

RES 9.5388e−06 7.0937e−06 9.9013e−06

IT 52 50 9424

[3, 40] CPU 0.3523 0.2970 65.1846

RES 9.2479e−06 8.8712e−06 9.9779e−06

IT 250 566 2066

[3, 80] CPU 4.9194 9.5337 22.0313

RES 8.3193e−06 7.1597e−06 9.9587e−06

IT 56 65 —

[3, 100] CPU 1.2577 0.8602 —

RES 1.4017e−06 3.0666e−06 —

IT 1818 1866 549

[4, 10] CPU 18.9756 18.5013 3.9798

RES 9.9875e−06 9.7224e−06 9.9960e−06

IT — 9176 4346

[4, 20] CPU — 92.9956 41.1742

RES — 6.5256e−06 9.9729e−06

IT 1955 1953 —

[4, 40] CPU 208.4802 49.0056 —

RES 8.2304e−06 4.9580e−06 —

IT 8853 5691 —

[4, 50] CPU 1489.3642 230.6611 —

RES 9.9986e−06 9.9889e−06 —

IT 250 566 2066

[5, 10] CPU 4.9194 9.5337 22.0313

RES 8.3193e−06 7.1597e−06 9.9587e−06

IT 420 1141 4413

[5, 20] CPU 52.2996 21.1381 279.8183

RES 3.8554e−06 6.9550e−06 9.9540e−06

IT 261 285 1512

[6, 10] CPU 17.8109 6.6072 45.2949

RES 9.9396e−06 6.6867e−06 9.8433e−06

IT 558 149 1756

[7, 10] CPU 186.5865 5.6144 218.8982

RES 9.8975e−07 4.7903e−06 9.9170e−06

Numerical Algorithms (2019) 80:1437–1465 1457

Moreover, the iteration steps, the elapsed CPU time and the residual corresponding
to both G-ADMM and TT-ADMM are commonly less than those of the SOR-type
method. In addition, this table also reflects that the iteration steps and the elapsed
CPU time of G-ADMM and TT-ADMM are always different due to the influence of
errors. Particularly, the CPU time costed by TT-ADMM is less than that of G-ADMM
in the sense that they have almost the same iteration steps, which coincides with the
analysis presented in Section 3.

In what follows, taking the discretized system (1.2) with d = 1 as an example,
we consider how the error caused by deriving the tensor-train decomposition affects
the effectiveness of our algorithms. We produced 100 different TT-formats of the
tensor Lh with different accuracy “EPS”, i.e., EPS=[1.0e-01:−1.0e−03:1.0e−016],
and ran the G-ADMM method and the TT-ADMM method with the same initial
vector u(0) = [1 : n]′ for the case [m, n] = [4, 10]. In Fig. 2, we described the
norm of the solutions and the corresponding residuals derived by the two proposed
methods versus the accuracy EPS, respectively. From the figures, one can observe
that the difference between the solutions (or respectively the residuals) decreases
as the accuracy increases, and especially becomes very small when the accuracy is
higher than EPS=1.8e−02 and EPS=1.0e−02, respectively, which means that the TT-
ADMM method is commonly feasible if the error to derive the TT-format is small
enough. Moreover, the convergence behavior of the proposed methods was displayed
in Fig. 3.

00.010.020.030.040.050.060.070.080.090.1

The accuracy of the TT-format of the tensor A

10

12

14

16

18

20

22

24

26

T
he

 n
or

m
 o

f t
he

 o
bt

ai
ne

d
so

lu
tio

n

m=4,n=10

G-ADMM
TT-ADMM

00.010.020.030.040.050.060.070.080.090.1

The accuracy of the TT-format of the tensor A

-14

-12

-10

-8

-6

-4

-2

0

2

4

T
he

 lo
ga

rit
hm

 o
f R

E
S

m=4,n=10

G-ADMM
TT-ADMM

Fig. 2 Comparison of G-ADMM and TT-ADMM for the tensor equation in Example 6.1

1458 Numerical Algorithms (2019) 80:1437–1465

0 2 4 6 8 10 12 14

Iteration step k

-15

-10

-5

0

5

10

15

20

Lo
g(

R
E

S
)

m=4,n=10

G-ADMM

0 2 4 6 8 10 12 14

Iteration step k

-15

-10

-5

0

5

10

15

20

Lo
g(

R
E

S
)

m=4,n=10

TT-ADMM

Fig. 3 Comparison on the convergence behavior of the proposed methods for the tensor equation in
Example 6.1

Example 6.2 Let the tensor A in (1.1) be given by

A = sI − B, B = (bi1i2...im) ∈ R
[m,n] with bi1i2...im = | tan(i1 + i2 + · · · + im)|,

where s = (1+ α) ·max1≤i≤n(Bem−1)i with e = ones(n, 1) and α = 0.01, and the
right-hand side b be chosen such that A (x∗)m−1 = b for x∗ = 8 ∗ ones(n, 1).

The tensor A defined above is always a symmetric nonsingularM-tensor, which
is derived from [16]. When the tensor A is a nonsingular M-tensor, it was shown
[32] that to find a sparsest solutions to the tensor complementarity problem

{
min ‖x‖0
s.t . A xm−1 − b ≥ 0, x ≥ 0, xT (A xm−1 − b) = 0,

is equivalent to search a positive solution of the M-tensor equation (1.1) under the
condition that b is a nonnegative vector, where ‖ · ‖0 denotes the number of nonzero
elements of a vector. Therefore, this example can also be regarded as an application
of our methods when solving the tensor complementarity problems.

Starting with randomly chosen initial vector x(0) = rand(n, 1) ∗ 10 and μ =
rand∗1000, we respectively implemented G-ADMM and TT-ADMM, and compared
with the Newton method [7] and the SOR-type method [31] for different choices ofm
and n, because the last two algorithms have better performance, and particularly, the
Newton method is theoretically feasible for symmetric M-tensor equations, which
is a promising method [7]. The obtained numerical results were reported in Table 3.
This table reveals that all the algorithms mentioned above converge to the desired
accuracy before reaching the maximum number of iteration steps kmax, and in the
most cases, the number of iteration steps and the CPU time corresponding to the G-
ADMM method and the TT-ADMM method as well as the Newton method are less
than those of the SOR-type method. Relatively, the CPU time that the TT-ADMM
method spent is also less than that of the G-ADMM method.

Numerical Algorithms (2019) 80:1437–1465 1459

Table 3 Numerical results for Example 6.2

Algorithms G-ADMM TT-ADMM Newton [7] SOR-type [31]

[m, n]

IT 8 8 9 226

[3, 10] CPU 0.0448 0.0611 0.0098 0.9260

RES 2.7577e−07 2.7567e−07 7.3045E−09 9.3438e−06

IT 16 16 17 106

[3, 20] CPU 0.2429 0.1887 0.0620 1.1217

RES 6.8967e−08 9.5307e−08 3.4022e−08 8.4800e−06

IT 11 11 12 799

[3, 40] CPU 0.0803 0.0667 0.0178 4.6079

RES 2.4467e−07 2.4473e−07 3.3004e−10 9.8501e−06

IT 12 12 13 114

[3, 80] CPU 0.1391 0.1093 0.0583 4.3159

RES 1.7235e−07 1.7508e−07 1.3139e−08 9.0632e−06

IT 17 17 18 101

[3, 100] CPU 0.2959 0.2209 0.1278 6.4439

RES 7.9938e−08 7.8959e−08 4.0291e−09 7.5501e−06

IT 13 13 14 100

[4, 10] CPU 0.1470 0.1202 0.0322 0.6227

RES 2.8662e−08 3.1878e−08 4.6798e−09 7.1084e−06

IT 322 45 62 155

[4, 20] CPU 4.5566 0.4711 0.1847 1.4747

RES 4.0202e−08 8.4469e−08 3.1757e−08 9.5226e−06

IT 243 439 368 214

[4, 40] CPU 16.8305 6.7317 6.4615 8.5447

RES 5.9527e−07 6.8735e−07 2.6610e−07 9.3075e−06

IT 108 124 168 231

[4, 50] CPU 16.5617 2.4854 6.6246 19.9548

RES 7.1131e−07 2.2263e−06 4.4288e−07 9.8645e−06

IT 17 17 18 162

[5, 10] CPU 0.3788 0.3109 0.0652 1.5573

RES 7.3480e−08 1.8428e−07 9.5127e−08 9.3459e−06

IT 20 20 21 277

[5, 20] CPU 2.5734 0.4004 0.5628 15.1979

RES 1.0796e−06 2.3296e−06 7.4171e−07 8.7214e−06

IT 1409 234 1875 460

[6, 10] CPU 115.5979 7.4432 25.5439 15.2270

RES 2.9214e−07 6.5650e−07 2.8681e−07 9.8946e−06

IT 49 57 76 413

[7, 10] CPU 0.6073 0.6672 0.1864 3.0254

RES 1.0443e−04 5.8765e−05 8.3219e−05 9.8075e−04

1460 Numerical Algorithms (2019) 80:1437–1465

The performed numerical tests in Examples 6.1 and 6.2 display the superiority of
the methods we propose in present paper when they are applied to the tensor equa-
tions with special structures, while our approaches are theoretically feasible for any
tensor equations, which can also be confirmed numerically by the following example.

Example 6.3 Let the tensor A in (1.1) be given by A = tenrand(v) ∈ R
[m,n] with

v = ones(1, m) ∗ n, and the right-hand side b be chosen such that A (x∗)m−1 = b
with x∗ = 2∗ones(n, 1), where tenrand(v) returns anmth-order and n-dimensional
tensor containing pseudo-random values drawn from the uniform distribution in (0,1).

As chosen in Example 6.2, for randomly initial values and parameters, we respec-
tively performed G-ADMM and TT-ADMM and reported the numerical results in
Table 4. From this table, one can see that both of the algorithms are feasible. Particu-
larly, the number of iteration steps and the elapsed CPU time increase as the order m

or the dimension n of the tensor A .

6.2 Numerical results related to tensor eigenvalue problems

This subsection is devoted to the computation of Z-eigenpairs of tensors by using
the inverse iteration methods twisted from G-ADMM and TT-ADMM, i.e., INV-
GADMM and INV-TTADMM. In our tests, the stopping rule is that the difference
ERR:=|λk+1 − λk| < η = 1.0e − 05, or the number of iteration steps exceeds the
maximum kmax = 100, while the termination criterion in inner iteration is that the
residual RES< η or the number of inner iteration steps (denoted by “INT”) exceeds
the maximum kINT.

Table 4 Numerical results for Example 6.3

Algorithms G-ADMM TT-ADMM

[m, n] IT CPU RES IT CPU RES

[3, 10] 42 0.2435 5.1308e−06 35 0.1678 8.9933e−06

[3, 30] 60 0.3131 9.8696e−06 85 0.3918 4.9321e−06

[3, 50] 90 0.5041 9.8612e−06 160 0.7369 9.5644e−06

[3, 100] 178 1.0071 9.5524e−06 154 0.7484 9.3591e−06

[4, 10] 83 0.9306 7.3769e−06 73 0.7378 8.5396e−06

[4, 30] 87 0.9109 9.1836e−06 68 0.7148 9.0353e−06

[4, 50] 156 1.6243 7.2226e−06 114 1.1479 9.7769e−06

[5, 10] 99 1.7509 8.4275e−06 84 1.4720 8.5100e−06

[5, 20] 213 3.6923 9.2637e−06 199 3.4584 9.0893e−06

[6, 10] 115 3.1762 8.3000e−06 99 2.7520 9.3058e−06

[6, 20] 115 3.3001 8.8550e−06 105 3.1587 9.4288e−06

[7, 10] 221 10.1370 5.3943e−06 220 10.0129 6.5320e−06

Numerical Algorithms (2019) 80:1437–1465 1461

Example 6.4 Let A = (ai1i2i3i4) ∈ R
[4,3] be the symmetric tensor presented in

Example 1 of [23], i.e.,

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,

a1123 = −0.2939, a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862,

a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

The real Z-eigenvalues of the tensor A are listed as follows [23]:

0.8893, 0.8169, 0.5105, 0.3633, 0.2682, 0.2628,

0.2433, 0.1735, −0.0451, −0.5629, −1.0954.

We compared INV-GADMM and INV-TTADMM with the prevalent SS-HOPM
method [25], and the codes of the SS-HOPM is from [38] in which the shift is
selected randomly. With different initial iterative vectors produced by randn(3, 1),
we respectively ran 100 trials of the two algorithms for different choices of kINT =
10, 20, 40, 50, reported their accuracy for computing the Z-eigenpairs of A in
Table 5, and displayed the distribution of the obtained Z-eigenvalues in Fig. 4. From
Table 5, one can see that the occurrent number of the obtained Z-eigenvalues varies
with kINT, and that the Z-eigenvalues generated by our methods are often more
than those of SS-HOPM. The histograms in Fig. 4 reflect that the Z-eigenvalues
obtained by our methods lie in the intermediate (by modulus) positions, while the
ones obtained by SS-HOPM are at both ends.

It has been shown that the median eigenvalue of a graph plays an important role
in mathematical chemistry [9, 14]. Similarly, one can imagine that the median eigen-
value of a hypergraph [6] may also be useful in scientific computing. The above
numerical results reveal that the inverse iteration methods we propose here are helpful
for finding the median eigenvalue of a tensor.

In addition, as mentioned in Section 5, our inverse iteration methods are able
to solve the eigenvalue problem of a general tensor in R

[m,n], which can also be
illustrated by the following numerical example.

Table 5 Accuracy of the inverse iteration methods and SS-HOPM for symmetric TEP in Example 6.4

Algorithms kINT = 10 kINT = 20 kINT = 40 kINT = 50

INV-GADMM 79 % 82 % 84 % 84 %

INV-TTADMM 79 % 82 % 84% 84 %

SS-HOPM 80 % 66 % 82 % 80 %

1462 Numerical Algorithms (2019) 80:1437–1465

INV-GADMM INV-TTADMM SS-HOPM
Iterative algorithms

0

5

10

15

20

25

30

35

T
he

 o
cc

ur
re

nt
 n

um
be

r
of

 Z
-e

ig
en

va
lu

es

k
INT

=10

0.8893
0.8169
0.5105
0.3663
0.2682
0.2628
0.2433
0.1735
-0.0451
-0.5629
-1.0954

INV-GADMM INV-TTADMM SS-HOPM
Iterative algorithms

0

5

10

15

20

25

30

T
he

 o
cc

ur
re

nt
 n

um
be

r
of

 Z
-e

ig
en

va
lu

es

k
INT

=20

0.8893
0.8169
0.5105
0.3663
0.2682
0.2628
0.2433
0.1735
-0.0451
-0.5629
-1.0954

INV-GADMM INV-TTADMM SS-HOPM
Iterative algorithms

0

5

10

15

20

25

T
he

 o
cc

ur
re

nt
 n

um
be

r
of

 Z
-e

ig
en

va
lu

es

k
INT

=40

0.8893
0.8169
0.5105
0.3663
0.2682
0.2628
0.2433
0.1735
-0.0451
-0.5629
-1.0954

INV-GADMM INV-TTADMM SS-HOPM
Iterative algorithms

0

5

10

15

20

25

30

T
he

 o
cc

ur
re

nt
 n

um
be

r
of

 Z
-e

ig
en

va
lu

es

k
INT

=50

0.8893
0.8169
0.5105
0.3663
0.2682
0.2628
0.2433
0.1735
-0.0451
-0.5629
-1.0954

Fig. 4 The distribution of the obtained Z-eigenvalues for the tensor A in Example 6.4

Example 6.5 Let A ∈ R
[4,3] have the same elements as the tensor given in Example

6.4 except the following ones: a2333 = −0.2727, a3233 = 0.2727, a3323 = 1.2727
and a3332 = 2.2727.

Numerical Algorithms (2019) 80:1437–1465 1463

Table 6 Comparison of our inverse iteration methods for nonsymmetric TEP in Example 6.5

Algorithms EIG kINT = 10 kINT = 20 kINT = 40 kINT = 50

INV-GADMM 0.2430 38 % 40 % 41 % 37 %

INV-TTADMM 0.2430 38 % 38 % 38 % 34 %

By using Mathematica software, we obtain all the real Z-eigenvalues of the
nonsymmetric tensor A given in this example, namely,

1.0896, 0.7626, 0.5361, 0.5101, 0.4679, 0.3068,

0.2430, 0.1969, −0.0426, −1.0519, −1.1423.

We carried out 100 trials of INV-GADMM and INV-TTADMM for randomly
initial values generated by x(0) = randn(3, 1), and reported the obtained Z-
eigenvalues (denoted by “EIG”) and the corresponding accuracy in Table 6 for
kINT = 10, 20, 40, 50, respectively. This table reflects that for each method, the suc-
cess rate for finding the Z-eigenvalues of A varies with kINT. Notably, the success
rate of the two methods may be different for the same kINT because of the influence
of errors. Additionally, an amazed phenomenon, appeared in our experiments and
many others trials not listed here, is that only one Z-eigenvalue was found during the
performed trials. Therefore, how to improve the efficiency of these algorithms is a
problem worthy of consideration.

7 Concluding remarks

In this paper, we proposed an alternating iterative method derived from ADMM for
solving the tensor equation (1.1), i.e., Algorithm 3.1. Especially, based on the tensor-
train decomposition of tensors, we derived a new version of the above method, i.e.,
Algorithm 3.2, which is free from the curse-of-dimensionality. Under some assump-
tions, it has been proved that every limit point of the sequences generalized by
our methods satisfies the first-order optimality conditions. Furthermore, we applied
these methods to the derivation of the inverse iteration methods for solving tensor
eigenvalue problems. Numerical results demonstrate that our methods are feasible
and efficient for solving general tensor equations and tensor eigenvalue problems,
respectively. Particularly, the proposed methods outperform the existing ones if the
penalty parameters are chosen appropriately. During the discussion, we encounter
many issues, such as the choice of parameters μp, the computation of the median
eigenvalue of tensors, and the error of the solution of tensor equations caused by the
TT-decomposition, which have not been completely addressed there, and are left as
open problems for future studies.

Acknowledgements The authors are very grateful to the editors and two anonymous referees for their
constructive comments and valuable suggestions, which greatly improved the original manuscript of this
paper. Especially, the first author would like to thank Dr. Yutao Zheng for his selfless help in the process
of programming.

1464 Numerical Algorithms (2019) 80:1437–1465

Funding information This work was financially supported by the National Natural Science Foundation
of China (Grant nos. 11571004 and 11701456). The research of the first author was also financially sup-
ported by the Science Foundation of Education Department of Gansu Province (Grant no. 2017A-078) and
Tianshui Normal University (Grant no. TAS1603) as well as the Key Discipline Construction Foundation
of Tianshui Normal University. The third author was financially supported by the Fundamental Research
Funds for the Central Universities (Grant no. lzujbky-2017-it54) as well.

References

1. Bader, B.W., Kolda, T.G., et al.: MATLAB Tensor Toolbox Version 2.6. http://www.sandia.gov/∼
tgkolda/TensorToolbox/index-2.6.html (2015)

2. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear
Algebra Appl. 20(1), 27–43 (2013)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

4. Chang, T.-H., Hong, M.-Y., Liao, W., Wang, X.-F.: Asynchronous distributed ADMM for large-scale
optimization-part i: algorithm and convergence analysis. IEEE Trans. Sig. Process. 64(12), 3118–3130
(2016)

5. Chen, C.-H., He, B.-S., Yuan, X.-M., Ye, Y.-Y.: The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent. Math. Program. 155(1-2), 57–79 (2016)

6. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268–3292 (2012)
7. Ding, W.-Y., Wei, Y.-M.: Solving multi-linear systems with M-tensors. J. Sci. Comput. 68, 689–715

(2016)
8. Dolgov, S.V., Khoromskij, B.N., Oseledets, I.V.: Fast solution of parabolic problems in the tensor

train/quantized tensor train format with initial application to the Fokker-Planck equation. SIAM J. Sci.
Comput. 34(6), A3016–A3038 (2012)

9. Fowler, P.W., Pisanski, T.: HOMO-LUMO Maps for chemical graphs. MATCH Commun. Math.
Comput. Chem. 64, 373–390 (2010)

10. Forero, P.A., Cano, A., Giannakis, G.B.: Distributed clustering using wireless sensor networks. IEEE
J. Selected Topics Sig. Process. 5, 707–724 (2011)

11. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite
element approximation. Comput. Math. Appl. 2, 17–40 (1976)

12. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl.
31(4), 2029–2054 (2010)

13. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation
techniques. GAMM-Mitt. 36(1), 53–78 (2013)

14. Gutman, I., Rouvray, D.: An approximate topological formula for the HOMO-LUMO separation in
alternate hydrocarbons. Chem. Phys. Lett. 62, 384–388 (1979)

15. Hackbusch, W., Kuhn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5),
706–722 (2009)

16. Han, L.-X.: A homotopy method for solving multilinear systems with M-tensors. Appl. Math. Lett.
69, 49–54 (2017)

17. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference,
and prediction. Springer, New York (2001)

18. Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM. 60(6), 1–39 (2013)
19. He, B.-S., Tao, M., Yuan, X.-M.: A splitting method for separable convex programming. IMA J.

Numer. Anal. 20, 1–33 (2014)
20. He, B.-S., Yuan, X.-M.: Linearized alternating direction method of multipliers with Gaussian back

substitution for separable convex programming. Numer. Algebra Control Optim. 3, 247–260 (2013)
21. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the

tensor train format. SIAM J. Sci. Comput. 34, A683–A713 (2012)
22. Hong, M.-Y., Luo, Z.-Q., Razaviyayn, M.: Convergence analysis of alternating direction method of

multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)
23. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors.

SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

Numerical Algorithms (2019) 80:1437–1465 1465

24. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
25. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix

Anal. Appl. 32(4), 1095–1124 (2011)
26. Liavas, A.P., Sidiropoulos, N.D.: Parallel algorithms for constrained tensor factorization via the

alternating direction method of multipliers. IEEE Trans. Sig. Process. 63(20), 5450–5462 (2015)
27. Li, D.-H., Xie, S.-L., Xu, H.-R.: Splitting methods for tensor equations. Numer. Linear Algebra Appl.

24(5), 1–16 (2017)
28. Li, X.-T., Ng, M.K.: Solving sparse non-negative tensor equations: algorithms and applications. Front.

Math. China 10(3), 649–680 (2015)
29. Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In: proceedings of

the 1st IEEE international workshop on computational advances of multi-sensor adaptive processing
(CAMSAP), December 13-15, pp. 129–132 (2005)

30. Liu, J., Chen, J., Ye, J.: Large-scale sparse logistic regression. In: Proceedings of the ACM Interna-
tional Conference on Knowledge Discovery and Data Mining, New York, NY, USA, June 28-July 1,
pp. 547–556 (2009)

31. Liu, D.-D., Li, W., Vong, S.W.: The tensor splitting with application to solve multi-linear systems. J.
Comput. Appl. Math. 330(1), 75–94 (2018)

32. Luo, Z.-Y., Qi, L.-Q., Xiu, N.-H.: The sparsest solutions to Z-tensor complementarity problems. Optim
Lett. 11, 471–482 (2017)

33. Matsuno, Y.: Exact solutions for the nonlinear Klein-Gordon and Liouville equations in four-
dimensional Euclidean space. J. Math. Phys. 28(10), 2317–2322 (1987)

34. Qi, L.-Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
35. Qi, L.-Q., Luo, Z.-Y.: Tensor analysis: spectral theory and special tensors. SIAM, Philadelphia (2017)
36. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables.

Academic Press, New York (1970)
37. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
38. Oseledets, I.V., et al.: TT-Toolbox. https://github.com/oseledets/TT-Toolbox (2016)
39. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many

dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)
40. Sun, D.-F., Toh, K.-C., Yang, L.-Q.: A convergent 3-block semiproximal alternating direction method

of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882–915 (2015)
41. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc. B 58, 267–288

(1996)
42. Wang, Y., Yin, W.-T., Zeng, J.-S.: Global convergence of ADMM in nonconvex nonsmooth optimiza-

tion. J. Sci. Comput. https://doi.org/10.1007/s10915-018-0757-z (2018)
43. Xie, Z.-J., Jin, X.-Q., Wei, Y.-M.: A fast algorithm for solving circulant tensor systems. Linear

Multilinear Algebra 65(9), 1894–1904 (2017)
44. Xu, Y.-Y., Yin, W.-T., Wen, Z.-W., Zhang, Y.: An alternating direction algorithm for matrix completion

with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)
45. Zhang, J.-Y., Wen, Z.-W., Zhang, Y.: Subspace methods with local refinements for eigenvalue

computation using low-rank tensor-train format. J. Sci. Comput. 70, 478–499 (2017)
46. Zwillinger, D. Handbook of Differential Equations, 3rd edn. Academic Press Inc, Boston (1997)

https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1007/s10915-018-0757-z

	Alternating iterative methods for solving tensor equations with applications
	Abstract
	Abstract
	Introduction
	Preliminaries
	Notations and definitions
	Low-rank tensor formats
	ADMM

	Alternating iterative methods for tensor equation (1.1)
	G-ADMM
	TT-ADMM

	Convergence analysis
	An application
	Numerical experiments
	Numerical results related to tensor equations
	Numerical results related to tensor eigenvalue problems

	Concluding remarks
	References

